1 : . n . .i-.'. -...

193
UNIVERSITE LOUIS PASTEUR STRASBOURG 1 1989 THESE présentée à L'UFR DES SCIENCES DE LA VIE ET DE LA TERRE pour obtenir le titre de DOCTEUR DE L'UNIVERSITE LOUIS PASTEUR Domaine: BIOWGIE MOLECULAIRE VEGETALE.---- Ah1ILA\N ET MAlG,/XC::: P ar 1... 1;.- .._ ..... ,-.,' r . \ POU!1 l.-l .' OUAGADOUGOU Abdourahamane ..... : Arrivee ···1 . 0 00 l: /. O .. , n . '-J. _.i-.'. ETUDE DE LA STRUCTURE DES GENES DE tRNA DE LA MITOCHONDRIE DE MAIS (Zea mays) ET COMPARAISON DE LEUR LOCALISATION DANS LES LIGNEES MALE-FERTILE (N) ET MALE-STERILE (cms-T) Soutenue le 14 septembre 1989 devant la Commission d'Examen MM. G. DIRHEIMER, J.H. WEIL, F. QUETIER, J.M. GRIENENBERGER. Président. Rapporteur interne Examinateur Rapporteur externe Examinateur

Upload: trannga

Post on 14-Sep-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

UNIVERSITE LOUIS PASTEUR STRASBOURG 1

1989

THESE

présentée à

L'UFR DES SCIENCES DE LA VIE ET DE LA TERRE

pour obtenir

le titre de

DOCTEUR DE L'UNIVERSITE LOUIS PASTEUR

Domaine: BIOWGIE MOLECULAIRE VEGETALE.----

\'-"c-'o":"S~;1 Ah1ILA\N ET MAlG,/XC:::

Par 1... 1;.- .._ ..... ,-.,''ËN5E;GNEN\E~r 5UPL:\U;;,~:"

. \ POU!1 l.-l .' OUAGADOUGOU

Abdourahamane SA:~,~RES·3-J.U~N~\':l.95 ..... :Arrivee ···1 . 0 0 0 l: /. O.., n . '-J.

\!nregistr~Sous _.i-.'. ~-

ETUDE DE LA STRUCTURE DES GENES DE tRNA DE LAMITOCHONDRIE DE MAIS (Zea mays) ET COMPARAISON DE

LEUR LOCALISATION DANS LES LIGNEES MALE-FERTILE (N)ET MALE-STERILE (cms-T)

Soutenue le 14 septembre 1989 devant la Commission d'Examen

MM. G. DIRHEIMER,J.H. WEIL,F. QUETIER,J.M. GRIENENBERGER.

Président. Rapporteur interneExaminateurRapporteur externeExaminateur

Page 2: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

à Monsieur et Madame Guissé

à mes Parents

Page 3: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

accueilli dans son laboratoire à l'Institut de Biologie Moléculaire des Plantes du

CNRS à Strasbourg et de m'avoir aidé de ses conseils et encouragements.

Je suis reconnaissant à Monsieur le Professeur G. DIRHEIMER qui m'a

fait l'honneur de présider ce jury de thèse ainsi qu'à Monsieur le Professeur

F. QUETIER qui a accepté de juger ce travail.

Ce travail a été réalisé sous la direction de J.lvf. GRIENENBERGER à qui

je dois mon initiation aux techniques de la Biologie Moléculaire. Sans lui ce travail

n'aurait pu être mené à terme. Je tiens à lui exprimer toute ma reconnaissance.

Une partie du travail présenté ici a été réalisée avec la collaboration de

ValentinNEGRUK. Qu'il trouve ici l'expression de ma gratitude.

Je remercie également toutes les personnes, chercheurs et techniciens de

l'I.B.M.P. et de l'I.B.M.C., qui ont directement ou indirectement participé à la

réalisation de ce travail.

Je tiens aussi à remercier Carine Schwoob qui n'a pas ménagé ses efforts

pour la dactylographie de ce travail.

Page 4: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

aa

BSABis-acrylamide

CCAseCi

cms

dATPdCTPddNTPDEAEdGTPDMSODNADNAseIdNTPD.O·ADTTdTTPEDTAHEPESIPTGkb

rnRNAnm

PDEpb

plv

PEGqspRNARNAserRNARPCrprnSDSSSCTCATEB

TEA

TABLE DES ABREVIATIONS

acide arruné

sérum albumine bovine

N, N'-méthylène-bis-acrylamide

tRNA nucléotidyl-transférase

curie

stérilité mâle cytoplasmique

2'-désoxy-adénosine-S'-triphosphate

2'-désoxy-cytidine-5'-triphosphate

2',3'-didésoxynucléoside-S'-triphosphate

diéthylarrunoéthyl

2'-désoxy-guanidine-S'triphosphate

diméthyl sulfoxyde

acide désoxyribonucléique

désoxyribonucléase l

2'-désoxy-ribonucléoside-5'-triphosphate

densité optique à A nm

dithiothréitol

2'-désoxy-thymidine-S'-triphosphate

éthylène diarrùne triacétate de sodium

acide N-2-hydroxyéthylpipérazine-N'-2-éthanesulfonique

isopropyl ~-D-thiogalactoside

kilo paires de bases (=1OOOpb)

RNA messager

nanomètre

phosphodiestérase du venin de serpent

paire(s) de bases

poids à volume

polyéthylène glycol

quantité suffisante pour

acide ribonucléique

Ribonucléase

RNA ribosomique

reversed phase chromatographie

rotations par minute

dodécylsulfate de sodium

standard saline citrate

acide trichloro acétique

Tris-Borate-EDTA

Tris-Acétate- EDTA

Page 5: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TEMED

Tris

tRNA

u.v.v/vX-gal

N, N, N', N'-tetraméthyléthylènediamine

tris(hydroxyméthyl)aminométhane

RNA de transfert

ultra violet

volume à volume

5-Bromo-4-chloro-3-indolyl ~-D-galacto-pyranoside

Abréviation des acides aminés

A = Ala Alanine

C = Cys Cystéine

D = Asp Acide aspartique

E = Glu Acide glutan:?-que

F = Phe Phénylalanine

G = Gly Glycine

H = His Hystidine

1 = ne Isoleucine

K = Lys Lysine

M = Met Méthionine

N = Asn Asparaginep = Pro Proline

Q = GIn Glutamine

R = Arg Arginine

S = Ser Serine

T = Thr Thréonine

V = Val Valine

W = Trp Tryptophaney = Tyr Tyrosine

nucléotide rnQdifit3-(3-amino-3-carboxyhydroxymethy1)Uridine

Page 6: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

iNTRODUCTiON

Page 7: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Les génomes mitochondriaux des plantes supérieures se caractérisent par leur

grande taille et par la complexité de leur structure si on les compare aux autres génomes

mitochondriaux connus. Leur taille varie de 208 kb chez Brassica hirta (PALMER et

HERBüN, 1987) à 2400 kb chez la pastèque (WARD et coll., 1981), alors que les

génomes mitochondriaux des mammifères mesurent entre 15 et 18 kb et ceux des

champignons entre 18 et 78 kb (pour une revue, voir GRIVELL, 1983). La complexité

structurale des génomes mitochondriaux des plantes supérieures s'explique par la

présence de séquences répétées, directes ou inversées, qui sont impliquées dans des

phénomènes de recombinaison intra- et inter- moléculaire. De nombreuses séquences

répétées directes et inversées peuvent être présentes dans le même génome (QUETIER et

coll., 1985 ; LONSDALE et coll., 1984) et le nombre des différentes recombinaisons

dans lesquelles ces séquences sont impliquées peut être très élevé générant ainsi un très

grand nombre de molécules de tailles et de structl.~res différentes (LüNSDALE et coll.,

1984). De nombreuses observations en microscopie électronique (KOLODNER et

TEWARI, 1972 ; VEDEL et QUETIER, 1974 ; QUETIER et VEDEL, 1977 ;

SYNENSKI et coll., 1978) et des études physico-chimiques (VEDEL et QUETIER,

1974 ; WARD et coll., 1981) avaient déja mis en évidence cette structure complexe et

hétérogène du DNA mitochondrial des plantes supérieures.

Depuis les travaux de PALMER et SHIELDS (1984) sur le génome de Brassica

campestris, les études de cartographie sur les génomes mitochondriaux de plusieurs

plantes ont montré que la structure de ces génomes peut être représentée sous la forme

d'une seule molécule circulaire appelée cercle maître ou chromosome maître. Le cercle­

maître est une construction théorique déduite de la cartographie des cosmides contenant le

DNA mitochondrial cloné. Il comporte toute l'information génétique contenue dans la

mitochondrie et tous les jeux de séquences répétées. Les recombinaisons entre les

séquences répétées génèrent des molécules de plus petite taille lorsqu'il s'agit de

recombinaison entre des séquences répétées directes ou provoquent des inversions de

séquences lorsque les recombinaisons impliquent des séquences répétées inversées

(LüNSDALE, 1988).

Page 8: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

2

La présence de ces séquences répétées, bien que largement répandue parmi les

génomes mitochondriaux des plantes n'est pas universelle puisqu'il a été rapporté que le

génome de Brassica hirta est constitué de séquences uniques (PALMER et HERBON,

1987), organisées en une seule molécule circulaire.

Les différentes sortes de molécules issues de ces recombinaisons ne suffisent pas

à expliquer toute la complexité du DNA mitochondrial des plantes supérieures. Il existe

en effet, dans la mitochondrie de nombreuses plantes, d'autres molécules de DNA

circulaires (plasmides) et linéaires (réplicons) indépendantes du cercle-maître. Ces

plasmides et ces réplicons sont très répandus et le tableau A montre les différentes

molécules extra-chromosomiques retrouvées dans différentes plantes. Certaines de ces

molécules sont très spécifiques de certaines lignées à l'intérieur d'une même variété. Il est

possible par exemple, de classer différentes lignées de maïs en fonction des épisomes qui

les caractérisent (tableau A). Le rôle de ces petites molécules n'est pas connu.

Il a été démontré que le DNA mitochondrial de certaines plantes supérieures porte

des insertions de DNA chloroplastiques (STERN et LONS DALE, 1982 ; STERN et

PALMER, 1984b). Dans leur majorité, ces séquences ne sont pas exprimées

(MAKAROFF et PALMER, 1987 ; FEJES et coll., 1988). Il s'agit généralement de

séquences chloroplastiques qui sont très peu remaniées comme c'est le cas pour

l'insertion chloroplastique de 12 kb décrite chez le maïs et qui comporte le gène du rRNA

16S et les gènes de tRNALeu , de tRNAIle, de tRNAVal et la moitié du gène de tRNAAla

(STERN et LONSDALE, 1982) ou encore l'insertion comportant le gène de la grande

sous-unité de la ribulose-1,5-bisphosphate carboxylase (LONS DALE et coll., 1983). Il

semble que l'insertion de ces séquences chloroplastiques soit relativement récente dans la

mitochondrie des plantes mais le phénomène est assez répandu (STERN et PALMER,

1984 ; NUGENT et coll., 1988). Il a aussi été décrit des cas où des séquences

chloroplastiques transférées sont transcrites dans la mitochondrie. Il s'agit essentiellement

des gènes de tRNA tels que les gènes de tRNAHis (lAMS et coll., 1985), de tRNACys

(WINTZ et coll., 1988-b) et de tRNATrp (MARECHAL et coll., 1987) de la mitochondrie

du maïs ou du blé.

