rapport d'activite et projet scientifique equipe i3d ... · rapport d'activite et projet...

33
- 1 - RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart - DR2 - INRIA Ce document va constituer la fiche de présentation des travaux de l'équipe au sein du dossier de demande de contractualisation du futur laboratoire. Ne pas créer d'en-tête. Numéroter les pages à partir de 1 au pied de la page et de façon centrée. 1. PERSONNEL Chercheurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. COQUILLART Sabine DR2 INRIA REDON Stéphane CR2 INRIA Enseignants-chercheurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. Ingénieurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. Doctorants : nombre de doctorants : 2 Nombre d'équivalents chercheurs (NE) : 2.16 La liste détaillée des membres de l'équipe est fournie en annexe 1. Dans l'annexe 1, vous supprimerez les lignes (par exemple "ITA/IATOS") et les tableaux (par exemple "liste des enseignants-chercheurs associés...") qui sont vides.. 2. BILAN DES ACTIVITES DE RECHERCHE 02-05 - Si vous développez des parties dans ce chapitre, merci d’utiliser les titres pré- enregistrés suivants LIG — Dossier de contractualisation 313

Upload: others

Post on 13-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 1 -

RAPPORT D'ACTIVITE

et PROJET SCIENTIFIQUE

Equipe

i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart - DR2 - INRIA

Ce document va constituer la fiche de présentation des travaux de l'équipe au sein du dossier de demande de contractualisation du futur laboratoire. Ne pas créer d'en-tête. Numéroter les pages à partir de 1 au pied de la page et de façon centrée.

1. PERSONNEL

Chercheurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. COQUILLART Sabine DR2 INRIA REDON Stéphane CR2 INRIA Enseignants-chercheurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. Ingénieurs : donner la liste sous la forme initiale du ou des prénom(s) suivi du nom. Doctorants : nombre de doctorants : 2 Nombre d'équivalents chercheurs (NE) : 2.16 La liste détaillée des membres de l'équipe est fournie en annexe 1. Dans l'annexe 1, vous supprimerez les lignes (par exemple "ITA/IATOS") et les tableaux (par exemple "liste des enseignants-chercheurs associés...") qui sont vides..

2. BILAN DES ACTIVITES DE RECHERCHE 02-05

- Si vous développez des parties dans ce chapitre, merci d’utiliser les titres pré-

enregistrés suivants

LIG — Dossier de contractualisation 313

Page 2: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 2 -

- Taille recommandée : 15 pages maximum

2.1 Thématique scientifique et objectifs généraux Research in Virtual Reality1 aims at studying new open problems emerging with virtual reality systems. The importance of user interfaces coupled with the immaturity of 3D interaction in virtual reality, makes 3D user interfaces one of the most important open problems of Virtual Reality. One can note:

• a well identified need: increasingly demanding users and growing number of interactive 3D applications,

• an unsatisfactory situation: most 3D applications have poor interfaces, primarily 2D, with a strong under-utilization of the human-application2 bandwidth, to be opposed to the very rich interface of the real world we are used to interact with,

• strong potentialities: promising virtual reality configurations and approaches which open the door to new 3D user interfaces to study and to conceive.

Within the large 3D interaction framework, the i3D project aims at focusing on virtual reality manipulation tasks (interaction with the hand(s)).

The objective of the i3D project is to conceive, evaluate and classify 3D interaction

techniques for virtual reality 3D interactive manipulation applications. A major difficulty of 3D manipulation in virtual environments comes from the double loop human/computer - perception/action (see Figure below), with a close interrelation of each one on the other. Other difficulties come from the youth of the domain and the low availability of powerful hardware platforms. The main open problems the i3D project proposes to handle are the following:

• Identifying the immersion (presence)/performance/comfort factors , evaluating their impact and their mutual connections. Also of importance, identifying factors which perturb immersion, performance or comfort.

• Understanding human perception of modalities and sensory relations : incoherencies, substitutions or redundancies. And exploiting this knowledge for the conception of improved interaction techniques.

• Haptic continuum. Study and conception of existing and new interaction techniques, with and without one of the different haptic feedback approaches. Identification of the features and limitations of each approach. Comparative studies. Validation of the human factors study on immersion/performance factors and modalities and sensory

1 we will indifferently employ the expressions “Virtual Reality” or “Virtual Environment” to represent systems aiming at providing users with immersive sensori-motor interaction with 3D worlds seen from a first-person point of view, including augmented reality or mixed reality systems. 2 we use the expression “human-application interface” instead of “human-machine interface” as in 2D, because in virtual environments, the objective is to make the machine transparent and to give the user the impression he/she interacts directly with the application.

LIG — Dossier de contractualisation 314

Page 3: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 3 -

relations. The scientific problems tackled by the i3D research group have been identified by CNRS as major open problems. Three AS (Specific Actions) have been devoted to these scientific problems: AS on “Virtual Reality and Cognition”, AS on “Collision detection” and AS on “Haptics and interface”. A fourth Specific Action on 3D interaction was also planned when Specific Actions have been stopped. The i3D research group has already a long experience on virtual reality and 3D interaction which allows to identify some principles to be followed. The i3D researches are based on the following principles:

• Parallel study of the human and computer loops .

3D interaction includes two loops, the computer loop and the human loop. We do believe that it is important to study both loops in parallel. We thus aim at carrying out experiments whenever it is possible. These experiments are either carried out prior to the conception of new interaction techniques, in order to provide a basis for these researches, such as psychophysics experiments on human perception or evaluation of existing techniques and peripherals. They are also conducted to evaluate new approaches developed in the group. These studies are carried out in collaboration with psychologists, cognicians, or ergonomicist.

• Harmonious integration of virtual and real.

Beside the use of props (physical objects), there are many ways to mix virtual and real words. The workbench is a nice example of multiple integrations of real and virtual (a virtual application inside a real word, possibly with a real tool offered within the application). Looking for a harmonious integration of virtual and real is one of our concerns.

• Immersion/performance factors.

There is a number of known immersion/performance factors such as two-handed interaction, direct manipulation (co-location), 6dof haptics, spatial interaction,… These factors are privileged in the solutions we propose, they are evaluated and new ones investigated.

• Close relationship with applications and users.

User feedback is of first importance while working on user interface. In 3D, it is even more important because of the immaturity of the domain. Working on concrete applications and in close relation with final is our objective.

• Best quality solutions

One of our objectives is to develop “best quality solutions” ie. high quality haptic rendering, high quality constraints simulation, high quality tracking, high quality visual feedback… in order to allow an evaluation of these parameters, by degradation.

• Integration of sensory feedback, modalities and performance/immersion factors

Studying a single sensory feedback is one thing, integrating together several sensory feedbacks and modalities, with immersion, in a seamless system is often a challenge. i3D aims at installing several similar (in their purpose) but different (in the technologies used) platforms including stereoscopic visualization, head-tracking,

LIG — Dossier de contractualisation 315

Page 4: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 4 -

direct manipulation (co- location), 6dof force feedback. The first configuration, is a 2 screen workbench with a Spidar installed on it [Tarrin03]. The second and third are a HMD see-through video with either a Spidar or a 6dof Phantom. Most of the i3D research work is based on these platforms.

Following these principles, and with the objective of improving 3D manipulation in immersive virtual environments,during the last few years, the i3D research group has concentrated its efforts on the following six main research topics:

• Pseudo and passive haptic feedback • Haptic simulation • Sensory feedback integration • General purpose interaction paradigms and metaphors • Interaction paradigms and metaphors for the exploration of complex data • Human factors

The two first topics are study of two different aspects of isolated sensory feedbacks. The third one is an important virtual reality challenge 3.. The fourth topic proposes general purpose paradigms and metaphors. The fifth topic studies interaction techniques for the exploration of complex data, it makes use of the results of the previous topics. Finally, the 6th topic is transversal it studies human factors associated to each of the other topics. Much of the research work and especially of the developments of the i3D group are dictated by the Workbench installed at the end of 1999. A second configuration has been recently installed: see-through HMD. Including a description of these configurations and a positioning of these configurations among the other VR configurations would take too much place in this report. A similar presentation can be found in the i3D INRIA annual activity report. Similarly, the development activity of the i3D group is important and including a complete description would take too much space in this report. We propose just to list the main developments here and let the reader read the i3D INRIA activity report for more details. List of the main software development realized by the i3D group:

• CONTACT Toolkit (libraries for collision detection and constraints computation), ATP • Haptic platform (integrating CONTACT) • VR platform (integrating the haptic platform). The first VR platform was based on

Performer, a new one was recently developed, based on OpenSG. Work on several configurations including the workbench and the see-through HMD.

