ele 208 radiocommunications 1 ère partie

91
CONSERVATOIRE NATIONAL DES ARTS ET METIERS 1/91 RadioCommunications Année 2010-2011 ELE208 première partie Master 2 SCHF, UE 1 Mastère techniques de radiocommunications Michel Terré www.cnam.fr/elau [email protected]

Upload: dinhtuyen

Post on 05-Jan-2017

283 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

1/91

RadioCommunications

Année 2010-2011

ELE208 première partie

Master 2 SCHF, UE 1

Mastère techniques de radiocommunications

Michel Terré www.cnam.fr/elau

[email protected]

Page 2: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

2/91

1 BILAN DE LIAISON............................................................................................................................................4

1.1 ESPACE LIBRE......................................................................................................................................................4

1.2 BILAN ET CAPACITE .............................................................................................................................................8

1.3 FORMULES DE PASSAGE.....................................................................................................................................10

1.4 ESPACE NON LIBRE.............................................................................................................................................10

1.5 LA MODELISATION DES MULTITRAJETS..............................................................................................................12

1.6 RECAPITULATIF..................................................................................................................................................14

1.7 REFERENCE DU CHAPITRE 1 ...............................................................................................................................14

2 GSM .....................................................................................................................................................................15

2.1 ARCHITECTURE DU RESEAU GSM......................................................................................................................15

2.2 LE SOUS-SYSTEME RADIO : BSS.........................................................................................................................17 2.2.1 La station de base : BTS................................................................................................................................17 2.2.2 Le contrôleur de station de base : BSC.........................................................................................................18 2.2.3 Le transcodeur : TCU ...................................................................................................................................18 2.2.4 La station mobile : MS ..................................................................................................................................19

3 CANAUX RADIOS.............................................................................................................................................20

3.1 STRUCTURE DES CANAUX..................................................................................................................................20

3.2 STRUCTURE DES INFORMATIONS........................................................................................................................22 3.2.1 Codage des informations...............................................................................................................................22 3.2.2 Structure d'un burst d'information ................................................................................................................24

3.3 CANAUX LOGIQUES............................................................................................................................................25 3.3.1 Classification des canaux logiques ...............................................................................................................27 3.3.2 La voie balise ................................................................................................................................................27 3.3.3 Les canaux de contrôle commun ...................................................................................................................29 3.3.4 Les canaux dédiés .........................................................................................................................................31 3.3.5 Multiplexage TCH plein débit-SACCH .........................................................................................................32 3.3.6 Multiplexage SDCCH-SACCH......................................................................................................................33 3.3.7 Multiplexage des canaux non dédiés.............................................................................................................33

4 INGENIERIE CELLULAIRE...........................................................................................................................35

4.1 MOTIFS CELLULAIRES........................................................................................................................................35 4.1.1 Présentation des motifs réguliers ..................................................................................................................36 4.1.2 Calcul de la distance de réutilisation............................................................................................................37 4.1.3 Calcul du rapport C / ( I+N ) ........................................................................................................................39

5 MODULATION GMSK .....................................................................................................................................41 5.1.1 Modulation MSK ...........................................................................................................................................43 5.1.2 Modulation GMSK ........................................................................................................................................44

5.2 REFERENCES DU CHAPITRE 5..............................................................................................................................47

6 TELETRAFIC.....................................................................................................................................................48

6.1 LOI DE PROBABILITE DE MODELISATION DES INSTANTS D'ARRIVEE D'APPEL.......................................................48

6.2 LOI DE PROBABILITE DE MODELISATION DES DUREES D'APPELS.........................................................................53

6.3 MODELISATION DES PROCESSUS D'APPARITION ET DE FIN D'APPELS...................................................................54

6.4 PROBABILITE DE BLOCAGE ET FORMULE D'ERLANG B .......................................................................................56

6.5 PROBABILITE DE MISE EN ATTENTE ET FORMULE D'ERLANG C...........................................................................57

6.6 CAS D'UNE POPULATION FINIE ET DISTRIBUTION D'ENGSET................................................................................59

Page 3: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

3/91

6.7 EXERCICES.........................................................................................................................................................61

6.8 RÉFÉRENCES DU CHAPITRE 6..............................................................................................................................61

7 CDMA ..................................................................................................................................................................62

7.1 INTRODUCTION AUX TECHNIQUES D'ACCES MULTIPLES......................................................................................62

7.2 LE CDMA PAR L'EXEMPLE ................................................................................................................................65

7.3 LE CDMA..........................................................................................................................................................69

7.4 FORMALISATION DU CDMA ..............................................................................................................................72

7.5 ANNEXE : LES SEQUENCES DE HADAMARD – .....................................................................................................76

7.6 RÉFÉRENCES DU CHAPITRE 7..............................................................................................................................76

7.7 EXERCICE...........................................................................................................................................................76

8 OFDM ..................................................................................................................................................................77

8.1 FORMALISME .....................................................................................................................................................77

8.2 CARACTERE UNIVERSEL DU FORMALISME..........................................................................................................78

8.3 L'ORTHOGONALITE DES SEQUENCES D'ETALEMENT............................................................................................80

8.4 FORMALISATION DU CANAL MULTITRAJETS ET INTRODUCTION DU PREFIXE CYCLIQUE......................................81

8.5 LES DIFFERENTS RECEPTEURS............................................................................................................................83

8.6 REFERENCES DU CHAPITRE 8..............................................................................................................................91

Page 4: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

4/91

1 Bilan de liaison

1.1 Espace libre

Lors de la définition d'un système de communications, il est nécessaire de déterminer le type et la taille des

antennes d'émission et de réception, la puissance d'émission, l'ensemble des pertes et affaiblissements que va

subir l'onde émise et enfin le rapport signal à bruit nécessaire pour pouvoir effectuer la transmission avec la

qualité requise. Effectuer cet ensemble de déterminations constitue l'établissement du Bilan de Liaison.

L'antenne isotrope est une antenne qui rayonne de la même façon dans toutes les directions. Son diagramme de

rayonnement est une sphère centrée sur l'antenne. Une telle antenne est irréalisable cependant elle est en général

utilisée comme antenne de référence.

Lorsque l'on utilise une antenne quelconque au lieu de l'antenne isotrope, considérée comme l'antenne de

référence, cette antenne concentre la puissance rayonnée dans certaines directions de l'espace, repérées, dans un

système de coordonnées polaires, par un couple ( )ϕθ, .

On peut alors introduire le gain de l'antenne d'émission ( )ϕθ,eG et tout se passe dans une direction ( )ϕθ,

comme si l'on utilisait une antenne isotrope mais que la puissance eP de l'émetteur était remplacée par :

( ) eee PGP ϕθ= ,'

En considérant la propagation sans perte d'une onde sphérique, la densité de puissance à une distance d de

l'antenne s'écrit :

( )2

e

d..4

Pdp

π=

La puissance captée par un élément de surface dS placé à la distance d de l'antenne et dont la normale est dirigé

vers cette antenne d'émission est égale à dS)d(p . En intégrant sur la surface de la sphère de rayon d on doit

retrouver la puissance émise eP :

( ) ( )∫ ∫π=θ

π

=ϕθϕ

πϕθϕ=

2

0 02

ee

2e d.d.

d4

P,GsindP

Une antenne de réception possède une aire équivalente rA . Cette antenne reçoit ainsi une puissance :

dS

S

d

θ

θ

ϕ

Page 5: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

5/91

rr A)d(pP =

L'aire équivalente rA n'est pas obligatoirement égale à l'ouverture de l'antenne mais elle est en général

proportionnelle à cette ouverture à travers un coefficient η appelé efficacité. Ce coefficient varie en général

entre 50 % et 60 %.

Supposons maintenant que l'antenne est directive est rayonne principalement dans une direction définie par un

azimut et une élévation ( )00 ϕθ , . Par rapport à l'antenne isotrope la densité de puissance dans cette direction

sera multipliée par un coefficient ( )00e ,G ϕθ qui représente le gain de l'antenne dans cette direction.

Pour simplifier les écritures, supposons que l'on s'intéresse dans la suite à cette direction privilégiée ( )00 ϕθ , et

omettons de le préciser dans l'expression du gain eG .

Le gain est ainsi défini pour l'antenne d'émission et l'aire équivalente pour une antenne de réception. La même

antenne peut être utilisée à l'émission ou à la réception. On a la relation suivante entre l'aire équivalente et le

gain :

2r

e 4

A

G

λπ=

La densité de puissance à une distance d est égale à :

2ee

d4

PG

π Watts / m2

Le produit eePG est appelé la Puissance Isotrope Rayonnée Equivalente : PIRE (Effective Isotropic Radiated

Power : EIRP). On rappelle que la PIRE est la puissance rayonnée par rapport à une antenne isotrope pour

laquelle 1Ge =

La puissance rP reçue par une antenne de réception dirigée dans la direction de rayonnement principal de

l'antenne d'émission va recevoir une fraction de la puissance rayonnée. Cette fraction est proportionnelle à la

surface de l'antenne de réception et à son orientation par rapport à la direction de propagation de la puissance

émise. En supposant les antennes d'émission et de réception parfaitement alignées, la puissance reçue s'écrit :

2ree

rd4

AGPP

π=

Pour une antenne parabolique de diamètre D, on considère en général que le gain maximal eG s'exprime en

fonction du diamètre de l'antenne au moyen de la relation :

2

eD

G

λπη=

L'aire effective et le gain de l'antenne de réception sont ainsi bien reliés, comme prévu, par l'équation :

πλ

=4

GA

2r

r

La puissance reçue par l'antenne s'écrit finalement :

Page 6: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

6/91

2ree

rd4

GGPP

λπ

=

On introduit alors le facteur 2

s d4L

πλ= qui est appelé la perte en espace libre (free-space path loss).

La puissance reçue s'écrit alors :

sreer LGGPP =

En prenant en compte des pertes de propagation atmosphérique sous la forme d'un terme aL , la puissance reçue

devient :

asreer LLGGPP =

Prise en dB cette expression devient :

( ) ( ) ( ) ( ) ( ) ( )dBadBsdBrdBedBedBr LLGGPP ++++=

Pour terminer le bilan de liaison il faut prendre en compte le bruit additif du canal et du récepteur. Le bruit

thermique est défini par sa densité monolatérale de puissance :

kTN0 = Watts/Hz

avec k : constante de Boltzmann : 123 JK10381k −−= ., et T température de bruit en Kelvin.

La puissance de bruit nP dans une bande de fréquence W est alors égale à :

WNP 0n =

En introduisant l'énergie par bit bE dans la bande de réception et le débit binaire bR , il vient :

bbr REP =

Le rapport 0

b

N

E est alors égal à :

0

r

b0

b

N

P

R

1

N

E=

Pour obtenir un taux d'erreurs spécifié lors de la démodulation, il est nécessaire d'avoir un rapport 0

b

N

E requis

que l'on note req0

b

N

E

. Il faut donc ajuster les puissances d'émission et les tailles des antennes afin que :

req0

bb

0

r

N

ER

N

P

=

En remplaçant rP par sa valeur ainsi que 0N dans cette expression, on obtient :

T

G

k

LLGP

N

P rasee

0

r =

On voit alors faire apparaître le terme T

Gr qui est une caractéristique très importante pour qualifier la chaîne de

réception.

Page 7: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

7/91

Exemple:

Considérons un satellite Géostationnaire avec une puissance rayonnée de 100 Watts (20 dBW). L'antenne

d'émission a un gain de 17 dB. La PIRE est alors égale à 37 dBW.

L'antenne de réception de la station terrienne est une parabole de 3 mètres de diamètre avec une efficacité de

50%. La fréquence porteuse est égale à 4 GHz.

Le gain de l'antenne de la station terrienne est donc égal à dB39Gr =

La perte en espace libre est égale à dB6195Ls .=

On suppose qu'il n'y a ici aucune autre perte atmosphérique à prendre en compte. La puissance reçue est égale à :

( ) 6.195391720P dBWr −++=

( ) dBW6.119P dBWr −=

La température de bruit du récepteur est égale à K300 . La densité de bruit est alors :

HzW1014N 210 /., −= ou encore HzdBW203 /−

D'où :

dBHz3.849.2036.119N

P

0

r =+−=

Supposons que le rapport dB10N

E

req0

b =

Le débit maximum sera alors égal à :

( ) dBHz3.74103.84R dBb =−=

D'où :

s/Mbit9.2610R 43.7b ==

Donc, avec ces antennes et avec cette puissance d'émission, ce satellite Géostationnaire peut transmettre au plus

26.9 Mbit/sec. Si l'on souhaite augmenter cette valeur, on peut augmenter la puissance émise par le satellite,

augmenter la taille de l'antenne du satellite ou enfin augmenter la taille de l'antenne de la station terrienne.

Note :

Pour une antenne parabolique de diamètre D le gain est donné par la formule 2

rD

G

λπη= et l'aire effective

4

DA

2

rπη= , avec η égal à 50-60%.

Pour une antenne cornet avec une aire A, le gain est donné par 2rA10

= et l'aire effective est AAr η= avec η

égal à 80%.

Page 8: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

8/91

1.2 Bilan et capacité

Les calculs de bilan de liaison effectués lors du paragraphe précédent, tendent à donner une relation linéaire

entre le débit et la puissance. Ceci est exact en première approximation. Cependant le débit ne va pas exactement

croître linéairement en fonction de la puissance.

L'approximation qui a été faite se situe dans l'équation : bbr REP =

En effet, en 1948 Claude E. Shannon a démontré un théorème prouvant que l'on pouvait transmettre des données

à un débit bR (bits/sec) sur un canal de taille W (Hz) avec un taux d'erreurs aussi faible que l'on désire à

condition de ne pas dépasser la capacité C (bits/sec) du canal.

Shannon a déterminé la capacité C d'un canal additif gaussien blanc (AWGN). Cette capacité s'écrit :

+=B

S1WC 2log

Le rapport B

S représente le rapport signal sur bruit.

En général on préfère utiliser directement le rapport 0

b

N

E. Or, si on transmet à un débit bR égal à la capacité C,

la puissance du signal utile rP s'écrit :

bbbr ECERP .. ==

la puissance de bruit nP dans la bande W s'écrit :

WNP 0n .=

le rapport signal sur bruit devient donc :

0

b

NW

EC

B

S

.

.=

La formule de la capacité de Shannon devient alors :

+=

0

b2 NW

EC1

W

C

.

.log

Le terme W

C représente la capacité normalisée par la bande de fréquence et s'exprime en bits/sec/Hz.

On obtient alors :

W

C12

N

E W

C

0

b −=

pour 1W

C = , on trouve : )( dB01N

E

0

b ==

pour ∞→W

C, on trouve :

W

C2

N

E W

C

0

b ≈

Page 9: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

9/91

−≈ W

C2

W

C

0

b eN

E ln)ln(

le rapport 0

b

N

E croît donc exponentiellement lorsque ∞→

W

C

pour 0W

C → , on trouve : ).)(ln(lim dB612

W

C12

N

E W

C

0W

C0

b −==−=→

la courbe de capacité va donc présenter une asymptote à dB61N

E

0

b .−=

La courbe ci-dessous présente la courbe de capacité de Shannon et un certain nombre de performances de

modulations.

Page 10: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

10/91

L'optimisation de la capacité est un point extrêmement important dans la mise au point de systèmes de

communications par satellite. Les marges des bilans de liaison sont en général très faibles et les points de

fonctionnement ,en terme de rapport 0

b

N

E, sont très bas.

Les modulations utilisées sont très souvent du type QPSK ou DQPSK. La tendance actuelle est d'utiliser des

filtrages avec des roll-off très faibles (jusqu'à 0.15) et de tolérer un léger chevauchement des porteuses

(espacement de 0.1 temps symbole).

De manière générale, la comparaison de toute solution avec la courbe de capacité de Shannon permet de savoir si

l'on peut encore gagner en capacité, soit donc en nombre d'utilisateurs du système, ou si on est déjà à la limite

d'occupation de la bande de fréquence considérée.

La référence à la capacité de Shannon n'a bien entendu de sens que si l'on est en présence d'un canal AWGN.

Ce modèle de canal correspond aux transmissions où il y a visibilité entre l'émetteur et le récepteur.

1.3 Formules de passage

Il est souvent utile d'exprimer le champ électrique plutôt que la puissance reçue, ceci afin de s'affranchir de

l'antenne de réception. Il est donc nécessaire de disposer de quelques formules de passage.

La puissance reçue s'obtient au moyen du flux du vecteur de Poynting Sr

à travers une surface. Par définition, on a :

HESrrr

∧=

Dans le vide, les modules des champs Er

et Hr

sont reliés par : π= 120H

E

Sachant que l'aire équivalente A d'une antenne se relie à son gain G via : G4

A2

πλ=

Alors la puissance reçue s'écrit : Ad4

GPP

2ee

=

La puissance électrique sera donnée par : R

VP

2

r =

Dès lors on peut faire le passage entre cette puissance et le champ électrique :

πλ×

π=×==

4120

EAS

R

VP

22

2

r

rr

Il est alors aisé de relier la tension captée aux bornes de la résistance R en fonction du champ électrique.

1.4 Espace non libre

Lorsqu'il n'y pas visibilité et dégagement entre l'émetteur et le récepteur, il est alors nécessaire d'utiliser des formules de propagation approchée. La méthode d'Okumura Hata est applicable pour les fréquences GSM (900 MHz et 1.8 GHz). Elle a été établie

au japon pour un milieu suburbain. Elle permet de calculer le champ électrique reçu. Elle se présente de la

manière suivante :

aphznrm AAAAAEPE −−−−−+=

Avec

P : puissance apparente rayonnée en dBkW

nA : atténuation due aux obstacles (dB)

Page 11: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

11/91

zA : atténuation due aux obstacles proches (dB)

hA : atténuation pour une antenne du mobile située à une hauteur différente de 1,5 m (dB)

pA : atténuation due à la pente

aA : atténuations diverses (dB)

rE : Champ idéal reçu par un mobile à 1.5 m au dessus du sol en dBµV/m

Pratiquement on utilise dans le bilan d'une liaison de type urbaine, un terme de perte noté OHL tel que .

dlog)hlog55,69,44()h(Ahlog82,13flog16,2655,69)dB(L bmbOH −+−−+=

avec :

− )8,0flog56,1(h)7,0flog1,1()h(A mm −−−=

− MHz1500fMHz150 << , f étant exprimé en MHz

− m300hm30 b << , bh hauteur de l'antenne de la station de base exprimée en m

− km20dkm1 << , d distance du mobile à la station de base exprimée en km

− m10hm1 m << , mh hauteur de l'antenne du mobile exprimée en m

Cette formule exprime que les obstacles et les multitrajets du canal de propagation entraînent une perte de la

puissance émise qui ne se retrouve pas au niveau du mobile ni pour des transmissions utiles ni pour des

interférences en dehors de la zone de couverture.

Le terme d'affaiblissement OHL exprimé en décibels s'intègre directement dans l'évaluation du bilan de liaison

en prenant en compte le gain de l'antenne de réception.

Pour passer en mode rural, il suffit d'ajouter un terme correctif donné par :

( )[ ] ( ) 9440f3318f784LL 2OHruralOH .log.log.)( −+−=

Pour comparer avec la perte de propagation en espace libre, on peut écrire cette perte, directement en dB et avec

les mêmes conventions d'unités, de la manière suivante :

( ) ( )d20f20432LEL loglog. ++=

D'autres formules de ce type sont valables pour différents environnements. On peut citer par exemple, le modèle

Cost Hata valable en environnement urbain et donné par :

( ) ( ) ( )( ) ( )dh556944ah8213f9333346L bbCH loglog..log.log.. −+−−+=

avec : ( )( ) ( )( )80f561h70f11a m .log..log. −−−=

Ce chapitre a développé un ensemble de formules approchées qui permettent d'estimer rapidement le champ

électrique reçu lors de l'établissement d'une liaison de radiocommunications. Ces formules sont le résultat d'une

synthèse de l'application des équations de Maxwell à différents milieux, des formules d'optique géométriques et

de relevés de mesures. Elles sont, en particulier pour le dimensionnement des réseaux GSM, d'une grande utilité

pratique.

Page 12: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

12/91

1.5 La modélisation des multitrajets

Ce paragraphe aborde brièvement la modélisation type "signal" des canaux de propagations de type

radiomobiles. Lors de transmissions en environnement urbain, l'émetteur et le récepteur ne sont presque jamais

en vue directe et le signal reçu par le récepteur va être modélisé comme une somme discrète de trajets réfléchis

(d'où la présence de ce paragraphe dans ce chapitre). On se trouve alors confronté à modéliser le canal par sa

réponse impulsionnelle, cette dernière variant au cours du temps.

La formalisation donne alors : - signal transmis :

{ }tf2j1

ce)t(sRe)t(s π=

- signal reçu : ( )∑ τ−α=

nnn )t(ts)t()t(x

- signal reçu en bande de base :

( )∑ τ−α= τπ

nn1

)t(f2jn )t(tse)t()t(r nc

d'où l'écriture du canal :

( )∑ τ−δα= τπ

nn

)t(f2jn )t(ue)t()t;u(c nc

On voit apparaître deux variables temporelles u et t. )t;u(c représente la réponse impulsionnelle du canal à

l'instant t. Cette réponse impulsionnelle est une fonction du temps qui est noté u et elle s'étend sur une certaine

durée.

