pres baymc2
Embed Size (px)
TRANSCRIPT
-
7/31/2019 Pres BayMC2
1/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Bayesian MC2 estimation of the capital-laborsubstitution elasticity in developing countries
Rolando Gonzales Martnez
4th regional meeting economic analysis of public policies with computable
general equilibrium models - ESPAE, Guayaquil
April, 2012
http://find/http://goback/ -
7/31/2019 Pres BayMC2
2/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Motivation: MAMS Project
Part of the project Strengthening Macroeconomic andSocial Policy Coherence through Integrated Macro-Micro
Modelling1 involved the estimation of the capital-laborsubstitution elasticity for the computable generalequilibrium model MAMS (Maquette for MillenniumDevelopment Goals Simulation, see Logfren andDaz-Bonilla, 2010)
1Organized by the United Nations Development Program (UNDP), theUnited Nations Department of Economic and Social Aairs (UNDESA),
and Unidad de Anlisis de Polticas Sociales y Econmicas de Bolivia(UDAPE).
http://find/http://goback/ -
7/31/2019 Pres BayMC2
3/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Capital-labor substitution elasticity
CES production function (Arrow et al., 1961):
q = Ah`
1 + (1 )k
1
i 1
, (1)
q is real output, A is factor productivity, 2 [0, 1] is a distribution parameter2 [0,) is the elasticity of substitution between capital andlabor. The rst order condition of the restricted optimizationproblem of the rms is,
pA
1`
1
+ (1 ) k
11
1
`
1
= w,
then,
` =
0
`
1 + (1 ) k
11
11
w
1
CA
,
http://find/http://goback/ -
7/31/2019 Pres BayMC2
4/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Estimable equation
` =
p
w
A
`
1 + (1 ) k
11
1
, (2)
Replacing (1) in (2), the labor demand equals,
` = p
w
A1
q,
then,q
`=
w
p
()A1.
This equation can be log-linearized,
y = 0 + 1x, (3)
for y = ln(q/`), x = ln(w/p), w/p real wages and0 = ln + (1 )lnA, 1 := . See Cicowiez (2011).
http://find/http://goback/ -
7/31/2019 Pres BayMC2
5/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
A frequentist approach to estimate (3)
Plug up an (additive) error term i.i.d N
0, 2
in (3) to
become it an empirical model:
y = 0 + 1x + (4)
Use any available information to "measure" y = ln(q/l)and x = ln(w/p)2
Estimate (4) with a canned software, as e.g. Eviews orStata.
2For the Bolivian case, yearly data of ouput and output deator fromnational accounts was used to measure q and p, respectively; l and w wereemployed population and earnings from the household survey, respectively.
Since the cut year of the MAMS model is 2006, the total available samplehas 10 observations.
http://find/http://goback/ -
7/31/2019 Pres BayMC2
6/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Some problems of the frequentist approach
1 Some developing countries have only a short sampleof inaccurate data to estimate (4)3.
2 The usual estimation problems of endogeneity, omittedvariable bias, nonstationarity, serial correlation cannot be
easily corrected with a small sample size.3 If the estimated value of1 is not the expected, it is a
usual frequentist practice to perform an informal "search"process across dierent local-DGPs (most of the time
without the correction to the Type I error) until the model"matches" the theory, the estimations in similar countries,or the subjective perception of the modeler/client.
3But frequentist techniques only make sense in large samples.
Furthermore, an error in x leads to a downward biased estimation of, in amagnitude toward zero. See Hausman (2001) for details.
http://find/http://goback/ -
7/31/2019 Pres BayMC2
7/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Frequentist results
M1 is equation (4), M2 as in Jabbar (2002), M3 as in Tipper(2011). The frequentist results are not Hendry-congruent4.
4See Hendry, David F (1997). On congruent econometric relations: A
comment. Carnegie-Rochester Conference Series on Public Policy. Number47, 1, 163-190
http://find/http://goback/ -
7/31/2019 Pres BayMC2
8/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Bayesian approach
With Bayesian methods, it is possible to incorporate previousempirical work and economic theory in (3), together with theexpert criteria of professionals in the eld5.Let X = [1n (x1 , ..., xt)0], = [0 1], y = (y1 , ..., yt)0,
y N(X, s2In ),
then, N(0 , B0), s
2 IG(0/2, 0/2).
js2 , y N(, B1),
B1 = [s2X0X + B10 ]
1,
= B1[s2X0y + B10 0].