• Integration of the haptic platform into AmiraTM scientific visualization software from Mercury Inc.

• Integration of the several developed interaction techniques (C3, QuikWrite) into Inventor Immersif, the immersive version of Open Inventor

• Development with SIAMES of several collaborative demonstrations between Rennes Reality Center and Grenoble’s workbench, based on Open Mask and VTHD. First demonstration with visualization and interaction, second with haptics.

3 Bowman et al. [Bowman04] wrote: “The real challenge, however, is to integrate all of these single-sense display types into a seamless system”.

LIG — Dossier de contractualisation 316

Page 5: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 5 -

• Development of a putty application demonstrator for the car industry • Development of several haptic scientific visualization demonstrators on BRGM and

CEA geosciences data. Concerning application domains, i3D privileged two domains :

• Virtual prototyping. Collaborations with EADS, Renault, Peugeot, participation in PERF-RV and Intuition on that topic (two PhD fundings from industry), transfert of the putty application prototype to PSA Peugeot Citroën.

• Exploration of complex data. Collaboration with BRGM, IFP, CEA, participation to Inventor Immersif and Geobench on that topic. Integration of the haptic platform in AmiraTM and transfert of the Stringed Haptic Workbench and haptic platform to BRGM,

2.1.1. Topic 1: Pseudo and passive-haptic feedback

Participants: Marco Congedo, Sabine Coquillart, Anatole Lécuyer, Alexis Paljic, Thibaut Prados. Keywords: haptic, pseudo-haptic feedback, sensori-motor incohenrencies, haptic illusion, passive feedback

2.1.1.1 Abstract

In order to simulate haptic sensations without haptic interfaces, we are studying passive solutions like self-constrained, or pseudo-haptic feedback. The purpose is to study new, low cost, non active haptic feedbacks which could provide haptic sensations without requiring all the constraints of active haptic feedback: expensive devices, high frequency computation,…

2.1.1.2 Detailed presentation Pseudo-haptic feedback (in collaboration with EADS, LRP Vélizy and Jean-Marie Burkhardt (Paris V University and INRIA-Eiffel group)) Pseudo-haptic feedback was initially obtained by combining the use of an isometric input device with visual feedback. It was used to simulate haptic properties such as stiffness or friction. For example, to simulate the friction occurring when inserting an object inside a narrow passage, one could artificially reduce the speed of the manipulated object during the insertion. Assuming that the object is manipulated with an isometric input device, the user will have to increase his/her pressure on the device to make the object advance inside the passage. The coupling between the slowing down of the object on the screen and the increasing reaction force coming from the device gives the user the illusion of a force feedback as if a friction force was applied to her/him [LEC00]4.

4 [LEC00] A. Lécuyer, S. Coquillart, A. Kheddar, P. Richard and P. Coiffet, "Pseudo-Haptic Feedback : Can Isometric Input Devices Simulate Force Feedback?", IEEE Int. Conf. on Virtual Reality, pages 83-90, New Brunswick, US, 2000

LIG — Dossier de contractualisation 317

Page 6: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 6 -

Three studies have been conducted and a fourth one is in preparation. The first study [LEC00] demonstrated that a passive isometric input device such as the Logitech Spaceball (see Figure 1) used together with appropriate visual feedback, could provide the operator with a pseudo-haptic feedback. During a psychophysical experiment, various subjects were indeed able to compare the stiffness of real springs and virtual ones - i.e. simulated with a pseudo-haptic feedback.

Figure 1: Pseudo -haptic first experiment

A second experiment [LEC01] was designed to study the phenomenon of illusion which occurs with the pseudo-haptic feedback, and to identify the moment when this illusion occurs: the "boundary of illusion". It has been shown that this boundary varies greatly depending on the subjects and their strategy of sensory integration. The subjects were sensitive to this illusion to varying degrees. They were divided into different populations from those who were "haptically oriented" to those who were "visually oriented"

A third experiment [PAL04a] has been conducted to test whether pseudo-haptic feedback is suitable for simulating torque feedback. The purpose of this experiment was to evaluate this feedback and involved compliance discrimination between real torsion springs and pseudo-haptic simulated torsion springs.

Results show that torque haptic feedback was successfully simulated, with a difference in performance between device types. See [PAL04a] for more details and other results. Applications making use of the pseudo-haptic concept are under consideration. Self Constrained Haptic Device

LIG — Dossier de contractualisation 318

Page 7: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 7 -

Figure 2 : The breaking device

This work is the prolongation of research on simulating low cost force feedback. Previous work concerned pseudo-haptic force feedback. The Self-Constrained Haptic Device proposed is also based on an interaction between visual and haptic information. It is called "self constrained" because the user himself is the source of energy for the force feedback. The device is made of a tracking device and a force sensor embedded into a breaking system (see Figure 2). The user held the breaking system that can slide along strings. When the user moves an object in free space he does not have to press the device and his movements are free. Forces (friction, viscosity) are simulated, by lowering the object displacement gain, so that the user sees it slow down. In order to be able to control the object with a 1:1 displacement gain, the user has to press the device. This action constrains his movements along the wires. Several experiments have been conducted to evaluate the new device. Results show tha t it provides the user with actual forces that are consistent with simulated physical properties, and that it enhances user performance compared to the purely visual situation. The system has also been installed on the two-screen workbench on which informa l tests show that it provides the users with haptic sensations (see Figure 2).

2.1.2. Topic 2: Haptic simulation

Participants : Sabine Coquillart, Michael Ortéga, Stéphane Redon, Keywords : Haptic rendering, collision detection, simulation

2.1.2.1 Abstract The two main problems that have to be solved in dynamic simulation for force feedback are the detection of collisions between the virtual objects, and the computation of their constrained motion. Most collision detection methods are discrete: they only detect interpenetrations between the virtual objects at successive discrete instants. In order to efficiently detect collisions between rigid polyhedral objects continuously, that is to compute the instant of first contact between them and avoid the problems inherent to the discrete methods, we propose to use arbitrary in-between motions to replace the real object motion and obtain collision detection equations that can be solved efficiently. We present two approaches, based upon the exploitation of arbitrary in-between motions, that allow to detect collisions continuously between complex polyhedral objects in real time. We then propose to add some geometric information to the bounding volumes in order to exploit the relative backwards

LIG — Dossier de contractualisation 319

Page 8: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 8 -

motion of objects and significantly speed up the collision detection when objects are close to each other. Most classic methods that compute the objects' constrained motions are formulated in the contact-space. Thanks to Gauss' least constraints principle, it is possible to get an equivalent formulation of the frictionless dynamics problems in the motion-space. We show that this motion-space formulation is more advantageous from a computational point of view. It leads us to propose a friction model in the motion-space. The proposed algorithms have been implemented and gathered in C++ libraries, CONTACT Toolkit. Several applications of these libraries, especially in industrial cases provided by Renault and Airbus-EADS have been developed.