Etude du cas particulier d'un signal non modulé : t1)t(s1 ∀=

L'enveloppe complexe du signal reçu s'écrit alors :

∑ τπα=n

)t(f2jn1

nce)t()t(r

ou encore :

∑ θα=n

)t(jn1

ne)t()t(r avec )t(f2)t( ncn τπ=θ

110tt τ+= 0tt = 1tt = 120tt τ+=

212tt τ+= α+= 0tt 2tt = 232tt τ+=

Page 13: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

13/91

Le terme )t(nθ "tourne" très vite ( π2 si nτ change de cf

1). Si on considère un grand nombre de trajets, le

signal )t(r1 peut être considéré comme une somme de vecteurs complexes uniformément répartis entre 0 et π2

Somme de trajets, sans trajet prépondérant Le signal reçu )t(r1 peut alors être considéré comme une variable aléatoire gaussienne complexe centrée. Son

module { } { }21

211 )t(rIm)t(rRe)t(r += suit alors une loi de Rayleigh (racine de la somme de deux variables

gaussiennes centrées de variance 2σ au carré). On rappelle ici la densité de probabilité de Rayleigh :

2

2

2

r

2R er

)r(p σ−

σ= avec 0r ≥

On ne pourra alors qu'estimer la probabilité d'observer un module du champ reçu supérieur à une valeur. Le bilan

de liaison deviendra donc statistique. Dans le cas où l'on considère qu'il existe un trajet prépondérant, le signal

reçu reste gaussien complexe mais n'est plus centré

Somme de trajets, avec un trajet prépondérant Le module du champ reçu suit alors une loi de Rice :

( )

σσ= σ

+−

202

sr

2Rrs

Ier

)r(p2

22

avec 0r ≥ et 0I fonction de Bessel

où 2

221

2 mms += représente la somme des moyennes au carré des parties réelles et imaginaires de l'enveloppe

complexe. On retrouve Rayleigh pour 0mm 21 == .

Par extension on parlera finalement de canal de Rice et de canal de Rayleigh. Ces canaux sont à comparer au

canal AWGN. On notera essentiellement que les choix de forme d'onde sont adaptés à ces types de canaux.

Page 14: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

14/91

1.6 Récapitulatif

Liaison radiomobile

1.7 Référence du chapitre 1

Lucien Boithias, "Propagation des ondes radioélectriques", Dunod 1983

J. Lavergnat, M. Sylvain, "Introduction à la Propagation", Collection Pédagogique des Télécommunications,

MASSON, 1997.

Page 15: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

15/91

2 GSM

Principales caractéristiques du GSM:.

GSM 900 GSM 1800 Bande de fréquence sens montant : sens descendant :

890 - 915 MHz 935 - 960 MHz

1710 - 1785 MHz 1805 - 1880 MHz

écart duplex 45 MHz 95 MHz

nb intervalles de temps par trame TDMA

8

rapidité de modulation ~ 271 kbits/s

débit de la parole 13 / 12,2 et 5,6 kbits/s accès multiple multiplexage temporel et fréquentiel

puissance des terminaux 2 et 8 W 0,25 et 1 W

2.1 Architecture du réseau GSM

Le réseau GSM est donc séparé en 3 ensembles distincts :

• le sous-système radio BSS ; il correspond à la fonction de distribution du réseau de radiocommunication. Il est constitué des stations de base BTS qui assurent le lien radioélectrique avec les abonnés mobiles MS. Les BTS sont gérées par un contrôleur de stations de base BSC qui assure également la fonction de concentration du trafic. En outre, le BSC est connecté à un transcodeur TCU qui permet de diminuer le nombre de liens MIC nécessaires entre le BSS et le NSS ;

• le sous-système réseau NSS ;

il regroupe toutes les fonctions de commutation et de routage, localisées dans le MSC. Les données de référence, propres à chaque abonné, sont enregistrées dans une base de données répartie sur des enregistreurs de localisation nominaux HLR . Le MSC, afin de minimiser les accès aux HLR, utilise un enregistreur de localisation temporaire, le VLR , contenant les données de travail relatives aux abonnés présents dans la zone gérée par le MSC.

• le sous-système d’exploitation et de maintenance OSS ;

il est utilisé par l’opérateur pour administrer son réseau, de manière locale par des OMC et de manière générale par le NMC . Les fonctions de sécurité et de contrôle d’accès au réseau sont assurées par le centre d’authentification AUC et l’enregistreur des identités des équipements EIR .

Le schéma de la page suivante présente l'architecture générale d'un réseau GSM, hormis le système OSS :

Page 16: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

16/91

BTS

BSC

BTS

BTS

BTS

MS

MSCBSC

interface A bis

liaison MIC

interface A

HLR

VLR

liaison MIC

BTS

interface Air

RTCP

MSC

VLR

NSSBSS

liaison radio

circuits de signalisation

circuits de parole & de signalisation

inte

rfac

e E

inte

rfac

e B

interface D

Architecture générale d'un réseau GSM

Page 17: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

17/91

2.2 Le sous-système radio : BSS

2.2.1 La station de base : BTS

La BTS (Base Transceiver Station) est un ensemble d’émetteurs-récepteurs appelés TRX. Dans une première approche, un TRX peut être vu comme un couple de fréquences (fmontante ; fdescendante) sur lequel 8 communications bidirectionnelles simultanées peuvent être écoulées. Le rôle de la BTS est d’assurer l’interface entre le réseau fixe et les stations mobiles. La communication avec les mobiles se fait par l’interface radio aussi appelée interface Um. La communication avec le réseau fixe, via le BSC, se fait par une interface filaire appelée interface Abis. Le transport des canaux de signalisation, de données et de parole s’effectue sur des liaisons MIC à 2 Mbits/s (32 IT à 64 kbits/s). La BTS a la charge de la transmission radio : modulation, démodulation, égalisation, codage correcteur d’erreur. Elle gère plus généralement la couche physique : multiplexage TDMA, saut de fréquence (lent) et chiffrement. Elle réalise aussi l’ensemble des mesures nécessaires pour vérifier qu’une communication en cours se déroule correctement et transmet directement ces mesures au BSC, sans les interpréter. Elle s’occupe en outre de la couche liaison de données pour l’échange de signalisation entre les mobiles et l’infrastructure ainsi que pour assurer la fiabilité du dialogue. Il existe deux types de BTS : les macro BTS classiques et les micro BTS. Ces dernières sont prévues pour assurer la couverture de zones urbaines denses à l’aide de microcellules. Ce sont des équipements de faible taille, de moindre puissance, moins chers et pouvant être placés à l’extérieur des bâtiments. Suivant le type d’environnement à couvrir (urbain dense, suburbain, rural), les BTS comportent un plus ou moins grand nombre de TRX. Plus la densité de trafic est importante (urbain dense), plus chaque BTS doit écouler un trafic important et donc plus elle nécessite des TRX. Le minimum est bien sûr de 1 TRX, le maximum est déterminé par les constructeurs qui proposent des configurations adaptées au trafic ; il est donc en constante évolution. Si le mobile se trouve près d’une BTS, la norme prévoit que le mobile ou la BTS peuvent diminuer leur puissance d’émission. C'est le contrôle de puissance (power control). Les BTS sont connectées à leur contrôleur BSC :

• soit en étoile (1 MIC par BTS) • soit en chaîne (1 MIC est partagé par plusieurs BTS) • soit en boucle (liaison en chaîne fermée permettant la redondance : une liaison MIC coupée n’isole

pas de BTS) Cette dernière technique de connexion, dite de “drop and insert” permet de sécuriser la connexion des BTS au BSC et de réduire le nombre et la longueur des liaisons MIC nécessaires sur l’interface Abis.

Page 18: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

18/91

BTS

BTS

BTS BSC

BSC

BTS

BTSBTSBTS

BSC

connexion en étoile

connexion en chaîne

connexion en boucle

Types de connexions BTS - BSC

2.2.2 Le contrôleur de station de base : BSC

Le BSC (Base Station Controller) est l’organe intelligent du BSS. Il gère les ressources radio des BTS qui lui sont attachées. Il réalise pour cela les procédures nécessaires à l’établissement ou au rétablissement des appels et à la libération des ressources à la fin de chaque appel, ainsi que les fonctions propres aux communications (contrôle de puissance, décision d’exécution et gestion du handover). Il assure en outre une fonction de concentration des liaisons MIC vers le MSC. Initialement, les constructeurs de BSC n’ont pas eu tous la même philosophie concernant la capacité de trafic de ces éléments : • des BSC de faible capacité,

� gérant un moins grand nombre de BTS ⇒ il faut donc davantage de BSC pour couvrir la même surface

� minimisant ainsi les distances BTS-BSC ⇒ réduction du coût d’exploitation pour l’opérateur

� particulièrement adaptés aux zones rurales faiblement peuplées • des BSC de forte capacité

� gérant un plus grand nombre de BTS � augmentant donc les distances BTS-BSC moyennes � particulièrement adaptés aux zones urbaines à forte densité de trafic

2.2.3 Le transcodeur : TCU

Les abonnés transmettent des informations à des débits de 13 kbits/s (parole plein débit) qui sont ensuite adaptées et transportées à partir de la BTS à 16 kbits/s. Or le réseau fixe, qui est le plus souvent numérique, gère des circuits de parole à 64 kbits/s. Il est donc nécessaire de réaliser dans le réseau un transcodage 16 kbits/s ⇔ 64 kbits/s. La norme n’impose pas d’implanter les transcodeurs en un endroit particulier du réseau mais les place forcément dans le BSS. Or, il est logique de transcoder les informations le plus tard possible, c’est-à-dire le plus près possible du MSC pour économiser les circuits de parole. Le TCU ou TRAU (Transcoder and Rate Adaptor Unit) a donc été placé entre le BSC et le MSC dans le but de réduire le nombre des liaisons MIC nécessaires à la transmission des informations entre la BTS et le BSC. Il est

Page 19: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

19/91

généralement placé physiquement à côté du MSC mais fait fonctionnellement partie du BSC qui le commande donc à distance. Les informations sont "physiquement" transmises sur des circuits MIC à 64 kbits/s (hormis sur l’interface radio entre le mobile et la BTS). Sur chaque circuit MIC, il est donc possible de transporter les informations de 4 circuits de parole à 16 kbits/s. L’adaptation de débit nécessaire étant justement de 16 à 64 kbits/s (et inversement dans le sens descendant), le TCU comporte donc 1 liaison MIC vers le BSC pour 4 liaisons vers le MSC.

BSC

MSC

TRAU

BTS

4 x 16 kbits/s 4 x 16 kbits/s 1 x 64 kbits/s

liaison MIC de circuit de parole

Figure 2-1 : Transcodage de la parole

2.2.4 La station mobile : MS

La station mobile Mobile Station désigne un équipement terminal muni d’une carte SIM qui permet d’accéder aux services de télécommunications d’un réseau mobile GSM. La carte SIM d’un abonné est généralement du format d’une carte de crédit ("full sized"), parfois même juste du format de la puce ("plug-in"). Elle contient toutes les informations nécessaires au bon fonctionnement du mobile :

• ses identités IMSI et TMSI ; • éventuellement un code PIN (bloquant la carte après 3 essais, équivalent du code de la carte bleue) ; • sa clé de chiffrement Kc ; • sa clé d’authentification Ki ; • les algorithmes de chiffrement (A8, qui génère Kc, et A5) et d’authentification A3.

Le terminal est muni d’une identité particulière, l’IMEI. Cette identité permet, en autres, de déterminer le constructeur de l’équipement. La norme définit plusieurs classes de terminaux suivant leur puissance maximale d’émission. Cette puissance conditionne bien sûr leur portée. La majorité des terminaux vendus sont des portatifs d’une puissance de 2 W pour GSM 900, de 1 W pour DCS 1800.

Page 20: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

20/91

3 Canaux radios

3.1 Structure des canaux

Un système radiomobile a besoin d'une partie du spectre radio pour fonctionner. Avant de le spécifier en détail, les concepteurs du système doivent demander une bande de fréquence auprès de l'instance officielle chargée de la gestion du spectre. Les bandes dédiées par l'UIT, d'où une reconnaissance au niveau mondial, au système GSM sont spécifiées dans le tableau suivant :

GSM 900 DCS 1800 bandes de fréquences

MHz

890 - 915 ( ↑ ) 935 - 960 ( ↓ )

1710 - 1785 ( ↑ )

↓largeur de bande 2 × 25 MHz 2 × 75 MHz écart duplex 45 MHz 95 MHz

Tableau 3-1 : Caractéristiques fréquentielles

rappel : écart duplex et canal duplex

L'écart duplex du système GSM est le décalage en fréquence entre la voie montante (du mobile vers la BTS) et la voie descendante (de la BTS vers le mobile). Cette séparation entre les voies montantes et descendantes facilite le filtrage et la séparation des voies. Un canal est donc dit duplex s'il comporte une voie montante et une voie descendante. Dans le système GSM, tous les canaux de trafic alloués aux abonnés sont duplex (il faut pouvoir parler sur la voie montante et écouter sur la voie descendante).

partage en fréquence : Chaque bande de fréquences est partagée en canaux (ou porteuses) duplex de largeur 200 kHz. La bande GSM 900 dispose donc de 125 canaux montants et autant de canaux descendants, la bande DCS 1800 de 375 canaux montants et autant de canaux descendants. En réalité, 124 et 374 porteuses sont disponibles dans les systèmes GSM 900 et DCS 1800. Numérotation des porteuses :

GSM 900 : pour 1≤ n ≤ 124 f = 935 + ( 0,2 × n ) MHz GSM 1800 : pour 512 ≤ n ≤ 885 f = 1805,2 + [ 0,2 × ( n - 512 ) ] MHz

Itinéris dispose des 62 premiers canaux duplex de la bande GSM 900 et SFR des 62 derniers, tandis que Bouygues Telecom dispose des 75 derniers canaux de la bande DCS 1800. Dans la suite de ce polycopié, le terme "fréquence" désignera le plus souvent le numéro de la porteuse (entre 811 et 885 pour Bouygues Telecom) et non la valeur exacte de la fréquence en MHz. partage en temps : Chaque porteuse est divisée en 8 intervalles de temps (IT, slots ou timeslots). La durée de chaque timeslot est fixée à 577 µs (environ). Sur une même porteuse, les timeslots sont regroupés par 8 en une trame TDMA . La durée de cette dernière est donc 4,615 ms. Les timeslots sont numérotés de 0 à 7.

Page 21: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

21/91

Chaque utilisateur plein débit utilise un slot par trame TDMA (toutes les 2 trames TDMA pour un utilisateur demi-débit). Un "canal physique" est donc constitué de la répétition périodique d'un slot de la trame TDMA sur une fréquence particulière. Dans ce slot, qui a une notion temporelle, l'élément d'information est appelé burst. On dit que le GSM est orienté circuit : il réserve à chaque utilisateur une portion des ressources (1 timeslot parmi 8 sur une paire de fréquences), qui n'est partagée avec personne d'autre, jusqu'à la déconnexion de l'utilisateur. La Figure 3-1 illustre les notions fondamentales décrites ci-dessus :

temps

fréquences

200

kHz

577 µs

canal physique

trame TDMA4,615 ms

Figure 3-1 : Partage en temps et en fréquence d'une bande de fréquences GSM

On peut donc dire que le GSM est un système F/TDMA puisque les ressources sont partagées en fréquence et en temps. Enfin, dans le système GSM, un mobile émet et reçoit à des instants différents. Au niveau du canal physique alloué au mobile, l'émission et la réception d'informations sont donc décalées dans le temps de 3 timeslots :

Page 22: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

22/91

00 T 7 0 T 7 0 T 7BTSserveuse

4,615 ms 577

µs

7 0 T 7 0 T 7 0 T 7mobile

fréquences

f1+ écart duplex

f1

temps

T : Canal TCH de trafic alloué à un utilisateur

Figure 3-2 : Canal physique GSM pour une transmission duplex sans saut de fréquence

3.2 Structure des informations

3.2.1 Codage des informations

Suivant la nature de l'information à transmettre, les messages d'information n'ont pas la même longueur ni la même protection.

codagede source

bitsd’informationde données

bitsd’information

de parole

codagede canal

poinçon( facultatif ) entrelacement

insertiondans unburst

transmissiondans un slot

d’une trame TDMA Figure 3-3 : Chaîne de transmission

La modulation utilisée dans le système GSM est la modulation GMSK (Gaussian-filtered Minimum Shift Keying). Ses principales caractéristiques sont les suivantes : − modulation de fréquence ; − variation linéaire de la phase sur un temps bit provoquant un déphasage de ±π/2 à chaque

transmission de symbole ; − débit en ligne : 270, 833 kbits/s (156,25 bits transmis en 577 µs) ; Le codage de source de la parole sert à transformer le signal analogique de parole en un signal numérique. Le but de ce codage est de réduire le débit de façon à minimiser la quantité

Page 23: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

23/91

d’information à transmettre. En effet, dans le système GSM, à la sortie de ce codeur, ne sont transmis que les coefficients des filtres numériques linéaires (long terme LTP et court terme LPC) et le signal d’excitation (RPE) et non pas le signal de parole initial. L’élément qui effectue ces opérations en émission et en réception est appelé un “codec”. Pour la parole plein débit, les 260 bits en sortie du codeur de source sont répartis en 3 classes suivant leur importance, et le codage de canal n'est appliqué qu'aux classes qui doivent être les plus protégées, c'est-à-dire les deux premières. Les bits de CRC (Cyclic Redundant Control) sont utilisés pour la détection d'erreurs : pour la parole, si les 3 bits de CRC indiquent une erreur toute la trame est rejetée; pour les canaux de contrôle, les 40 bits de CRC ont en plus une légère capacité de correction d'erreur. Les bits de traînée sont utilisés pour vider le registre à décalage du codeur de canal. Le codage de canal sert à protéger contre les erreurs en introduisant de la redondance. Ceci conduit à une augmentation du débit, mais cette redondance est utilisée en réception pour corriger les erreurs. Le codage de canal est réalisé par des codes convolutionnels qui, avec l'algorithme de Viterbi, assurent une correction efficace d'erreurs. Le codeur de canal utilisé en GSM est de taux ½ ; il est décrit page Erreur ! Signet non défini. (Erreur ! Source du renvoi introuvable. ).

Le poinçonnage est un élément facultatif de la chaîne d’émission. Il consiste à supprimer un certain nombre de bits dans le train de bits codés prêts à être entrelacés. Ceci est fait dans le but de faire “rentrer” le train de bits codés dans une boîte du format voulu, 456 bits en l’occurrence pour les données GSM. Tous les bits supplémentaires devront être éliminés. Cependant, si un train de bits a une longueur de (456 + n) bits, il est hors de question de lui enlever les n derniers bits codés : cela supprimerait toute la dernière partie des informations. On enlève donc les n bits régulièrement tout au long du train de bits, et on compte sur la redondance et les performances du récepteur pour corriger les effacements qui ont été ainsi “volontairement” introduits et dont le récepteur connaît l’emplacement.

longueur fixe (456 bits )

kième

bloc codé k+1ième

bloc codé

Figure 3-4 : Poinçonnage

L’ entrelacement est utilisé pour rendre plus aléatoire les positions des erreurs qui arrivent généralement en salves dans le contexte radio du fait des divers obstacles auxquels sont soumis les signaux radios : immeubles, camions, feuillage... La technique consiste à mélanger les bits codés avant leur transmission dans un burst pour augmenter les performances de correction des codes correcteurs. En fait l’entrelacement permet de fragmenter les paquets d’erreurs et de les transformer en erreurs “isolées” afin de faciliter leur correction.

Page 24: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

24/91

3.2.2 Structure d'un burst d'information

Le burst d'information le plus couramment utilisé a la structure générale suivante : une séquence d'apprentissage, des bits de données et quelques bits supplémentaires. La séquence d'apprentissage se trouve au milieu du burst car le canal radio étant fluctuant, il faut mieux estimer le canal à cet endroit : cela donne une estimation à un demi-burst près et non à un burst près comme ce serait le cas si la séquence était placée en fin ou en début de burst. Il existe 8 séquences d'apprentissage sur le réseau, qui correspondent chacune à un code BSIC de BTS.

0 1 2 3 4 5 6 7

bits de donnéescodés et entrelacés

séquenced'apprentissage

bits de donnéescodés et entrelacés

slot : 156,25 bits = 577 µs

3bits

58 bits26 bits58 bits3

bits

30,46 µs

délaide

garde

Figure 3-5 : Format d'un burst normal

En réalité, il n'y a que 57 bits d'information de part et d'autre de la séquence d'apprentissage : le 58ème bit est utilisé pour indiquer un transfert spécial de signalisation sur le canal logique FACCH. Dans le cas général (cf. Tableau 3-2), l'entrelacement des 456 bits se fait sur 8 demi-bursts. Il se fait de la manière suivante : 1. les 456 bits de chaque bloc sont mélangés suivant un ordre défini par la norme ; 2. les 456 bits sont regroupés en 8 groupes de 57 bits (8×57 = 456) ; 3. chaque groupe est inséré dans une moitié de burst ; l'autre moitié du burst est occupée par

un autre groupe de 57 bits d'un autre bloc de 456 bits.

Page 25: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

25/91

114 bits

57 57

blocs de

transmission 8 7 6 5 4 3 2 1

577 µs 4,615 ms temps

bits du bloc ( n + 1 ) bits du bloc ( n ) bits du bloc ( n - 1 )

Figure 3-6 : Insertion des données dans un burst

3.3 Canaux logiques

Pour renforcer l'interface radio, qui est le maillon faible de la chaîne de transmission, un certain nombre de fonctions de contrôle ont été mises au point pour que le mobile se rattache à une BTS favorable, pour établir une communication, surveiller son déroulement et assurer les handovers. Ces fonctions de contrôle engendrent des transferts de données : remontées des mesures, messages de contrôle... Plusieurs canaux logiques ont été ainsi définis pour les différents types de fonction (veille, scrutation, mesures, contrôle... ) ; ils forment une architecture complexe qu'il est nécessaire de connaître pour comprendre le fonctionnement d'un mobile pendant les différentes phases de communication ou pendant sa veille. Ils n'existent que sur l'interface radio et perdent ensuite toute leur signification sur les autres interfaces du systèmes : Abis, Ater, A, ... Il faut sur l'interface radio :

• diffuser des informations système : Broadcast Channels • prévenir les mobiles des appels entrants et faciliter leur accès au système :

Common Control Channel • contrôler les paramètres physiques avant et pendant les phases actives de

transmission : FACCH et SACCH

• fournir des supports pour la transmission de la signalisation : SDCCH On n'utilise pas un canal physique plein pour chacune de ces tâches : ce serait gâcher de la ressource radio car elles ne nécessitent pas, en général, un débit comparable à celui de la voix codée (TCH). Le tableau ci-dessous résume les principales caractéristiques de codage des canaux logiques :

Page 26: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

26/91

canaux logiques

nb bits avant codage canal

CRC +

traînée

taux de codage canal

poinçon ( bits )

nb bits en sortie

entrelacement

TCH parole ( plein-débit )

260 (50+132+78)

3 + 4 ½ - 456 8 demi-blocs

TCH données ( 9,6 kbits/s )

4×60 ( dont 48 bits

de signalisation )

0+4 ½ 32 456 22 blocs

FACCH 184 40+4 ½

- 456 8 demi-blocs

SACCH SDCCH PCH AGCH BCCH

184

40+4

½

-

456

4 blocs

RACH 8 6+4 ½ - 36 non SCH 25 10+4 ½ - 78 non

Tableau 3-2 : Récapitulatif sur le codage des canaux logiques

Pour introduire plus de souplesse et allouer moins d'un slot par trame, on définit des structures de multitrames. � La structure de multitrame est définie comme une succession d'un slot donné sur des

trames TDMA successives, c'est-à-dire sur un canal physique. Entre deux slots d'une multitrame, il s'écoule donc 4,615 ms.