Par ailleurs, s'il est généralement admis que l'organisation du génome

mitochondrial ne varie pas sensiblement d'un individu à un autre dans la même lignée et

dans les conditions naturelles, de grandes variations ont été mises en évidence entre

différentes lignées d'une même espèce. Le cas le plus étudié est celui du maïs (FAURON

et HAVLIK, 1988 ; FAURON et coll., 1989) où l'organisation du cercle-maître est

complètement remaniée entre les lignées B37-N et B37-cmsT qui ont cependant le même

environnement nucléaire (figure 1). Le réarrangement de ces séquences entraîne:

a) la modification du nombre et de la nature des séquences répétées (fig.1-a).

Dans la lignée normale B37-N, le génome porte 6 jeux de séquences répétées dont 5

Page 9: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU A: PLASMIDES ET REPLICONS TROUVES DANSLES MITOCHONDRIES VEGETALES

Plasmides circulaires

Espèces Tailles (en kb) Références

MaïsN, ems-T, cms-C, cms-S 1.9

1.4 Kemble et Bedbrook, 1980

cms-C 1.5

cms-C 1.4 Dale et coll .. 1981

Beta vu/garis 1.3 Powling, 19811.41.45 Hansen et Marcker, 19841.5

cms 01113M4 7.3

Phaseo/us vu/garis 1.9 Dale et coll., 1981Vicia faba 1.4 Gabiet et coll., 1983

1.7 Gabiet et coll.; 19851.75 Nikiforova et Nëgruk, 1983

cms350 1.5 Negruk et coll., 1986Wahleithner et Wolstenholme, 198ï

He/ianthus annus 1.45 Leroy et coll., 19851.41 Crouzillat et coll., 19891.8 Crouzi!lat et coll., 1989

Sorghum bieD/or 2.3 Chase et Pring, 19851.71.36

Réplicons linéaires

Espèces Taille (en kb Références

Brassiea spp 11.3 Palmer et coll., 1983Erickson et coll., 1985

Sorghum bieD/or N1 5.8N2 5.4 Chase et Pring, 1986

Zeamayscytoplasme S S2 6.4 Levings et Sederoff, 1983

S1 5.4 Paillard et coll., 1985

2.3L 2.3 Bedinger et coll., 19862.1 L 2.1

cytoplasme RU R1 7.4 Weissinger et coll., 1982R2 5.4

Zea dip/operennis 01 7.4 Timothy et coll., 198302 5.4

Page 10: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU B : GENES DE rRNA SEQUENCES DANS LESMITOCHONDRIES VEGETALES

Gènes Espèces Références

rrn26 Oenothère Manna et Brennicke, 1985Maïs Dale et coll., 1984Blé Falconet coll., 1988

rrn 18 Soja Grabau, 1985Blé Spencer et coll., 1984Maïs Chao et coll., 1984Oenothère Brennicke et coll., 1985Zea diploperennis Gwynn et coll., 1987

rrnS Soja Morgens et coll., 1984Blé Spencer et coll., 1981Maïs Chao et coll., 1983Oenothère Brennicke et coll., 1985Zea diploperennis Gwynn et coll., 1987

TABLEAU C : GENES DE tRNA SEQUENCES DANS LESMITOCHONDRIES VEGETALES

Gènes Anticodons Espèces Références

1mC GCA-1 Maïs Wintz et coll., 1988bGCA-2 Tomate Izuchi et Sujita, 1989

tmD GJC Maïs Parks et coll., 1985Blé Joyce et coll., 1988b -

tmE UUC Blé Gualberto et coll., 1989Soja Wintz et coll., 1987Maïs Ce travail

'" tmF UAA Maïs Wintz et coll., 1988btmF AAA Maïs Ce travailtmG GCC Lupin Bartnick et Borsuk, 1986tmH GJC Maïs lams et coll., 1985tmK UUU Maïs Ce travail

If tmL CAA Brassica Oron et coll., 1985trnfM CAU Lupin Borsuk et coll., 1986

Soja Grabau, 1987Maïs Parks et coll., 1984Blé Gray et Spencer, 1983Oenothère Gottschalk et Brennicke, 1985

trnM-1 CAU Maïs Parks et coll., 1984trnM-2 CAU Maïs Ce travail

A. thaliana Wintz et coll., 1988aSoja Wintz et coll., 1988a

tmN GJU Lupin Karpinska et Augustyniak, 19BBPhaseolus vulgaris Bird et coll., 19B9maïs Ce travail

'" tmP U2G Blé Maréchal et coll., 19B7tmP U2G Blé Runeberg-Roos et coll., 19B7

Blé Joyce et coll., 198BaMaïs Ce travail

tmO UUG Blé Joyce et coll., 19BBaBlé Joyce et coll., 19B9

If tmR ACG Maïs Dewey et coll., 19B6tmS GCU Blé Joyce et coll., 19BBb

Maïs Wintz et coll., 19BBb

tmS UGA Blé Joyce et coll., 19BBbMaïs Ce travail

tmS GGA Oenothère Schuster et Brennicke, 19B7a

tmW CCA Blé Maréchal et coll., 19B7tmY GUA Blé Joyce et coll., 19BBb

Maïs Ce travail

Page 11: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 1 Comparaison de l'organisation des génomesmitocnondriaux du maïs B37-N et B37-cmsT

( FAURON et HAVLlK, 1989 )

a) Réorganisation des gènes et des séquences répétées:

4.6

coxID -- rrn26

16

".5

5~ ~ 0.7

b) Réarrangement des blocs de séquences entre les deux génomes:

u

N

K

x

1 :Gènes

o : Séquences d'insertion chloroplastique

o :Séquences 52 et RI (Levings et SederoH, 1983; Weissinger et coll., 1982)

I2ZI : Séquences répétées

JC::====::::J! : Séquences trouvées seulement dans l'un ou "autre génome

K____ : Séquences communes aux deux génomes

Page 12: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

3

(14 kb: 14B, Il kb, 5.2 kb, 1 kb, 0.7 kb) sont des répétitions directes et la dernière (14

kb:14A ) est une répétition inversée. Dans la lignée B37-cmsT on ne trouve que 4 jeux de

séquences répétées. Seules les répétitions directes de Il kb et de 0,7 kb sont conservées.

De plus, une partie (1.5 kb), située à une extrémité de la séquence répétée de Il kb est

retrouvée ailleurs dans le génome; la troisième copie est en orientation inverse par rapport

aux 2 premières portées par les deux copies de la séquence répétée de Il kb. Par contre,

de nouvelles séquences répétées de 6 kb (inven;ées) et de 4.6 kb (directes) apparaissent.

Les anciennes séquences répétées directes de 14 kb (14 B), 5.2 kb et 1 kb et la séquence

répétée inversée de 14 kb (14 A) ne sont plus présentes qu'en une seule copie.

b) la perte d'information génétique. En effet, des blocs de séquences allant

jusqu'à 25 kb sont absents du génome T si on le compare au génome N (fig. 1-b).

c) le gain de nouvelles infonnations génétiques Gusqu'à 30 kb) par apparition de

séquences spécifiques au génome T.

Au total, il ya une perte globale de matériel génétique (en quantité surtout) dans la variété

mâle-stérile ( dont le cercle maître mesure 540 kb ) par rapport à la variété fertile (dont le

cercle maître cOIJ1pte 570 kb).

d) une nouvelle distribution des gènes connus. Les conséquences de ces

remaniements affectent aussi les séquences chloroplastiques insérées dans le DNA

mitochondrial. En effet, seule une partie de l'insertion chloroplastique de 12 kb (STERN

et LONSDALE, 1982) est présente dans le génome T. Il n'en reste plus que 3 kb (fig.1-b:

FAURON et coll., 1989). Ces séquences sont donc aussi des sites actifs de

recombinaison.

Le génome mitochondrial de plantes supérieures contient un certain nombre de

gènes. Comme dans le cas des mitochondries animales et fongiques, la mitochondrie des

plantes supérieures est semi-autonome et ne possède pas tous les gènes qui pourraient

assurer son indépendance génétique. Jusqu'à présent, les gènes identifiés par clonage et

séquençage dans les génomes des plantes supérieures codent pour des rRNA (tableau B),

des tRNA (tableau C), et des protéines (tableau D). A ces gènes, il faut ajouter de

nombreuses wf (Unidentified Reading Frame) ou phases de lecture ouvertes, qui sont

présentes dans le génome mitochondrial des plantes supérieures (pour une revue, voir

LONSDALE,1988).

Pour ce qui concerne les tRNA, plus d'une trentaine de gènes provenant de

diverses' plantes ont été déjà séquencés (tableau C). Seuls, 16 gènes portant des

anticodons différents et correspondant à 14 acides aminés ont été retrouvés dans les

mitochondries végétales. Les gènes trnA, trnI, trnL, trnR, trnT et trnV n'ont encore été

mis en évidence chez aucune plante. Dans la mitochondrie du maïs, les seules séquences

pouvant correspondre à quelques uns de ces gènes se sont avérées être des pseudo-gènes

ou des gènes incomplets (DEWEY et coll., 1986) et/ou des séquences étrangères non

Page 13: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU D : GENES DE PROTEINES IDENTIFIES DANS LESMITOCHONDRIES VEGETALES

... ,. ;;~ ::,11 E\ .:~ .'~n~'lib 1.n6i'fit)q~r: .~ ~".o ,tiA ! ( '':Gènes. Espèces Références

1 ;

Complexe cytochrome oxydase

cox 1

cox II

cox III

Complexe cytochrome bc1cm

Complexe Fo-F1 ATPaseatpA

atp6

atp9

complexe NAD/Q1nad1

nad3

nad4nad5

Protéines ribosoma/es

pseudo-rps4rps12

rps13

rps14

MaïsOenothèresorgho: milsorgho: 9EBlésoja

Maïs-NBléRizPoisOenothèreSojaZea diploperennis

OenothèreMaïs

MaïsOenothèreBlé

Maïs-NMaïs-cmsTOenothèrePoisMaïs-cmsTMaïs-cmsCTabacsojaoenothèreMaïs-NTabacPétunia:F

Pétunia:cms et SH

Pastèque (incomplet)Tabac (incomplet)Maïs (incomplet)MaïsBléPétunia:cms et FSoja (incomplet)Oenothère

OenothèreMaïsBléOenothèreTabacMaïs:cmsCBléFève

Isaac et coll., 1985bHiesel et col., 1987Bailey-Serres et coll., 1986Bailey-Serres et coll., 1986Bonen et coll., 1987Grabau, 1986

Fox et Leaver, 1981Bonen et coll., 1984Kao et coll., 1984Moon et coll., 1985Hiesel et Brennicke, 1983Grabau,1987Gwynn et coll., 1987

Hiesel et coll., 1987Mc carty et coll., 1989

Dawson et coll., 1984Schuster et Brennicke, 1985Boer et coll., 1985

Isaac et coll., 1985Braun et Levings, 1985Schuster et Brennicke, 1986Morikami et Nakamura,1987Dewey et coll., 1985aDewey et coll., 1988Bland et coll., 1987Grabau et coll., 1988Schuster et Brennicke, 1987bDewey et coll., 1985bBland et coll., 1986Young et coll., 1986Rothenberg et Hanson, 1987Rothenberg et Hanson, 1988

Stern et coll., 1986Bland et coll., 1986Bland et coll., 1986Gualberto et coll., 1988Gualberto et coll., 1988Rasmussen et Hanson, 1988Wintz et coll., 1989Wissinger et coll., 1988

Schuster et Brennicke, 1987aGualberto et coll., 1988Gualberto et coll., 1988Schuster et Brennicke, 1987cBland et coll., 1986Bland et coll., 1986Bonen, 1987Wahleitner et Wolstenholme, 1988

Page 14: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

4

fonctionnelles (STERN et LONS DALE, 1982). Un pseudo-gène de tRNALcu a aussi été

identifié chez Brassica (ORON et coll., 1985 ). De plus, à part le cas du gène trnS pour

lequel 3 anticodons différents ont été trouvés (tableau C ), tous les gènes homologues

trouvés dans les mitochondries de différentes espèces végétales comportent les mêmes

anticodons UrnE, trn?, trnD, trne, trnY, trnN,: tableau C). Pour l'heure, le jeu complet

de gènes de tRNA n'est connu pour aucune mitochondrie de plante supérieure, mais les

premières constatations (JOYCE et coll., 1988-b) montrent que; comme dans les

llÙtochondries animales et fongiques, le nombre de gènes de tRNA est lillÙté au maximum

à 22 (animaux) ou 24 (champignons). Par conséquent, il est possible que la théorie de

LAGERKVIST (1978) dite "two out of three" suggérant que l'appariement codon­

anticodon repose sur deux paires de bases au lieu de 3 ( pour les familles de tRNA

spécifiés par 4 codons différents ), puisse s'appliquer aussi aux mitochondries végétales.