2.1.2.2 Detailed presentation

The main results are detailed below. An Algebraic Solution to the Problem of Collision Detection for Rigid Polyhedral Objects [RED00]5 describes a new collision detection algorithm designed for interactive manipulation in virtual environments. Making some assumptions on objects motion, the collision time between two objects can be computed by solving a polynomial equation whose degree is equal to or smaller than three. The result has been extended [RED01] to continuously detect collisions between pairs of complex polyhedral objects. A C++ library, CONTACT, has been developed. The tests of this library, reported here, seem to show that this approach is especially suited for precise real-time interaction in virtual environments. Principle Gauss' Least Constraints Principle and Rigid Body Simulations Most of well-known approaches for rigid body simulations are formulated in the contact-space. Thanks to Gauss' principle of least constraints, the frictionless dynamics problems are formulated in a motion-space. While the two formulations are mathematically equivalent, they are not computationally equivalent. The motion-space formulation is better conditioned, always sparse, needs less memory, and avoids some unnecessary computations. A preliminary experimental comparison suggests that an algorithm operating in the motion space takes advantage of scarcity to perform increasingly better than a contact-space algorithm as the average number of contact points per object increases. For more details see [RED02a] Hierarchical Back-Face Culling for Collision Detection A few years ago, Vanecek suggested to apply a variant of back-face culling to speed-up collision detection between polyhedral objects. However, Vanecek's method is linear in the number of faces in the object, which is unpractical for large models. [RED02c] suggests to add some geometrical information to hierarchies of bounding volumes, typically used in collision detection, and perform conservative back-face culling at the bounding-volume level in constant time. The method described in this paper can be applied to complement any kind of bounding-volumes hierarchy and allows a trade-off between memory and speed. Preliminary experimental results suggest that the method allows a significant speed-up, especially in close proximity situations. 5 Stephane Redon, Abderrahmane Kheddar and Sabine Coquillart, “An Algebraic Solution to the Problem of Collision Detection for Rigid Polyhedral Objects”, In Proceedings of IEEE International Conference on Robotics and Automation, 2000

LIG — Dossier de contractualisation 320

Page 9: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 9 -

Fast Continuous Collision Detection between Rigid Bodies

[RED02b] introduces a fast continuous collision detection technique for polyhedral rigid bodies. As opposed to most collision detection techniques, the computation of the first contact time between two objects is inherently part of the algorithm. The method can thus robustly prevent objects interpenetrations or collisions misses, even when objects are thin or have large velocities. The method is valid for general objects (polygon soups), handles multiple moving objects and acyclic articulated bodies, and is efficient in low and high coherency situations. Moreover, the method can be used to speed up existent continuous collision detection methods for parametric or implicit rigid surfaces. The collision detection algorithms have been successfully coupled to a real-time dynamics simulator. Various experiments are conducted that show the method's ability to produce high-quality interaction (precise objects positioning for example) between models up to tens of thousands of triangles, which couldn't have been performed with previous continuous methods.

Six degree-of-freedom haptics A new algorithm for six degree-of- freedom (dof) haptic interaction with rigid bodies has been proposed. The algorithm combines continuous collision detection and constraint-based quasi-statics to generalize the well-known god-object method for haptic exploration of a rigid body with a three degree-of- freedom haptic device. The new algorithm preserves the desirable properties of the original god-object method: - the god-object never penetrates the environment obstacles, which is known to improve

the perceived stiffness of the haptic feedback [SBB96]6; - the constraint-based forces applied to the user are always orthogonal to the constraints,

and do not suffer from the artifacts typically encountered in previous methods (\emph{e.g.} forces felt at a distance, sticking, artificial friction). The new method contributes to enhance the realism of the haptic feedback, as it has been shown that an incorrect force direction perturbs the perceived orientation of the haptic surface [SPBS00]7.

2.1.3. Topic 3 : Integration

Participants: Olivier Chenu, Sabine Coquillart, Ambroise Guabello, Tangui Morvan, Michael Ortéga, Alexis Paljic, Nicolas Tarrin, Thomas Vincent, Keywords: Multi sensory feedback integration, virtual reality configuration, haptics, immersion, tactile feedback

2.1.3.1 Abstract

Most research on 3D user interfaces aims at providing only a single sensory modality. One challenge is to integrate several sensory modalities into a seamless system while preserving

6 [SBB96] M. A. Srinivasan, G. L. Beauregard, and D. L. Brock. The impact of visual information on the haptic perception of stiffness in virtual environments. ASME Winter Annual Meeting, November 1996.} 7 [SPBS00] W. L. Sachtler, M. R. Pendexter, J. Biggs, and M. A. Srinivasan. “Haptically perceived orientation of a planar surface is altered by tangential forces”, Fifth Phantom User’s Group Workshop, 2000.

LIG — Dossier de contractualisation 321

Page 10: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 10 -

each modality immersion and performance factors. Researches conducted on this topic have lead to a complete visuo-haptic solution which includes immersive stereo visualization, head-tracking, co-location, active 6dof haptic feedback, as well as props.

2.1.3.2 Detailed description The Stringed Haptic Workbench

Figure 3: Motors positioning

This work is the prolongation of previous researches on providing force feedback on a two screen workbench. A haptic handle was first tested [LEC02]. However, the fact that it was not a grounded device was a major drawback and other solutions had to be considered. The adopted solution is using a SPIDAR (a string based force feedback device developed by the Tokyo Institute of Technology). A SPIDAR has been integrated to the two-screens workbench. The first step consisted in geometrically adapting the SPIDAR configuration to the workbench configuration. One of our main concerns was to provide force feedback within a sufficiently large space. More precisely, we wanted to fill as fully as possible the workbench manipulation space - whose size is 1m 3 - with the SPIDAR manipulation space (the space where the SPIDAR returns forces in every direction), also called SPIDAR space. We have chosen an 8-motor SPIDAR configuration that potentially provides force feedback on 3 dof on 2 different points or 6 dof on one handle. Only the 3 dof on force feedback on one point configuration has been tested for the moment. Usually, the SPIDAR is presented on a cubic frame, but the SPIDAR space is tunable by moving the motors on different frame shape. Fitting the SPIDAR space to the workbench manipulation space has been done by placing the motors as shown on Figure 3. The resulting SPIDAR space size is approximately 1m 3, which is far larger than the 0.18 m 3 of the PHANToM TM8 3.0 (the most commonly used force feedback device) space. The size of the workbench manipulation space not covered by this SPIDAR space is 0.37 m3. Figure 4 shows the hardware installation, with the strings highlighted. Tests confirm that strings are extremely discreet and are quickly forgotten while manipulating.

8 PHANToM is a trademark of Sensable Technologies Inc.

LIG — Dossier de contractualisation 322

Page 11: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 11 -

Figure 4: Installation overview

Another advantage of this configuration compared to other haptic workbench solutions is that the hardware design of this system is safe. Mobile parts of the SPIDAR are so light (a few grams) that even in the worst situations, they cannot damage the screens. User safety is also improved for the same reason. In addition, the maximum returned force is limited by the string's resistance. If ever too strong a force is applied, the strings just snap, and the remaining parts wind around their motor pulleys. Replacing broken strings is a fast and cheap operation. The Stringed Haptic Workbench is a flexible configuration that potentially allows the use of different interaction techniques. Several demonstrators using the Stringed Haptic Workbench have been developed . For more details see [TAR03]. Fingertip tactile feedback with the Stringed Haptic Workbench Still with the objective of integration of several sensory feedback in a seamless system, the next step consisted in adding tactile feedback to the Stringed Haptic Workbench. The purpose was to provide a simple tactile feedback at collisions. For that purpose, a simple fingertip vibrator device made from a cellphone vibrator has been developed by SED-INRIA. And integrated into the Stringed Haptic Workbench. It has, among other, been used for scientific visualization applications. See 2.1.4. Prop-based active haptic feedback (in collaboration with PSA Peugeot Citroën) An extension of the String Haptic Workbench has been proposed [ORT05]. The objective was to integrate realistic grasp feedback to the Stringed Haptic Workbench. The technology for returning realistic grasp is missing. Most tactile feedback devices only return quite partial tactile feedback which is not enoufg for most industrial applications. The proposed solution is to use props. Props have been studied by several authors and have proved to improve interactive applications. However, props had never been integrated into immersive VE configurations with co- location and active haptic feedback before.

LIG — Dossier de contractualisation 323

Page 12: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 12 -

Figure 5 : Putty application on a Citroën Picasso

The integration of the prop in the Stringed Haptic Wokbench has followed the following steps:

• Attaching the prop to the force feedback device. The attachement depends on the shape and size of the prop. For the cases studied, after some informal tests, the strings of the haptic device have been attached on a plexiglas cross (20cm) witch is fixed on the prop.

• Introduction of mixed-prop concept. In order to improve the integration of the prop, when possible, we suggest to make two different parts from the prop: a real one and a virtual one. This concept allows to reduce the occlusion problems between the prop and the virtual model. Other advantages are presented in [ORT05].