5In developing countries the knowledge and the experience of experts in
the eld is a valuable source of information that can be exploited toimprove the estimation of elasticities
http://find/http://goback/ -
7/31/2019 Pres BayMC2
9/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Markov Chain Monte Carlo (MC2) sampler
(a) Let s2(0) be a starting value of s2.(b) At the g-th iteration,
(g) N((g)
, B(g)1 ),
s2(g) IG(1/2, (g)1 /2),
where,
B(g)1 = [s
2(g1)X0X + B10 ]1
,
(g)
= B(g)1 [s
2(g1)X0y + B10 0],
(g)1 = 0 + (y X(g))0(g)).
with a repetition of the Gibbs sampling (b) until g = B + G itis possible to estimate with (assuming quadratic loss),
minE[L(, )] = min
Z 2 (jy)d.
http://find/http://goback/ -
7/31/2019 Pres BayMC2
10/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Prior elicitation
From equation 3 it is clear that the prior for 0 would be,
0 = 1ln + (1 1)lnA. (5)
The components of the prior variance-covariance matrix B0,
B0 = Var(0) Cov(0 , 1)
Cov(0 , 1) Var(1) ,
can be elicitated given the fact that,
Var(0) : = Var(1ln + (1 1)lnA)
= [(ln)
2
+ (lnA
)
2
+ 2ln
( +A
)]Var
(1) (6)and,
Cov(0 , 1) = E(01) E(0)E(1)
Thus, 0, 1 and B0 can be fully elicitated assigning values to
the hyperparametes A and , without a previous frequentistestimation
http://find/http://goback/ -
7/31/2019 Pres BayMC2
11/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Prior elicitation for the Bolivian case
http://find/http://goback/ -
7/31/2019 Pres BayMC2
12/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Bayesian results
http://find/http://goback/ -
7/31/2019 Pres BayMC2
13/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
Conclusion
The estimation of in developed countries is close to oneor even larger than one
The estimated value of in the study is congruent withthe empirical fact that in developing countries theestimation of tends to be lower
The Bayesian approach seems an interesting alternative forthe estimation of the capital-labor substitution elasticity indeveloping countries, as with this technique it is possibleto compensate data limitations with a rigorous
inclusion of the experience of professionals in the eld,theoretical concepts or previous empirical work,through prior elicitation.
The combination of the prior criteria with data evidenceproduces an estimator (a Bayesian estimator) that
exploits both sources of information
http://find/http://goback/ -
7/31/2019 Pres BayMC2
14/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
References
* Arrow, K.J. ,H.B.Chenery, B.S.Minhas, R.M. Solow (1961). Capital-Labor Substitution and Economic
Eciency. The Review of Economics and Statistics, 43, 3, pp.225-250
* Cicowiez, Martn (2011). Un Modelo de Equilibrio General Computado para la Evaluacin de Polticas
Econmicas en Argentina: Construccin y Aplicaciones. Tesis de Doctorado. Universidad Nacional de La
Plata. Captulo 4.
* Hausman, Jerry (2001). Mismeasured Variables in Econometric Analysis :Problems from the Right and
Problems from the Left. The Journal of Economic Perspectives, Vol.15, No.4 (Autumn,2001), pp.57-67.
* Hendry, David F. (1997). On congruent econometric relations: A comment. Carnegie-Rochester
Conference Series on Public Policy, 47(1), 163-190.
* Jabbar Saed, Afaf Abdul (2002). Technological Progress and Capital-Labour Substitution in the Jordanian
Industry: 1985-1997.Journal of Economic and Administrative Sciences, Vol.18, No.2.
* Lofgren, Hans, Carolina Diaz-Bonilla (2010). MAMS: An Economy W ide Model for Analysis of MDG
Country Strategies: Technical Documentation. The World Bank (mimeo).
* Tipper, Adam (2011). One For All? The Capital-Labour Substitution Elasticity In New Zealand.Paper
prepared for the 52nd New Zealand Association of Economists conference, Wellington, NewZealand.
http://find/http://goback/ -
7/31/2019 Pres BayMC2
15/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
10 iterations, no burn-in, 0 = 1 102, 0 = 1 103
http://find/http://goback/ -
7/31/2019 Pres BayMC2
16/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
100 iterations, no burn-in, 0 = 1 102, 0 = 1 103
http://find/http://goback/ -
7/31/2019 Pres BayMC2
17/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
1100 iterations, no burn-in, 0 = 1 102, 0 = 1 103
http://find/http://goback/ -
7/31/2019 Pres BayMC2
18/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
1100 iterations, no burn-in, 0 = 0 = 1 104
http://find/http://goback/ -
7/31/2019 Pres BayMC2
19/19
Bayesian MC2
estimation
R. Gonzales
MAMSProject andcapital-laborsubstitutionelasticity
Frequentistapproach
Bayesianapproach
Conclusion
1100 iterations, no burn-in, 0 = 0 = 1 104
http://find/http://goback/