00 3 7 0 3 7 0 3 7

4,615 ms

temps

0 3 7

...multitrame

0 1 2 3 4 Figure 3-7 : Structure d'une multitrame GSM

Chaque multitrame transporte, avec une périodicité bien définie, un certain type d'informations de contrôle ou de signalisation. Cet ensemble de timeslots forme un canal logique. Certaines multitrames sont définies à 26 trames, d'autres à 51 trames.

Page 27: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

27/91

3.3.1 Classification des canaux logiques

On distingue deux grandes classes de canaux logiques : les canaux dédiés et les canaux non dédiés : • un canal logique dédié est duplex et fournit une ressource réservée à un mobile. Le réseau

attribue au mobile dans une structure de multitrame un slot en émission et un slot en réception dans lesquels le mobile est seul à transmettre et à recevoir. Dans la même cellule, aucun autre mobile ne peut transmettre dans le même slot (c'est-à-dire en même temps) de la même fréquence.

• Un canal logique non dédié est simplex et partagé par un ensemble de mobiles. Dans le sens descendant : diffusion des données, plusieurs mobiles sont à l'écoute du canal Dans le sens montant : accès multiple selon la technique d'"Aloha slotté". Le tableau ci-dessous liste tous les types de canaux logiques et leur fonction :

Broadcast Channel

Frequency Correction Channel ( FCCH )

calage sur fréquence

non dédié

Synchronization Channel ( SCH )

synchronisation en temps & identification de la BTS

diffusion ↓ Broadcast Control Channel ( BCCH )

information système

Common Control Channel

Paging Channel ( PCH ) ↓↓↓↓

recherche du mobile en cas d'appel entrant

non dédié Random Access Channel ( RACH ) ↑↑↑↑

accès aléatoire du mobile

diffusion ↓ et accès multiple ↑

Access Grant Channel ( AGCH ) ↓↓↓↓

allocation de ressources

Cell Broadcast Channel ( CBCH ) ↓↓↓↓

diffusion de messages courts

Dedicated Control Channel

Stand-Alone Dedicated Control Channel ( SDCCH )

signalisation

dédié Slow Associated Control Channel ( SACCH )

supervision lente de la communication

↑↓ Fast Associated Control Channel ( FACCH )

signalisation rapide ( handover )

Traffic Channel ( TCH )

Full rate, Enhanced Full Rate & Half Rate

parole

dédié ↑↓

débit utilisateur < 14,4 kbits/s données

3.3.2 La voie balise

Chaque BTS d'un réseau radiomobile dispose d'une voie balise. La voie balise correspond à une fréquence particulière appartenant à l'ensemble des fréquences allouées à la BTS. Sur cette fréquence sont diffusées des informations particulières permettant aux mobiles de

Page 28: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

28/91

détecter la BTS, de se caler en fréquence et en temps et de donner les caractéristiques de la cellule (identité, particularités et autorisation d'accès...). A la mise sous tension, un mobile cherche à se caler sur la voie balise de la BTS la plus favorable autorisée. En état de veille, il surveille constamment le signal reçu sur cette voie et sur les voies balises des BTS du voisinage. Dès que cela est nécessaire, il se cale sur une nouvelle voie et change ainsi de cellule de service. En communication, un mobile du voisinage de cette BTS mesure périodiquement sur cette voie le niveau de signal qu'il reçoit. Il détermine par cette simple mesure s'il est à portée de la station, et s'il en est proche ou éloigné. Il remonte ensuite ces mesures dans les messages MEASUREMENT REPORT en vue de l'exécution d'un handover (cf. Chapitre Erreur ! Source du renvoi introuvable.). La voie balise des BTS correspond à : • une fréquence descendante : fréquence balise sur laquelle les informations sont diffusées à

puissance constante pour permettre aux mobiles de faire des mesures de puissances reçues fiables ; le contrôle de puissance ne peut donc pas être implanté sur cette voie ;

• et à un ensemble de canaux logiques en diffusion sur cette fréquence balise, généralement sur le slot 0 de la fréquence : FCCH, SCH et BCCH. Le saut de fréquence ne peut donc pas être implanté sur cette voie ;

3.3.2.1 Canal FCCH Le canal FCCH consiste en un burst très particulier émis environ toutes les 50 ms. Ce burst est composé de 148 bits à "0". Emis sur une fréquence f0 par la modulation GMSK, il donne une sinusoïde parfaite de fréquence f0 + 1625/24 kHz qui permet au mobile de caler finement son oscillateur. Le canal FCCH est présent uniquement sur le slot 0 de la voie balise (f0).

3.3.2.2 Canal SCH Le canal SCH fournit aux mobiles tous les éléments nécessaires à une synchronisation complète en temps. La séquence d'apprentissage est plus longue que dans un burst normal (64 bits au lieu de 26) pour permettre au mobile de faire une analyse fine du canal de transmission. Les informations diffusées sur le canal SCH sont les suivantes : • un numéro de trame permettant au mobile de savoir quel canal SCH de la multitrame il a

décodé, • le code BSIC de la BTS dont le rôle est de discriminer plusieurs BTS peu éloignées ayant

la même fréquence balise :

Page 29: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

29/91

f5

f3

f4

f4

f7

f6

f2

f6

f2

f5

f6

f2

f5

f2

f5

f3

f4

f7

f6

f2

f5

f3

f4

f7

f1

f1

f1

f1

BSIC = 0

BSIC = 0

BSIC = 0

BSIC = 0

BSIC = 0BSIC = 0

BSIC = 0

BSIC = 1

BSIC = 1

BSIC = 1

BSIC = 1

BSIC = 1

BSIC = 2 BSIC = 4

BSIC = 4

BSIC = 4

BSIC = 4

BSIC = 4

BSIC = 3

BSIC = 3BSIC = 3

BSIC = 2

BSIC = 2

BSIC = 2

BSIC = 5

BSIC = 5

BSIC = 5BSIC = 6

Figure 3-8 : Utilisation des codes BSIC dans un motif à 7 cellules

Le canal SCH est présent uniquement sur le slot 0 de la voie balise; il est situé juste après le canal FCCH.

3.3.2.3 Canal BCCH Le canal BCCH permet la diffusion de données caractéristiques de la cellule. Il comprend la diffusion régulière d'informations de plusieurs types dans les messages SYSTEM

INFORMATION. Les informations les plus importantes sont les suivantes : • le contrôle de l'accès aléatoire des mobiles sur le canal RACH (appels d'urgence

acceptés ou refusés, nombre maximal de tentatives d'accès, classes de mobiles autorisées dans la cellule...) ;

• la liste des fréquences balises voisines à scanner ; • l'identité de la cellule, sa zone de localisation ; • la structure exacte de la voie balise courante, qui permet au mobile de savoir quand il

doit écouter les éventuels appels entrants ; • l'utilisation optionnelle du contrôle de puissance et de la transmission discontinue (sur

les canaux autres que la voie balise) ; • les paramètres de sélection de cellule (hystérésis, niveau minimal de puissance) ;

Le canal BCCH est présent au moins sur le slot 0 de la voie balise et peut parfois aussi se trouver sur les slots 2,4 ou 6 de cette même voie.

3.3.3 Les canaux de contrôle commun

3.3.3.1 Canal RACH Lorsque les mobiles veulent effectuer une opération sur le réseau, quelle qu'elle soit (mise à jour de localisation, envoi de messages courts, appel d'urgence ou normal (entrant ou sortant)...), ils doivent établir une liaison avec le réseau. Pour cela, ils envoient vers la BTS une requête très courte codée sur un seul burst. Cette requête est envoyée sur des slots particuliers en accès aléatoire de type ALOHA discrétisé (émission sans vérification préalable de l'occupation du canal, mais seulement possible à des instants précis). L'ensemble des slots réservés à cette procédure s'appelle le canal RACH.

Page 30: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

30/91

Le burst d'information utilisé est très court et ne suit pas le format de la Figure 3-5 car il faut laisser une marge de fluctuation au sein du slot RACH. En effet, le mobile ne connaît pas à cet instant le délai de propagation entre l'endroit où il se trouve et la BTS. Le délai de garde est de 252 µs, ce qui permet d'envisager une distance maximale entre la BTS et le mobile d'environ 35 km.

0 1 2 3 4 5 6 7

séquencede synchronisation

bits de donnéescodés

slot : 156,25 bits = 577 µs

3 bits36 bits41 bits8 bits252 µs

délai de garde

Figure 3-9 : Format du burst RACH

Le burst transmet les informations suivantes :

• type de service demandé (appel entrant, appel sortant, appel d'urgence, mise à jour de localisation, émission de message court)

• un nombre aléatoire utilisé pour discriminer les mobiles en cas de collision qui permet au mobile de repérer si la réponse lui est véritablement destinée.

La séquence d'apprentissage est un peu plus longue que dans les bursts normaux car le mobile n'est pas complètement synchronisé avec la BTS : il ne connaît pas la distance qui les sépare.

3.3.3.2 Canal AGCH Lorsque le réseau reçoit une requête de la part du mobile sur le canal RACH, il décide de lui allouer un canal de signalisation SDCCH afin d'identifier le mobile et déterminer précisément sa demande. L'allocation d'un tel canal dédié se fait sur des slots définis qui forment le canal AGCH . Le burst d'information contient les informations suivantes :

• numéro de slot • fréquence allouée ou description du saut de fréquence • valeur du timing advance

Le canal AGCH est présent au moins sur le slot 0 de la voie balise et peut parfois aussi se trouver sur les slots 2,4 ou 6 de cette même voie.

3.3.3.3 Canal PCH Lorsque le réseau désire communiquer avec le mobile (appel entrant ou réception de message court), la BTS diffuse l'identité du mobile sur un ensemble de cellules appelé "zone de localisation". Cette diffusion (appelée paging) a lieu sur un ensemble de slots qui forment le canal PCH. Tous les mobiles de la cellule écoutent périodiquement le canal PCH et le mobile concerné par l'appel répondra sur le canal RACH. En utilisant comme identité d'appel le TMSI et non l'IMSI, il est possible pour le réseau d'appeler jusqu'à 4 mobiles simultanément dans le même message de paging.

Page 31: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

31/91

Le canal PCH est présent au moins sur le slot 0 de la voie balise et peut parfois aussi se trouver sur les slots 2,4 ou 6 de cette même voie.

3.3.3.4 Canal CBCH Le canal CBCH est un canal descendant qui permet de diffuser aux usagers présents dans la cellule des informations spécifiques (informations routières, météo, promotions...). Il peut utiliser certains slots 0 de la multitrame, mais son emploi est actuellement très marginal.

3.3.4 Les canaux dédiés

3.3.4.1 Canal TCH Le canal TCH est utilisé pour transmettre les informations utilisateurs : • la parole à 13 kbits/s ("full rate" plein débit), 12,2 kbits/s ("enhanced full rate",

commercialisé sous le nom de "Digital Haute Résolution" chez Bouygues Telecom) ou 5,6 kbits/s ("half rate" demi-débit, pas encore utilisé par les opérateurs du fait de sa relativement mauvaise qualité)

• les données jusqu'à un débit utilisateur de 14,4 kbits/s

3.3.4.2 Canal SDCCH Le canal SDCCH est utilisé pour les établissements des communications, les émissions/réceptions de messages courts et les mises à jour de localisation. C'est le premier canal dédié alloué au mobile, avant son basculement éventuel sur un canal TCH. Sur ce canal se déroulent toutes les procédures d'authentification, d'identification et de chiffrement. Le canal SDCCH sert en particulier à l'émission / réception de messages courts (télémessages) ou à la réception de services personnalisés (abonnement aux services "SCOOP" chez Bouygues Telecom : sport, news, astrologie, courses, loto...) lorsque le mobile n'est pas en communication à l'instant de réception.

3.3.4.3 Canal SACCH Le canal SACCH est un canal à faible débit : 1 burst d'information toutes les 26 trames. Il sert à contrôler la liaison radio et à ajuster en conséquence certains paramètres afin de conserver une qualité de service acceptable. Le canal SACCH supporte les informations suivantes : • dans le sens montant ↑, remontée :

− dans l'en-tête de tous les messages, des valeurs actuelles de puissance d'émission du mobile et de son timing advance

− dans le message MEASUREMENT REPORT, des mesures effectuées par le mobile sur le canal courant et sur les BTS voisines

Page 32: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

32/91

• dans le sens descendant ↓, transmission dans les messages SYSTEM INFORMATION : − dans l'en-tête de tous les messages, des valeurs commandées par la BTS serveuse au

mobile de puissance d'émission et de timing advance du mobile − de l'identité et la zone de localisation de la cellule serveuse − de la liste des fréquences à scanner (correspondant aux voies balises des BTS

voisines) − des diverses fonctionnalités implémentées sur la cellule serveuse : contrôle de

puissance, transmission discontinue et valeur du Radio Link Timeout (RLT) en nombre de trames SACCH.

3.3.5 Multiplexage TCH plein débit-SACCH

Le codeur de source de parole plein débit délivre toutes les 20 ms un ensemble de bits qui sont codés sur 8 demi-bursts. De manière temporelle, il faut donc transmettre 4 bursts de parole toutes les 20 ms. Pendant une période de 120 ms, il y a donc 24 bursts de parole à transmettre. D'autre part, on a vu que le mobile pouvait émettre et recevoir des données toutes les 4,615 ms (un slot déterminé sur une fréquence particulière). Pendant une période de 120 ms, il y a donc 120/4,615 soit 26 bursts d'information à transmettre. Il reste donc deux slots libres. Un slot est utilisé pour le canal SACCH, l'autre slot est appelé slot idle et cette structure de multiplexage est répétée toutes les 120 ms, c'est-à-dire toutes les 26 trames TDMA (d'où le nom de multitrame à 26).

A

0 1 12 25

T : canal TCH Traffic CHannel

A : canal SACCH Slow Associated Control CHannel

i : trame idle

T T i

26 trames TDMA = 120 ms

Figure 3-10 : Multitrame à 26 pour le multiplexage TCH plein débit / SACCH

Le slot idle est utilisé par le mobile non pas pour se reposer mais pour scruter les voies balises voisines que la BTS serveuse lui a indiquées. Pendant ce laps de temps disponible, le mobile tente de décoder le code BSIC diffusé sur le canal SCH du slot 0 des voies balises, puis il renvoie ces informations dans les messages MEASUREMENT REPORT, accompagnées des mesures de puissance effectuées.

Page 33: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

33/91

FENÊTRE D'OBSERVATION :décodage des

données du slot 0des BTS voisines

T T T Timobile(0)(25)(24)(23)(22)

T(22)

T(23)

T(24)

i(25)

T(0)

BTSserveuse

00 000BTSvoisine

Figure 3-11 : Utilisation du slot idle

Le canal SACCH transporte, comme nous l'avons vu, de la signalisation à faible débit. Il ne convient donc pas aux actions qui doivent être faites rapidement comme le handover. En ces cas d'urgence, on suspend la transmission des informations utilisateurs sur le canal TCH et on utilise la capacité ainsi libérée pour un autre canal, le canal FACCH, pour la transmission de la signalisation rapide. Ce canal est vu comme un vol de capacité du TCH, il n'a pas de structure fixe dans les multitrames puisqu'il intervient ponctuellement, en cas de handover.

3.3.6 Multiplexage SDCCH-SACCH

De même manière que pour le canal TCH, un canal SACCH est alloué conjointement à chaque canal SDCCH, mais la structure de la multitrame est différente puisqu'il s'agit d'une multitrame à 51 trames. Sur la multitrame à 26 étaient multiplexés 1 canal TCH est son canal SACCH associé. Sur cette multitrame à 51 sont multiplexés 8 canaux SDCCH et leurs canaux SACCH associés (une multitrame sur deux), comme illustré sur la Figure 3-12.

51 trames TDMA = 235,38 ms

D : canal SDCCH Stand Alone Dedicated Control Channel

A : canal SACCH Slow Associated Control CHannel

A0/ A4D0 D1 D2 D3 D4 D5 D6 D7 A1/ A5 A2/ A6 A3/ A7

A0/ A4D0 D1 D2 D3 D4 D5 D6 D7A1/ A5 A2/ A6 A3/ A7

0

0

50

50

Figure 3-12 : Multiplexage SDCCH-SACCH

3.3.7 Multiplexage des canaux non dédiés

Suivant la capacité de la BTS, le PCH et l'AGCH ont des configurations variables. Cependant, tous les canaux logiques non dédiés sont multiplexés sur une multitrame à 51 trames. Celle-ci se trouve sur le slot 0 de la voie balise et parfois, en cas de forte capacité de la BTS, sur les slots 2,4 et 6 de cette voie.

Page 34: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

34/91

Dans le cas contraire d'une configuration minimale (faible capacité de la BTS), le multiplexage peut être éventuellement complété par 4 canaux de signalisation dédiée SDCCH et leurs SACCH associés. La Figure 3-13 illustre la configuration minimale sur le slot 0 de la voie balise :

51 trames TDMA = 235,38 ms

F : canal FCCH Frequency Correction Channel

S : canal SCH Synchronisation Channel

A0 / A2D0 D1 D2 D3BCCH A1 / A3

0

0 50

PCH ou

AGCHPCH ou

AGCHPCH ou

AGCH

50

F SF SF SF SF S

10 20 30 40

D3 R R A2 / A0 A3 / A1 D2R RD1D0RACH

D : canal SDCCH Stand-alone Dedicated Control Channel

A : canal SACCH Slow Associated Control Channel Figure 3-13 : Configuration minimale des canaux de contrôle sur le slot 0 de la voie balise

Page 35: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

35/91

4 Ingénierie cellulaire

La zone à couvrir par un système GSM est découpée en cellules. Une cellule est une portion plus ou moins grande du territoire, couverte par une BTS. On affecte à chaque cellule, c'est-à-dire à chaque BTS, un certain nombre de porteuses de la bande en fonction du trafic estimé dans la cellule. En effet, nous avons vu dans le chapitre précédent que chaque porteuse du système GSM est divisée en 8 timeslots et peut par conséquent écouler en théorie jusqu'à 8 communications simultanées. Dans les zones à forte densité de population, les cellules seront petites pour offrir une grande capacité, tandis que dans les zones rurales, les cellules seront assez grandes de manière à couvrir "au cas où" une communication aurait besoin d'être passée.

ville dense

banlieue

autoroute

zone rurale

Figure 4-1 : Taille des cellules en fonction du type d'environnement à couvrir

Il est heureusement possible de réutiliser une même porteuse dans des cellules différentes si celles-ci sont suffisamment éloignées. La réutilisation de fréquences permet donc à un opérateur de couvrir une zone géographique d'étendue illimitée en ayant recours à une bande de fréquences de largeur limitée. Ainsi, grâce à ce concept, l'architecture cellulaire permet d'atteindre potentiellement une très grande capacité en nombre d'usagers par unité de surface. Cependant, la réutilisation de la même fréquence radio à l'intérieur d'une zone géographique limitée (comme une ville) pose un ensemble de problèmes complexes. Un mobile va recevoir non seulement un signal utile provenant de la BTS à laquelle il est rattaché mais aussi des signaux interférents provenant des BTS utilisant la même fréquence dans des zones voisines.

4.1 Motifs cellulaires

On considère une BTS servant une cellule. Si on néglige les évanouissements sélectifs (fading de Rayleigh) et l'effet de masque, un canal radio présente une atténuation du signal dépendant de la distance séparant l'émetteur du récepteur. Avec ce modèle de propagation, une cellule est un cercle. On cherche à couvrir le territoire par un ensemble de cellules. Une cellule est donc approximée par un hexagone qui est le polygone le plus proche du cercle qui permet de paver le plan.

Page 36: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

36/91

Qu'est-ce qu'un motif ? On appelle motif le plus petit groupe de cellules contenant l'ensemble des canaux radios une et une seule fois. Ce motif est répété sur toute la surface à couvrir. La distance minimale entre deux émetteurs utilisant la même fréquence est la distance de réutilisation D. Plus le motif est grand, plus la distance de réutilisation, exprimée en nombre de cellules, est grande. Il faut déterminer le motif minimal pour un système donné, c'est-à-dire le motif qui donne pour l'ensemble des points de la cellule, et dans tous les cas de fonctionnement du système, une qualité de réception suffisante. On désigne par C la puissance du signal utile, par N la puissance du bruit et par I la puissance totale des interféreurs. Le rapport C / ( I + N ) est déterminant pour le calcul de la taille du motif : plus ce seuil est petit, c'est-à-dire si le système GSM continue à fonctionner à C / ( I + N ) faible, plus la taille du motif pourra être réduite.

4.1.1 Présentation des motifs réguliers

On appelle motif régulier un motif à K cellules vérifiant la relation : K = i² + i×j + j² avec i et j entiers naturels positifs ou nuls

Les premiers entiers qui vérifient cette relation sont 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27... et correspondent à des tailles de motifs possibles. Les tailles en gras correspondent aux tailles de motifs les plus couramment utilisées. Les opérateurs utilisant des motifs réguliers, nous ne considèrerons dans la suite du polycopié que ce type de motifs. Un exemple de motif régulier à 7 cellules est donné sur la Figure 4-2.