• Use of real-time shadows. The addition of shadows greatly improve the anticipation of collisions and the evaluation of the object position.

This new approach has been tested on an Automotive application for evaluating putty application on metallic junctions of car parts during the conception stage. The objective is to replace the physical mockup which is used at present (see Figure 5).

2.1.4. Topic 4: Haptic interaction for the exploration of complex data

Participants : Sabine Coquillart, Ambroise Guabello, Xavier Lepaul, Tangui Morvan, Nicolas Tarrin, Thomas Vincent, Keywords : Scientific visualization, haptic, virtual reality, interaction

2.1.4.1 Abstract Scientific visualization is an important application for virtual reality. The exploration and analysis of multi-dimensional complex data requires both large displays, stereo, and, if possible additional sensory feedback to increase the bandwidth. In the framework of the Geobench project, i3D has studied several haptic solution to improve the interactive exploration of complex data. Both force feedback and tactile feedback solutions have been

LIG — Dossier de contractualisation 324

Page 13: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 13 -

studied.

2.1.4.2 Detailed description Haptic Interactions for Scientific Visualisation One of the main problems of scientific visualisation lies in the visualisation of multiple simultaneous information. It can occur when trying to visualise the divergence or curl of a vector field on top of its representation, or when visualizing complex multivariate data such as tensor fields.... Such complex information often leads to visual clutter. Adding haptics to the visualisation can be a good way to tackle this problem. One of the particularities of the Spidar haptic device [TAR03] is its reconfigurability, with an 8-motor configuration it is for example possible to have 3 dof haptic feedback on two fingers. This configuration provides an additional information compared to traditional one point configurations: the information of thickness between the two fingers. Several interaction techniques have been developed under AmiraTM910 to take advantage of this additional haptic information in order to visualise multiple or complex data. These techniques consist in the haptic representation of classical vector and tensor field visualisation primitives: streamlines, streamtubes and hyper-streamlines see Figure 6. See [MOR04]11 for more details.

Figure 6 : Haptic exploration of a streamtube in flow data under Amira on the Stringed Haptic Workbench (Geobench project, data ©CEA-DAM)

Tactile Interaction for Scientific Visualization In parallel to the force feedback interaction study, enhancing scientific visualization with tactile interaction has also been investigated. For that purpose, two devices have been

9 Amira is a trademark of Mercury Inc. 10 Amira is the visualization platform used for scientific visualization on the workbench in the framework of the Geobench project. I3D has integrated its haptic platform into Amira. 11 T. Morvan, « Retour d'effort pour la visualisation scientifique », DEA IVR, 2004.

LIG — Dossier de contractualisation 325

Page 14: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 14 -

employed. A vibratory tool for producing vibrations on the fingertip, developed from a cellphone vibrator by the SED department of INRIA Rhône-Alpes. A CyberTouchTM12 with 18 sensors and 6 vibrators (one per finger, and one in the palm), also used for application control. Four paradigms [LEP04]13 have been proposed for:

• scalar datasets exploration, • time control, • vector field exploration, • cutting plane positionning.

2.1.5. Topic 5: Interaction paradigms and metaphors for generic tasks

Participants : Sabine Coquillart, Jérôme Grosjean, Olivier Chenu Keywords: Virtual reality, application control, symbol input, accuracy

2.1.5.1 Abstract New immersive virtual environments such as the Responsive WorkbenchTM provide users with a very attractive way of interacting with 3D computer-generated worlds. The feeling of immersion is one of the many advantages of such configurations. Being able to interact naturally with the virtual world is a very important part of this feeling. However, some classical 2D desktop interaction techniques are more difficult to complete than with workstations and have thus to be reconsidered. Among these, application control and symbols/caracter strings input. These problems have been addresses by i3D and solutions proposed.

2.1.5.2 Detailed description Application control Programs developed for virtual environment configurations need powerful, intutitive and rapid application control interfaces. An elegant solution was proposed in 1999 [COQ99]. The proposed solution allows to enter commands by pointing on a menu held in the hand. If it is convenient, it doesn’t allow very fast operations like the keyboard hotkey mechanism does. The purpose of this work is to propose a 3D equivalent of the hotkey mechanism. A 3D paradigm: the Command and Control Cube (CCC or C3), inspired by marking menus is proposed. The C3 aims to be a rapid and intuitive mechanism for issuing a set of commands to an application. This interface has been developed for a workbench but is more general. The C3 is controlled be the user with a 6dof tracked button. With the C3, a user can send up to 26 different commands to the application. A two-speed mechanism similar to the marking menus in 2D allows the C3, to work in a novice mode with a graphical feedback or in an advanced mode for quicker “eyes-off” selections. See [GRO01] for more details.

12 CyberTouch is a trademark of Immersion 13 X. Lepaul, « Retour Tactile et Exploration de Données Scientifiques », DEA IVR, 2004.

LIG — Dossier de contractualisation 326

Page 15: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 15 -

Quikwrite Text typing, althrough needed for basic operations like saving one’s work under a specific filename or entering a precise numerical value inside an application, is still problematic with most VE.

Figure 3. Quickwrite

The first naïve solution to let the user enter text through the classical keyboard is not pratical. A VE user is often equipped with more or less cumbersome interaction devices, like data gloves or a tracked stylus in the hand. Forcing a user to exit the 3D world and get the physical keyboard to type a short text/data/command is not desirable. Fastening a miniature keyboard on a user’s arm is not always convenient too. Indeed, the search for the best interaction paradigm for text typing in VE depends strongly on the cur rent devices held in the hands or worn. On the responsive workbench, the stylus, a spatially tracked pen device with a button, is commonly used in the dominant hand to interact with the virtual object. A better solution here is to develop an interaction technique based on this device. We proposed to develop an extension of the Quikwrite solution proposed by Perlin for PDA. See [GRO02] for more details. Both the C3 and QuikWrite have been integrated to Inventor Immersif (the immersive version of Open Inventor) in the framework of the RNTL Inventor Immersif project.

2.1.6. Topic 6 : Human factors

Participants : Marco Congedo, Sabine Coquillart, Jérôme Grosjean, Anatole Lécuyer, Alexis Paljic Keywords: Psychophysic evaluations, perception, evaluation, ergonomics,

2.1.6.1 Abstract This research topic is transversal. It is related to most of the other 5 research topics. I3D aims at carrying out experiments whenever possible. These experiments are either carried out to provide a basis for the research, such as psychophysic experiments on human perception (see ? ) or evaluation of existing techniques and peripherals, or evaluation of approaches developed in the group. Output from these evaluations can be new knowledge on the human perception or/and recommendations to design virtual reality systems and applications. Evaluations also participate to the definition of taxonomies. We report on three experiments conducted by the i3D group. See also ? for the psychophysics experiments on the pseudo-haptic feedback.

LIG — Dossier de contractualisation 327

Page 16: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 16 -

2.1.6.2 Detailed description Haptic, Visual and Audio Information on a Workbench (in collaboration with EADS, CEA List and LRP-Vélizy) This work investigated the effect of haptic, visual and aud itory additional information on the performances of a user operating an insertion task in virtual reality.