Cependant, le fait qu'aucun anticodon ne soit retrouvé pour certains gènes de tRNA,

suggere que les tRNA correspondants sont importés. Cela a été confinné par des études

récentes sur les tRNALeu de la mitochondrie du haricot (MARECHAL-DRüUARD et

coll., 1988; MARECHAL-DROUARD et GUILLEMAUT, 1988). Il a en effet ~été

démontré chez cette plante, que 4 tRNALeu mitochondriaux ne diffèrent de leurs

homologues cytoplasmiques que par une modification post-transcriptionnelle. Ces

tRNALeu sont codés par le noyau puis importés dans la mitochondrie (GREEN et coll.,

1987; MARECHAL-DROUARD et coll., 1988).

Pour avoir des informations complètes sur le nombre et la nature des tRNA nécessaires à

la synthèse protéique mitochondriale, il est indispensable de:

a) détenniner la séquence nucléotidique de tous les gènes présent sur le DNA

llÙtochondrial

b) isoler et séquencer tous les tRNA présents dans l'organite

c) séquencer les gènes de tRNA mitochondriaux présents sur le génome nucléaire.

Pour l'heure, en plus du nombre restreint de gènes de tRNA connus (tableau 3), très peu

de tRNA ont aussi été étudiés dans les mitochondries végétales (tableau E) et tous les

travaux effectués sur les tRNA ont porté sur le haricot.

Par ailleurs, aucune étude expérimentale n'a été faite sur l'expression des gènes de

tRNA mitochondriaux connus. Les seules données dont on dispose proviennent des

analyses de séquences en amont des gènes de tRNA mitochondriaux de plusieurs plantes,

effectuées par JOYCE et coll. (l988-b). Une séquence consensus 5'AAGAANRR3'

susceptible d'être impliquée dans l'initiation de la transcription des gènes de tRNA a été

trouvée par cet auteur, en amont de la majorité des gènes étudiés. Par contre, aucune

séquence consensus n'a pu être dégagée de l'analyse des séquences en aval de ces gènes

de tRNA.

Page 15: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU E: tRNA DES MITOCHONDRIES VEGETALES SEQUENCES

Especes tRNA Anticodon Références

Phaseolus vulgaris Phe ~ Maréchal et coll.,1985-a-Maréchal et coll., 1985bTrp CCA

Ty r-1 NUA Maréchal et coll.,1985-cTyr'2 NUA Maréchal et coll.,1985-cMet CAU Maréchal et coll., 1986fMet CAU Maréchal et coll., 1986Pro Lm Runeberg-Roos et coll., 1987Leu-1 NM Green et coll., 1987Leu-2 NAG Maréchal-Drouard et coll., 1988Leu-4 NM Maréchal-Drouard et

Guillemaut, 1988

Page 16: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

5

Dans ce travail, notre étude a porté sur les gènes de tRNA mitochondriaux du

maïs. L'objectif de notre recherche a été d'étudier les gènes de tRNA présent sur le DNA

mitochondrial du maïs, leur nombre et leur organisation dans 2 lignées de maïs (B37-N et

B37-cmsT). Nous avons aussi essayé de détenniner le nombre de tRNA mitochondriaux

susceptibles d'être codés par le noyau. L'utilisation du code génétique est aussi discutée.

Par ailleurs, nos études ont aussi porté sur des régions du DNA mitochondrial du

maïs comportant des insertions chloroplastiques. L'origine de ces séquences, le

mécanisme probable de leur distribution et le sens évolutif de leur présence dans la

mitochondrie du maïs sont discutés.

Nous avons aussi caractérisé et analysé un fragment de DNA mitochondrial du maïs

comportant une structure chimérique qui est exprimée dans l'organite.

Page 17: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

MATERPEL ET METHODES

Page 18: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

6

I. MATERIEL D'ETUDE: LE MAISLe maïs, Zea mays, est une céréale (monocotylédone) appartenant à la tribu des

andropogoniacées. Bien que le maïs soit longtemps connu et sélectionné par l'homme,

l'origine phylogénétique de l'espèce Zea mays reste encore floue. En annexe 1 est

montrée l'origine probable des différentes variétés de maïs connues actuellement sur la

planète (source ENSA-ENSFA).

Dans notre étude, nous avons utilisé des variétés de maïs à cytoplasme nonnal (mâle

fertile) et des variétés à cytoplasme mâle-stérile. Trois. variétés à cytoplasme mâle-fertile

ont été utilisés et ce, pour deux raisons essentielles:

- Les variétés fertiles B37-N et WF9-N, parce que la carte de restriction de leurs

génomes mitochondriaux est déjà établie ( FAURüN et coll., 1988; LüNSDALE et coll.,

1984 ). De plus, les mitochondries de ces deux variétés normales se trouvent dans deux

environnements nucléaires différents. Nous avons entrepris l'étude comparée des gènes

de tRNA dans les génomes mitochondriaux de ces deux variétés pour voir si le

changement de l'environnement nucléaire pourrait avoir une influence sur leur

organisation et/ou sur leur nature.

- La variété INRA 248 a été utilisée parce qu'elle est disponible en quantité suffisante

et peut servir par conséquent pour les études de transcription.

- Pour sa part, la variété B37-cmsT qui est la variété à cytoplasme mâle stérile dont la

mitochondrie se trouve dans le même environnement nucléaire (B37) que la variété fertile

B37-N, a été utilisée parce que la carte de restriction de son génome mitochondrial est

aussi disponible (FAURüN et HAVLIK, 1988). Dans ce travail, les deux cartes de

restriction des génomes mitochondriaux B37-N et B37-cmsT ont servi de support pour

l'étude comparée de l'organisation et de l'expression des gènes de tRNA dans l'organite.

II. PURIFICATIüN DES ACIDES NUCLEIQUES

A. EXTRACTION DES ACIDES NUCLEIQUE MITOCHONDRIAUXLa méthode utilisée dérive de celle décrite par STERN et NEwrüN (1984)

1. PRINCIPE

Les acides nucléiques sont extraits de mitochondries purifiées à partir

d'hypocotyles de maïs. Les graines de maïs sont mises à germer à l'obscurité à 25°C. Les

jeunes hypocotyles sont broyés dans des tampons appropriés et le broyat est soumis à

une série de centrifugations différentielles pour obtenir un enrichissement en

mitochondrie. La fraction mitochondriale est ensuite lysée et les acides nucléiques sont

purifiés par des méthodes adéquates.

Page 19: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

7

2. PURIFICATION DES MITOCHONDRIES

a) Croissance des plantes

Les graines de maïs sont généralement conservées dans des conditions assurant

une faible humidité ambiante et sont, de préférence, traitées avec un antifongique. Avant

d'entreprendre la mise en germination des graines, il faut se débarrasser de l'antifongique

en les rinçant. De plus, il faut lever la donnance des graines en les incubant une nuit (à

l'obscurité) à 25°C dans une bassine remplie d'eau. Les graines sont ensuite semées sur

de la venniculite stérilisée par autodavage.Le semis est incubé à 25°C à l'obscurité et

régulièrement arrosé d'eau. La récolte des hypocotyles se fait entre 5 et 7 jours de

croissance. Il est préférable de récolter les hypocotyles avant le début de l'auxesis et de la

différenciation cellulaire pour avoir un meilleur rendement en mitochondries purifiées.

b) Broyage

Les hypocotyles récoltés sont découpés en fins morceaux et placés à O°e.

Toutes les étapes qui suivent se dérouleront à 4°C au maximum. Les plantules sont

broyées dans un appareil de type Waring-Blendor dans le tampon d'extraction dont la

composition est la suivante:

- 0,35 M Sorbitol- 50 mM Tris-Hel, pH 8- 5 mM EDTA-0,1% BSA- 0,25 g/l spermine- 0,25 g/l spermidine- 1,25 ml/l mercapto-éthano1 (ajouté extemporanément)

On effectue généralement deux broyages à haute vitesse pendant 5 secondes

(2 x 5 sec). Le broyat est filtré sur 2 à 3 couches de gaze associées à un tamis nylon (45

Ilm). On élimine ainsi les gros débris de l'extrait cellulaire.

c) Centrifugations différentielles (KOLüDNER et TEWARI, 1972)

Pour se débarrasser des noyaux, des chloroplastes des amidons et des autres

débris cellulaires, le broyat est centrifugé pendant 10 minutes à 1000 g (BeclCman J6-B).

Le surnageant est récupéré et centrifugé 10 minutes à 10 000 g. Le culot enrichi en

mitochondries est resuspendu dans 10 ml du tampon d'extraction. Il est très important à

ce stade que les mitochondries soient bien resuspendues à l'aide d'un potter avant de

diluer la suspension obtenue avec 90 ml de tampon d'extraction. Les deux

centrifugations précédentes sont répétées sur la suspension de mitochondries. Le culot

final est très doucement resuspendu dans 10 m de tampon d'extraction. Pour obtenir du

DNA mitochondrial pur, il est indispensable à cette étape, de resuspendre les

mitochondries dans une solution contenant du MgCl2 (la mM). La suspension est alors

Page 20: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

8

traitée à la DNAse 1. L'action de la DNAse l est arrêtée par addition d'EDTA (l0 mM).

La suspension est ensuite centrifugée à 10 000 g et le culot repris dans du tampon

d'extraction.

d) Purification des mitochondries sur gradient de saccharose

Les mitochondries peuvent être purifiées. sur un gradient de saccharose..Ce gradient est constitué par trois couches de saccharose à 30,52 et 60% (de

haut en bas) dissous dans le tampon de lavage dont la composition est la suivante:

- 0,35 M Sorbitol- 50 mM Tris-HCl, pH 8-20 mM EDTA

On laisse le gradient s'équilibrer au moins 12h avant utilisation. Le gradient est

centrifugé Ih à 4°C à 83 000 g (25000 rpm). Les mitochondries sont collectées à

l'interphase 30%-52% avec une pipette stérile. La fraction mitochondriale est diluée avec

3 volumes du tampon de lavage. La dilution doit se faire très lentement et à 4°C afin

d'éviter les chocs osmotiques'- La suspension est ensuite centrifugée à la 000 g pendant

20 minutes et le culot constitué de mitochondries est repris dans 2 à 10 ml de tampon de

lavage.