5

3

4

7

3

4

7

6

2

6

2

5

3

7

6

2

5

2

5

3

4

4

7

6

2

3

7

6

2

5

3

4

7

6

1

6 4

3

4

2

5

7

5

1

1

1

1

1

1

Figure 4-2 : Exemple de motif cellulaire ( K = 7 )

Considérons une cellule particulière. Les centres des cellules utilisant la même fréquence sont situés sur une ensemble de cercles autour de cette cellule. Ces cercles sont appelés "couronnes

Page 37: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

37/91

d'interférences" et comportent toujours 6 cellules, quelle que soit la taille du motif. Le rayon du plus petit cercle correspond à la distance de réutilisation D.

2

5

3

4

7

3

4

7

6

2

7

6

2

5

3

7

6

2

5

3

6

2

5

3

4

3

4

7

6

2

3

4

7

6

2

5

3

4

7

6

1

5

3

4

7

6

25

62

4

3

4

7

6

2

54

7

6

2

3

4

55

3754

56

72372

36 4

6 45

572

4

7

6

2

5

3

4

7

3 6 4 535 7246

2

5

3

4

7

6

2

2

6

7

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 ère couronne d'interféreurs

2 ème couronne d'interféreurs

3 ème couronne d'interféreurs

D

Figure 4-3 : Couronnes d'interférences

4.1.2 Calcul de la distance de réutilisation

On cherche à exprimer la distance de réutilisation D en fonction de la taille du motif K et du rayon de la cellule R. rappel : un hexagone est constitué de 6 triangles équilatéraux. La longueur de chacun des côtés des triangles est R. Par application du théorème de la hauteur dans l’un des 6 triangles équilatéraux, on obtient donc la demi-hauteur de l’hexagone :

R

R

L3

2R=

Page 38: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

38/91

Les dimensions de l’hexagone seront donc les suivantes :

l = 3 R

d = 2 R

Pour le motif à 7 cellules illustré ci-dessous, on applique le théorème de Pythagore dans le triangle ABC rectangle en B :

5

3

4

7

3

4

7

6

2

6

2

5

3

7

6

2

5

3

6

2

5

3

4

4

7

6

2

5

3

4

7

6

1

1

1

1

1

1

1A

B C

AB 43

2R 2 3 R= + + = × = × = ×

l

2l

l

2

l

24 et BC R R R R= + + = 3

donc

D

D =

2 = = + = + =

= = × = ×

AC AB BC R R R

AC R R K R

2 2 2 2 2 212 9 21

21 3 7 3

On peut réitérer le même raisonnement pour toutes les autres tailles de motif et on trouvera toujours :

D = 3 K R

où K est la taille du motif et représente donc le nombre de cellules et R est le rayon d'une cellule.

Page 39: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

39/91

4.1.3 Calcul du rapport C / ( I+N )

On se place dans le cas d'un système limité par les interférences, c'est-à-dire lorsque l'opérateur veut disposer de beaucoup de canaux sur chaque BTS pour écouler le maximum de trafic. Il va alors réutiliser au maximum les fréquences et l'interférence cocanale va devenir prépondérante par rapport à tous les autres brouillages : N << I . Le rapport C / ( I+N ), sur la liaison descendante par exemple, s'écrit alors sous la forme :

CI

CI n

=

∈∑

n Bn

où C est la puissance du signal reçu ; Bn est l’ensemble des cellules co-canales I n est l’interférence cocanale reçue de la nième cellule Dans la norme GSM, il est spécifié qu’un fonctionnement correct est prévu au dessus d’un niveau C / I de 9 dB. Lors de la planification du réseau, il faut donc estimer le plus petit des rapports C / I de la cellule. Celui-ci correspond au pire des cas, c’est-à-dire aux conditions suivantes :

• la totalité des BTS émettent à la puissance maximale Pe • le mobile est situé à l’endroit de la cellule où il reçoit le signal le plus faible de sa

BTS et où les interférences des autres cellules sont les plus fortes. Cependant, on ne considère jamais les interféreurs qui se trouvent au-delà de la première couronne d'interférences. En effet, leur contribution est très négligeable par rapport aux interférences issues des sites interféreurs de la première couronne, principalement du fait du surplus des pertes de propagation en espace libre (la distance à parcourir jusqu’au mobile est pratiquement le double dès la deuxième couronne, cf. Figure 4-3). On aura alors, si γ est le coefficient d'affaiblissement de parcours variant entre 2 et 4, et Dk la distance du kième interféreur au mobile : C = −α γPe R puisque le mobile se trouve en bordure de cellule

et I k = −α γPe D k avec Dk ~ D pour les 6 interféreurs de la première couronne donc le rapport C / I se simplifie et s'exprime sous la forme suivante :

C I/ =

1

6

D

R

γ

Ce rapport ne dépend pas des puissances utilisées, il dépend juste du rapport D / R, c'est pourquoi ce rapport est parfois appelé "facteur de réduction d'interférences". Il ne dépend pas non plus de la taille des cellules, car :

puisque D = 3 K R , ( )C I/ = 1

63K

γ

Page 40: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

40/91

Cependant, ce calcul suppose un affaiblissement uniquement fonction de la distance. Dans la réalité, il faut prendre en compte l'effet de masque, approximé par une loi log-normale. Il n'est donc plus possible de calculer une borne inférieure pour le C / I . En revanche, on peut tracer la fonction de répartition du C / I pour l'ensemble des mobiles uniformément répartis dans la cellule. Un réseau est planifié pour limiter le nombre de mobiles qui reçoivent un signal inférieur au seuil de fonctionnement du système. Typiquement, on accepte un taux de 5 à 10 %. Des études (γ = 3,5, écart-type de l'effet de masque = 7 dB) ont montré que pour un taux de 10 %, la taille du motif de réutilisation minimal était K = 9.

Page 41: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

41/91

5 Modulation GMSK

Dans le cadre des modulations numériques linéaires [1], on décompose souvent la "modulation" en plusieurs étapes. Une première étape dite "de mapping" que l'on peut traduire par "de correspondance", fait correspondre un ensemble de bits à un ensemble de symboles. Ces symboles (qui peuvent être réels ou complexes) que l'on notera na appartiennent à un alphabet M-aire. Chacun d'entre eux représente ( )M2log bits.

A la suite de l'étape de mapping vient une étape de mise en forme qui consiste à transformer la suite de symboles en un signal qui sera adapté au canal de transmission. Cette mise en forme est en général réalisée par une opération de filtrage linéaire. Le message )(tm à transmettre s'écrit alors sous la forme :

( )∑+∞

∞−−= ))( sn nTthatm (1.)

expression dans laquelle )(th représente la réponse impulsionnelle du filtre de mise en forme et sT représente le

temps symbole.

La dernière étape est "la montée sur porteuse" ou modulation, qui consiste à placer le signal sur une fréquence à

même de se propager sur le support de transmission choisi. Le message )(tm module alors une porteuse tj 0e ω et

le signal modulé réellement transmis s'écrit :

{ }tj 0etmRets ω= )()( (2.)

Lorsque l'on fait apparaître les parties réelles )(ti et imaginaires )(tq de )()()( tjqtitm += , le signal modulé

s'écrit alors :

( ) ( )ttqttits 00 ω−ω= sin)(cos)()( (3.)

On dit alors que )(ti module une porteuse en phase et que )(tq module une porteuse en quadrature (on parle

alors de voies I et Q). Par comparaison au signal sur porteuse ( )ts , le signal )(tm est appelé : "signal en bande de base". Il est possible d'écrire la modulation GMSK sous cette forme, en particulier en utilisant les équivalences développées par P.A Laurent [2]. Cependant pour les modulations de fréquences CPM [3] (Continuous Phase Modulation), dont fait partie la GMSK, on préfère, sans faire explicitement apparaître les composantes I et Q, écrire directement le signal modulé sous la forme :

( ) )(

= ωφ tjtj

s

s 0eeT

ERets (4.)

Le signal en bande de base s'écrit :

( ) )( tj

s

s eT

Etm φ= (5.)

Le terme s

s

T

E va représenter l'amplitude du symbole complexe. L'énergie d'un symbole est, par définition,

égale à son module au carré que multiplie la durée du symbole, le terme sE représente donc bien l'énergie du

symbole.

Avec l'écriture proposée Le terme de phase ( )tφ va "porter" l'information. Dans le cas des modulations de

fréquences à phase continue, ce terme s'écrit :

( ) ( )∑+∞

−∞=−π=φ

nsn nTtqah2t avec ∫

∞−=

t

duugtq )()( (6.)

Page 42: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

42/91

Dans cette expression le terme h représente l'indice de la modulation et l'intégrale de la fonction )(tq de −∞ à

skTt −

va représenter la contribution du symbole ka à la phase du signal modulé à l'instant t . Enfin )(tg va s'appeler

l'impulsion de phase.

Pour analyser l'expression de ( )tφ on peut faire l'hypothèse que tous les symboles sont nuls sauf un. Soit ka ce

symbole non nul qui est donc créé à l'instant skTt = . Enfin, les fonctions )(ug considérées sont en général

nulles pour 0u < , dans ce cas la phase s'écrit donc :

( ) ∫−

π=φskTt

0k duugah2t )( (7.)

On voit donc que cette impulsion de phase va "commencer" à skTt = et que pour un fonction )(tg telle que

∫+∞

=0

1ug )( , le symbole ka contribuera finalement (pour ∞→t ) à une incrémentation de phase de kha2π .

Les modulations CPM peuvent être vues sous deux angles différents, ce sont des modulations de phase puisque toute l'information est contenue dans la phase. On notera cependant qu'un symbole, dans le cas le plus général, n'est pas codé seulement par l'état de la phase à l'instant snT , mais par le chemin parcouru par celle ci.

Supposons que l'impulsion de phase s'étende sur L temps symbole, on peut alors décomposer la phase en deux termes :

Une phase partielle. Elle correspond à l'évolution de la phase causée par les 1L − symboles précédents le symbole courant.

Une phase établie. Elle représente l'accumulation de phase correspondant aux symboles plus anciens

La phase totale peut ainsi être vue comme la convolution du train de symboles avec l'impulsion de phase sur l'intervalle [ ]sLT0, , puis on rajoute le terme de phase établie.

Enfin, en dérivant la phase du signal modulé en fonction de t, les CPM peuvent aussi être "vues" comme des modulation de fréquence. La fréquence instantanée vaut :

( )( )ttt

tF 0i φ+ω∂∂=)( (8.)

( )∑+∞

−∞=−π+=

nsn0i nTtgah2ftF )( (9.)

Page 43: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

43/91

5.1.1 Modulation MSK

Pour cette CPM, on choisit une impulsion de phase rectangulaire de durée sT :

≤≤=

sinon

si)(

0

Tt0T2

1

tgs

s (10.)

La fonction ∫∞−

=t

duugtq )()( est telle que :

On a donc :

∫+∞

∞−=

2

1ug )( (11.)

Enfin, la modulation MSK est définie avec un indice de modulation 2

1h = et des symboles { }1am ±∈ (il y a

ainsi 1 bit par symbole).

La modulation MSK est ainsi caractérisée par une phase telle que :

( ) ss T1mtmT +<≤ , ( )

+

−π=φ ∑−

−∞=

1m

nn

s

sm a

T

mTta

2t (12.)

L'incrémentation de phase observée entre les temps smT et ( ) sT1m+ , due à "l'émission" du symbole ma est

alors égale à :

( )( ) ( ) mss a2

mTT1mπ=φ−+φ (13.)

Ts

q(t)

t

1/2

Ts

g(t)

t

1/2Ts

Page 44: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

44/91

Pour calculer la densité spectrale de puissance de la MSK, il faut calculer la Transformée de Fourier de la fonction d'autocorrélation du signal modulé. On arrive ainsi à :

( )

π

π=

2s

2s

2

2s

MSKTf161

fT2T16fP

cos)( (14.)

5.1.2 Modulation GMSK

Pour la GMSK on choisit une impulsion ( )tg qui est une porte carrée de durée sT filtrée par un filtre de forme

gaussien (d'où le nom de la modulation). Ceci permet d'obtenir une "montée" de phase plus douce que pour la MSK et une dérivée de phase continue aux extrémités de l'impulsion. Ces deux propriétés ont pour effet de diminuer l'encombrement spectral de la modulation.

Π⊗=

sT

tthtg )()( (15.)

avec ( ) 1t =Π pour 1t0 ≤≤

et 2

2

2

t

2e

2

1th σ

πσ=)(

La variance 2σ de la gaussienne est en général exprimée à travers un paramètre B lié à la décroissance à 3 dB de la densité spectrale de puissance de la modulation. On écrit ainsi :

( )

222

B4

2Ln

π=σ (16.)

Dans le cas du GSM, la modulation est ainsi une GMSK avec un produit 30BTs .=

En développant le calcul de l'impulsion de phase :

( ) ( )∫∞

∞−

−Π= duT

utuhtg

s. (17.)

on obtient :

∫−

σ−

πσ=

t

Tt

2

u

2s

2

2

due2

1tg )( (18.)

soit en développant :

∫∫−

∞−

σ−

∞−

σ−

πσ−

πσ=

s2

2

2

2Tt

2

u

2

t2

u

2due

2

1due

2

1tg )( (19.)

avec le changement de variable 22

ux

σ

−= , il vient :

Page 45: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

45/91

∫∫∞

σ

−−

−∞

σ−

π−

π=

2

s

2

2

2

2

Tt

x

2

t

x dxe1

dxe1

tg )( (20.)

d'où :

( ) ( )

−π−−

π−= sTt2Ln2

B2erfct

2Ln2

B2erfc

2

1tg

)()( (21.)

Le support de )(tg est donc infini mais on va tronquer cette réponse impulsionnelle, de façon symétrique, en la

réduisant à sa partie significative.

La figure ci dessous représente la réponse impulsionnelle normalisée du filtre )(tg pour différentes valeurs de

sBT .

On rappelle que la fonction )(tq qui représente l'incrémentation de phase est définie par :

( ) ( )∫∞−

=t

duugtq .

En utilisant l'expression de ( )tg , il est possible de représenter l'allure de l'incrémentation de phase ( )tq pour un

étalement sur une durée de quatre symboles.

Phase partielle et phase établie

0 1 2 3 40

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6Incrémentation de phase GMSK

Temps

Pha

se (

rad)

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Impulsion de phase

Temps symbole

g(t)

BTs=1

BTs=0.3

BTs=0.5

Page 46: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

46/91

Comme précisé plus haut, on peut décomposer la phase ( )tφ en deux un terme de phase partielle traduisant la

contribution des quatre symboles les plus récents et la phase établie traduisant la contribution de tous les symboles passés.

On a donc :

( ) ( ) ( )∑∑+−=

−∞=−π+−π=φ

n

1Lnibi

Ln

ibi iTtqah2iTtqah2t (22.)

En utilisant la propriété :

( )2

1tq = pour sTLt .≥ (23.)

il vient :

( ) ( )∑∑+−=

−∞=−π+π=φ

n

1Lnibi

Ln

ii iTtqah2aht (24.)

Exemple

Considérons l'évolution de la phase à partir d'un exemple de transmission d'une séquence de 7 bits. La figure ci-dessous représente les incrémentations de phase ( )snTtq − pour le train binaire suivant :

[ ]1111111a −−=

Incrémentations de phase ( )snTtq − pour une séquence binaire [ ]1111111a −−=

En effectuant la somme de ces incrémentations ( )bnTtq − on obtient la phase ( )tφ .

0 10 20 30 40 50 60 70 80 90 100-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

q(t-

nTb)

Page 47: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

47/91

0 T 2T 3T 4T 5T 6T 7T 8T0

1

2

3

4

5

6

9Tt

Phase en (rd)

a0 a1 a2 a3 a4 a5 a6 Evolution de la phase d'un signal GMSK correspondant à la séquence binaire 1111-1-11.

Trajectoires de phase

A partir d'un état de phase donné, plusieurs "trajectoires" de phase sont possibles en fonction des symboles à émettre. Il arrive fréquemment de représenter cet ensemble de trajectoires de phase.

0 5 10 15 20 25 30 35-8

-6

-4

-2

0

2

4

6

8

Phase en radian

n

Trajectoire de phase GMSK

Quelques sites internet

http://www-com.enst.fr/~vallet/dom_com/Coste.

http://www.enst.fr/~calan

5.2 Références du chapitre 5

[1] : J.G. Proakis " Digital Communications", Prentice Hall 1994.

[2] P.A Laurent modulations d'indice ½ "IEEE trans on Communications", 1984

[3] K. Aulin et P. Sundberg "Continuous Phase modulation"

[4] : A. Glavieux, M. Joindot, "Communications numériques introduction", Masson 1996.

[5] : Norme ETSI GSM 05.04, "Modulation phase 2+", Version 6.00 1997.

Page 48: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

48/91

6 Télétrafic

Ce chapitre présente les principaux résultats qui permettent de dimensionner les équipements d'un réseau de

Télécommunications. D'un point de vue pratique, on imagine bien que, lorsqu'un central téléphonique

(commutateur local CL) regroupe les lignes d'un ensemble d'immeubles dans une ville, ce central ne possède pas

autant de lignes allant vers le réseau que de lignes allant vers les différents particuliers qu'il dessert.

On peut donc légitiment se demander de combien de lignes on a besoin pour desservir tous ces abonnés. On peut

intuitivement prévoir que ce nombre de lignes va étroitement dépendre du nombre d'abonné mais aussi du taux

d'occupation de leurs lignes téléphonique. On peut donc définir pour chaque usager ce taux d'occupation de sa

ligne téléphonique. En introduisant η pour représenter ce taux, on peut le définir de la manière suivante :

360024

DN aa

××

Dans cette expression aN représente le nombre d'appels passés ou reçus par jour, aD représente la durée

moyenne d'un appel en secondes. Enfin 360024× représente la durée d'une journée en secondes. On définit

ainsi l'occupation de sa ligne par l'abonné. L'unité retenue pour η est l'Erlang qui est noté E. et η représente le

trafic de l'usager

Ainsi un trafic de 1 Erlang (1 E) correspond à une ligne de téléphone occupée 24 heures sur 24. On considère en

général que les usagers résidentiels d'un réseau téléphonique ont un trafic d'environ 0.05 E. Soit donc une

occupation de leur ligne téléphonique pendant 5 % de la journée, soit environ 1h12' par jour.

Pour dimensionner son réseau, l'opérateur va donc devoir calculer le nombre de ressources à mettre en œuvre

pour qu'avec une probabilité extrêmement proche de 1, un usager qui décroche son téléphone puisse disposer

d'un circuit. Pour cela il va falloir développer quelques formules de probabilité de blocage. Ces formules vont

demander une modélisation statistique des instants de début et de fin d'appels ainsi que des durées de ces appels.

Les paragraphes qui suivent vont donc introduire les lois de probabilités utilisées pour ces dimensionnements.

6.1 Loi de probabilité de modélisation des instants d'arrivée d'appel

Considérons des appels qui débuteraient de manière aléatoire. Prenons ensuite un intervalle de temps t et

divisons cet intervalle en n sous intervalles de durée n

t.

M lignes N<M lignes

Central Téléphonique

t

n

t

Page 49: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

49/91

On choisit n suffisamment grand pour que les conditions suivantes soient respectées :

- Une seule arrivée d'appel peut survenir dans un intervalle n

t

- Les instants d'arrivée d'appels sont indépendants les uns des autres

- La probabilité qu'un appel arrive dans un sous intervalle est proportionnelle à la durée du sous

intervalle.

On écrit alors

n

t1p1

λ=)(

Dans cette expression, )(1p1 représente la probabilité d'arrivée d'un appel dans un sous intervalle. Le terme λ

représente le coefficient de proportionnalité entre la probabilité et la durée n

t du sous intervalle.

L'hypothèse de départ consistant à considérer comme nulle la probabilité d'avoir plusieurs appels dans un sous

intervalle s'écrit alors :

01p1p1p1p2k

kn32 ==++++ ∑+∞

=)(...)(...)()(

La probabilité de n'avoir aucun appel durant un sous intervalle de temps n

t s'écrit donc :

∑+∞

=−=

1kk0 )1(p1)1(p

En développant on obtient :

∑+∞

=−−=

2kk10 )1(p)1(p1)1(p

et en utilisant la propriété énoncée juste au dessus :

)1(p1)1(p 10 −=

La probabilité d'avoir k arrivées d'appels durant n intervalles de temps s'obtient alors en considérant le nombre de

manières de choisir k intervalles parmi n. Pour chacune de ces solutions on aura k intervalles avec une arrivée

d'appel et kn− intervalles avec aucune arrivée d'appel. La probabilité d'un de ces cas sera donc égale à

kn0

k1 1p1p −)(.)( . La probabilité globale s'obtiendra en sommant les probabilités de tous les cas. On obtiendra

finalement :

kn0

k1

knk 1p1pCnp −= )(.)()(

Ou encore, en remplaçant les probabilités par leurs valeurs en fonction de λ , t et n :

knkknk n

t1

n

tCnp

λ−

λ=)(

Page 50: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

50/91

(rappel : ( )!!

!

knk

nCk

n −= )

La limite de la probabilité )(npk lorsque n tend vers l'infini va être égale à la probabilité d'avoir k arrivées

d'appel durant un intervalle de temps t. On note kp cette probabilité :

)(lim npp kn

k∞→

=

En reprenant alors les différents termes de l'expression de knk

knk n

t1

n

tCnp

λ−

λ=)( et en faisant tendre n

vers l'infini, il vient :

( ) ( )t

n

tn

kt

n

tkn

n

n

t1Lnknkn

eeeen

t1 λ−

∞→

λ+λ−

λ−−

∞→

λ−−−≈=≈=

λ−

( )( ) ( ) ( )( ) ( ) ( )

!k

t

n

1kn2n1nn

!k

t

n

t

!kn!k

!n

n

tC

k

nk

k

k

kkkn

λ≈+−−−λ=λ−

=

λ∞→

K

d'où :

( ) tk

k ek

tp λ−λ=

!

Cette formule extrêmement importante représente la probabilité d'observer k arrivées d'appels dans un intervalle

de durée t. Il s'agit d'une distribution de Poisson. Le paramètre λ est le taux moyen d'arrivée d'appels.