Figure 7: The CEA Wearable Haptic handle

Sensory information was added, during the insertion, when a collision occurs between the manipulated virtual object and some other part of the virtual scene. The experimental apparatus used a 2-screen workbench and a new wearable haptic interface: the Wearable Haptic Handle (W2H) which provides tactile stimulation inside the user’s hand. The originality of the W2H device is that its upper part is a small platform which moves in 6 Degrees Of Freedom2 (DOF) according to its base (see Figure 7). The motion of the upper part is actuated by a wire-driven Stewart platform. The user feels the displacements of the platform inside his/her hand while interacting with the virtual environment. First, it seemed that none of the additional information (haptic, audio or visual) had a positive impact on the completion time of the task, when compared to the control condition (the visual feedback of the virtual scene alone). However, the motion of the subjects when colliding was significantly more limited in the presence of an additional information. This suggests that subjects apparently payed more attention to the collision but, in return, achieve the task more slowly. Furthermore, the different types of haptic feedback were mostly appreciated by the subjects. They were perceived as useful, pleasant and able to improve the realism of the simulation. For more information, see [LEC02]. Distance of manipulation The responsive workbench is an immersive system that allows users to manipulate virtual objects in a large manipulation space. With such systems, real and virtual spaces can be superimposed. Users can manipulate virtual objects with their hand being co- located with virtual objects (direct manipulation) or with a certain distance between the object and their hand (distance manipulation). With the purpose of providing recommendations to VR application designers, an experiment meant to investigate the influence of direct manipulation and distance manipulation in user performance is Virtual Environments (VE) has been conducted. A simple 3D pointing task has been proposed to subjects at different distances and the results

LIG — Dossier de contractualisation 328

Page 17: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 17 -

analysed. Among other, the experiments shown that performance increased when the distance was inferior to 20 cm. See [PAL02] for more details. Evaluation of the Command and Control Cube Evaluating the proposed solutions (devices, paradigms, metaphors,…) is a main concern in VR. The proposed Command and Control Cube (see 2.1.5) has been evaluated, and it helped making improvements. Formal test have been conducted under four different conditions: a visual mode with graphical display, a blind mode with no feedback, and two additional conditions enhancing the expert blind mode: a tactile mode with the tactile feedback of a cybergloveTM and a sound mode with a standard audio device. Results show that the addition of sound and tactile feedback is disturbing to the users. The visual mode performs the best although the blind mode achieves some promising results.

2.1.7. Main applications and projects developed

The previous sections present only research results. This section is devoted to the i3D development activity.

2.2 Résultats majeurs - principaux résultats scientifiques, communications primées, distinctions obtenues… - principales applications des projets développés - prototypes, plates-formes, logiciels développés et faisant l’objet de dépôt, de licence ou ayant été primés… - création de start-up … Major results include :

• Pseudo-haptic feedback. Pseudo-haptic feedback is a quite interesting perception caracteristic. Some more evaluations are needed (some are on the way) but the results of the first experiments are encouraging. Beyond the additional experiments needed, the main objective is now to propose novel applications. A project is under consideration with CEA-Grenoble.

• Continuous collision detection. The continuous collision detection algorithm together with the whole CONTACT toolkit has been demonstrated with several industrial database. It is also integrated in our haptic platform and gives very good results. An industrial transfert is under consideration.

• The Stringed Haptic Workbench. The Stringed Haptic Workbench (SHW) is, from our knowledge, the first immersive VR configuration including in a seamless system stereo, head-tracking, 6dof haptic feedback with co-location plus prop. Several similar configurations have been installed recently or are on the point to be installed such as BRGM, Univ. Strasbourg and an industrial partner.

Major applications :

The three projects with the greatest industrial potentialities are the ones cited as major results. For each one discussions are engaged for an industrial transfer. One is already being transferred.

LIG — Dossier de contractualisation 329

Page 18: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 18 -

3. ACTIVITES D’ENCADREMENT

3.1 Thèses et HDR soutenues depuis le 01/10/01 Remplir le tableau en annexe 2 à la fin du document, en classant par année, puis par ordre alphabétique. Les informations relatives aux sujets de thèse sont à fournir dans le paragraphe5. La liste des thèses et HDR est fournie dans le tableau en annexe 2.

3.2 Thèses et HDR en cours ORTEGA Michaël, « Développement haptique associé à un système de type CAVE ou

HOLOBENCH, pour simulations dans le secteur automobile ». EDIIS, A 335, INSA de Lyon, CIFRE PSA, première inscription le 01/03/04.

PUSCH Andreas, « Conflits visuo-proprioceptifs en réalité augmentée ». ED MSTII, INPG, bourse Marie-Curie, première inscription le 01/10/05.

4. COLLABORATION ET VALORISATION

- Eviter les doubles. - Seules les coopérations pertinentes seront développées ; une coopération pertinente fait l'objet d'un accord officiel ou bien se traduit par des publications communes. - Citer les activités internationales importantes - Toutes ces relations peuvent être, si nécessaire, décrites par un texte. - Si vous n'êtes pas concernés par un ou plusieurs des paragraphes 4.3, 4.4, 4.5, vous supprimez dans le texte la sous-section correspondante (il y a renumérotation automatique, en principe) et les tableaux associés en annexe. Vous devez maintenir les paragraphes 4.1 et 4.2.

4.1 Principales relations scientifiques hors contrats Présentez chaque relation selon le modèle suivant : nom de l'Université ou du laboratoire, nom du partenaire, thème scientifique, contexte de la collaboration. Seules sont retenues les relations entrant dans un contexte de collaboration formalisée (co-tutelle de thèse, conven-tion, accueil de professeurs ou chercheurs invités…)

- Collaborations avec Jean-Marie Burkhardt du Laboratoire d’Ergonomie Informatique de Paris 5. Etudes ergonomiques en commun ayant conduit aux publications suivantes : ACT 2, 5, 6, 7, 12.

- Collaborations avec l’Université d’Evry-Val d’Essonne, co-encadrement de la thèse de Stéphane Redon et plusieurs publications en commun.

LIG — Dossier de contractualisation 330

Page 19: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 19 -

- Collaborations avec Ph. Coiffet du Laboratoire de Robotique de Paris, co-encadrement de la thèse de Anatole Lécuyer.

- Collaborations avec Paul Richard de Laval – Université d’Angers, sur l’évaluation du Command and Cont rol Cube. Publication en commun : ACT 5.

- Collaborations avec le CEA-List sur l’intégration d’une poignée hapique développée par le List sur le Plan de Travail Virtuel. Publications en commun : ACT 6.

-Collaboration avec le laboratoire du professeur Sato du Tokyo Institute of Technology sur le système haptique Spidar. Publications ACT 11 et COM 2 en commun.

4.2 Contrats institutionnels Si vous souhaitez faire une remarque synthétique sur ces contrats, placez la ici. Conservez la phrase qui suit. La liste des contrats institutionnels est fournie dans le tableau en annexe 4.

4.3 Contrats (co)financés par un industriel Si vous souhaitez faire une remarque synthétique sur ces contrats, placez la ici. Conservez la phrase qui suit. La liste des contrats à financement industriel est fournie dans le tableau en annexe 4.

4.4 Création d’entreprise Présentez chaque entreprise crée par votre équipe selon le modèle suivant : nom, date de création, effectif, chiffre d'affaires, objectifs scientifiques et industriels.

4.5 Brevets et licences Si vous souhaitez faire une remarque synthétique sur ces aspects de valorisation, placez la ici. Remplir le tableau de l'annexe 5 à la fin de ce document. Conservez la phrase qui suit. Les brevets et licences sont présentés dans le tableau en annexe 5.

5. PUBLICATIONS (01-05)

- Chaque équipe est laissée libre de faire figurer dans ce paragraphe les publications qu’elle décide de retenir car il ne faut pas viser l’exhaustivité. Les publis 2005 peuvent être mentionnées - - A la demande du Ministère, les publications seront triées par année, puis par ordre alphabétique du 1er auteur - Le(s) nom(s) de l'auteur faisant partie de l'équipe sera souligné -

LIG — Dossier de contractualisation 331

Page 20: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 20 -

Dans chaque catégorie, les publications doivent être numérotées de façon continue à partir de 1. - Chaque enseignant-chercheur et chercheur ne doit faire apparaître ici que ses publications majeures ; ces dernières figureront également dans chaque fiche d'activité individuelle, - En ce qui concerne les enseignants chercheurs ou chercheurs récemment intégrés dans l'unité, seules les publications effectuées dans le cadre de l'unité seront mentionnées - - Les publications des thésards devront être mentionnées. Elles seront repérées par le code (ex ACL) et le n° d'ordre. Elles seront reportées par l'équipe de rédaction du dossier global dans des tableaux préformés. On trouvera en annexe 3 des indicateurs de production scientifique

Articles dans des revues avec comité de lecture internationales et nationales (ACL)

Revues internationales : Année 2003

1 - S. Redon, "Fast Continuous Collision Detection and Handling for Desktop Virtual Prototyping", Accepted for publication in Virtual Reality Journal (Springer Verlag), 2003.