3. LYSE DES MITOCHONDRIES ET EXTRACTION DES ACIDES

NUCLEIQUES

Lorsqu'on veut éviter la dégradation du RNA, on peut ajouter des inhibiteurs des

RNAses. Nous avons utilisé l'ATA (Acide Tri Aurintrocarboxylique ) à des

concentrations de 1 mM pendant la lyse et 50 ~M pour le stockage à long terme des

RNA. Cependant cet inhibiteur pose des problèmes car il est difficile à éliminer et inhibe

aussi certaines enzymes (par exemple, la polynucléotide-kinase). Nous ne l'avons utilisé

que pour la purification des RNA qui ont servi pour les expériences de transfert.

L'inhibiteur est rajouté dans le tampon de lyse. Les mitochondries sont lysées en ajoutant

0,25 volume du tampon de lyse à la suspension précédente. La composition du tampon

de lyse est la suivante:

- 10% (v/v) sarkosyl de sodium- 25 mM Tris-HCl pH 7,5- 20 mM EDTA

L'ensemble est homogénéisé par agitation lente. Le lysat est traité avec un volume

de phénol-chloroforme (v/v) contenant 0,8% d'hydroxyquinoline. Cette opération est

répétée jusqu'à la qisparition de l'interphase. La phase aqueuse est finalement extraite

avec un volume de chloroforme. Les acides nucléiques sont récupérés par précipitation en

Page 21: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

9

mélangeant la phase aqueuse avec 2,5 volumes d'éthanol pur et 1/10 volume d'acétate

de sodium 3 M, pH 5.

4. PURIFICATION DES ACIDES NUCLEIQUES

a) Purification des RNA de haut poids moléculaire

Les acides nucléiques totaux extraits des mitochondries sont précipités au

chlorure de lithium à une concentration finale de 2M. L'ensemble est gardé à 4°C pendant

au moins 6 heures avant d'être centrifugé à12000 rpm dans une centrifugeuse SIGMA,

pendant 20 minutes. Le culot contenant les RNA de grande taille est séparé du surnageant

contenant le DNA, les tRNA, le rRNA 5S et les produits de dégradation. Les grands

RNA sont redissous dans de l'eau et précipités de nouveau avec du chlorure de lithium.

On obtient ainsi une fraction exempte de contaminants en DNA et en RNA de petites

tailles.

b) Purification des tRNA

La méthode dérive de celIe décrite par GUILLEMAUT (1972).

Les surnageants des précipitations précédentes contiennent du DNA et les

RNA de petire taille. Pour purifier les tRNA, on procède d'une part à la dégradation du

DNA et d'autre part à la séparation des tRNA des autres petites molécules de RNA par

chromatographie.

a) Dégradation du DNA

Le surnageant de la précipitation au chlorure de lithium est précipité à l'aide

de 2 volumes d'éthanol. Le culot obtenu après centrifugation est séché et redissous dans

une solution contenant du MgC12 10 mM et du Tris-HCl pH 7,550 mM sous agitation

magnétique à ooC. On rajoute à ce milieu, de la DNAse l à 5 Ilg/ml et on laisse incuber

30 minutes dans la glace (ou 10 minutes à température ambiante). La réaction est arrêtée

par chauffage pendant 10 minutes à 65°C. Les RNA sont ensuite précipités par addition

de 2 volumes d'éthanol et de l/1O d'acétate de Sodium 3M pH 5. Après centrifugation, le

culot de RNA est séché et dissous dans du tampon L (cf paragraphe suivant).

[3) Purification des tRNA par chromatographie

La fraction 4S du RNA mitochondrial obtenu après avoir séparé les RNA de

haut poids moléculaire et dégradé le DNA, est composée de plusieurs autres ·molécules de

RNA de petites tailles. Pour séparer les tRNA des autres molécules de RNA, l'ensemble

de la fraction 4S est fractionné soit sur une colonne de DEAE-ceIlulose, soit sur une

colonne hydrophobe RPC-5 (KOTHARI et TAYLOR, 1973 ). Notre expérience nous a

montré que la purification sur RPC-5 est plus efficace en ce qui concerne les tRNA. Le

RNA de la fraction 4S est dissous dans du tampon Low contenant:

Page 22: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

- Tris-HCI- NaCI

10 mM pH 7,5O,2M

la

Ce milieu est déposé sur une colonne (DEAE ou RPC-S) et rincé

abondamment avec du tampon Low. Ceci pennet l'élimination des petits produits de

dégradation des acides nucléiques mitochondriaux. Les tRNA sont élués avec du tampon

H contenant :

- Tris-HCI- NaCI

10 mM pH 7,5lM

L'éluat est alors précipité à l'aide de 2 volumes d'éthanol. Après

centrifùgation, les tRNA sont séchés et dissous dans de l'eau bidistillée.

5. DOSAGE DES RNA

Le dosage des RNA est effectué par la mesure de la densité optique à 260 nm.

Pour un chemin optique de 1 cm, à cette longueur d'onde, 1 0.0. représente une

concentration en RNA de 40 llg/ml. Pour évaluer la pureté des RNA, une autre mesure

est faite à 280 nm. Le rapport 0.0. 260 nm/D.O..280 nm doit être compris entre 1,8 et

2, traduisant ainsi une absence de contamination protéique.

6. ANALYSE DES RNA PAR ELECTROPHORESE

a) Fractionnement des RNA de grandes tailles

Les grands RNA (rRNA, mRNA et dsRNA) ont été fractionnés par

électrophorèse sur gel d'agarose 1,S% en conditions dénaturantes. La dénaturation des

molécules de RNA est assurée par la présence de fonnaldéhyde dans le gel d'agarose

(LEHRACH et coll., 1977).

On dissout 1,S g d'agarose dans 72,8 ml d'eau par ébullition. L'agarose

dissous est refroidi à 60°C et on y ajoute la ml de tampon HEPES x 10 (200 mM

HEPES pH 8, la mM EDTA) et 16,2 ml de fonnaldéhyde. L'ensemble est coulé entre

deux plaques d'électrophorèse stériles. La base du gel est constituée par un socle de

polyacrylamide fait avec:

- 3,6 ml d'acrylamide-bisacrylamide 50-2,5%- 1 ml de tampon HEPES IOx- 5,3 ml d'cau bidistillée stérile .- 10 J..Ù dc T.E.M.E.D.- 90 J..Ù dc S.P.S. ou A.P.S. 10%

L'épaisseur du gel est de 2 mm.

Page 23: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

11

Avant de déposer l'échantillon de RNA sur le gel, on procède à une

dénaturation. On mélange ainsi 1 volume de la solution de RNA avec 3 volumes d'un

tampon de dénaturation contenant:

- 10 I.il de Tampon HEPES IOx- 50 I.il de Fonnamide (75% final)- 16 )lI de Fonnaldéhyde (9% final)

L'ensemble est chauffé à 65°C pendant 5 minute"s. On y ajoute ensuite 1 ~I de

Bleu de Bromophénol 0, 1% dans 50% de glycérol. L'échantillon dénaturé est alors

déposé sur le gel et la migration est faite à 120 V pendant 4 heures. On peut aussi faire

migrer à 40 V pendant 12 heures.

b) Fractionnement des tR NA

Les tRNA ont été fractionnés sur gel de polyacrylamide 15% en conditions

dénaturantes (présence d'urée 8 M) par la méthode de SANGER et COULSON (1978).

Le gel est constitué de :

- 15% acrylamide (Plv)- 0,75% bis-acrylamide (plv)- 8 Murée- 0,045 M T.E.B. (fris-borate 45 mM, EDTA 1,25 mM)- 0,07% de S.P.S. et 0,035% de T.E.M.E.D.

Le T.E.M.E.D. et le S.P.S., qui sont les catalyseurs de la polymérisation, sont

ajoutés juste avant de couler le gel entre les plaques d'électrophorèse. Le gel polymérisé

est soumis à une pré-migration pendant environ une heure. Avant d'être déposés sur le

gel, l'échantillon de tRNA est dénaturé en y ajoutant un volume égal de solution de dépôt

dont la composition est:

- 10 MUrée- 25 mM Acide citrique- 0,025% Xylène cyanol- 0,025% Bleu de Bromophénol

Le tampon d'électrophorèse est du T.E.B. 0,045 M et l'électrophorèse est

effectuée pendant 15 à 20 heures à 1000-1500 V.

Après migration, les bandes de RNA sont révélées en incubant le gel pendant

1 h dans du tampon T.E.B. 0,045 M contenant 0,5 llg/m1 de bromure d'éthidium. Le

gel est ensuite débarrassé de l'excès de bromure d'éthidium par plusieurs lavages

successifs dans du tampon d'électrophorèse. Une photographie du gel est ensuite prise

sous éclairage U.V.

Page 24: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

12

B. EXTRACTION DU DNA NUCLEAIRELa méthode utilisée est inspirée de celle décrite par DAVIS et coll. (1986).

La croissance et la récolte des plantules se fait comme décrit précédemment.

Après la récolte, les plantules sont broyées dans un mortier contenant de l'azote liquide et

le broyat est dilué dans un tampon d'extraction (400 ml pour environ 60 g de plantules)

dont la composition est la suivante:

'- 10 mM-0,25 M- 3 mM-25 mM- 50% (p/v)- 0,5% (P/v)-7 mM

Tris -HCl pH 7,8SucraseKClMgCl2

GlycérolTriton x 100

p-Mercapto-éLhanol

Le broyat est homogénéisé avec un appareil polytron, filtré sur un tamis de

nylon (25 llm) et centrifugé à 2000g pendant 10 minutes. Le culot est repris dans le

tampon d'extraction sans glycérol ni Triton, déposé sur une couche de sucrose 2M et

centrifugé à 2000 g pendant 10 minutes. Le culot de noyau est repris dans une solution

contenant 10% de Sarkosyl et 1 mg/ml de protéinase K, et laissé incuber au moins deux

heures. L'extrait est alors soumis à plusieurs extractions au phénol-chloroforme (v/v). La

phase aqueuse est ensuite déposée sur un coussin de CsCl (4 M) et centrifugée à

40000 rpm pendant 15 h dans une centrifugeuse LKB ( 2331,ultrospin 70 ). Le culot

translucide obtenu (contenant le DNA nucléaire) est resuspendu dans de l'eau bidistillée,

précipité avec 2 volumes d'éthanol et le DNA précipité est ensuite dissous dans 500 III

à 1 ml d'eau. La qualité du DNA est contrôlée par électrophorèse sur gel d'agarose. La

digestibilité du DNA nucléaire par des enzymes de restriction est aussi un contrôle de la

qualité de ce DNA.

C. EXTRACTION DES tRNA CHLOROPLASTIOUES1. ISOLEMENT DES CHLOROPLASTES

Nous avons utilisé la technique décrite par GUILLEMAUT et coll.( 1972).

Les feuilles fraîches sont généralement récoltées après 10 jours de croissance.

Elles sont lavées, découpées et broyées dans un appareil de type "Waring Blendor". Le

broyat est dilué dans un tampon d'extraction (1 1 pour 350 g de feuilles) dont la

composition est la suivante:

- 0,35 M- 50mM- 5 mM-7 mM- 1 g/l

MannitolTris-HCl'pH 8EDTAp-mercapto-éLhanolBSA

Page 25: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

13

L'ensemble est homogénéisé, filtré sur des toiles à bl uter de 100 )..lm puis 25 )..lm

de vide de maille, et centrifugé à 3 500 rpm (BECKMAN, 16-B) pendant 2 minutes à

4°C. Le surnageant est éliminé et le culot est remis en suspension dans le tampon

d'extraction ou l'EDTA est remplacé par du MgCI2 (14 mM). La suspension est

centrifugée de nouveau à 3 200 rpm (BECKMAN, 16-B) pendant 3 minutes et le culot

chloroplastique récupéré est suffisamment pur pour extraire les tRNA.