Typiquement il s'agira d'un nombre moyen d'appels par secondes. On peut vérifier que ce paramètre représente

bien le nombre moyen d'appels durant une durée t. En effet, pour obtenir le nombre moyen, ayant la distribution

de probabilité, il faut calculer l'espérance statistique : [ ]kE . On rappelle que l'espérance, dans le cas d'une loi

discrète (c'est à dire pour une variable ne prenant que des valeurs entières, comme c'est le cas ici pour le nombre

d'appels arrivant durant un intervalle t), s'écrit :

[ ] ∑+∞

==

0kkpkkE .

En reprenant alors l'expression de kp , il vient :

[ ] ( )∑+∞

=

λ−λ=0k

tk

ek

tkkE

!.

[ ] ( ) t

1k

1k

e1k

ttkE λ−

+∞

=

∑ −λλ= .

)!(

En reconnaissant le développement de teλ , il vient :

[ ] teetkE tt λ=λ= λ−λ ..

Page 51: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

51/91

La variance s'exprime de la manière suivante :

[ ] [ ]( ) ( ) ( )20k

tk

222 tek

tkkEkEkVar λ−λ=−= ∑

+∞

=

λ−!

)(

( ) ( )( ) ( )2t

1k

1k

te1k

t11ktkVar λ−

−λ+−λ= λ−

∞+

=

−∑

)!()(

( ) ( ) ( ) ( )2t

0k

k

0k

k

tek

t

k

tktkVar λ−

λ+λλ= λ−∞+

=

∞+

=∑∑

!!)(

( ) ( ) ( ) ( ) ( )2t

0k

k

0k

tk

tek

tte

k

tktkVar λ−λλ+λλ= λ−

+∞

=

+∞

=

λ− ∑∑!!

)(

( ) ( ) ( )22 tttkVar λ−λ+λ=)(

tkVar λ=)(

Temps moyen entre appels

On introduit maintenant la variable aléatoire τ représentant le temps séparant deux arrivées d'appels.

On introduit la probabilité )(tA qui est la probabilité que le temps τ soit inférieur ou égal à une valeur t :

( )tProbtA ≤τ=)(

On a donc :

( )tProb1tA >τ−=)(

Or ( )tProb >τ représente la probabilité qu'il n'y ait aucune arrivée d'appels durant un temps t. Cette probabilité

a justement été établie au paragraphe précédent :

( ) 0ptProb =>τ

( ) tetProb λ−=>τ

On en déduit donc :

te1tA λ−−=)(

On peut aussi introduire la densité de probabilité de la variable aléatoire τ . On rappelle que la densité s'obtient

simplement en dérivant la probabilité par rapport à t. On obtient ainsi :

t

tAta

∂∂= )(

)(

τ3

temps

arrivée d'appel

arrivée d'appel

arrivée d'appel

arrivée d'appel

τ1 τ2

Page 52: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

52/91

d'où :

teta λ−λ=)(

Remarque : On rencontre plus souvent le calcul inverse, c'est à dire compte tenu d'une densité de probabilité

)(ta , ∫=t

0

duuatA )()( . On part de 0 car il s'agit d'une durée entre deux appels. On peut vérifier que l'intégrale

donne alors [ ] tt0

u e1etA λ−λ− −=−=)(

L'expression de la densité de probabilité permet de calculer la durée moyenne [ ]τ=τ E entre deux arrivées

d'appel :

[ ] ∫+∞

=τ0

dttatE )(.

[ ] ∫+∞

λ−λ=τ0

t dtteE

En intégrant par partie, il vient :

[ ] ∫+∞

λ−∞+

λ−λ

−λ+

λ−λ=τ

0

t

0

t dte1

e1

tE ..

D'où :

[ ]λ

=τ 1E

On obtient donc que, pour un taux d'arrivée d'appels de λ appels par secondes, le temps moyen entre appel est

égal à λ1

Absence de mémoire du processus d'arrivée d'appels

On peut remarquer que, pour une loi exponentielle négative, le nombre d'appels qui ont pu arriver jusqu'à un

temps 0t n'a pas d'influence sur le nombre d'appels qui vont arriver après 0t

Supposons qu'aucun appel ne soit arrivé jusqu'à un temps 0t et calculons la probabilité qu'un appel arrive durant

une durée t après le temps 0t . On doit donc calculer la probabilité d'avoir une durée entre deux appels inférieure

à 0tt + tout en étant supérieure à 0t . Cette probabilité s'écrit : ( )00 tttprob >τ+≤τ . En utilisant la formule de

Bayes sur les probabilités conditionnelles ( ))()()( BetAPAPBAP = , il vient :

( ) ( )( )0

0000 tprob

tttprobtttprob

>τ+≤τ<

=>τ+≤τ

Cette probabilité peut encore s'écrire

( ) ( ) ( )( )0

0000 tprob

tprobttprobtttprob

>τ≤τ−+≤τ

=>τ+≤τ

Page 53: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

53/91

( ) ( ) ( )( )0

0000 tprob-1

tprobttprobtttprob

≤τ≤τ−+≤τ

=>τ+≤τ

En reprenant les expressions des différentes probabilités :

( )( )

0

00

t-

ttt

00e1-1

e1e1tttprob

λ

λ−+λ−

+

+−−=>τ+≤τ

D'où finalement :

( ) t00 e1tttprob λ−−=>τ+≤τ

On voit donc que la probabilité d'apparition d'un appel durant un temps t après une durée 0t pendant laquelle

aucun appel n'est arrivé est la même que la probabilité d'apparition d'un appel pendant une durée t,

indépendamment de ce qui a pu arriver avant. On considère donc que la densité exponentielle négative est sans

mémoire.

6.2 Loi de probabilité de modélisation des durées d 'appels

Pour étudier les lois de probabilité qui modélisent les durées des appels on procède comme précédemment. On

considère donc un intervalle de temps de durée t que l'on décompose en n sous intervalles de durée n

t. On

choisit n de telle sorte que les hypothèses suivantes restent justifiées :

- La probabilité qu'un appel se termine durant un sous intervalle est proportionnelle à la durée du sous

intervalle. On notera n

tµ cette probabilité, expression dans laquelle µ représente le coefficient de

proportionnalité.

- La probabilité qu'un appel se termine durant un sous intervalle est indépendante du sous intervalle considéré

On introduit alors une variable aléatoire θ représentant la durée d'un appel.

On introduit alors la probabilité )(tH que la durée d'un appel soit inférieure ou égale à t.

( )tProbtH ≤θ=)(

La probabilité qu'un appel ayant débuté à 0t = ne se termine pas avant t s'écrit alors :

( ) )(tH1tProb −=>θ

cette probabilité est égale à la probabilité que l'appel ne se termine dans aucun des n sous intervalles de durée n

t.

n

n

t1tH1

µ−=− )(

En faisant alors tendre n vers l'infini, on obtient :

n

n n

t1tH1

µ−=−∞→

lim)(

µ−

∞→

µ−

∞→≈=− n

tn

n

n

t1Lnn

neetH1

..limlim)(

D'où

Page 54: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

54/91

tetH1 µ−=− )(

On obtient donc l'expression de la probabilité qu'un appel ait une durée inférieure ou égale à t :

te1tH µ−−=)(

On peut en déduire la densité de probabilité associée, notée )(th :

t

tHth

∂∂= )(

)(

teth µ−µ=)(

De la même que dans les paragraphes précédents, la durée moyenne [ ]θ=θ E d'appel s'obtient en calculant :

[ ] ∫+∞

=θ0

dtthtE ).(.

En intégrant par partie on obtient :

[ ]µ

=θ 1E

En conclusion on a µ appels qui cessent par secondes et on a une durée moyenne d'appel égale à µ1

Les probabilités d'apparition d'appels et de fin d'appels qui ont été développées dans les deux paragraphes

précédents permettent de modéliser le processus complet d'apparition et de fin d'appels.

6.3 Modélisation des processus d'apparition et de f in d'appels

A chaque instant un certain nombre d'appels vont apparaître et d'autres vont se terminer. On peut donc modéliser

l'état où l'on se trouve à un instant donné comme une chaîne d'états. Chaque état représente le nombre de

communications en cours. On conçoit donc bien que si, à un instant donné, il y a k communications on ne peut

passer que dans deux états adjacents qui sont les états 1k − et 1k + . On reconnaît alors une chaîne de Markov.

La différence par rapport au chapitre 1 vient ici du fait que cette chaîne est à temps continu. La probabilité de

passer d’un état i à un état j pendant un temps dt sera donc notée )(dtpij

On introduit alors les probabilités de transition d'état suivantes :

Etant dans l'état k, la probabilité )(, dtp 1kk + pour passer à l'état 1k + durant un intervalle de temps dt s'écrit

dtkλ

Etant dans l'état k, la probabilité )(, dtp 1kk − pour passer à l'état 1k − durant un intervalle de temps dt s'écrit

dtkµ

Etant dans l'état 1k + , la probabilité )(, dtp k1k+ pour passer à l'état k durant un intervalle de temps dt s'écrit

dt1k+µ

Etant dans l'état 1k − , la probabilité )(, dtp k1k− pour passer à l'état k durant un intervalle de temps dt s'écrit

dt1k−λ

Page 55: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

55/91

Les grandeurs kλ et kµ sont des taux d'apparition et de fin d'appels du même type que ceux utilisés lors des

paragraphes précédents. La seule différence tient au fait que ces taux ont en indice l'état où se trouve le système.

On peut alors introduire la probabilité d'état , c'est à dire la probabilité d'être dans un état k à un instant t.

Notons )(tpk cette probabilité (à rapprocher de la notation )(np j utilisée pour les chaînes de Markov à temps

discret lors du chapitre 2).

La variation de cette probabilité durant un intervalle de temps dt est alors égale à la probabilité de rejoindre cet

état en "venant" d'un état 1k − ou d'un état 1k + moins la probabilité de "quitter" cet état pour aller vers un état

1k − ou vers un état 1k + .

On a donc :

( ) tpdtdttpdttpdttdp kkk1k1k1k1kk ()(.)(.)( µ+λ−µ+λ= ++−−

En supposant le système stable, c'est à dire en supposant qu'il se stabilise sur des probabilités d'état fixes lorsque

le temps tend vers l'infini, on peut écrire 0dt

tdpk =)(

lorsque ∞→t

On peut alors noter )(tpp kk =

D'où finalement :

( ) 0ppp kkk1k1k1k1k =µ+λ−µ+λ ++−− ..

Cette équation est vérifiée pour tout 0k ≥ avec les conditions 0p 1 =− , 01 =λ − et 00 =µ .

La stabilité des probabilités signifie qu'il y a une probabilité égale de quitter l'état kp que de le rejoindre.

En écrivant le système d'équation précédent, on trouve :

( )( )

...2223311

1112200

0011

ppp

ppp

pp

µ+λ=µ+λµ+λ=µ+λ

λ=µ

En résolvant le système on trouve :

( )

( )

...

0122

0120

1

010

12

0122

33

012

01000

1

011

22

01

01

ppp1

p

ppp1

p

pp

µµµλλλ

=

µλ

λ−µµλλ

µ+λµ

=

µµλλ

=

λ−

µλ

µ+λµ

=

µλ

=

k k+1 k-1

dtkλ dt1k−λ

dtkµ dt1k+µ

Page 56: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

56/91

On trouve alors assez facilement la forme générale :

0

1k

0i 1i

ik pp

µλ

= ∏−

= +

Le système se trouvant obligatoirement dans un des états on a :

∑+∞

==

0kk 1p

En remplaçant dans l'équation précédente, on obtient :

∑∏∞

=

= +µλ

+=

1k

1k

0i 1i

i0

1

1p

6.4 Probabilité de blocage et formule d'Erlang B

On s'intéresse ici à un système disposant de N canaux de communications. Si les N canaux sont occupés, les

appels qui arrivent alors sont perdus (absence de tonalité ou tonalité d'occupation par exemple). On parle alors de

blocage du système. On va chercher à estimer cette probabilité de blocage en fonction du nombre de canaux

disponibles et du trafic. Compte tenu de ce qui a été énoncé sur le caractère sans mémoire du processus d'arrivée

d'appels, on peut considérer que la probabilité dtkλ et indépendante de l'état du système, d'où :

1Nkdtdtk −≤∀λ=λ ,..

Pour la probabilité de fin d'appel on a par contre :

Nkdtkdtk <∀µ=µ ,...

Cette probabilité de transition traduit juste que si k appels sont en cours chacun a une probabilité dtµ de se

terminer, d'où la somme qui donne dtk .µ . En toute rigueur il faudrait soustraire à cette probabilité les

probabilités correspondantes à plusieurs appels qui se terminent dans l'intervalle dt car alors, on passe

directement à un état plus éloigné. Cependant on admettra que l'on peut négliger ces probabilités qui sont de la

forme ( )∑=

µk

2i

iik dtC .

En utilisant ces expressions de kλ et de kµ dans les équations donnant kp et 0p , il vient :

( )∑∏=

= µ+λ+

=N

1k

1k

0i

0

1i1

1p

∑=

µλ+

=N

1k

k0

k

11

1p

!

En introduisant alors la variable :

µλ=A

qui représente le nombre d'appels qui apparaissent sur le nombre d'appels qui se terminent pendant un intervalle

de temps, ce qui représente en fait tout simplement le trafic, il vient :

Page 57: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

57/91

∑=

+

=N

1k

k0

k

A1

1p

!

ou encore en introduisant le 1 dans la sommation :

∑=

=N

0k

k0

k

A

1p

!

En reportant alors dans l'expression de kp , il vient :

∑=

=N

0i

i

k

k

i

A

k

A

p

!

!

La probabilité de blocage d'un système disposant de N canaux et pour un trafic A s'écrit alors ( )NAE , , elle est

égale à la probabilité de se trouver dans l'état N ( ) NpNAE =, et elle s'obtient grâce à l'équation suivante :

( )∑=

=N

0i

i

N

i

A

N

A

NAE

!

!, ( ) ( )( )

−+

−=1NAE

A

N1NAE

NAE,

,,

Cette formule est très importante en Télécommunications et elle porte le nom de : formule d'Erlang-B .

Pour les grandes valeurs de N on peut approcher le dénominateur par Ae et la formule devient :

( ) AN

eN

ANAE −=

!,

6.5 Probabilité de mise en attente et formule d'Erl ang C

Si l'on considère un système pour lequel les appels bloqués peuvent être mis en file d'attente avant d'être servis,

on peut alors définir une probabilité d'être mis en attente.

Avec ce système on a toujours

dtdtk .. λ=λ

mais, pour la probabilité de fin d'appel on a par contre :

≥µ≤≤∀µ

=µNkdtN

Nk0dtkdtk ,..

,...

En utilisant :

0

1k

0i 1i

ik pp

µλ

= ∏−

= +

On obtient, pour Nk > :

0

1N

0i

1k

Nik p

N1ip

µλ

µ+λ= ∏ ∏

=

=)(

Page 58: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

58/91

0Nk

NkN

k pN

A

N

Ap

=

−.

!

D'où finalement :

>∀

≤≤∀=

− NkpNN

A

Nk0pk

A

p

0kN

k

0

k

k

,!

,!

En utilisant l'expression de 0p :

∑∏∞

=

= +µλ

+=

1k

1k

0i 1i

i0

1

1p

et en décomposant la sommation, il vient :

( )∑ ∏ ∑ ∏ ∏−

=

=

=

=

= µλ

µ+λ+

µ+λ+

=1N

1k

1k

0i Nk

1N

0i

1k

Ni

0

N1i1i1

1p

)(

∑∑∞

=−

=+

=

NkNk

k1N

0k

k0

N

1

N

A

k

A

1p

!!

∑∑∞

=−

−−

=+

=

NkNk

NkN1N

0k

k0

N

A

N

A

k

A

1p

!!

∑∑∞

=

=

+

=

0k

kN1N

0k

k0

N

A

N

A

k

A

1p

!!

or 1N

A < donc

N

A1

1

N

A

0k

k

−=

∑∞

=

∑−

= −+

=1N

0k

Nk0

N

A1

1

N

A

k

A

1p

!!

La probabilité de mise en file d'attente se note ( )ANC , et elle est égale à ∑∞

=Nkkp

D'où :

( ) ∑∞

=

−=Nk

0kN

kpN

N

AANC

!,

Cette formule est aussi très importante et elle porte le nome de : formule d'Erlang-C

Page 59: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

59/91

6.6 Cas d'une population finie et distribution d'En gset

Les calculs précédents ont considéré le cas d'un trafic de type Poisson généré par une population infinie. Si l'on

considère maintenant le cas d'une population finie constituée de M clients, la probabilité d'apparition d'appels et

fonction du nombre d'appels déjà en cours. On se retrouve alors avec la configuration suivante (on se replace ici

dans un cas sans mise en file d'attente, où les appels sont perdus lorsque tous les canaux sont occupés et avec

M>N) :

( ) 1NkdtkMdtk −≤∀λ−=λ ,...

La probabilité de fin d'appel reste inchangée :

Nkdtkdtk <∀µ=µ ,...

La probabilité kp devient alors :

0

1k

0ik p

1i

iMp

µ+λ−

= ∏−

= )(

)(

0k

k pAkkM

Mp

!)!(

!

−=

D'où :

0kk

Mk pACp =

Pour 0p , on obtient :

∑∏=

= µ+λ−+

=N

1k

1k

0i

0

1i

iM1

1p

)(

)(

d'où :

∑=

=N

0i

iiN

0

AC

1p

Soit en remplaçant dans l'expression de kp :

∑=

=N

0i

iiM

kkM

k

AC

ACp

Cette formule représente la distribution d'Engset

Page 60: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

60/91

Table d'Erlang B

nombre de Niveau de service ( taux de blocage admissible ) nombre decanaux 1% 2% 3% 5% 10% 20% canaux

1 0.0101 0.0204 0.0309 0.0526 0.1111 0.25 12 0.1526 0.2235 0.2815 0.3813 0.5954 1 23 0.4555 0.6022 0.7151 0.8994 1.2708 1.9299 34 0.8694 1.0923 1.2589 1.5246 2.0454 2.9452 45 1.3608 1.6571 1.8752 2.2185 2.8811 4.0104 56 1.909 2.2759 2.5431 2.9603 3.7584 5.1086 67 2.5009 2.9354 3.2497 3.7378 4.6662 6.2302 78 3.1276 3.6271 3.9865 4.543 5.5971 7.3692 89 3.7825 4.3447 4.7479 5.3702 6.5464 8.5217 9

10 4.4612 5.084 5.5294 6.2157 7.5106 9.685 10

11 5.1599 5.8415 6.328 7.0764 8.4871 10.857 1112 5.876 6.6147 7.141 7.9501 9.474 12.036 1213 6.6072 7.4015 7.9667 8.8349 10.47 13.222 1314 7.3517 8.2003 8.8035 9.7295 11.473 14.413 1415 8.108 9.0096 9.65 10.633 12.484 15.608 1516 8.875 9.8284 10.505 11.544 13.5 16.807 1617 9.6516 10.656 11.368 12.461 14.522 18.01 1718 10.437 11.491 12.238 13.385 15.548 19.216 1819 11.23 12.333 13.115 14.315 16.579 20.424 1920 12.031 13.182 13.997 15.249 17.613 21.635 20

21 12.838 14.036 14.885 16.189 18.651 22.848 2122 13.651 14.896 15.778 17.132 19.692 24.064 2223 14.47 15.761 16.675 18.08 20.737 25.281 2324 15.295 16.631 17.577 19.031 21.784 26.499 2425 16.125 17.505 18.843 19.985 22.833 27.72 2526 16.959 18.383 19.392 20.943 23.885 28.941 2627 17.797 19.265 20.305 21.904 24.939 30.164 2728 18.64 20.15 21.221 22.867 25.995 31.388 2829 19.487 21.039 22.14 23.833 27.053 32.614 2930 20.337 21.932 23.062 24.802 28.113 33.84 30

31 21.191 22.827 23.987 25.773 29.174 35.067 3132 22.048 23.725 24.914 26.746 30.237 36.297 3233 22.909 24.626 25.844 27.721 31.301 37.524 3334 23.772 25.529 26.776 28.698 32.367 38.754 3435 24.638 26.435 27.711 29.677 33.434 39.985 3536 25.507 27.343 28.647 30.657 34.503 41.216 3637 26.378 28.254 29.585 31.64 35.572 42.448 3738 27.252 29.166 30.526 32.624 36.643 43.68 3839 28.129 30.081 31.468 33.609 37.715 44.913 3940 29.007 30.997 32.412 34.596 38.787 46.147 40

41 29.888 31.916 33.357 35.584 39.861 47.381 4142 30.771 32.836 34.305 36.574 40.936 48.616 4243 31.656 33.758 35.253 37.565 42.011 49.851 4344 32.543 34.682 36.203 38.557 43.088 51.086 4445 33.432 35.607 37.155 39.55 44.165 53.322 4546 34.322 36.534 38.108 40.545 45.243 53.559 4647 35.215 37.462 39.062 41.54 46.322 54.796 4748 36.109 38.392 40.018 42.537 47.401 56.033 4849 37.004 39.323 40.975 43.534 48.481 57.27 4950 37.901 40.255 41.933 44.533 49.562 58.508 50

Page 61: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

61/91

6.7 Exercices

Exercice 1

Un système à refus (formule d'Erlang-B) dispose de M circuits. Quel est le trafic offert pour que la probabilité de

refus soit de 1%, 10%, 20%, lorsque M est respectivement égal à 2, 5 ou 10? (Utilisez l'abaque fourni en dehors

du poly).

Exercice 2

On considère une trame TDMA GSM avec, pour chaque couple de porteuses (couple: 1 porteuse montante, 1

porteuse descendante) 7 Times slots utilisables pour du trafic téléphonique, quel trafic peut-on passer pour un

couple de porteuses ?

Exercice 3

Deux systèmes de commutation sont reliés par deux faisceaux de 10 circuits chacun. En supposant un taux de

perte de 1%, on demande :

le trafic autorisé par chaque faisceau ainsi que le rendement de la ligne

le trafic total autorisé par les deux faisceaux

on regroupe les deux faisceaux en un seul de 20 circuits, en supposant le même taux de perte, quels sont le

nouveau trafic autorisé et le rendement par ligne.