Revues nationales :

Articles dans des revues sans comité de lecture (SCL)

Conférences invitées (INV)

Conférences d'audience internationale

1- Sabine Coquillart, " Haptic Workbench " ICAT’2002, Tokyo, Japan, 2002. 2- Sabine Coquillart, “The Stringed Haptic Workbench”, STIC-Asie Workshop on VR,

Corée, Janvier 2005. 3- Michaël Ortéga, Sabine Coquillart, “Simulation of Putty Application on a Car Body »,

STIC-Asie Workshop on VR, Strasbourg, Novembre 2005. Conférences d'audience nationale

3- Sabine Coquillart, “Overview of Scientific Visualization Platforms”, Journées ORAP, Lyon, octobre 2001.

4- Sabine Coquillart, « Le Plan de Travail Virtuel et ses applications à l’INRIA », UTC-Journées ECOOP et Réalité Virtulle, décembre 2001.

5- Sabine Coquillart, « Réalité Virtuelle, simulation et interaction 3D”, Conférence ASTI, Paris, 2001.

6- Sabine Coquillart, « Réalité Virtuelle, principes et dispositifs, applications scientifiques”, Séminaire CEA-CUIC, Paris, 2001.

LIG — Dossier de contractualisation 332

Page 21: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 21 -

7- Sabine Coquillart, « Incohérences sensori-motricesAction spécifique du département STIC du CNRS Réalité Virtuelle & Cognition, Paris, 2002.8- Sabine Coquillart, « Restitutions sensorielles et perception , Ecole Thématique Interdisciplinaire du CNRS sur la Réalité Virtuelle, Mai 2003.

9- Sabine Coquillart, « Panorama des périphériques de visualisation avancée », Journée Visualisation », Université Paris-Sud, février 2003.

10- Stéphane Redon, “Détection continue de collisions”, Action spécifique du CNRS Détection de collisions, Brest, juin 2003. 11-Sabine Coquillart, « Illusions sensori-motrices », Action spécifique du CNRS Haptique, Paris, mars 2004.

12-Tangui Morvan, Sabine Coquillart, « Retour d’effort pour la visualisation scientifique », Action spécifique du CNRS Haptique, Grenoble, juin 2004.

Communications avec actes internationales et nationales (ACT)

Conférences d'audience internationale Année 2001

1- [GRO01] J. Grosjean et S. Coquillart “Command and Control Cube: a Shortcut Paradigm for Virtual Environments” , IPT-EGVE’2001, Stuttgart Germany, May 2001

2- [LEC01a] A. -Lécuyer, J-M. Burkhardt, S. Coquillart, P. Coiffet, « Boundary of Illusion » : an Expermient of Sensory Integration with a Pseudo-Haptic System », IEEE VR’2001, Japan, 2001.

3- [LEC01b] A. Lécuyer, A. Kheddar, S. Coquillart, L. Graux, P. Coiffet, « A Haptic Prototype for the Simulation of Aeronautics Mounting/Unmounting Operations”, IEEE Roman’2001, France, 2001.

4- [RED01] S. Redon, A. Kheddar, S. Coquillart, « CONTACT : Arbitrary in-between Motions for Continuous Collision Detection », IEEE Roman’2001, France, 2001.

Année 2002

5- GRO02] J. Grosjean, J.-M. Burkhardt, S. Coquillart, P. Richard. "Evaluation of the Command and Control Cube", IEEE ICMI'2002, Pittsburgh, USA, 2002.

6- [LEC02] A. Lécuyer, C. Mégard, J-M. Burkhardt, T. Lim, S. Coquillart, P. Coiffet, “The Effect of Haptic, Visual and Auditory Additional Information on an Insertion Task on the Holobench”, IPT’2002, Orlando, 2002.

7- [PAL02] A. Paljic, J-M. Burkhardt, S. Coquillart, “A Study of Distance of Manipulation on the Responsive Workbench”, IPT’2002, Orlando, 2002.

8- [RED02a] S. Redon, A. Kheddar, S. Coquillart, "Gauss' Least Constraints Principle and Rigid Body Simulations", International Conference on Robotics and Automation - ICRA'2002, Washington D.C., USA, 2002.

9- [RED02b] S. Redon, A. Kheddar, S. Coquillart, "Fast Continuous Collision Detection between Rigid Bodies", Eurographics'2002, Saarsbruck, Germany, 2002.

10- [RED02c] S. Redon, A. Kheddar, S. Coquillart, "Hierarchical Back-Face Culling for Collision Detection", IEEE/RSJ International Conference on Intelligent Robots and Systems - IROS'2002, Lausanne, Switzerland, October, 2002.

Année 2003

11- [TAR03] N. Tarrin, S. Coquillart, S. Hasegawa, L. Bouguila, M. Sato, "The Stringed Haptic Workbench: a New Haptic Workbench Solution", EUROGRAPHICS'2003,

LIG — Dossier de contractualisation 333

Page 22: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 22 -

EUROGRAPHICS’03, Granada, Spain, 2003. Année 2004

12- [PAL04a] A. Paljic, J. Burkhardt, S. Coquillart, "Evaluation of Pseudo-Haptic Feedback for Simulating Torque: a Comparison between isometric and elastic input devices", Haptic Symposium 2004, USA, 2004.

13- [PAL04b] A. Paljic, S. Coquillart, A passive stringed force feedback system for immersive environments, in: "EuroHaptics 2004, Germany", 2004.

Année 2005

14- [ORT05] M. Ortéga, S. Coquillart, «Prop-Based Haptic Interaction with Co-location and Immersion: an Automotive Application”, IEEE Workshop on Haptic Audio Visual Environments and their Applications, Ontario, Canada, 2005.

Conférences d'audience nationale

15- J. Grosjean, S. Coquillart, « Contrôle d’application en environnement virtuel : le Command and Control Cube », Journées AFIG, Lyon, décembre 2002.

Communications sans actes (COM)

1- J. Grosjean, S. Coquillart, "Quickwriting on the Responsive Workbench", Siggraph'2002 - Sketches and Application, ACM Siggraph, Texas, USA, July, 2002.

2- N. Tarrin, S. Coquillart, S. Hasegawa, L. Bouguila, M. Sato, "The Stringed Haptic Workbench", Siggraph'2003 - Sketches and Application, ACM Siggraph, San Diego, California, USA, July, 2003.

Ouvrages scientifiques (ou chapitres) (OS)

1- B. Arnaldi, J. Burkhardt, A. Chauffaut, S. Coquillart, T. Duval, S. Donikian, P. Fuchs, J. Grosjean, F. Harrouet, E. Klinger, D. Lourdeaux, D. M. d'Huart, G. Moreau, A. Paljic, J. Papin, P. Stergiopoulos, J. Tisseau, I. Viand-Delmon., Le Traité de la Réalité Virtuelle, chapitre 13, Presses de l’Ecole des Mines de Paris, 2003.

Ouvrages de vulgarisation (ou chapitres) (OV)

Directions d’ouvrages (DO)

Edition de livres Edition d'actes de colloques, de n° spéciaux de revues

1- S. Coquillart et M. Göbel (ed.), « Virtual Environments 2004 », Eurographics/ACM Siggraph Symposium Proceedings, Grenoble, 2004

LIG — Dossier de contractualisation 334

Page 23: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 23 -

Autres publications (AP)

Thèses et habilitations

1- Anatole Lécuyer, “Contribution à l’étude des retours haptique et pseudo-haptique et de leur impact sur les simulations d’opérations de montage/démontage », thèse de doctorat, Université de Paris XI Orsay, décembre 2001.

2- Stéphane Redon, “Algorithmes de simulation dynamique interactive d’objets rigides”, thèse de doctorat, Université d’Evry, octobre 2002.

3- J. Grosjean, "Environnements Virtuels : Contrôle d'Application et Exploration de scènes 3D", thèse de doctorat, Université de Versailles Saint Quentin-en-Yvelines, octobre 2003.

3- A. Paljic, « Interaction en Environnements Immersifs et Retours d’Effort Passifs », thèse de doctorat, Université Paris VI, avril 2004.