2. PURIFICATION DES tRNA

Le culot de chloroplaste est repris dans un tampon de lyse identique à celui décrit

en II.A.3. Les tRNA sont purifiés comme décrits précédemment pour les tRNA

mitochondriaux.

III. METHODES DE CLONAGE ET ANALYSE DES ACIDESNUCLEIQUESA. METHODES DE CLONAGE

1. REALISATION ET CRIBLAGE DES MINI-BANQUES

Pour disposer de tous les fragments de restriction issus de l'hydrolyse par une

enzyme de restriction donnée d'un cosmide contenant du DNA mitochondrial, nous

avons souvent été amenés à réaliser des mini-banques. Puisque l'objectif de notre étude

est la détermination de la séquence nucléotidique des fragments comportant des gènes de

tRNA, nous avons choisi le vecteur de séquençage M 13. Ce vecteur sera décrit dans le

chapitre concernant le séquençage (ITLB.2).

a) Digestion du DNA par les enzymes de restriction

La digestion du DNA par des enzymes de restriction se fait dans les conditions

conseillées par les fournisseurs. Elle est souvent réalisée dans un milieu réactionnel de 20

à 30 )..lI contenant:

- 1 à 5 Ilg de DNA- 2 à 3 ~ du laITIpon de digestion 10 x·4 U d'enzymes par Ilg de DNA- H20 qsp 20 à 30 III

Le milieu de réaction est incubé pendant au moins 40 minutes ou 2 heures

suivant l'enzyme utilisée. Quatre types de tampon de digestion sont utilisés et leur

composition est indiquée dans le tableau suivant:

Page 26: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Tampon A

Tampon B

TamponC

Tampon K

NaCl

SOmM

100 mM

KCl

20 mM

14

Tris-HCl

10 mM pH7,4

10 mM pH 7,4

50 mM pH 7,4

lOmMpH8

10 rru\1

10mM

10 mM

10 mM

DIT

lmM

lmM

La réactiôn est arrêtée par addition de 1/4 du volume de t.a~pon de charge qui

sert en même temps pour le dépôt des échantillons sur le gel d'agarose. Le tampon de

charge est composé de :

-40%- 5 mM- 0,1%- 0,025%- 0,025%

SaccharoseEDTASDSde Bleu de Bromaphénalde Xylène Cyanal

b) Analvse des fragments de restriction par électrophorèse sur gel d'agarose

Le fractionnement par électrophorèse sur gel d'agarose horizontal permet à la

fois d'analyser la taille des fragments de restriction et de s'assurer que la réaction

d'hydrolyse a été totale.

La concentration en agarose varie gelon la taille des fragments à analyser, de

0,7% (SOO pb à 8 kb) à 1,5% (de 300 pb à 2 kb).

Le gel est réalisé en fondant l'agarose par ébullition dans du tampon

d'électrophorèse T.E.B. (Tris-borate 89 mM pH 8, EDTA 2 mM). Après refroidissement

à 60°C, on rajoute au gel du bromure d'éthidium à une concentration finale de 0,5 ~g/ml.

On laisse le gel se solidifier à température ambiante en prenant soin d'aménager des

poches de dépôts. L'électrophorèse est effectuée à S Vlem et le niveau de migration est

contrôlé en exposant le gel sous une lampe U.V. Un témoin de migration, constitué par

une solution de ilONA ladder, BRL" est analysé en parallèle. En fin de migration, une

photo du gel est prise sous U.V. en utilisant le système Polaroïd.

e) Ligation des fragments de restriction avec le vecteur de clonage

La ligation des fragments de restriction avec le vecteur est effectuée grâce à la

T4 DNA ligase (WEISS et coll. 1968). La réaction de ligation est très importante dans le

processus de clonage c~r elle influe directement sur la quantité de recombinants et sur

leur qualité. Ceci est détenniné par le rapport molaire entre le vecteur et les inserts.

Page 27: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

15

Généralement, un rapport de 5 molécules d'insert pour une molécule de

vecteur est utilisé. Il est cependant important de faire une gamme de ce rapport lorsqu'on

veut constituer une mini-banque car la taille des fragments et leur abondance sont des

facteurs qui influent sur la qualité de la ligarion. Le milieu réactionnel comprend:

lU

100 à 1000 ng100 ng

70mM7mM5mMImM

- DNA à insérer- Vecteur- Tris-HCl pH 7,5- MgCl2-DIT- (r)A1P- Spermidine 1 mM- T4 DNA ligase

La réaction est effectuée à 14°C pendant au moins 12 heures ou bien à

température ambiante pendant 2 heures pour les fragments de DNA ayant des extrémités

cohésives. Dans le cas des fragments de restriction ayant des extrémités franches, il est

utile d'augmenter la concentration en enzyme (2 Unités) et de favoriser le rapprochement

des extrémités par adjonction de chlorure d'hexamine cobalt (Ill) à une concentration

finale de 1,25 mM.

On arrête la réaction par addition de 1 ~l d'EDTA 0,5 M.

d) Transformation d'E,çQ{i par les plasmides recombinants

a) Souches d'E.coli utilisées

Deux souches d'E.coli K12 nous ont servi pour la transformation: lM 103

et NM 522. Ces souches ont les phénotypes suivant:

JM 103 : thi, strA, endA, sbc B15, hsd R4, Ll (lac-proAB)/{F', tra D36,

proAB, lac IqZ.M15], strep R, modification +, restriction-

NM 522: thi, supE, Ll hsds Ll (lac-proAB)/{F', proAB, laclq.2 LlM15],

modification -, restriction -

Ces souches sont caractérisées par l'absence de l'opéron lactose dans le

DNA chromosomique. Elles contiennent un épisome F' porteur du gène de la 13­galactosidase modifié et le répresseur de l'opéron lac est produit constitutivement à la

suite d'une mutation dans son promoteur (MESSING et coll., 1977).

f3) Transformation des bactéries par la méthode de Hanahan

.: Préparation des cellules compétentes

L'objectif de la préparation de cellules compétentes est de fragiliser la

paroi bactérienne pour permettre une meilleure pénétration du DNA. La méthode que

nous avons utilisée est une méthode chimique qui a été développée par HANAHAN

(1983).

Page 28: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

' ...

16

Les cellules (lM 103 ou NM 522) sont conservées sur du milieu

déficient en proline afin de permettre la conservation de l'épisome F' et d'empêcher la

contamination par d'autres souches d'E.coli non porteuses de cet épisome. Pour avoir

des cellules vigoureuses, on procède à une préculture dans du milieu riche L.B. (cf

annexe2). 100 ~l de cette culture est remis à pousser dans 50 ml de milieu SOB (cf

annexe 2) en présence d'ion Mg++ (1 M MgCl2 - MgS04) à 37°C sous agitation. La

croissance des bactéries est arrêtée lorsque la D.O. à 550 nm atteint 0,6 en plaçant le

milieu de culture dans la glace pendant 15 mn. Le milieu est centrifugé à 2000 g (O°C) et

le culot bactérien est resuspendu dans 8 m de milieu T.F.B. (cf annexe 2) et placé dans la

glace pendant 15 minutes. Les bactéries sont une nouvelle fois sédimentées à 2000 g et

le culot est resuspendu dans 2 ml de T.F.B. On ajoute au milieu 70 ~l de DMSO et on

laisse incuber 5 minutes dans la glace. 70 ~l de DTT 2,2 M sont ensuite additionnés au

milieu et l'ensemble est laissé 10 minutes dans la glace. Enfin, 70 ~l de DMSO sont

rajoutés et l'incubation est prolongée de 5 minutes après lesquelles, les cellules sont

compétentes et prêtes à être transformées.

.: Transformation

Les cellules compétentes sont réparties (200 ~l par tube) et on dépose

dans chaque tube une aliquote de DNA issue de la ligation. L'ensemble est homogénéisé

doucement et mis dans la glace. Après 40 minutes d'incubation, les cellules sont

soumises à un choc thermique (42°C, 2 minutes) ayant pour but de favoriser la

p~nétration du DNA adsorbé sur la paroi, dans les bactéries. Les tubes sont remis dans la

glace après le choc thermique pendant au moins 3 minutes. Les cellules transformées sont

ensuite diluées avec 800 ~l de L.B., sédimentées à 2000 g pendant 10 minutes pour

éliminer le DTT et le DMSO toxiques pour les cellules. Les bactéries sont ensuite

resuspendues dans 200 ~l de L.B.

.: Sélection des bactéries transformées

Le vecteur M13

Une série de souches du bactériophage M13 a été développée

(MESSING, 1983) dans le but de l'utiliser comme vecteur de clonage. Ces souches

dérivent de la souche sauvage par insertion dans une région intergénique, d'une séquence

portant des sites uniques de restriction. Ces sites sont utilisés pour l'insertion de

fragments de DNA étranger. Le bactériophage M13 est constitué d'une molécule de DNA

circulaire monocaténaire entourée d'une protéine capsidaire. Dans son cycle infectieux le

M13 passe par une forme bicaténaire qui est en fait la forme replicative. Cette forme

replicative a toutes les caractéristiques d'un plasmide et il est possible de l'utiliser comme

vecteur de clonage. Par les systèmes de clonage classique, on peut insérer du DNA

étranger dans cette molécule bicaténaire et transformer les souches E.coli réceptrices. La

Page 29: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

17

bactérie transformée produit alors des particules phagiques recombinantes. Le DNA

simple brin de l'insertion peut aussi être analysé et sa séquence nucléotidique déterminée

par la méthode de SANGER.

. Principe

Les vecteurs M 13 (mp 18-mp 19) utilisés pour le clonage dans nos

expériences comportent le gène du peptide a. de la ~-galactosidase et les régions

régulatrices de l'opéron lactose. En transformant les souches d'E.coli décrites plus haut

avec ce vecteur, on réalise une complémentation avec l'épisome F' pour l'activité ~­

galactosidase. La bactérie transformée est donc capable d'hydrolyser le lactose. En

utilisant des analogues structuraux du galactose, on peut sélectionner les bactéries qui ont

été transformées. Deux analogues sont utilisés à cet effet: l'IPTG (isopropy1/~-D

thiogalactoside) et le X-gal (5-bromo, 4-chloro ; 3-indolyl ~-D galactoside). L'IPTG

active l'opéron lactose et la ~-galactosidase produite hydrolyse le X-gal (qui est incolore)

en bromochloro-indole qui est un produit bleu. Toutes les bactéries comportant le vecteur

intact donnent par conséquent des plaques bleues sur un tapis bactérien. Par contre,

l'introduction d'un fragment de DNA dans le gène de la ~-galactosidase du vecteur

inactive son activité. Les plaques sont alors incolores. On reconnait ainsi les clones

recombinants .

. Culture et sélection des cellules recombinantes

Les bactéries transformées contenues dans les 200 J.ll de L.B. sont

réparties en 3 aliquotes (1/100, 1/10 et environ 8110). Chaque aliquote est mélangée à

3 ml de L.B. agar 0,8% conservé à 42°C (cf annexe 1) contenant:

- 40 III de X-Gal dissout dans le diméthylformamide- 20 III de IPTG 100 mM- 50 III de bactéries non transformées en phase exponentielle de croissance

L'ensemble est étalé sur une boîte de pétri contenant du L.B. agar 1,5%

(cf annexe 2) et laissé refroidir à température ambiante. Les boîtes sont renversées une

fo~s que le L.B. agar 0,8% s'est solidifié et sont gardés à 37°C. Les premières plaques

sont detectables après 4 h de culture mais l'induction de l'activité ~-galactosidase est

visible plus tardivement.

e) Analyse des clones recombinants

Le bactériophage M13 présente l'avantage d'être sous deux formes: sous

forme de phage à DNA monocaténaire dans le milieu de culture, et sous forme de

plasmide (forme replicative) dans la bactérie. Les clones recombinants peuvent donc être

analysés sous ces deux formes.