Exercice 4

Une PME de 50 personnes souhaite changer son autocommutateur (PABX) et l'affecter uniquement à la

téléphonie. Elle dispose des données suivantes :

- il y a 40 postes téléphoniques

- le trafic mesuré à l'heure de pointe rapporté au poste est le suivant

- 5 mn / heure pour les appels sortant

- 3 mn / heure pour les appels rentrant

- le trafic moyen est la moitié du trafic de pointe

- l'activité de l'entreprise est de 8 heures/jour et de 21 jours/mois.

Déterminez

- le nombre de circuits nécessaires pour écouler ce trafic avec un taux de perte de 10% maximal

6.8 Références du chapitre 6

[1] Foundation of Mobile Radio Engineering, Michel Daoud Yacoub, CRC Press, 1993

[2] Digital Communications, J.G. Proakis, Mc Graw Hill, 1995

[3] Autoformation en télécoms et réseaux, Maxime Maiman, Claude Servin, InterEditions, 1998

[4] Théorie des files d'attente, Bruno Baynat, Hermès, 2000

[5] Probabilités, Nino Boccara, Ellipses, 1995

Page 62: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

62/91

7 CDMA

Les performances des systèmes de radiocommunications sont fortement liées aux choix techniques qui

permettent à des utilisateurs multiples (multi user) d'accéder à un canal de transmission.

Ce choix crucial du système d'accès concerne aussi bien les systèmes de radiocommunications cellulaires

terrestres (GSM, UMTS) que les systèmes satellitaires, ou enfin que les réseaux locaux sans fils (WiFi,

Bluetooth).

Ce document est une introduction à l'une des méthodes d'accès multiple basée sur un partage de la ressource au

moyen de codes d'étalement : Code Division Multiple Acces (CDMA). Cette méthode d'accès est issue des

transmissions étalées utilisées dans le contexte des transmissions militaires depuis de nombreuses années.

L'objectif des premières transmissions militaires étalées était de résister au mieux à des brouilleurs bandes

étroites ou/et de réaliser des transmission "discrètes". L'utilisation de l'étalement en CDMA répond à un tout

autre objectif, il s'agit, en l'occurrence, de maximiser la capacité d'un réseau d'accès radio.

Ce cours a pour but de situer le CDMA par rapport aux autres familles de méthodes d'accès et de préciser les

principales difficultés qui lui sont inhérentes.

7.1 Introduction aux techniques d'accès multiples

Il y a plusieurs méthodes pour partager une ressource radio entre N utilisateurs.

Une solution simple consiste à diviser la bande de fréquence en N sous bandes disjointes et à allouer une sous

bande à chaque utilisateur

Si on introduit le largeur totale de la bande de fréquence disponible : B, chaque utilisateur peut idéalement

disposer d'une sous bande de largeur : WB

N=

(DSP: Densité Spectrale de Puissance)

- Schéma type d'un partage FDMA -

Cette méthode est appelée Frequency Division Multiple Access (FDMA ). Elle est utilisée dans de nombreux

systèmes de transmissions filaires.

La difficulté majeure de mise en œuvre réside dans la séparation des différentes sous bandes de fréquence. En

pratique ces dernières ne peuvent pas être jointives et sont séparées par un intervalle de garde ou bande de garde

de largeur spectrale gW .

Bde 1 Bde 2 Bde N

fréquen

Bande de fréquence : B

Sous Bande : W DSP

Page 63: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

63/91

- Schéma d'un partage FDMA avec bande de garde -

Le nombre réels N ' d'utilisateurs qui peuvent partager la bande B est alors inférieur au nombre idéal N et

s'obtient au moyen de l'équation suivante :

B N W N Wg= + −' ( ' )1

Si l'on considère aussi les intervalles de garde aux extrémités de la bande de fréquence l'équation précédente

devient :

B N W N Wg= + +' ( ' )1

Une autre méthode pour décomposer une ressource en sous canaux allouables à différents utilisateurs consiste à

définir une durée de trame Tt et à décomposer cette dernière en N intervalles encore appelés times slots de durée

TT

Nst=

- Schéma d'un partage TDMA -

Chaque utilisateur qui souhaite transmettre des données se voit allouer un time slot particulier dans chaque

trame. Ce système d'accès multiple est appelé Time Division Multiple Access (TDMA). Il est fréquemment

utilisé pour les transmissions radio de voix et de données.

Dans les systèmes de radiocommunications avec les mobiles fonctionnant en TDMA, une des principales

difficultés réside dans le fait qu'il faut synchroniser, sur la même horloge, l'ensemble des terminaux et qu'il faut

éviter que les paquets de données (burst) émis par deux terminaux qui utilisent des times slots adjacents, ne se

recouvrent, même partiellement, à l'arrivée à la station de base. Pour éviter ce type de problème, il faut prévoir

un intervalle de garde, ce qui revient à avoir une durée du time slot supérieure à la durée du burst émis.

Bde 1

fréquence Bande de fréquence : B

Sous Bande : W

Bande de garde : Wg

Bde 2 Bde N'

DSP

slot 1 slot 2 slot N

temps

Trame Tt

Times slots Ts DSP

Page 64: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

64/91

- Schéma d'un partage TDMA avec délai de garde -

Pour les modes d'accès en FDMA ou en TDMA on constate que le canal est décomposé en sous canaux

indépendants, chaque sous canal étant alloué à un utilisateur. On se retrouve ainsi dans une approche de

transmission assez classique où la difficulté principale consiste à allouer les ressources libres (sous bandes ou

times slots) aux utilisateurs.

Lorsque l'on est confronté à un système de communications avec de nombreux utilisateurs ayant un trafic

sporadique d'envoi de paquets de données, les mécanismes d'allocation de ressources doivent être dynamiques.

De tels mécanismes sont mis en œuvre dans l'évolution GPRS du GSM.

Pour éviter d'avoir à allouer des ressources à des utilisateurs on peut imaginer un système dans lequel ces

utilisateurs pourraient émettre simultanément sur une même bande de fréquence. Idéalement ces utilisateurs

pourraient tirer aléatoirement des séquences au moyen desquelles ils encoderaient les bits qu'ils doivent

transmettre. Le récepteur pourrait alors "essayer" toutes les séquences possibles pour "retrouver" les trains

binaires des différents utilisateurs. Une telle méthode d'accès multiple est appelée Code Division Multiple

Access (CDMA).

Pour simplifier l'exposé de cette méthode on va se placer dans un mode "alloué" dans lequel les différents

utilisateurs se verraient allouées des séquences d'étalement.

Les séquences représentent donc en quelque sorte les signatures des utilisateurs et elles permettent d'étaler leur

trafic sur toute la bande de fréquence. Les signaux des différents utilisateurs sont séparés au niveau du récepteur

par corrélation du signal reçu avec les différentes séquences d'étalement

Avant de détailler quelques propriétés du CDMA illustrons son principe au moyen d'un exemple simple.

temps

Trame Tt

Times slots Ts

Durée du Burst DSP

Page 65: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

65/91

7.2 Le CDMA par l'exemple

Considérons un cas extrêmement simple d'une voie montante d'un système cellulaire terrestre.

On considère le cas où 4 utilisateurs souhaitent utiliser la même ressource radio pour transmettre chacun un train

binaire différent.

Considérons, dans un premier temps, que les utilisateurs sont synchronisés en temps lorsqu'ils arrivent à la

station de base et qu'il n'y a pas de décalage Doppler.

Supposons enfin que ces 4 utilisateurs aient utilisé les 4 séquences d'étalement orthogonales

suivantes (séquences de Hadamard):

Utilisateur n°1

bit à transmettre : a { }= ±1

séquence d'étalement : + + + +1 1 1 1

chips émis durant un temps bit : + + + +a a a a

Utilisateur n°2

bit à transmettre : b { }= ±1

séquence d'étalement : + − + −1 1 1 1

chips émis durant un temps bit : + − + −b b b b

Utilisateur n°3

bit à transmettre : c { }= ±1

séquence d'étalement : + + − −1 1 1 1

chips émis durant un temps bit : + + − −c c c c

Utilisateur n°4

bit à transmettre : d { }= ±1

séquence d'étalement : + − − +1 1 1 1

chips émis durant un temps bit : + − − +d d d d

Les éléments des séquences d'étalement sont appelés des "chips". Dans cet exemple chaque séquence est

constituée de 4 chips. On introduit alors cT qui représente le temps chip et qui est égal, dans le cas de l'exemple

traité, à un quart du temps bit bT .

cb T4T .=

Tb : temps bit

séquence aléatoire

de l'utilisateur

n°3

bit c de l'utilisateur n°3

Tb : temps bit

Tc : temps chip

séquence aléatoire

de l'utilisateur

n°2

bit b de l'utilisateur n°2

Page 66: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

66/91

On se place maintenant à la station de base, en supposant les problèmes de synchronisation résolus et en

considérant une transmission sans bruit.

Le signal reçu r durant un temps bit est constitué par 4 chips et il s'écrit :

( ) ( ) ( ) ( )dcbadcbadcbadcbar +−−−−+−+−+++=

Pour retrouver le bit émis par un utilisateur, il suffit de corréler ce signal reçu par la séquence utilisée par cet

utilisateur.

Si l'on prend l'exemple du premier utilisateur, on obtient :

( ) ( ) ( ) ( )( )dcba1dcba1dcba1dcba14

1a +−−+−−++−+−++++= ....ˆ

d'où :

$a a=

On retrouve bien le bit émis par le premier utilisateur.

Pour le deuxième utilisateur on obtient :

( ) ( ) ( ) ( )( )dcba1dcba1dcba1dcba14

1b +−−−−−++−+−−+++= ....ˆ

d'où :

bb =ˆ

Pour le troisième utilisateur on obtient :

( ) ( ) ( ) ( )( )dcba1dcba1dcba1dcba14

1c +−−−−−+−−+−++++= ....ˆ

d'où :

cc =ˆ

Pour le quatrième utilisateur enfin, on obtient :

( ) ( ) ( ) ( )( )dcba1dcba1dcba1dcba14

1d +−−+−−+−−+−−+++= ....ˆ

d'où :

dd =ˆ

On constate aussi que, même si les différents utilisateurs sont reçus au niveau de la station de base avec des

niveaux d'énergie très différents, les séquences d'étalement étant orthogonales et les chaînes de transmission

étant supposées linéaires, la réception est insensible à ces écarts de puissance.

Le cas d'école présenté ci-dessus est un cas idéal pour lequel l'opération de desétalement fonctionne parfaitement

du fait des hypothèses suivantes :

- (H0) les chips émis par les différents utilisateurs ont été supposés synchronisés au niveau du récepteur

- (H1) aucun bruit n'a été ajouté au signal

- (H2) les séquences d'étalement utilisées étaient orthogonales

- (H3) aucun effet Doppler différentiel n'a été considéré

Nous allons maintenant remettre en cause progressivement toutes ces hypothèses idéales et analyser les

dégradations qui vont apparaître.

Page 67: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

67/91

Abandon de l'hypothèse H0

Considérons pour débuter que le deuxième utilisateur est décalé temporellement d'un temps chip par rapport aux

autres utilisateurs.

Précisons aussi le séquencement temporel des bits émis par les différents utilisateurs.

Soit ainsi :

a a a t a t a t a t( ), ( ), ... , ( ), ( ), ( ), ( ), ...0 1 1 1 2− + +

la séquence émise par le premier utilisateur et :

b b b t b t b t b t( ), ( ), ... , ( ), ( ), ( ), ( ), ...0 1 1 1 2− + +

c c c t c t c t c t( ), ( ), ... , ( ), ( ), ( ), ( ), ...0 1 1 1 2− + +

d d d t d t d t d t( ), ( ), ... , ( ), ( ), ( ), ( ), ...0 1 1 1 2− + +

les séquences émises par les autres utilisateurs.

Le décalage d'un temps chip du deuxième utilisateur conduit donc à un nouveau signal reçu :

( ) ( ) ( ) ( ))()()()()()()()()()()()()()()()()( tdtctbtatdtctbtatdtctbtatdtc1tbtatr +−−−−+−+−++−+=

La corrélation avec la séquence d'étalement de l'utilisateur n°1 donne alors :

( )$( ) ( ) ( ) ( )a t a t b t b t= + − −1

41

Abandon des hypothèses H0 et H1

Considérons maintenant le cas d'une transmission sur un canal avec un bruit blanc gaussien additif (Additive

White Gaussian Noise)

Le signal reçu s'écrit alors :

( ) ( )( ) ( )

r t a t b t c t d t n t a t b t c t d t n t T

a t b t c t d t n t T a t b t c t d t n t T

c

c c

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

= + − + + + − + − + +

+ − − + + − − + + +

1

2 3

expression dans laquelle )(tn représente un bruit blanc gaussien de variance 4 2σ . On introduit cette variance

4 2σ pour prendre en compte le fait que ces échantillons de bruit représentent un bruit de densité bilatérale de

puissance 2

N0 considérée sur une bande de fréquence égale à cT

1. Le signal a été "étalé" en le multipliant par

les séquences de 4 chips et la bande bc T

4

T

1 = . Le facteur 4 utilisé pour la variance du bruit traduit le fait que

l'on considère le bruit dans cette bande étalée.

Après desétalement par la séquence de l'utilisateur n°1, on obtient :

( )$( ) ( ) ( ) ( ) ' ( )a t a t b t b t n t= + − − +1

41

expression dans laquelle n t' ( ) représente un bruit blanc gaussien de variance σ 2 . En effet c'est la somme de 4

échantillons de bruit gaussien indépendants et de variance 24σ . Cela conduit donc à un échantillon de bruit

gaussien de variance 216 σ et en divisant cet échantillon par 4, on retrouve une variance égale à 2σ . On peut

aussi "comprendre" cette variance en considérant que l'opération de desétalement a "ramené" le signal dans une

Page 68: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

68/91

bande égale à bT

1. Cette division de la bande par 4 conduit donc, le bruit ayant une densité bilatérale constante

égale à 2

N0 , à une division par 4 de la puissance de bruit.

Considérons maintenant le cas particulier des bits suivants émis par les deux premiers utilisateurs :

1ta +=)( , 11tb −=− )( , 1tb +=)(

On se retrouve alors avec un terme d'interférence "destructif" dû au deuxième utilisateur.

)('.)(ˆ tn50ta += au lieu de )(')(ˆ tn1ta += , soit une perte d'un facteur 2 sur l'amplitude ou encore 6 dB de perte

en puissance.

Dans deux cas sur 4 l'interférence sera nulle, dans un cas sur 4 l'interférence sera destructive (telle qu'elle a été

décrite) et dans un cas sur 4 elle sera constructive.

On peut ainsi, dans ce cas d'école extrêmement simple, calculer la dégradation de la courbe de performances.

Dans le cas d'une transmission sans codage, on obtient alors :

TEB Q

a

Q

a

=+

+−

1

2

11

2

2

1

2

11

2

2

22

2

22

2σ σ

Abandon de l'hypothèse H3

Le fait de décaler un des utilisateurs a rompu l'orthogonalité des séquences d'étalement. Or il est connu que les

séquences orthogonales, lorsqu'elles ne sont plus bien synchronisées ont des pics d'intercorrélation qui peuvent

être très importants. A titre d'illustration on peut considérer la troisième et la quatrième séquences de la matrice

de Hadamard de dimension 4. Si l'on décale la quatrième séquence d'un chip vers la droite, on se retrouve avec

des séquences dont l'intercorrélation est égale à 1.

+ + − − + ++ + − − + +1 1 1 1

1 1 1 1

1 1

1 1

Lorsqu'il n'est pas possible d'assurer une synchronisation temporelle des émissions des différents utilisateurs

avec une précision inférieure à 50 % du temps chip, il est préférable d'utiliser des séquences d'étalement non

orthogonales mais dont les pics d'intercorrélation sont bornés. Cette recherche de séquences d'étalement

optimales a donné lieu à de nombreux travaux de recherche. Parmi les séquences les plus célèbres on peut citer

les séquences de Gold [1] à valeurs dans { }±1 ou les séquences de Kumar Hamons [1] à valeurs dans { }± ±1 j

On a montré quelques particularités du CDMA à travers un exemple simple. Il a ainsi été souligné que le CDMA

orthogonal, c'est à dire utilisant des séquences d'étalement orthogonales, était théoriquement très satisfaisant

mais demandait des contraintes de synchronisation en temps et en fréquence très précises. Il a aussi été montré

Page 69: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

69/91

que lorsque les séquences d'étalement ne sont plus orthogonales les différents trains binaires émis par les

utilisateurs interfèrent entre eux. Reprenons maintenant une approche plus générale des particularités du CDMA.

7.3 Le CDMA

Le principe du CDMA ayant été exposé dans l'exemple simple précédent on essaiera ici de généraliser au cas

d'un système où N utilisateurs partagent une même bande de fréquence.

Considérons un utilisateur particulier à qui on attribue l'indice 1 et cherchons à évaluer la puissance de bruit

interférente, due aux autres utilisateurs d'indices 2 à K, qui va "gêner" la réception et démodulation de cet

utilisateur n°1.

Soit k1s le kième symbole émis par notre utilisateur de référence. L'opération d'étalement transforme ce symbole

en N chips [ ]N1ick1i

,, ∈ . On note les N éléments de la séquence d'étalement : { }p p p pN1

11

21 1= L . On

considère ici une séquence 1p1i ±= . Enfin, les différentes séquences d'étalement { }pn sont des séquences

aléatoires, dites PN (Pseudo Noise) qui n'ont pas de propriétés d'orthogonalité particulières.

Au niveau du récepteur on reçoit alors le signal suivant :

r c c bik k

nk

ik

n

K

i i= + +

=∑1

2

L'opération de desétalement consiste à calculer le produit de corrélation de ce signal par la séquence 1p .

D'où :

∑ ∑= =

++=

N

1i

K

2n

ki

kn

k1

1i

k1 bccp

N

1s

ii

En utilisant alors :

1i

k1

k1

psci

=

et

ni

kn

kn

psci

=

il vient :

∑ ∑= =

++=

N

1i

K

2n

ki

ni

kn

li

kl

li

kl bpspsp

N

1s

ou encore :

( )∑ ∑∑ ∑= = = =

++=N

1i

K

2n

N

1i

N

1i

ki

1i

kn

ni

1i

k1

2li

kl bp

N

1spp

N

1sp

N

1s

Trois termes apparaissent dans cette équation :

Page 70: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

70/91

- Le premier terme ( )∑=

N

1i

k1

21i sp

N

1 est égal à k1s

- Le deuxième terme représente l'interférence des autres utilisateurs. Si les séquences d'étalement sont assez

longues ( )1N >> , on peut considérer que :

∑=

=N

1in

ni

1i vpp

N

1

La variable nv est la somme de N variables binomiales { }1± . Par application du théorème central limite on

peut donc considérer que nv tend vers une variable aléatoire gaussienne centrée de moyenne nulle et de

variance N

1

- Le troisième terme représente une somme de N échantillons indépendants de bruit blanc gaussien de

variance 2N σ. , cette somme est donc équivalente à un terme de bruit additif de variance 2

2

N

NN σ.. que l'on

notera kb . La variance du bruit kb est finalement égale à 2σ , elle est plus faible que la variance des bruits

kib , ce qui est normal car ces bruits étaient large bande et leur puissance était donc égale à la densité

spectrale de puissance de bruit multipliée par la bande après étalement. Par contre le bruit kb correspond au

bruit dans la bande utile après desétalement. La densité spectrale de puissance est la même mais la bande

ayant été divisée par N dans l'opération de desétalement on retrouve bien la division par N au niveau de la

variance du bruit. Cette remarque est important en simulation lorsque l'on étudie un système CDMA, pour

rester à un niveau fixe de rapport 0

b

N

E, il ne faut pas oublier de multiplier les amplitudes des échantillons de

bruit complexes par N pour traduire l'effet de l'extension de bande.

On obtient finalement :

kK

2n

knn

k1

k1 bsvss ++= ∑

Le deuxième terme ∑=

K

2nnv étant identifiable à un bruit blanc gaussien additif, on peut introduire une densité de

puissance bilatérale de bruit d'interférence notée I 0

2 de la même manière que l'on introduit en général la densité

de puissance bilatérale de bruit thermique N0

2.

Cette particularité du CDMA de transformer en bruit blanc gaussien les signaux interférents est très importante et

représente un des grands atouts du CDMA. En effet, les structures des mécanismes de prise de décision dans les

récepteurs sont généralement adaptées à ce type de bruit alors qu'elles résistent mal à des interférences qui

suivent la même forme d'onde que le signal utile.

Page 71: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

71/91

Pour poursuivre l'estimation du rapport signal sur bruit plus interférence en voie montante, on considérera le cas

d'un contrôle de puissance parfait pour lequel tous les utilisateurs sont reçus avec la même puissance à la station

de base,.

Pour exprimer le rapport signal sur bruit Γ après desétalement, il faut donc introduire les quantités suivantes :

- Puissance utile reçue après desétalement par la séquence de l'utilisateur d'intérêt : sP

- Puissance interférente IP reçue des 1K− autres utilisateurs de la cellule qui partagent le time slot avec

l'utilisateur d'intérêt : sI PN

1KP −α= (puissance correspondant au terme kn

K

2nn sv∑

= du développement

précédent). Le facteur N1 provient du desétalement par la séquence de l'utilisateur d'intérêt. Le

coefficient α traduit l'orthogonalité des codes, ce coefficient est égal à 0 dans le cas de codes

orthogonaux et à 1 dans le cas de codes sans aucune propriétés d'orthogonalité entre eux.

- Puissance de bruit thermique dans la bande totale de transmission (bande utilisée par les signaux

étalés) : thP . Après desétalement cette puissance est donc réduite du facteur de réduction de bande

(N1 ), ce qui conduit finalement à

NPth .