6. PRINCIPALES RESPONSABILITES SCIENTIFIQUES ET ADMINISTRATIVES

présidence de CP, de CO de congrès, activité éditoriale, responsabilité de formation, responsabilité administrative, … Sabine Coquillart est

- élue membre du comité exécutif de l’association Eurographics depuis 1989, - membre du comité des séminaires et groupes de travail d’Eurographics, - membre des comités de programme suivants :

o VRIC’01, Solid Modeling’01, IEEE ICME’01, SCCG’01, WSCG’01, CGI’01. EGVE’01, EG-IEEE TCVG’01, IEEE Visualization’01, Eurographics’01, SMI’01, IEEE Virtual Reality’01,

o VRIC'2002, SCCG'2002, WSCG'2002, CGI'2002, EG Workshop on Virtual Reality'2002, IPT - Immersive Projection Technology'2002, Eurographics'2002, IEEE Virtual Reality'2002 et relecteur de Siggraph'2002.

o AFRIGRAPH'03, CGI'03, GI'03, GRAPHITE'03, Graphicon'03, IPT-EGVE'03, VRIC'2003, SCCG'2003, WSCG'2003, Eurographics'2003, IEEE Virtual Reality'2003.

o CASA’04, CGI'04, GRAPHITE'04, ICAT'04, IPT'04, EGVE'04, VRIC'2004, SCCG'2004, Solid Modeling'04, SMI'04, WSCG'2004, Eurographics'2004, IEEE Virtual Reality'2004,

o CGI’05, GRAPHITE’05, Haptex’05, ICAT’05, ISVC’05, VRIC’05, SCCG’05, SMI’05, WSCG’05, IPT-EGVE’05, Eurographics’05, IEEE Virtual Reality’05

- co-présidente du comité de programme de la conférence Pacific graphics’02, - membre du comité éditorial de la revue « Computer Graphics Forum », - membre du comité éditorial de la revue « Journal of Virtual Reality and

Broadcasting » depuis 2004, - Guest Editor du vol 65, numéro 4 de la revue « Graphical Models », juillet 2003,

- relecture de papiers pour le journal IEEE CG&A, - Co-organisatrice de l’école d’été CEA, INRIA, EDF sur la réalité virtuelle, 2002,

LIG — Dossier de contractualisation 335

Page 24: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 24 -

- membre du comité d’organisation d’IMAGINA’2002 - Co-responsable du programme des cours à Eurogaphics'2002 et 2004. - Co-présidente du Symposium Eurographics sur les Environnements Virtuels en

2004, - Co-responsable du programme des « Surveys » à IEEE VR 2006, - Co-présidente de la conférence Eurographics’06, - Membre de la Commission de Spécialistes 27eme section de Paris Sud jusqu’en

2002, - Membre du comité d’UR de l’INRIA Rhône-Alpes - Membre du comité de pilotage du RTP n°7 « Réalité virtuelle, synthèse d'images

et visualisation », - Membre du conseil scientifique de GRAVIR, - Membre du comité VIEW pour le programme visualisation et réalité virtuelle

(équivalent de l’ANR aux pays-Bas) en 2005. - Membre du core group du réseau d’Excellence Intuition, - Eurographics Fellow depuis 1999.

Stéphane Redon est :

- Member du comité de programme de Pacific Graphics’05

7. PERSPECTIVES DE RECHERCHE 06-10

Description des perspectives (taille recommandée : entre 2 et 5 pages) Let us first mention that as in the few previous years, part of our activity has been dedicated to the definition of the workbench-based VR configuration, in the next few years, a similar work on the new see-through HMD is planned (addition of haptics, mixing of virtual and real,…). The objective is to get two high performance VR configurations complementary14. In the future, these two configurations should be the base of most of our researches and application work.

7.1 Overall objectives

7.1.1. Expected theoretical results

• New interaction techniques. The novelty may concern new metaphors or paradigms, new algorithms, the integration of new hardware components,.. as well as new

14 These configurations are conplementary because each one has its own advantages and drawbacks. Some of the advantages of HMDs are a better/correct mixing of virtual and real (with projection-based configurations, the real is always hiding the virtual), and more flexibility (can be used for manipulations above the head or on the ground). Some of the drawbacks are limited field of view or resolution. For more details, see the i3D INRIA activity report.

LIG — Dossier de contractualisation 336

Page 25: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 25 -

evaluation results. • Definition of a taxonomy of 3D manipulation approaches in virtual environments.

Among others, this taxonomy should include a good understanding of the immersion and performance factors, a good understanding of each type of haptic feedback, with its features and limitations, as well as a task/application oriented classification.

7.1.2. Expected development

• Hardware platforms. Set up of virtual reality hardware platforms including as many immersion/performance factors as possible (ie. stereoscopic visualization, head tracking, direct manipulation, haptic feedback, flexible integration of virtual and real,…). When possible, existing software will be used for these platforms. More concretely, the objective will be to get an integrated configuration with the see-through HMD similar to the one developed on the workbench during the last few years.

• Software platform. The objective is to make our OpenSG VR platform run indifferently on both of our configurations (workbench and HMDs) and to use it to integrate most of our research work on both configurations.

• Integration of research results within specific interactive applications. These applications will serve to validate our result within a given application field or an industrial context.

7.1.3. Open problems

The main open problems the i3D team proposes to handle are the following:

• Identifying the immersion (presence)/performance/comfort factors , evaluating their impact and their mutual connections. Also of importance, identifying factors which perturb immersion, performance or comfort.

• Understanding human perception of modalities and sensory relations : incoherencies, substitutions or redundancies. And exploiting this knowledge for the conception of improved interaction techniques.

• Haptic continuum. Study and conception of existing and new interaction techniques, with and without one of the different haptic feedback approaches. Identification of the features and limitations of each approach. Comparative studies. Validation of the human factors study on immersion/performance factors and modalities and sensory relations.

7.1.4. Research Actions

To reach this objective, i3D proposes two complementary research axes: • a conception axis for the conception of interaction techniques, • an evaluation axis for evaluating interaction techniques or human factors.

This section details the evaluation and conception research axes proposed for the next few

LIG — Dossier de contractualisation 337

Page 26: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 26 -

years. These two axes are complementary and closely linked as shown on the following figure.

7.1.4.1 Conception axis In the conception axis, i3D proposes to study and conceive new interaction techniques. The novelty can come from new or improved paradigms or metaphors, algorithms, devices or combination of devices, configurations, combination of modalities or sensory feedback,… An emphasis will be put on:

• non-haptic interaction techniques. Our purpose will be to propose non-haptic solutions each time it is possible. There are many trivial cases where haptic is not necessary. Previous work has also shown that there may exist applications for which haptic is less required than expected. These cases will also be studied.

• haptic interaction techniques. Work on haptic interaction techniques goes from the integration of haptic devices into virtual reality configurations to constraints simulation and haptic rendering. Haptic solutions will be studied for their own. They, as well as non-haptic solutions, will also serve as a reference to evaluate the haptic continuum.

conception evaluation

interaction techniques

knowledge knowledge taxonomie

s

experimentations interaction techniques

knowledge

LIG — Dossier de contractualisation 338

Page 27: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 27 -

• haptic continuum15. In addition to non-haptic and haptic approaches, we will study haptic approaches lying in the haptic continuum, and consider interaction techniques which will make use of these approaches.

The output of this axis will be interaction techniques.

7.1.4.2 Evaluation axis The input of the evaluation axis may come either from the conception axis for the evaluation of proposed solutions or of some parameters integrated, or to be integrated, in the proposed solutions. Experiments can also be conducted upstream the conception research axis, for instance for an evaluation of some properties of the human perception or cognition. In the choice of the conducted experiment, an emphasis will be put on:

• Sensory-motor relations. In particular with a continuation of the work on sensory-motor incoherencies and the pseudo-haptic feedback [Lec00,Lec01]. The study of other incoherencies is also planned.

• The haptic continuum. With a comparative evaluation of the various haptic approaches of the haptic continuum, including non-haptic and active haptic solutions.

• Immersion/performance/comfort factors. An evaluation of the immersion/performance/comfort factors.

• Interaction techniques, devices and configurations/applications. An evaluation of existing or proposed techniques, devices, configurations, or applications.