Page 30: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

18

Après la culture des transformants sur boîte de pétri pendant au moins

12 heures, on distingue des plaques bleues représentant les transformants ne contenant

que du M13 natif et des plaques blanches représentant les transformants recombinés. Les

phages de ces plaques peuvent être repiqués dans 2 ml de L.B. contenant des cellules

fraîches non transformées. De cette manière, le clone est amplifié. La culture se fait

pendant 5 heures au minimum, à 37°C et sous une très fone agitation. Après la culture, le

milieu est centrifugé à 10 000 rpm pendant 10 minutes et le surnageant contenant les

phages est séparé du culot bactérien. Les bactéries contiennent le DNA recombinant sous

sa forme replicative bicaténaire.

ex) Analyse des phages

:. Analyse directe

Le surnageant phagique peut être directement analysé par électrophorèse

sur gel d'agarose. Pour cela, 20 ~l de surnageant sont mélangés avec 5 ~l d'une solution

qui sert à la fois de tampon de charge et de tampon de lyse, dont la composition est la

suivante:

- 60%- 3% S.D.S.·0,083%- 25 mM

Fonnamide

Bleu de BromophénolEDTApH8

L'ensemble est placé 5 minutes à 65°C, laissé refroidir 5 minutes et

déposé sur un gel d'agarose contenant du B.E.T. (0,5 ~g/ml). L'électrophorèse se fait à

20-100 V. Les échantillons sont analysés en même temps qu'un témoin ne contenant que

du M13 natif. On peut déterminer ainsi, d'une manière grossière, la taille des phages

recombinants. Cette méthode est indicative mais ne renseigne pas sur le nombre ni la

qualité des insertions.

:. Analyse des phages après purification du DNA

Le DNA phagique peut être extrait avant d'être soumis à une

électrophorèse sur gel d'agarose. Pour cela, 1 ml de surnageant phagique est mélangé

avec 0,25 ml d'une solution de P.E.G. 20% - NaCI 2M. L'ensemble est homogénéisé en

vonexant et placé au moins 30 minutes dans la glace. La solution est ensuite centrifugée

20 minutes à 12000 rpm. Le culot contient les phages précipités. Le surnageant est

enlevé et les parois soigneusement nettoyées. Le culot est ensuite dissous dans 200 J.11

d'eau et soumis à une série d'extractions au phénol-chloroforme (v/v). Le DNA de la

phase aqueuse finale est précipité en y ajoutant 2,5 volume d'éthanol et 1/10 de volume

d'acétate de sodium 3 M pH 5 et placé à -20°C pendant au moins 2 heures. Après

centrifugation à 12000 rpm, le culot de DNA est lavé avec de l'éthanol 70%, séché et

Page 31: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

19

redissous dans la à 50 III d'eau bidistillée. Une aliquote de cette solution peut être testée

sur gel d'agarose comme précédemment.

:. Hybridation croisée des DNA phagiques :

Pour isoler deux à deux des phages contenant le même fragment de

DNA inséré dans les orientations opposées, on peut procéder à l'hybridation des DNA

simple-brins phagiques des clones recombinants. On peut faire cette hybridation en se

servant soit du surnageant phagique, soit des DNA simple-brin purifiés. Le milieu

réactionnel contient:

- DNA1- DNA2- NaCI-SDS- Formamide déionisée-EDTA- Bleu de bromophénol

500 ng (ou 101J1 de surnageant phagique)500 ng (ou 101J1 de surnageant phagique)

0.25 M1%12%5mM0.02%

L'ensemble est placé à 65°C pendant 1 heure, puis laissé refroidir à

température ambiante pendant 15 minutes et analysé par électrophorèse sur gel d'agarose.

Quand les insertions des phages 1 et 2 sont constituées de séquences

complémentaires, leur hybridation donne une molécule plus lourde qui est retardée par

rapport aux simple-brins lors de la migration.

{3) Analyse des plasmides

:. Méthodes de purification des plasmides

.Méthode alcaline

Cette méthode est inspirée de celle décrite par MANIATIS et coll.

(1986). C'est une méthode de choix pour la préparation de plasmide à partir de petites

cultures. Le culot bactérien (2m!) est resuspendu dans 120 III d'une solution contenant:

- 50mM- 25 mM-lOmM

GlucoseTris-HO pH 8EDTA

L'ensemble est homogénéisé et laissé dans la glace la minutes. La

présence du glucose assure la pression osmotique. A la suspension de bactéries, on

ajoute 80 III de lysozyme (20 mg/ml) fraîchement préparé et on incube 10 minutes dans la

glace pour permettre une lyse ménagée de la paroi des bactéries. On procède ensuite à la

dénaturation des acides nucléiques et des protéines en ajoutant 160 /-11 d'une solution de

dénaturation (0,2 N NaOH, 1% SDS) et en incubant 5 minutes dans la glace. A ce stade,

Page 32: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

20

il est important de ne plus agiter fortement dans le souci de ne pas casser le DNA

nucléaire qui pourrait éventuellement contaminer la préparation de plasmides.

A la solution précédente, on additionne 80 III d'une solution d'acétate de

potassium 5 M pH 4,8. Le changement brusque du pH du milieu qui s'en suit entraîne la

renaturation rapide des molécules de DNA. Les plasmides et autres petites molécules sont

reconstituées mais le DNA génomique bactérien forme un réseau désordonné qui

précipite avec les protéines dénaturées. Par centrifugation à 12 000 rpm pendant 20

minutes, on sédimente ce réseau et le surnageant contenant les plasmides est récupéré,

traité deux fois au phénol-chlorQfurrne et précipité par addition de 2,5 volumes d'éthanol

pur.

. Méthode du lysat clair

Cette méthode (DAVIS et coll., 1986) peut être aussi appliquée à la

purification du DNA cosmidique.

Les bactéries contenues dans 5 à la ml de culture sont centrifugées à

12 000 rpm (SIGMA) pendan.t 10 minutes. Le culot bactérien est resuspendu dans 50 III

de tampon S.T. (25% Sucrose, 50 mM Tris-HCl pH 8). L'ensemble est mis dans la

glace; on y ajoute 25 III de lysozyme (20 mg/ml) et on laisse incuber 5 minutes. On

ajoute ensuite 62,5 III d'EDTA (0,2 M) pour arrêter la réaction avant d'ajouter 162,5 III

de tampon de lyse dont la composition est pour 100 ml :

- 1 ml Triton 10%- 31 ml EDTA (2Na) 0,2 M pH 8- 5 ml Tris-HCl 1 M pH 8- H20 qsp 100 ml

Sans vortexer, on laisse 15 minutes dans la glace et on congèle ensuite

l'ensemble à -80°C avant de laisser fondre à 37°C. Cette opération peut être répétée. Le

milieu est ensuite centrifugé à 12 000 rpm (SIGMA) le surnageant plasmidique est

récupéré et le DNA extrait comme précédemment. Dans les deux cas, on peut purifier

d'avantage le DNA plasmidique sur un coussin de CsCI comme cela a été décrit par

MANIATIS et coll., (1986).

Les deux méthodes sont aussi applicables à de plus grands volumes de

cultures bactériennes. On ajuste alors les proportions des solutions utilisées.

r) Autres métlwdes de criblage de la mini-banque

.: Criblage par analyse des profils de restriction

Le criblage des clones recombinants peut être effectué en analysant le

profil de restriction du DNA plasmidique de ces clones. Le plasmide est alors soumis à

Page 33: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

21

une ou plusieurs digestions enzymatiques permettant non seulement d'identifier les

clones recombinants mais aussi de les classer qualitativement.

~ Criblage par hybridation

Lorsqu'on cherche à isoler un clone contenant un fragment de restriction déjà

caractérisé dans une mini-banque, on peut procéder par hybridation. Le fragment de

restriction concerné est alors purifié comme cela est décrit en IlLA.2.a et marqué suivant

le protocole décrit en IlLB. L'hybridation se fait dans les conditions décrites en IlLe.

Pour transférer les plaques de la mini-banque on suit le protocole suivant qui dérive de la

méthode décrite par MANIATIS et coll., (1986) :

Des rondelles de nitrocellulose (85 mm diamètre) sont déposés sur les boîtes

de Pétri contenant les phages. Des répères d'orientation sont marqués sur les filtres et le

transfert se fait pendant 5 minutes. Les phages fixés à la nitrocellulose sont alors traités

au SDS 10% pendant 5 minutes puis dénaturés (0,2 M NaOH) pendant 5 minutes et

enfin mis au contact d'un tampon de neutralisation (O,5M Tris-HCl pH 8). Les filtres

sont enslJite séchés à température ambiante puis passés au four à 80°C pendant 2 heures.

Ces filtres sont hybridés avec la sonde radioactive. Les clones posirifs révélés après

l'autoradiographie sont repiqués individuellement et analysés par les méthodes décrites

précédemment.

2. CLONAGE DE FRAGMENTS PURIFIÉS

Au lieu de réaliser une mini-banque, on peut effectuer le clonage d'un fragment

précis, déjà caractérisé. Pour cela, il faut purifier le fragment concerné. Nous avons

souvent purifié les fragments de restriction après les avoir fractionnés par électrophorèse

sur gel d'agarose.

a) Purification des fragments de restrictiona) Utilisation de gel d'agarose à basse température de fusion

Les gels d'agarose à basse température de fusion (FMC, Biocorp., USA)

ont les mêmes propriétés que les gels d'agarose normaux en ce qui concerne leur capacité

de fractionnement des fragments de DNA. Ils ont en plus l'avantage de pouvoir se

liquéfier en dessous de 60°C, ce qui permet une extraction plus facile des fragments de

DNA sans risquer leur dénaturation. L'électrophorèse a lieu dans les mêmes conditions

que les gels classiques. Le morceau de gel contenant le fragment de restriction d'intérêt

est découpé après la migration et incubé à 60°C pendant 10 minutes. Le gel fondu est

ensuite dilué 3 à 4 fois avec de l'eau distillée et extrait 3 à 4 fois avec du phénol. Nous

évitons le chloroforme qui favorise la formation'd'un culot translucide qui s'avère

Page 34: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

22

inhibiteur pour les réactions de ligation. Le DNA de la phase aqueuse est précipité à l'aide

de 2,5 volumes d'éthanol.

{3) Filtration des morceaux d'agarose contenant du DNA

On peut aussi extraire les fragments à cloner en séparant la phase aqueuse

qui les contient de la phase solide du gel d'agarose. Pour cela, après l'électrophorèse, le

morceau d'agarose contenant le fragment d'intérêt est placé dans un tube de type Costar

contenant un filtre de nitrocellulose. Ce filtre se caractérise par sa faible rétention pour les

acides nucléiques. Le filtre sépare le morceau de gel du fond du tube. L'ensemble est

ensuite centrifugé à 12 000 rpm pendant au moins 20 minutes. La phase aqueuse

contenant le DNA se retrouve alors au fond du tube et la phase solide est éliminée avec le

filtre. La phase aqueuse est extraite avec du phénol et le DNA est récupéré par

précipitation à l'aide d'éthanol.

b) Clonage des fragments purifiés

Tout le reste de l'opération se fait comme dans le cas d'une mini-.banque.

L'avantage du clonage de fragments spécifiques est que le rapport de ligation est facile à

déterminer puisqu'on peut connaître la taille et la quantité de l'insert. De plus, le criblage

est plus facile.