- Puissance d'interférence (dans la bande complète) venant éventuellement, dans un système cellulaire,

des autres cellules du réseau : InterP . Après desétalement, elle devient N

PInter

Le rapport signal sur bruit est donc égal à : ( )

NP1K

NP

NP

P

sInterth

s

−α++

( ) sInterth

s

P1KPP

NP

−α++=Γ

Cette dernière formule permet de mesurer la dégradation apportée par les signaux interférents. Si l'on s'en tient à

cette première analyse on peut assez rapidement s'apercevoir que, dès que le nombre d'interférents dépasse

environ N

4, la dégradation est très sensible mais dépend bien entendu du point de fonctionnement de la

modulation utilisée. Comparée aux approches FDMA ou TDMA pour lesquelles les différents signaux

n'interfèrent pas, il semble que le CDMA n'apporte aucun gain de capacité. Cependant, l'analyse comparative

entre les capacités que l'on peut attendre de ces différentes approches ne peut être menée aussi rapidement.

Plusieurs considérations doivent être prises en compte

- Dans un contexte cellulaire terrestre le problème de la réutilisation de fréquence doit être considéré. Dans ce

contexte les approches FDMA ou TDMA imposent des patterns de réutilisation de fréquence ( 1/3 1/5 1/7

Page 72: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

72/91

…). Par contre l'emploi du CDMA peut permettre, à condition de distinguer les différentes cellules par des

séquences différentes, de réutiliser partout les mêmes fréquences.

- Si l'on considère un trafic de voix le facteur d'activité vocale ne peut être mis à profit en FDMA ou TDMA.

Par contre il joue naturellement en faveur du CDMA et il faut modifier la formule proposée pour le prendre

en compte.

- Les mécanismes d'allocation de ressources "consomment" une partie de la capacité en FDMA ou TDMA.

Par contre ils peuvent être évités en CDMA. On pourrait objecter qu'il est malgré tout nécessaire que deux

terminaux n'utilisent pas la même séquence d'étalement. Cependant il faut garder à l'esprit qu'une séquence

décalée d'un chip par rapport à elle même se comporte comme une séquence totalement différente. Ainsi on

peut imaginer un système avec un certain nombre de séquences d'étalement possibles dans lequel les

terminaux émettent en "tirant" aléatoirement une de ces séquences. Aucun mécanisme d'allocation de

ressources n'étant mis en œuvre on peut s'attendre à un gain de capacité.

On pourrait continuer cette liste d'avantages et d'inconvénients assez longtemps et le débat serait difficile à clore.

Il a donné lieu à de nombreuses publications scientifiques dont les conclusions sont souvent diamétralement

opposées. On notera simplement ici que la comparaison, pour pouvoir être menée de manière exacte, doit

intégrer, non seulement les caractéristiques de la couche physique (couche ISO 1 : modulation, codage, ..), mais

aussi des couches plus hautes, telles que le Medium Access Control (couche ISO 2 : MAC)

7.4 Formalisation du CDMA

Ce paragraphe présente une formalisation du CDMA (pour une modulation BPSK). Les trains binaires

considérés par la suite dans ce polycopié sont à valeurs dans { }1± et non dans { }10, .

On considère en premier lieu un train binaire noté :

( )bkTa

expression dans laquelle k représente un entier positif et bT représente la durée d'un bit, soit donc l'inverse du

débit bR exprimé en bits/sec :

bb R

1T =

On peut formaliser l'opération d'étalement par une séquence aléatoire PN (Pseudo Noise) de longueur N, comme

le filtrage du signal binaire suréchantillonné par les éléments de la séquence.

On introduit ainsi le signal suréchantillonné :

( ) ( )

≠=

=kNisi0

kNisikTaiTa b

c

avec cT qui représente le temps chip et cb NTT =

Le signal étalé par les N éléments de la séquence ( ) ( ) ( )ccc T1NpT1pT0p ).(.. −KKK

s'écrit alors :

( )∑−

=−=

1N

0iccc TinaTipnTe )()..()(

filtrage

)(tp

suréchantillonnage

( )bTka . ( )cTne .

Page 73: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

73/91

La séquence d'étalement peut être à valeur réelles dans { }1± , on parle alors d'un étalement BPSK. Il s'agit du cas

le plus simple et parmi les plus courants. Cependant la séquence d'étalement peut aussi être à valeurs complexes,

par exemple dans { }j1±± , on parle alors d'étalement QPSK. On pourrait aussi imaginer des séquences

d'étalement à valeurs complexes non quantifiées. L'exemple des exponentielles complexes sera abordé dans ce

cours et une telle approche nous conduirait assez naturellement à l'OFDM.

Considérons essentiellement pour l'instant une séquence d'étalement BPSK.

On obtient alors un train de chips qui vont être modulés. Si on considère le cas extrêmement simple d'une

modulation BPSK avec un fonction de mise en forme )(tg , le signal modulé en bande de base s'obtient par

suréchantillonnage et filtrage.

On introduit alors le signal suréchantillonné ( )emTe :

( ) ( )

≠=

=nMmsi0

nMmsinTemTe c

e

avec eT qui représente le temps échantillon : M

TT c

e =

Le signal filtré ( )eTms . défini au rythme échantillon, s'écrit :

∑=

−=Q

0qeeee qTmTeTqgmTs )()..()(

suréchantillonnage N

suréchantillonnage M

)(tp

filtrage (étalement)

( )bTka . ( )cTne . ( )eTms . )(tg

filtrage (mise en forme)

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 20 40 60 80 100 120 140 160 180 200-1

0

1

train binaire étalé

séquence d'étalement

(-1-1+1-1-1-

train binaire (+1+1-

train binaire étalé et mis en

forme

Page 74: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

74/91

Les tracés ci dessus correspondent à la mise en forme du signal au moyen d'une fonction porte :

( ) [ ][ ]1M0qsi0Tqg

1M0qsi1Tqg

e

e

−∉=−∈=

,).(

,.

Si on considère maintenant un filtre )(tg en cosinus surélevé,

β−

πβ

π

π

=2

c

e

c

e

c

e

c

e

e

T

qT41

T

qT

T

qT

T

qT

qTg

sinsin

)(

expression dans laquelle β représente le facteur de rolloff,

Réponse impulsionnelle du filtre

en cosinus surélevé

On obtient alors les signaux suivants :

Si on considère maintenant une somme de signaux étalés provenant de K trains binaires d'utilisateurs différents,

il est alors nécessaire de préciser au moyen d'un indice supplémentaire j l'appartenance du train binaire à

l'utilisateur. Le train du jième utilisateur sera alors noté :

( )bj kTa

Cet utilisateur étalera son train binaire au moyen de la séquence ).( cj Tip

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 5 10 15 20 25 30 35 40 45 50-1

0

1

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 2 4 6 8 10 12 14 16 18 20-0.2

0

0.2

0.4

0.6

0.8

1

1.2filtre g(t) en cosinus surélevé

train binaire étalé

séquence d'étalement

(-1-1+1-1-1-

train binaire (+1+1-

train binaire étalé et mis en

forme

Page 75: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

75/91

Le signal CDMA correspondant aux K utilisateurs s'écrira alors :

( ) ∑=

=K

1jeje mTsmTx )(

soit en remplaçant :

( ) ( ) ( )∑ ∑= =

−=K

1j

Q

0qejee TqmeTqgmTx ).(..

avec

( )∑−

=−=

1N

0icjcjcj TinaTipnTe )()..()(

Exemple de signaux

correspondant à 8

utilisateurs

émettant

chacun un train binaire

de 6 bits.

Somme des signaux

des 8 utilisateurs.

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-2

0

2

0 20 40 60 80 100 120 140 160 180 200-8

-6

-4

-2

0

2

4

6

8

utilisateur 1

utilisateur 2

utilisateur 3

utilisateur 4

utilisateur 5

utilisateur 6

Page 76: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

76/91

7.5 Annexe : Les séquences de Hadamard –

Les séquences d'étalement de Hadamard sont des séquences binaires orthogonales qui se construisent

récursivement à partir d'une matrice 2 x 2 de la manière suivante :

H21 1

1 1=

, H

H H

H H42 2

2 2=

, H

H H

H Hnn n

n n2

2 1 2 1

2 1 2 1=

− −

− −

( ) ( )

( ) ( )

Note : Il existe aussi des séquences de Hadamard de tailles multiples de 12 ou de 20 dont le principe de construction est similaire à celui

présenté, la différence venant de la matrice de départ qui est soit une matrice 12x 12, soit une matrice 20 x 20. Pour avoir le détail de ces

séquences utilisez la commande Matlab :"type hadamard".

7.6 Références du chapitre 7

[1] Digital Communications, J. G. Proakis, McGraw-Hill, Inc, third ed, 1995.

[2] CDMA Principles of Spread Spectrum Communication, Andrew J. Viterbi, Addison-Wesley Publishing

Company, 1996.

7.7 Exercice

On considère ici la représentation suivante pour illustrer l'étalement du train binaire ( )bTka . par la séquence

BPSK ( ) [ ]1N0icTip −∈ ,. . Cette représentation correspond aux polycopiés précédents ainsi qu'à la grande majorité

des documents explicatifs du CDMA.

Comme il a été précisé au début de ce polycopié, on part ici d'un train binaire ( )bTka . à valeur dans { }1± , donc

de type BPSK, qui est étalé par une séquence ( )cTip . elle aussi à valeurs dans { }1± , donc aussi de type BPSK.

On parle dans ce cas de forme d'onde étalée BPSK/BPSK

- représentez les schémas correspondant aux forme d'onde étalées suivantes :

BPSK/QPSK

QPSK/BPSK

QPSK/QPSK

- représentez les constellations correspondantes à chaque forme d'onde

( )cTip .

( )bTka . ( )cTne .

Page 77: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

77/91

8 OFDM

Au cours des vingt dernières années de nombreuses solutions de communications numériques ont vu le jour. Les

traditionnels systèmes de transmission "série" pour lesquels les informations à transmettre sont émises

successivement au cours du temps ont été mis en concurrence avec de nouvelles approches dans lesquelles les

informations sont transmises simultanément. Par analogie, on peut alors parler de transmission "parallèle". Ces

nouvelles approches ont été imaginées afin, soit de mieux exploiter le canal de propagation (OFDM [1]), soit de

mieux tirer profit d'un ensemble de ressources de transmission dans un contexte d'accès multiutilisateurs (CDMA

[2]). Actuellement ces différentes méthodes ont tendance à se fusionner (MC-CDMA [3]) et à intégrer une

dimension spatiale (MIMO [4]) afin d'obtenir les meilleures efficacités de transmission possibles.

Ces différentes solutions ont été décrites, soit comme des mécanismes d'accès multiples dont l'abréviation

anglaise se termine par la lettre "A" pour signifier "Multiple Access", soit comme des techniques de

multiplexage avec l'abréviation "M" pour signifier "Multiplex". Ainsi l'OFDM dont il va être fait mention dans

cet article est en général présentée comme une technique de multiplexage plutôt que comme une technique

d'accès proprement dite.

Cette dissociation sémantique a tendance à opposer ces différentes méthodes et à les spécialiser pour certains

contextes de transmission. Or il apparaît qu'il n'y a ni opposition, ni domaines réservés à ces différentes solutions

et qu'elles peuvent toutes être adaptées à n'importe quel contexte.

8.1 Formalisme

On se place ici dans le cas d’une transmission d'un émetteur vers plusieurs récepteurs à un instant skTt = et

l’on considère un intervalle de temps sTt =∆ . Durant cet intervalle de temps l'émetteur doit transmettre un

vecteur de N symboles de communications vers un ensemble de K points de réception.

L’émetteur peut typiquement être un point d’accès radio, une station de base ou tout autre équipement. De la

même manière, les points de réception sont par exemple un ensemble de terminaux UMTS [5] attachés à une

même station de base ou un ensemble de terminaux WLAN attachés à un point d’accès.

Enfin l’intervalle de temps t∆ peut par exemple représenter la durée d’un time slot (en UMTS voie descendante

il serait typiquement égal à 667µs) ou un fragment de time slot durant lequel un nombre entier de symboles sont

transmis.

On notera ( )tX le vecteur constitué par les N symboles à transmettre entre t et tt ∆+ :

( ) ( )TN21 )t(x)t(x)t(xtX K= (25.)

Le nombre de symboles transmis N peut très bien être différent du nombre K de récepteurs car les débits vers ces

derniers ne sont pas obligatoirement les mêmes. Plusieurs cas de figure sont possibles, en allant du cas où les

symboles sont tous pour des terminaux différents ( )NK = , jusqu’au cas où tous les symboles sont à destination

d’un seul et même point de réception ( )1K = . Enfin les valeurs de N et K sont variables dans le temps.

Page 78: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

78/91

Dans l’ensemble des méthodes de transmission qui vont être présentées dans cet article, l’émetteur utilise une

matrice de mélange ( )tZ afin de transformer le vecteur de symboles ( )tX en un vecteur ( )tY défini de manière

linéaire par le produit matriciel suivant :

( ) ( ) ( )tXttY Z= (26.)

Le vecteur ( )tY sera toujours de taille fixe M et tel que NM ≥ , le cas NM < qui correspondrait en définitive

à une compression de l’information, ne sera pas considéré dans cet article.

Les composantes ( )tyi du vecteur ( )tY ainsi obtenues sont alors transmises séquentiellement par l'émetteur.

8.2 Caractère universel du formalisme

Le formalisme proposé rend compte de tous les systèmes qui seront étudiés dans cet article. Quelques exemples

vont être abordés.

Système d'accès TDMA

Le TDMA [6] correspond au cas le plus simple, on a MN = et la matrice ( )tZ est alors la matrice identité de

taille MM × .

( ) IZ =t (27.)

)t(X)t(Y = les symboles )t(xi sont transmis séquentiellement vers les terminaux.

Système d'accès CDMA quelconque

On considère ici un système d'accès CDMA avec un facteur d'étalement de longueur fixe et identique pour les

N symboles considérés. Dans ce cas les colonnes de la matrice ( )tZ sont en général à valeurs dans { }1± et

constituées par les séquences d'étalement utilisées pour étaler les N symboles. Cette matrice peut elle même être

constituée par le produit de plusieurs matrices de séquences. On peut ainsi imaginer que la matrice ( )tZ est

égale au produit d'une matrice diagonale )t(D qui change toutes les t∆ secondes par une matrice de séquences

fixe. Cette matrice de séquences fixes peut typiquement être constituée par un ensemble de N colonnes extraites

d'une matrice carrée ( )MM × de séquences de Hadamard. En notant aH une telle matrice, on a alors :

( ) aHDZ )t(t = (28.)

Avec la terminologie de l'UMTS les colonnes de la matrice aH sont ainsi appelées les séquences de

canalisation (chanelization codes) et la diagonale de la matrice )t(D est appelée la séquence d'embrouillage

(scrambling code).

Page 79: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

79/91

L'OFDM

En OFDM on retrouve l'opération matricielle précédente. Cette fois la matrice des séquences "d'étalement" )t(Z

est carrée de taille )MM( × et invariante dans le temps.

Les éléments de la matrice sont à valeurs complexes et l'élément m,nz , correspondant à la ligne n et à la colonne

m (les lignes et les colonnes étant numérotées de 0 à M-1), s'écrit :

M

mn2j

m,n eM

1z

π+= (29.)

On choisit ici une normalisation par M

1 pour avoir conservation de la norme entre les vecteurs )t(X M et

)t(YM . L'opération matricielle "d'étalement" correspond simplement à la Transformée de Fourier Discrète

inverse du vecteur )t(X M . Dans le cas de l'OFDM et dans la suite de cet article on notera F la matrice

( )MM × des séquences d'"étalement" utilisées. Bien entendu parler d'étalement dans ce cas est un abus de

langage car les différents symboles )t(xi sont localisés dans des bandes fréquentielles distinctes et ne sont pas

"étalés" spectralement. On pourrait parler de matrice d'encodage mais cela conduirait à introduire une nouvelle

terminologie spécifique. On conservera donc par la suite l'abus de langage mentionné.

Le CDMA multiporteuses (MC-CDMA)

La formalisation matricielle présentée conduit tout naturellement à envisager de "construire" des matrices

d'étalement au moyen de produits matriciels. On peut ainsi imaginer un système de transmission dans lequel un

vecteur de N symboles de communications est transformé en un vecteur de M chips, lesquels sont ensuite

transmis sur M porteuses orthogonales. En partant d' un étalement du type de celui proposé en UMTS (produit

d'une matrice de Hadamard par une matrice diagonale), on aura finalement une approche multiporteuses qui

donnera :

)t(X)t()t(Y aHFD= (30.)

ce qui revient en définitive à utiliser une matrice d'étalement )t(Z à valeurs complexes qui se factorise par :

a)t()t( HFDZ = (31.)

L'intérêt principal de cette approche réside alors dans le fait que, quel que soit l'instant t choisi, les différentes

séquences d'étalement occupent de manière uniforme le spectre disponible. La diversité fréquentielle du canal est

donc parfaitement utilisée. Pour le vérifier, il suffit de calculer les Transformées de Fourier des différentes

séquences d'étalement et de vérifier que les modules des termes obtenus sont tous égaux à 1.

{ } aaHH )t()t()t(séquencesTF HDHFDFZF === (32.)

Lorsque l'on "combine" ainsi l'étalement CDMA et l'OFDM, on parle alors de systèmes Multi Carrier CDMA

(MC-CDMA) et le résultat présenté, c'est-à-dire l'occupation de la totalité de la bande de transmission, pour

n'importe quel symbole, à n'importe quel instant est la propriété la plus importante de cette approche.

Par comparaison, on remarquera que, pour une approche CDMA, cette propriété n'est vérifiée qu'en moyenne.

Ainsi en moyenne la Transformée de Fourier d'une séquence CDMA qui évolue dans le temps, occupe bien la

Page 80: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

80/91

totalité de la bande de fréquence qui lui est allouée. Mais de manière instantanée une séquence de M chips a une

Transformée de Fourier qui peut présenter des sélectivités fréquentielles.

8.3 L'orthogonalité des séquences d'étalement

Propriété fondamentale

Dans presque tous les systèmes CDMA on utilise des matrices d'étalement )t(Z unitaires ( )IZZ =)t()t(H ,

on dit alors que les séquences d'étalement sont orthogonales.

Cette propriété permet de reconstituer le vecteur de symboles )t(X à partir du vecteur de chips )t(Y en

utilisant très simplement en réception la matrice d'étalement transconjuguée. Ainsi dans le cas où le signal reçu

est entaché d'un bruit blanc additif, le desétalement par )t(HZ conduit à :

( ))t(B)t(X)t()t()t(X H += ZZ (33.)

Dans cette expression le vecteur ( )TM21 )t(b)t(b)t(b)t(B K= représente les échantillons de bruit

additifs reçus que l'on suppose tous de même variance 2σ . On a donc :

)t('B)t(X)t(X += (34.)

Avec un nouveau vecteur d'échantillons de bruits : )t(B)t('B HZ= .

Le caractère unitaire de la matrice )t(Z assure alors que les nouveaux échantillons de bruit restent décorrélés :

[ ] I2H )t('B)t('BE σ= . Les symboles peuvent ainsi être décidés indépendamment les uns des autres.

Cependant plusieurs interrogations peuvent être soulevées concernant cette orthogonalité des séquences

d'étalement. On peut ainsi analyser la "résistance" de cette orthogonalité à de légers écarts de synchronisation ou

à la traversée du canal de propagation. Pour répondre à cette question et pour plusieurs autres développements, il

est alors utile d'introduire une matrice de décalage.

Matrice de décalage

Dans plusieurs développements qui vont être présentés, il va être nécessaire de formaliser un décalage d'un ou

plusieurs échantillons du vecteur )t(Y . Pour cela on peut introduire la matrice de décalage J de taille ( )MxM

définie de la manière suivante :

=

0

10

IJ (35.)

Exceptionnellement I représente ici la matrice identité de taille ( )1M1M −×−

Appliquée au vecteur )t(Y , la matrice J a donc pour effet de placer la dernière composante du vecteur en

première position et de décaler vers le bas toutes les autres composantes du vecteur.

( ) ( )T1M1M )t(y)t(y)t(ytY −= KJ (36.)

Le maintien de l'orthogonalité

Page 81: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

81/91

On se propose ici de rechercher une famille de séquences d'étalement orthogonales qui resteraient orthogonales

entre elles pour de très légers décalages (en supposant les séquences cycliques). Supposons par exemple que l'on

recherche, pour commencer, une famille de séquences restant orthogonales pour un simple décalage d'un chip

(élément de base de la séquence). La matrice des séquences décalées peut alors s'exprimer au moyen de la

matrice de décalage sous la forme : )t(JZ . Les deux conditions d'orthogonalité conduisent alors au système

linéaire suivant

( )

=

=

)t()t()t(

)t()t(

H

H

DZJZ

IZZ (37.)

La matrice )t(D représente une matrice diagonale dont les valeurs sont quelconques. La deuxième équation du

système linéaire donne donc :

)t()t()t(H DJZZ = (38.)

Si on considère alors un système avec une capacité maximale, c'est à dire avec N=M symboles transmis, la

matrice de séquences d'étalement est carrée et la première équation du système permet d'écrire :

)t()t( H1 ZZ =− , l'équation précédente devient alors :

)t()t()t( 1−= ZDZJ (39.)

On reconnaît alors la décomposition en éléments propres de la matrice de décalage. Les séquences d'étalement,

qui constituent les colonnes de la matrice )t(Z sont ainsi les vecteurs propres de la matrice J . La matrice J

étant une matrice circulante on sait [7] que ses vecteurs propres sont les colonnes de la matrice F utilisée en

OFDM. Il en découle alors directement que FZ =)t( . En définitive, la contrainte de conservation de

l'orthogonalité pour un décalage d'un chip nous conduit directement aux séquences d'OFDM qui restent

orthogonales pour n'importe quel décalage.

8.4 Formalisation du canal multitrajets et introduc tion du préfixe cyclique

On peut toujours (sous hypothèse de canal linéaire) formaliser la traversée d'un canal de propagation par la

convolution du signal émis par la réponse impulsionnelle du canal et par l'ajout de bruit additif. De plus on

intègre en général dans le "canal" l'effet des filtres d'émission et de réception ce qui permet de considérer que la

réponse impulsionnelle du canal est à bande limitée et peut donc être échantillonnée au rythme des échantillons

de signal M

TT s

e = . On formalisera donc la réponse impulsionnelle du canal de propagation de la manière

suivante :

( )∑−

=−τδ=τ

1L

0iei iT)t(h)t,(h (40.)