The output of the evaluation axis are new knowledge on human factors and on interaction techniques properties, as well as taxonomies formalizing these results.

15 haptic continuum : non haptic, sensori substitutions, passive haptic (props), passive dissipative haptic, pseudo-haptic, active dissipative haptic, active haptic feedback.

LIG — Dossier de contractualisation 339

Page 28: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 28 -

Annexe 1 - liste détaillée des membres de l'équipe NOM Prénom Section Etab. Grade %Recherche Quotité Chercheurs COQUILLART Sabine INRIA DR2 100% 1 REDON Stéphane INRIA CR2 100% 1 ITA/IATOS 16 PASTEUR Anne INRIA ITA 0% 0.25 LISTE DES DOCTORANTS AU 01/09/2005 NOM Prénom Etablissement Financement Partenaire ORTEGA Michaël Lyon1 CIFRE PSA PUSCH Andreas INPG Marie-Curie

16 Personnels explicitement rattachés à l’équipe

LIG — Dossier de contractualisation 340

Page 29: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 29

-

A

nnex

e 2

L

iste

des

thès

es s

oute

nues

(du

01/1

0/20

01 a

u 01

/10/

2005

)

Nom

Pré

nom

Dire

cteu

r(s)

de

thès

e

Dat

e de

so

uten

ance

(1

)

Réf

éren

ce d

es

publ

icat

ions

et d

es

brev

ets

(2)

Mod

e de

fin

ance

men

t (3

)

Eta

blis

sem

ent

d'in

scrip

tion

ED

de

ratta

chem

ent

(4)

DE

A o

u m

aste

r d'

orig

ine

(5)

Situ

atio

n pr

ofes

sion

nelle

(6

)

LE

CU

YE

R A

nato

le

S.C

oqui

llart

P

h. C

oiffe

t 1

2/20

01

AC

T 2

, 3, 6

In

dust

riel

EA

DS

P

aris

XI

Ors

ay

ED

Par

is-S

ud

11

DE

A

Aut

omat

ique

In

form

atiq

ue

Indu

strie

lle,

Uni

v. L

ille

1 C

R2

INR

IA

RE

DO

N S

téph

ane

S.C

oqui

llart

A

. Khe

ddar

1

0/20

02

AC

L 1

AC

T 4

, 8, 9

, 10

Bou

rse

AM

X U

niv.

Evr

y-V

al

d’E

sson

ne

Evr

y-V

al

d’E

sson

ne

DE

A

Alg

orith

miq

ue

LIP

6 / U

LM /

Pol

ytec

hniq

ue

CR

2 IN

RIA

GR

OS

JEA

N J

érôm

e

S.C

oqui

llart

1

0/20

03

AC

T 1

, 5, 1

5 C

OM

1

OS

1

ME

NR

T

Uni

v.V

ersa

illes

St-

Que

ntin

en

Yve

lines

V

ersa

illes

S

t-Q

uent

in

DE

A M

ISI d

e

l'U

nive

rsité

de

Ver

saill

es

Sai

nt Q

uent

in

en Y

velin

es

Maî

tre d

e C

onfé

renc

e U

niv.

S

tras

bour

g

PA

LJIC

Ale

xis

S.C

oqui

llart

0

4/20

04

AC

T 7

, 12,

13

OS

1

Reg

ion

IdF

+

cont

rat

Uni

v. P

aris

VI

Par

is 6

DE

A U

niv.

P

ierr

e et

Mar

ie

Cur

ie

Ingé

nieu

r P

SA

P

euge

ot

Citr

oën

To

tal

4

don

t thè

ses

avec

pub

licat

ions

ou

brev

ets

avan

t le

01/1

0/20

05

4

(1

) P

réci

ser

le m

ois

et l'

anné

e (M

M/A

AA

A).

(2

) P

réci

ser

les

réfé

renc

es d

es p

ublic

atio

ns d

es d

octe

urs,

que

vou

s au

rez

codi

fiées

dan

s la

par

tie II

.2 d

u do

ssie

r sc

ient

ifiqu

e.

(3)

Cf

la n

om

encl

atu

re 1

en

an

nex

e.

(4)

Intit

ulé,

et é

tabl

isse

men

t de

ratta

chem

ent d

e l'E

D.

LIG — Dossier de contractualisation 341

Page 30: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 30 -

(5) Intitulé et établissement qui a délivré le D

EA

/le master.

(6) Cf la nom

enclature en annexe.

LIG — Dossier de contractualisation 342

Page 31: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 31 -

Annexe 3 : indicateurs de production scientifique

2001 2002 2003 2004 2005 Livres - d’audience nationale - d’audience internationale

Chapitres d’ouvrages - d’audience nationale - d’audience internationale

1

Editions d’ouvrage - d’audience nationale - d’audience internationale

1

Revues avec comité de lecture - d’audience nationale - d’audience internationale

1

Conférences avec actes publiés et comité de lecture - d’audience nationale - d’audience internationale

4

6

1

2

1

Conférences invitées - d’audience nationale - d’audience internationale

4

1 1

3

2

2

Thèses soutenues 1 1 1 1 Habilitations soutenues

LIG — Dossier de contractualisation 343

Page 32: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 32 -

Annexe 4 :

Contrats institutionnels

Contexte Catégorie Thème Coordonnateu

r

Nb de partenaire

s

Collaborations spécifiques17

Début

Fin

Soutien financier propre

6ème PCRD NoE Intuition

Réalité Virtuelle

ICCS – Grèce INRIA ds core group

64 04-07 40 K€

RNTL Exploratoire Geobench

RV et géosciences

BRGM 5 03-05 235 K€

PEGASUS Haptique LPNC-Grenoble

3 04-06 0

RNTL Pré-compétitif Inventor Immersif

RV et Visu scientifique

TGS 3 01-03 100 K€

RNTL Plateforme PERF-RV

Réalité Virtuelle

INRIA/CEA 16 01-04 340 K€

Contrats à financement industriel

Partenaire(s) Thème Début Fin Montant

ESA-Matra Visualisation Immersive 00-01 15 K€

EADS

Prototypage virtuel 98-01 Financement de thèse

PSA Peugeot Citroën RV + Haptique 04-07 CIFRE

17 Noms des partenaires avec lesquels sont menées plus particulièrement des recherches conjointes

LIG — Dossier de contractualisation 344

Page 33: RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D ... · RAPPORT D'ACTIVITE et PROJET SCIENTIFIQUE Equipe i3D - Réalité virtuelle et interaction 3D Responsable : Sabine Coquillart

- 33

-

Ann

exe

5 L

iste

des

bre

vets

pri

orita

ires

fran

çais

ou

euro

péen

s (O

EB

: of

fice

euro

péen

des

bre

vets

) T

ype

de d

épôt

(IN

PI,

OE

B)

(1)

de

dépô

t D

ate

de

dépô

t T

itre

du b

reve

t N

° de

pu

blic

atio

n D

ate

de

publ

icat

ion

Dép

osan

ts (

2)

Co-

dépo

sant

s (2

)

Lice

nce

(nom

bre)

In

vent

eurs

E

xten

sion

OE

B o

u PC

T (p

aten

t coo

pera

tion

trea

ty) d

es b

reve

ts p

rior

itair

es fr

ança

is o

u eu

ropé

ens

Typ

e d'

exte

nsio

n (O

EB

, PC

T, )

Pay

s d'

exte

nsio

n (U

S, J

PN

, ..

.)

de d

épôt

du

pre

mie

r dé

pôt

Titr

e du

bre

vet

de d

épôt

po

ur

l'ext

ensi

on

Dat

e d

e dé

pôt d

e l'e

xten

sion

de

publ

icat

ion

de

l'ext

ensi

on

Dép

osan

ts

(2)

Co-

dépo

sant

s (2

)

Lice

nce

(no

mbr

e)

Inve

nteu

rs

Log

icie

ls

Dat

e de

dép

ôt

Dép

osan

ts

(2)

Co-

dépo

sant

s (2

) F

inal

ité d

u lo

gici

el

2

9 ju

illet

200

2 IN

RIA

U

niv.

Evr

y D

étec

tion

de c

ollis

ions

LIG — Dossier de contractualisation 345