3. SOUS-CLONAGE DES FRAGMENTS DE DNA EN VUE DE LEUR

SEQUENÇAGE

a) Sous-clonage basé sur la cartographie de restriction

Lorsqu'un fragment de restriction dépasse 500 pb en longueur, il est utile de le

découper en fragments de plus petites taille pour déterminer sa séquence nucléotidique.

Pour cela, on utilise une batterie d'enzymes de restriction à site de coupure fréquents

(enzymes comportant 4 nucléotides dans leur site de coupure) pour établir la carte

physique du fragment. Ces petits fragments sont sous-clonés et leur séquence

nucléotidique peut être facilement déterminée.

b) Utilisation d'oligonucléotides de synthèse

Il peut arriver que, dans certains cas, on ne retrouve pas de site de restriction

adéquat permettant de sous-cloner certaines régions d'un fragment de DNA. Ces régions

peuvent être séquencées en utilisant des oligonucIéotides de synthèse. La séquence de ces

oligonucléotides est déterminée à partir de la séquence des régions déjà connues. Ils vont

servir d'amorce pour la détermination de la séquence nucIéotidique des régions

inconnues par la méthode de SANGER (1977).

Page 35: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

23

c) Sous-clonage par la technique du cyclone

Nous avons aussi urilisé la technique de sous-clonage par délétion séquentielle

à la T4 DNA polymérase développée par DALE (1984) et améliorée par les laboratoires

lBI. Le principe de cette méthode est schématisé sur la figure 2.

Cette méthode permet d'obtenir une population de clones dont les insertions

sont de plus en plus petits et se chevauchent. En sélectionnant les clones en fonction de la

taille de leurs inserts (III.A.l), on peut aligner de manière ordonnée les séquences

obtenues.

La première étape de cette méthode consiste à hybrider un oligonucléotide au

DNA simple brin du phage recombinant. Cet oligonucléotide est situé en 3' de l'insert à

analyser et recouvre une partie du vecteur comportant un site de restriction EcoRI pour la

série impaire du vecteur Ml3 (mp9, mpl1, mpl9, etc... ) ou HindlII pour la série paire

(mp8, mp 10, mp 18, etc...). Après l'hybridation, le DNA est linéarisé à l'endroit où il est

bicaténaire par l'action de l'enzyme adéquat.

Dans la deuxième étape, le DNA linéarisé est soumis à l'action 3'

exonucléasique de la T4 DNA polymérase. La réaction est arrêtée à des intervalles de

temps réguliers de manière à avoir des inserts de moins en moins grands. Les différentes

aliquotes sont ensuite réunies et soumises à l'action de la Terminal-désoxyribonucléotidyl

transférase en présence de dATP ou de dGTP. Cet enzyme synthétise donc une queue

poly dA (pour les vecteurs pairs) et poly dG (pour les vecteurs impairs). Ces queues sont

complémentaires à la partie S' des oligonucléotides utilisés plus haut. Ainsi, en

rehybridant les DNA simple brin avec ces oligonucléotides, on peut recirculariser les

fragments obtenus après l'action de la T4 DNA polymérase.

La troisième étape consiste à faire agir de la T4 DNA ligase sur le DNA

recircularisé de manière à refermer les molécules sur elles-mêmes. Ces molécules

serviront ensuite à transformer des bactéries (E.coli) par la méthode décrite en IILA.!.

Le criblage et la sélection des clones se font comme décrit précédemment. Pour la

réalisation de la technique, nous avons suivi les indications du fournisseur (IBI système

RDS). Il est indispensable de s'y conformer.

B. TECHNIQUES DE MARQUAGE RADIOACTIF DES SONDES

1. MARQUAGE DU DNA

a) Marquage à partir de DNA simple brin

Le principe des marquages utilisés dans nos expériences a été décrit par

FEINBERG et VOGELSTEIN ( 1983 ).

Il s'agit en fait de synthétiser le brin complémentaire du DNA simple-brin

matrice en y incorporant un ou plusieurs nucléotides marqués (suivant l'activité

spécifique recherchée). Le DNA phagique est hybridé préalablement avec un

Page 36: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

24

oligonucléotide de synthèse (il peut s'agit de l'amorce universelle ou d'un

oligonucléotide spécifique). Le milieu d'hybridation contient :

- 10 à 100 ng de DNA simple brin- 1 à 2,5 ng d'oligonucléoLide- 1 J.Ù de tampon Klenow IOx (100 mM Tris pH 8, 50 mM MgCI2)- H20 qsp 10 III

L'hybridation se fait à 65°C pendant 15 minutes. Le milieu est refroidi à

température ambiante. On dépose 5 III de la solution précédente dans un tube contenant

10 IlCi de a-[32P]dATP (400 Ci/mmoles) séchées et on mélange avec 5 III d'une

solution d'élongation contenant du dCTP, du dGTP et du dTTP à la concentration

uniforme de 0,5 IlM et 1 unité de l'enzyme de Klenow. L'ensemble est vortexé,

brièvement centrifugé et mis à incuber pendant 10 minutes à 37°C. On y ajoute ensuite

2 III d'une solution de chasse contenant les 4 désoxyribonucléotides à la concentration

uniforme de 0,5 IlM et on laisse incuber pendant 10 minutes supplémentaires. La

réaction est arrêtée en chauffant le milieu à 65°C pendant la minutes. Les

désoxyribonucléosides en excès sont éliminés par chromatographie sur DEAE cellulose

ou par une série de précipitations à l'éthanol.

b) Marquage du DNA double brin

La méthode de marquage des DNA double brin que nous avons utilisée est

similaire à la méthode décrite pour les simple brins. Le DNA double brin est simplement

dénaturé par chauffage 5 minutes à 90°C et refroidissement immédiat avant de servir

comme matrice. Nous avons souvent utilisé pour la synthèse des brins complémentaires

une solution d'amorces multiples (Amersham).

c) Marquage des oligonucléotides de synthèse

Nous avons utilisé la méthode de marquage des oligonucléotides en 5' décrite

par MANIATIS et coll. (1986). Cette technique utilise la T4 polynucléotide kinase

(P.N.K.) et du y_[32p] dATP pour fixer en 5', un nucléotide marqué. Le milieu

réactionnel contient :

- 10 ng de l'oligonucléolide- 10 unités de P.N.K.- 1 J.Ù du tampon P.N.K. lOx- 10 IlCi y_[32p]-dATP (3000 Ci/mmole)- H20 qsp 10 III

Page 37: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

25

Le tampon P.N.K. lOx a la composition suivante:

- 0,5 M Tris-HCI pH 7,6- 0,1 M MgCIZ- 50 mM DIT- 1 mM spennidine-1 mMEDTA

La réaction se fait à 3rC pendant 30 minutes et elle est arrêtée par addition de

2 JlI d'EDTA 0,5 M. Les désoxynucléotides radioactifs non incorporés sont éliminés par

une série de précipitations à l'éthanol.

2. MARQUAGE DES tRNA

a) MarQuage en 3' à l'aide de la T4 RNA ligase

La technique utilisée dérive de celle d'ENGLAND et UHLENBECK (1978)

modifiée (BRUCE et UHLENBECK, 1978). La T4 RNA ligase catalyse la formation

d'une liaison phosphodiester entre le phosphate S' (d'un RNA simple brin et l'hydroxyle

3' d'un autrepNA ou RNA simple brin (SUGINO et coll., 1977). Cet enzyme est utilisé

pour incorporer le [32p] pCp à l'extrémité 3' des molécules de tRNA.

Les tRNA sont dénaturés avant le marquage par addition de DMSO (26% v/v)

et par chauffage à 100°C pendant 1 minute, suivit d'un brusque refroidissement à O°e. Le

milieu de marquage est composé de :

- 80 mM-25 mM-40 mM- 0,2 mM- 0,5 Unilés- 5!lg- 50 !lCi

Tris-HCI pH 7,5MgCIZDITAT?

T4 RNA ligasetRNA dénalurés[32Pl pCp (300 Ci/mmole)

La réaction est effectuée à 15°C pendant 3 heures et arrêtée par chauffage à

6SoC pendant S minutes. Les tRNA marqués sont séparés du pCp résiduel par

chromatographie sur RPC-S (II.A.4.b).

b) Marquage à l'extrémité 3' à l'aide de la tRNA nucléotidyl transférase

La tRNA nucléotidyl transférase (CCAse) catalyse l'incorporation spécifique

des nucléotides C, C et A à l'extremité 3' des tRNA. Puisque nous extrayons des tRNA

matures qui comportent déjà ce trinucléotide, il est nécessaire par conséquent

d'hydrolyser ces tRNA de façon ménagée avant de procéder au marquage à l'aide de la

CCAse.

Page 38: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

26

Les tRNA (5 Ilg) sont mis dans un milieu réactionnel contenant du MgCl2

(10 mM) et du Tris (50 mM pH 8) et traités avec 0,5 Ilg de phosphodiesterase du venin

de serpent (P.D.E.) à 20°C (SILBERKLANG et coll. 1979). Des aliquotes sont

prélevées à 5, 10 et 15 minutes et traités immédiatement au phénol. Les phases aqueuses

sont ensuite réunies, extraites une nouvelle fois au phénol-chloroforme v/v) et les tRNA

sont précipités à l'éthanol. Les tRNA précipités sont repris dans un volume minimal

d'eau (1 à 5 Ill) bidistillée.

La réaction de marquage se fait dans un milieu de la III qui contient :

- 5 J.l.g- 30 lJM- 6 J.l.g-25 mM-lOmM- 50 J.l.M-8mM

de tRNA traités à la P.D.E.a_[32p] ATP (3000 Ci/mmole)CCAseTris-glycine pH 8,9MgCl2CTPDIT

La réaction est arrêtée par addition de 1 III d'EDTA 0,5 M. Les tRNA sont

purifiés comme précédemment.

Dans les deux cas, on peut analyser les tRNA marqués par électrophorèse sur

gel d'acrylamide 15% en conditions dénaturantes (II.A.6.b).

C) TECHNIQUES DE TRANSFERT ET D'HYBRIDATION1. METHODES DE TRANSFERT

a) Trans/en des acides nucléiques par capillarité

Les fragments de DNA séparés sur gel d'agarose sont transférés sur membrane

de nylon (Genscreen plus, NEN ; Hybond, Amersham) d'après une méthode qui dérive

de celle décrite par SOUTHERN (1975). Après électrophorèse, le gel contenant les

fragments de restriction est plongé pendant 30 minutes dans une solution alcaline (0,5 N

NaOH, NaCI 1,5 M) afin de dénaturer le DNA. Le gel est ensuite rincé avec de l'eau

distillée puis replongé dans une solution de neutralisation (Tris-Hel 0,5 M pH 7,5 ; 1,5

M NaCI) pendant 30 minutes.

Le gel est ensuite placé dans un bac à électrophorèse horizontal sur 3 couches

de papier Whatman 3 MM. Les extrémités de la couche inférieure de papier trempent

dans le tampon de transfert 20 x SSC (Nael 3 M, citrate de sodium 0,3 M) contenu dans

le réservoir du bac. On dépose sur le gel une membrane nylon découpée à sa taille. Deux

morceaux de papier 3 MM de même taille sont ensuite déposés -sur le filtre puis

recouverts par une pile de papier absorbant. Un poids de 1 kg environ est disposé sur

l'ensemble et le transfert du DNA se fait pendant que le tampon imbibe le papier

absorbant par capillarité. Le transfert dure au moins 12 heures.

Page 39: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

~ ,.,]lon

[ '''n,'",m"""

~O>-n

) .~'n·~

o22·rr(l('

~

~~

vv- dG lail---........

ij enrœl Z2-mYQroom .11.