Les coefficients )t(hi représentent les coefficients de l'interpolation au rythme eT de la réponse

impulsionnelle du canal valide à l'instant t, c'est-à-dire, avec les conventions retenues dans cet article, durant

l'intervalle ( )[ [ss T1k,kT + .

Page 82: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

82/91

Les solutions de transmission à base d'OFDM (Hiperlan2 [8], DVB-T [9], ADSL [10]) comportent en général

l'insertion d'un préfixe cyclique juste avant l'émission des signaux. Ce préfixe cyclique n'est cependant pas

réservé à l'OFDM et peut-être utilisé pour des formes d'ondes mono-porteuse [11][12]. Il consiste simplement à

répéter la fin du signal et à l'émettre en tête. Ainsi, insérer un préfixe cyclique de p échantillons sur le vecteur

)t(Y aura pour effet de transformer ce dernier en un nouveau vecteur )t(Ye de pM + échantillons constitué

de la manière suivante :

( )TM1M1pMe )t(y)t(y)t(y)t(y)t(Y KK+−= (41.)

Ce préfixe cyclique va permettre d'analyser les signaux reçus par blocs en pouvant considérer qu'il s'agit de

signaux cycliques. Bien entendu, il entraîne une diminution de l'efficacité spectrale car il faut maintenant

transmettre pM + échantillons au lieu de M pour la même quantité d'information.

Pour avoir un intérêt le préfixe cyclique doit correspondre à une durée temporelle supérieure ou égale à la durée

de la réponse impulsionnelle du canal. Avec les notations introduites ici, on doit donc avoir au minimum

p1L ≤− . Le compromis idéal, pour ne pas trop pénaliser l'efficacité spectrale, consiste à avoir

exactement 1Lp −= . Dans un tel cas on rajoute ainsi uniquement le débit supplémentaire nécessaire pour lutter

efficacement contre le canal de propagation. On se placera dorénavant dans ce cas de figure.

En omettant le bruit additif, le vecteur )t(R des pM + échantillons du signal reçu peut alors s'exprimer

vectoriellement par :

++

+

=+−

+−

+−

M

M

M

M

M

M

M

)t(y

)t(y

)(y

)(y

)t(h...

)t(y

)t(y

)t(y

)t(y

)(y

)t(h

)t(y

)t(y

)t(y

)t(y

)t(y

)t(h)t(R

1

1pM

sM

s1pM

p

1M

1

M

1M

sM

1

M

2

1

M

1pM

0

Tt

TtTt

(42.)

En analysant le vecteur )t(R , on constate que les p premières composantes sont constituées par un mélange du

vecteur )t(Y et du vecteur )(Y sTt− . Les composantes d'indice )( sTt− entraînent une dépendance entre le

vecteur de symboles )t(X transmis à l'instant skTt = et le vecteur )(X sTt− transmis à l'instant sT)1k( − .

Cette dépendance conduit donc à une complexité accrue du récepteur qui devra calculer des corrélations

glissantes afin de pouvoir estimer convenablement )t(X à partir de l'observation de )t(R . Par contre, si l'on

observe principalement les M dernières composantes du vecteur )t(R , on constate que ces dernières s'obtiennent

uniquement à partir des composantes d'indice t du vecteur )t(Y et représentent alors le produit de convolution

cyclique des coefficients de la réponse impulsionnelle du canal par les composantes du vecteur )t(Y . Cette

propriété fondamentale va être mise à profit dans la définition de plusieurs récepteurs. On considérera donc

dorénavant que, lors de la réception, après une étape de synchronisation, les p premières composantes du vecteur

)t(R sont supprimées.

Page 83: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

83/91

D'un point de vue matriciel, en considérant uniquement l'observation tronquée du vecteur )t(R , l'effet du canal

de propagation se résume alors au produit du vecteur )t(Y par une matrice "canal" )t(H de taille ( )MM ×

définie directement à partir de la matrice de décalage J .

On a ainsi :

pp

2210 )t(h...)t(h)t(h)t(h)t( JJJIH ++++= (43.)

Avec la convention IJ =0 , on peut écrire directement :

)t(Y)t()t(R H= (44.)

avec :

∑=

=p

0k

kk )t(h)t( JH (45.)

En réintroduisant le bruit additif reçu dans la bande de réception, on introduit le vecteur )t('R constitué par les

M échantillons reçus. On a alors :

)t(B)t(Y)t()t('R += H (46.)

Exprimé directement en fonction du vecteur de symboles émis, le signal reçu s'écrit finalement :

)t(B)t(X)t()t()t('R += ZH (47.)

On rappelle que cette formalisation simple et compacte suppose l'emploi d'un préfixe cyclique à l'émission et la

suppression de ce préfixe à la réception. Dans la suite de cet article on se placera toujours dans cette hypothèse

de travail. Ceci signifie que l'on se propose de généraliser l'emploi du préfixe cyclique pour n'importe quelle

forme de la matrice )t(Z . Ainsi l'emploi du préfixe cyclique, très utile en OFDM, permet pour d'autres formes

d'onde de lutter contre l'interférence entre symboles. Son emploi va donc être étendu à n'importe quel type

d'accès CDMA, MC-CDMA et même éventuellement TDMA. Cette hypothèse de travail va permettre de

développer simplement les différents récepteurs possibles pour les différentes formes de la matrice )t(Z et de

mener une comparaison "équilibrée" c'est-à-dire avec des pertes d'insertion (nombre de symboles répétés dans le

préfixe par rapport au nombre de symboles utiles) égales pour les différents systèmes d'accès.

8.5 Les différents récepteurs

Différents récepteurs vont être présentés dans ce paragraphe. Ils seront tous exprimés en fonction des termes

exacts de la réponse impulsionnelle du canal. Dans un cas réel de transmission ces termes devraient être estimés.

Il conviendrait alors de bien distinguer le terme exact )t(hk de son estimation )t(hk . Cependant pour

formaliser les récepteurs "optimaux", on supposera que l'on dispose des termes exacts.

Le récepteur MMSE

N'ayant pas introduit de codage correcteur d'erreurs à l'émission, on recherche uniquement des opérations

linéaires à effectuer sur les composantes du vecteur )t('R pour estimer le vecteur des symboles transmis.

On peut donc introduire une matrice )t(W constituée par les filtres de réception qui permettent d'estimer au

mieux, au sens des moindres carrés (critère MMSE [13]), chaque composante du vecteur )t(X .

Page 84: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

84/91

La matrice )t(W recherchée doit donc optimiser le critère suivant :

2H )t('R)t()t(XEMin/)t( WW (48.)

Expression dans laquelle l'opérateur [ ].E représente l'espérance mathématique.

La solution des moindres carrés est alors classique (solution de Wiener [14]) et l'on obtient après annulation des

dérivées partielles de l'expression précédente :

[ ] [ ])t(X)t('RE)t('R)t('RE)t( H1H −=W (49.)

En remplaçant )t('R par sa valeur, on peut développer les deux espérances rencontrées dans l'équation

précédente et aboutir en définitive à :

( ) )t()t()t()t()t()t()t()t()t(12HH

mmse PZHIHZPZHW−

σ+= (50.)

avec : [ ])t(X)t(XE)t( HNN=P et [ ] I2H )t(B)t(BE σ=

Comme on peut le constater dans l'équation précédente, la mise en œuvre de ce récepteur est extrêmement

complexe. En effet, à chaque instant skTt = , il faut théoriquement :

1. estimer la réponse impulsionnelle du canal afin de "reconstituer" la matrice canal )t(H ,

2. connaître les puissances des symboles émis afin de former la matrice (t)P ,

3. estimer la puissance 2σ du bruit additif.

4. enfin il faut former la matrice : IHZPZH 2HH )t()t()t()t()t( σ+ , l'inverser et la multiplier par la

matrice )t()t()t( PZH .

On constate que l'opération a un coût de calcul très important, essentiellement du à l'inversion de la matrice de

taille ( )MM × qui conduit à un nombre d'opérations qui est proportionnel à ( )3Mo opérations. Il est donc

naturel de se diriger vers une version simplifiée pour cette matrice, c'est là l'objet du récepteur RAKE [2][14].

Le récepteur RAKE

Etant donné que c'est l'inversion matricielle qui est l'opération la plus pénalisante en termes de coût de calcul,

l'approche suivie dans l'élaboration du récepteur RAKE (encore appelé MRC pour Maximum Ratio Combining

[15]) consiste simplement à supprimer cette matrice. Pour rester homogène, on supprime alors aussi la matrice

diagonale des puissances )t(P présente dans le terme restant. On aboutit alors simplement à :

)t()t()t( ZHW = (51.)

Enfin pour éviter un cumul d'erreurs d'estimation et diminuer encore le coût de calcul, on "résume" la réponse

impulsionnelle à ses L' termes de plus forts modules. On peut ainsi définir un ensemble d'indices KS tels que

∈⇔∈ )t(hSk kK sous ensemble des L' termes de plus forts modules. On utilise alors une matrice canal

réduite :

Page 85: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

85/91

∑∈

=KSk

kkrake )t(h)t( JH (52.)

On obtient alors :

)t()t()t( rakerake ZHW = (53.)

L'opération de desétalement devient alors :

)t('R)t()t()t(h)t('R)t()t(X HkH

Sk

*k

Hrake

k

JZW ∑∈

== (54.)

On voit alors apparaître L' opérations de desétalement de versions décalées ( )t('R)t( HkJ ) du signal reçu. Ces

L' desétalements sont ensuite sommés après pondération par le coefficient )t(h*k de la réponse impulsionnelle

du canal (souvent appelé "amplitude du trajet").

Ce récepteur est d'une grande simplicité de mise en œuvre car il n'effectue que des desétalements simples en

utilisant directement la matrice des séquences employées pour l'étalement.

Le récepteur OFDM

Dans le cas de l' OFDM, la matrice de séquences d'étalement )t(Z est carrée invariante et égale à la matrice de

Fourier : FZ =)t( . Une fois la synchronisation du bloc d'échantillons (appelé "symbole OFDM") effectuée, le

desétalement est réalisé au moyen d'une Transformée de Fourier. On effectue ainsi le produit :

( ))t(B)t(X)t()t('R HH += FHFF (55.)

Deux remarques peuvent alors être faites :

1. La matrice canal )t(H étant par construction une matrice circulante, on sait que cette matrice sera

diagonalisée par le produit à droite et à gauche par les matrices de Fourier. On peut ainsi introduire la

matrice diagonale de taille ( )MM × définie par FHFT )t()t( H= .

2. La matrice F étant unitaire, les échantillons du vecteur )t(B)t('B HF= restent décorrélés.

La dernière étape à effectuer par le récepteur est alors la multiplication par )t(1−T . Or cette matrice étant

diagonale, cette multiplication est une simple division de chaque sortie de la Transformée de Fourier du signal

reçu par un coefficient complexe. Cette opération porte en général le nom "d'égalisation fréquentielle".

)t('R)t()t(X H1 FT −= (56.)

En développant et en remplaçant )t(T par sa valeur, il vient :

( ) )t('R)t()t(XHH FH −= (57.)

Le récepteur OFDM est donc égal à :

FHW )t()t( Hofdm

−= (58.)

Page 86: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

86/91

En développant la matrice diagonale )t(T on montre directement que les termes diagonaux )t(t m,m de cette

matrice sont tels que : ∑−

=

π−=

1L

0k

M

mk2j

km,m e)t(h)t(t , on reconnaît alors les valeurs de la Transformée de Fourier

de la réponse impulsionnelle du canal.

Page 87: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

87/91

Annexe – exemple simple d'extension cyclique

La solution OFDM est très souvent proposée lorsque le canal de transmission est sujet à provoquer des multitrajets du signal reçu. Ces multitrajets proviennent de réflexions de l'onde émise sur différents obstacles. Considérons l'exemple très simple d'une réflexion entraînant un écho avec un décalage temporel exactement égal à une composante du signal transmis Sans faire intervenir de termes de bruit gaussien aditif ou de termes d'affaiblissement du à la transmission, le signal reçu )(tR va s'écrire :

α+

α+−α+

=

− )()(

)()(

)()(

)(

tyty

tyty

1tyty

tR

1NN

12

N1

M

M (59.)

Le coefficient complexe α traduisant un affaiblissement et un déphasage du à la réflexion. Si l'on se place dans le cas très simplifié où il n'y aurait qu'une composante )(txm non nulle dans le vecteur )(tX , on alors :

=

−π

π

0

0

0

tx

0

0

e

e

1

tY m

N

m1N2j

N

m12j

)()(

)(

M (60.)

Le signal reçu s'écrit dans ce cas :

N

m2N2j

m

N

m1N2j

m

N

m12j

m

N

m22j

m

m

N

m12j

m

N

m1N2j

m

mT

etx

etx

etx

etx

tx

etx

e1tx

tx

tR)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(−π

−π

π

ππ

−π

α

++

α

+α+

−α

+=K

K

(61.)

αyN-

1(t) …

αy1(t)

yN(t) …

y2(t) y1(t)

αyN(t-1)

Page 88: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

88/91

Lors de l'opération de desétalement, on obtient donc :

N

m2j

mN

m1N2j

mmm etxN

1Ne1tx

N

1txtx

π−−π

α−+−α+= )()()()(ˆ)(

(62.)

Le deuxième terme N

m1N2j

m e1txN

1)(

)(

−π

−α fait intervenir le symbole émis au temps 1t − . On

parle alors d'interférences inter symboles sur la porteuse m. Pour éviter cette interférence, il

faudrait que ce terme soit du type N

m1N2j

m etxN

1)(

)(

−π

α . Pour cela, il faut donc on provoquer

une extension cyclique avant la transmission. Si l'on suppose ainsi que l'on transmet : Alors, le signal après desétalement s'écrit :

α+=

π−N

m2j

mm e1txtx )()(ˆ (63.)

Le problème de l'interférence inter symbole est alors résolu et il reste plus q'à estimer le terme

de déphasage

α+

π−N

m2j

e1 .

Dans le cas d'un canal s'étendant sur plus de symboles, il suffit d'étendre ce principe d'extension cyclique.

y1(t) y2(t) ym(t)

… yN(t)

t

yN(t)

Page 89: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

89/91

Annexe – la dérivation par rapport à la matrice de réception

L’opération d’étalement peut être formalisée matriciellement par la multiplication du vecteur

)(tX par une matrice W . Nous avons supposé jusqu'alors que cette matrice était telle que ZW = . Ce choix peut être analysé de la manière suivante. En introduisant un vecteur de bruit

additif )(tB , le signal reçu peut s'écrire : )()()( tBtZXtR += (64.)

Expression dans laquelle le vecteur )(tB représente la réalisation de N échantillons de bruit

blanc gaussien centré de variance 2σ . La matrice constituée par les séquences de desétalement peut être choisie afin d'optimiser un critère de moindres carrés, on obtient alors :

[ ]2H tXtRWEMinW )()(/ − (65.)

En développant l'espérance, on obtient :

[ ] )()()()()()()()( tXt X tRWt - XtWXt - RtRWWt R )R(t) - X(tW HHHHHH2H += (66.)

[ ] { } )()()()()()( tXt X tWXtRRe2 - tRWWt R )R(t) - X(tW HHHH2H += (67.)

pour déterminer la matrice W qui rend cette relation minimum, il faut annuler la dérivée par rapport à W . Pour cela, on considère un élément quelconque jiw , appartenant à la matrice W et on calcule la

dérivée par rapport à cet élément. En décomposant les différents termes de l'équation (13), on obtient :

( )

=

N

1*

i,jj,i*N

*1

HH

r

r

wwrr)t(RWW)t(R M

M

LL

M

M

LL

M

K (68.)

( )

=

=

=

=

N

1kk

*N,k

N

1kk

*i,k

N

1kk

*1,k

j,i*N

*1

HH

rw

rw

rw

wrr)t(RWW)t(R

M

LL

M

K (69.)

( )

=

∑ ∑

∑ ∑

∑ ∑

= =

= =

= =

N

1n

N

1kknknN

N

1n

N

1kknkni

N

1n

N

1kknkn1

N1HH

rww

rww

rww

rrtRWWtR

*,,

*,,

*,,

**)()( K (70.)

= ∑ ∑∑

= ==

N

1n

N

1kknknp

N

1pp

HH rwwrtRWWtR *,,

*)()( (71.)

Page 90: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

90/91

On peut alors se focaliser sur le seul terme de cette expression dans lequel va apparaître j,iw (attention on ne

s'intéresse pas à * j,iw ). Ce terme est égal à :

∑=

N

1kkjkjii rwwr *

,,*

en éliminant ainsi tous les termes qui ne dépendent pas de l’élément jiw , de l'équation (13), on obtient :

[ ] { }

∂∂=

∂∂

∑=

jji*i

N

1kkjkjii

ji

2H

i,jxwrRe2rwwr

w )R(t) - X(tW

w ,

*,,

*

, (72.)

cela implique que :

[ ]

−−

∂∂=

∂∂

∑=

**,,

*,,

*

,jjiijji

*i

N

1kkjkjii

ji

2H

i,jxwrxwrrwwr

w )R(t) - X(tW

w (73.)

En utilisant la définition suivante pour la dérivation complexe :

si jbax += , alors b

j2

1

a2

1

x ∂∂−

∂∂=

∂∂

, ce qui conduit à 1x

x =∂∂

et 0x

x =∂

∂ *

il vient :

[ ] j*i

N

1kkjki

2H

i,jxrrwr )R(t) - X(tW

w −=

∂∂

∑=

*,

* (74.)

En prenant l'espérance de cette expression et en annulant cette dérivée (ou plutôt la conjuguée pour simplifier l'écriture, on obtient :

( ) ( ) 0xrErrEw ji

N

1kkijk =−∑

=

**, (75.)

En généralisant cette écriture pour tous les termes jiw , , on obtient :

[ ] [ ] 0tXtREWtRtRE HH =− )()()().( (76.)

La matrice de desétalement s'écrit alors :

[ ]( ) [ ])()()().( tXtREtRtREW H1H −= (77.)

Dans notre cas, le signal reçu s'écrit : )()(.)( tBtXZtR += (78.)

où )(tB représente un vecteur de bruit additif gaussien blanc centré de variance 2σ

On a donc :

[ ]( ) [ ] IZtXtXEZtRtRE 2HHH σ+= )()(.)().( (79.)

et :

[ ] [ ])()(.)()( tXtXEZtXtRE HH = (80.)

Dans le cas où les symboles sont normalisés, c'est à dire pour [ ] ItXtXE H =)()( , on obtient simplement :

[ ]( ) IZZtRtRE 2HH σ+= .)().( (81.)

et finalement :

( ) ZIZZW12H −

σ+= (82.)

Page 91: ELE 208 Radiocommunications 1 ère partie

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

91/91

8.6 Références du chapitre 8

[1] R. Van Nee, P. Ramjee, "OFDM for Wireless Multimedia Communications", Artech House Publishers, 2000.

[2] A.J. Viterbi, "CDMA Principles of Spread Spectrum Communication", Addison-Wesley Wireless

Communications Series, 1998.

[3] L. Hanzo, M. Münster, B.J. Choi, T. Keller, "OFDM and MC-CDMA for Broadband Multi-user

Communications", WLAN and Broadcasting", Wiley, 2004.

[4] P. Guguen, G. El Zein, "Les techniques multi-antennes pour les réseaux sans fil", Hermès, 2004.

[5] H. Holma, A. Toskala, "WCDMA for UMTS", Wiley, 2000.

[6] G. Maral, M. Bousquet, "Satellite Communications Systems", 3rd ed., pp 158-162, Wiley, 1998.

[7] P.J. Davis, "Circulant Matrices", Wiley, 1979.

[8] P. Mühlethaler, "802.11 et les réseaux sans fil", Eyrolles, 2002.

[9] H. Sari, G. Karam, I. Jeanclaude, "Transmission techniques for digital terrestrial TV broadcasting"; IEEE

Communications Magazine, Vol. 33, Issue: 2, pp 100 –109, February 1995.

[10] T. Starr, M. Sorbara, J.M. Cioffi, P.J. Silverman, "DSL Advances", Prentice Hall, 2003.

[11] L. Deneire, B. Gyselinckx, M. Engels, "Training Sequence versus Cyclic Prefix. A New Look on Single

Carrier Communication", IEEE Communications Letters, vol 5, n°7, July 2001.

[12] J. Louveaux, L. Vanderdorpe, T. Sartenaer, "Cyclic Prefixed Single Carrier and Multicarrier Transmission :

Bit Rate Comparison", IEEE Communications Letters, vol 7, n°4, April 2003.

[13] S. Haykin, "Adaptive Filter Theory", Wiley, 1994.

[14] J.G. Proakis, "Digital Communications", 3rd ed, Mc Graw-Hill, 1995.

[15] J.-F Helard, J.-Y Baudais, J. Citerne, "Linear MMSE detection technique for MC-CDMA", IEE Electronics

Letters , Vol. 36, Issue 7, pp 665 –666, March 2000.

[16] J.I. Concha, S. Ulukus, "Optimization of CDMA Signature Sequences in Multipath Channels", in proc IEEE

VTC 2001, pp 1978-1982.

[17] W. Yu, J.M. Cioffi, "On constant power water-filling", in proc. ICCC 2001, vol 6, pp 1665-1669, June

2001.

[18] G. Munz, S Pfletschinger, J. Speidel, "An efficient waterfilling algorithm for multiple access OFDM",

Global Telecommunications Conference, GLOBECOM '02. IEEE , vol. 1 , pp. 681 –685, 2002.

[19] M. Bellanger, "Traitement Numérique du Signal, théorie et pratique", Dunod, 2002.

Quelques normes basées sur une forme d'onde OFDM

Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, ETSI EN 300 744 V1.1.2. Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) layer, DTS/BRAN-0023003, ETSI TS 101 475 V1.1.1.