~ cloave wifh EcoRl

0'~ ~~~nuc'ease diQeSllon

, DNA Dolym~rase)

5' ... ~.YT

b[ '"n""'m, ]Ion,

) '00'" 29'~'

~29 -rJ)er

~

~~~A)n

---'\~ dA tail___'YV't

ij anneal 29-mer

~ cloave wllh Krd"

0'~ ~~~nuclease dlQoslion"ONA po'ym,,"sc)

5' 3'ah

a

FIGURE 2: Schéma montrant les différentes étapes dusous-clonage par délétion séquentielle à laT4-DNA polyinérase ( DALE et coll., 1985 )

Page 40: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

27

La membrane est détachée du gel après le transfert et la position des poches et

l'orientation du gel sont marquées au crayon gras. La membrane est débarrassée des

morceaux d'agarose par un bain de 2 minutes dans du 2 x SSC puis le DNA y est

irréversiblement fixé par une irradiation de 5 minutes aux U.V.

Le transfert des RNA peut aussi se faire par capillarité mais le gel n'est pas

traité à la ~oude avant le transfert.

b) Transfert des tRNA sur membrane nylon

Les tRNA ont été fixés sur membrane nylon par transfert électrique

("electro-blotting"). Le procédé est inspiré du système I.B.I. (HBS). Le bac à transfert

provient du même laboratoire. Après l'électrophorèse, le gel d'acrylamide contenant les

tRNA est mis à équilibrer (2 x 30 minutes) dans 300 ml de tampon 0,25 x TEA (cf

Annexe). Les dimensions du gel augmentent après cet équilibrage et il est par conséquent

préférable de ne découper le filtre aux dimensions du gel qu'après cette opération. Nous

avons utilisé des membranes Hybond-N (Amersham). Après avoir mis la membrane au

contact du gel, l'ensemble est fixé entre deux éponges de type "scotch-brite" et coincé par

deux grilles plastiques. Ce dispositif est placé dans un tampon (0,25 x TEA) contenu

dans une cuve à transfert La cuve est munie de deux électrodes qui sont alors branchées

sur .un générateur. Le transfert est effectué en'mettant le générateur.sous tension pendant

20 mn à 0,15 ampères puis 1 heure à 0,5 ampères. Après le transfert, la membrane est

rincée avec 0,25 x TEA et séché à l'air. Le filtre est ensuite passé au four à 80°C pendant

deux heures. Cette opération est très importante car elle améliore considérablement les

signaux d'hybridation.

2. TECHNIQUES D'HYBRIDATION

La composition des milieux d'hybridation change en fonction du type d'acide

nucléique fixé sur membrane.

a) Membranes comportant des fragments de DNA

u) Préhybridation

La membrane sur laquelle est fixé le DNA est préhybridée pendant 2 à

12 heures dans le tampon d'hybridation dont la composition est:

- Tris-HCl-EDTA- SDS-NaCl

10 mMpH 81mM1%lM

Page 41: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

28

{3) Hybridation

La membrane préhybridée est replacée dans une nouvelle solution de

tampon d'hybridation. Cette solution contient la sonde radioactive que l'on a

préalablement dénaturé en chauffant à 100°C pendant 5 minutes et en refroidissant

brusquement dans la glace. L'hybridation a lieu entre 37°C et 65°C en fonction de la

sonde utilisée. Pour les désoxyoligonucléotides de synthèse, la température

d'hybridation est calculée de telle manière à être effectuée au moins 10°C en dessous de

la température de dénaturation du désoxyoligonucléotide, selon la formule établie par

WALLACE et coll. (1979) : Td: 2x(A+T)+4x(G+C).

y) Lavage

Après l'hybridation, les membranes sont soumises à une série de lavages

pour éliminer les hybridations non-spécifiques.

La membrane est rincée deux fois de suite pendant 5 minutes dans 200 ml

de 2 x SSC à température ambiante. Elle est placée ensuite dans une solution contenant 2

x SSC ; 1% SDS et lavée deux foi~ pendant 30 minutes à la température d'hybridation.

Enfin, elle est trempée dans une solution 0,1 x SSC à température ambiante. Cette étape

peut être renouvelée. On peut agir sur la stringence de l'hybridation à cette étape en

faisant varier la température des lavages. La membrane est ensuite autoradiographiée à ­

70°C au contact d'un film (KODAK XAR-5) et d'un écran amplificateur (Philips). Le

film est développé après 24 heures et l'autoradiographie est reconduite pour une plus

longue période si cela s'avère nécessaire.

b) Membranes portant du RNA

L'hybridation se fait suivant le même principe que précédemment mais

généralement à 42°C et dans un tampon d'hybridation dont la composition est:

- 5 x SSPE- 50% Fonnamide (v:v)- 5 x Solulion de Denhart- 1% S.D.S.

Avec : 20 x SSPE correspondant à :

- 3,6 M NaCI- 0,2 M phosphate de Sodium pH 7.7- 0,002 Na2 EDTA

Page 42: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

The annealing reactlon

r-_~_O-__Jo_MCCCTACACC ---.

( )1

ONAPoilI(l.enow

lI·gf·

The sequencing reaction

dCTP.ddCTPdGTPdTTPlaollPJdi\TP

~

G+

oClpdGIP'd<!GTPdnp1".:l'pIdA!p

~

T"

oCTpdGTpdnp.Qdnpla'lPidATp

A"

deTpdGlPdlTPla·)JPIdA rp 1 n(lAfP

__ nCCCAIGTCddC __ nGCCAIGT6dC __ lTGCCATCddr __ TTGCCddA

__ nCCddC __ lTGCCAT<WG __ rrCcç"ddT

-- ï_Gdd_C -- l'--ld<IG .-- ~L7 _._J

Gel electrophoresis and autoradiography

C G A

C

G

G

A 5eQuence reaclS.C 50 lTCCCArGTCC J'

C

G

1

T

FIGURE 3 : Schéma montrant les différentes étapesdu séquençage par la méthode de SANGER(SANGER et coll., 1977 )

Page 43: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

29

et la solution de Oenhart (x 100) qui est composée de :

- 2% B.S.A. (p/v)- 2% Ficoll (p/v)- 2% Polyvinylpyrolidone (p/v)

c) Membrane comportant des tRNA

L'hybridation se fait dans les mêmes conditions que lorsque le ONA est fixé

sur la membrane.

D. SEQUENÇAGE DU DNA1. PRINCIPE

La méthode de séquençage que nous avons utilisée dans nos travaux est celle

décrite par SANGER et coll. (1977). Cette méthode qui utilise le vecteur M13 a été

adaptée par plusieurs laboratoires à différents types de DNA polymérase (fragment de

KLENüW, TI-ONA polymérase). La technique se réalise en trois étapes:

1°) Une amorce (oligonucléotide de synthèse) est hybridée à la matrice de ONA

simple brin.

2°) A partir de l'amorce, le brin complémentaire de la matrice de ONA est

syn~hétisé. Quatr~ réactions indépendantes sont réalisées: chacune se fait en présence de

trois désoxynucléotides triphosphates froids (dCTP, dGTP et dTTP) et d'un

désoxynucléotide triphosphate radioactif (a-[32p] dATP) mais chaque réaction se

caractérise par la présence d'un 2',3'-didésoxynucléotide (ddNTP) différent.

L'incorporation des ddNTP pour chaque réaction provoque l'arrêt de l'élongation de la

chaîne, créant un ensemble de fragments de DNA se terminant spécifiquement par la

même base.

3°) L'ensemble des oligodésoxynucléotides de chaque réaction est analysé par

électrophorèse sur gel de polyacrylamide et la séquence est déduite de la position des

bandes 0 bservées.

La figure 3 schématise les différentes étapes du séquençage.

2. LES REACTIONS

a) Hybridation de l'amorce

L'hybridation se fait à 65°C pendant 15 minutes. Le milieu réactionnel est

ensuite refroidi lentement à température ambiante. Sa composition est:

Page 44: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

30

500 -1000 ng2,5 ng1,5 Jll1OJ.1l

- DNA simple brin- amorce- Tampon de réaction lOx- H20 qsp

Le tampon de réaction lOx contient 100 mM Tris-HCl pH 8, 50 mM MgCh.

b) Elongation et arrêt de la synthèse

Les milieux réactionnels, la stratégie et les rapports entre les dNTP et les

ddNTP varient suivant les fournisseurs et suivant l'enzyme utilisé pour la détermination

de la séquence nucléotidique. Pour notre pan, nous avons utilisé le fragment de Klenow

en nous référant aux indications du fournisseur Amersham, et la T7 DNA polymérase

conformément aux instructions du fournisseur USB (système sequenase).

Les réactions d'élongation sont arrêtées par addition du tampon de charge

contenant: 99% de formamide déionisé, 0,025% de bleu de bromophénol et 0,025% de

xylène cyanol.

c) Electrophorèse verticale sur gel de polyaCD/lamide

L'électrophorèse est réalisée sur un gel de polyacrylamide 6% en conditions

dénaturantes (6 M urée). Le gel est préparé comme indiqué en II.A.6.b. Il est soumis à

un pré-chauffage pendant au moins 30 minutes et l'électrophorèse se fait à 1500 V,

65 W constants.

Les milieux réactionnels sont chauffés à 95°C pendant 3 minutes et

immédiatement déposés dans les poches aménagées sur le gel. Plusieurs dépôts sont

effectués pour des migrations de 2, 4, et 8 h.

En fin d'électrophorèse, le gel est transféré sur une feuille de papier Whatman

3 MM. Le DNA est fixé, couvert d'une fine pellicule de plastique de Saran Wrap et

séché sous vide à 80°C pendant 45 minutes. Le gel séché est mis en autoradiographie

pendant 12 à 16 heures au contact d'un film (Fuji Photo film co., LTD).

d) Analyse des séQuences nucléQtidiQues ;

Les séquences Qnt été analysées à l'aide du programme UWGCG (University

Qf WiscQnsin Genetic CQmputer GrQup) de l'Université de MadisQn (WiscQnsin, USA) à

l'aide d'un Qrdinateur microVAX (DEVEREUX et CQll., 1984).

Les banques de dQnnées cQnsultées SQnt : GENBANK de NIH (NatiQnal

Institute ·Qf.Health, USA) et EMBL (EMBO) pQur les séquences nucléQtidiques et la

banque NBRF (NatiQnal BiQchemical Research FQundation, USA) pour les séquences

protéiques.

Page 45: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

CHAPiTRE ffff

ETUDE DES GENES DE ~RNA MlffTOCHONDRffAUXDUM/AffS

Page 46: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

DlETlERIM~[N]Al~O[N OrES COSM~[O)lES

IPOR1A[N]1' DES GrElNllES DE ~~NA

Page 47: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

3 1

1. DETERMINATION DES COSMIDES PORTANT DES GENESDE tRNA

A) CARTES DE RESTRICTION DES GENOMES MITOCHONDRIAUXB37-N ET B37-cms T

Les cartes de restriction SmaI, XhoI et SstH du génome mitochondrial de la variété

WF9 à cytoplasme mâle fertile (WF9-N) ont été établies par LONSDALE et coll.,

(1984). De même, les cartographies BamHI, SmaI et XhoI des génomes mitochondriaux

des variétés B37-N mâle fertile (FAURON et HAVLIK,1988) et B37 Cms-T mâle stérile

de type T (FAURON et coll.,1989) ont été récemment décrites. Les cartes de restriction

des différents génomes mitochondriaux de la variété B37 sont représentées sur les figures

4-a et 4-b de même que la localisation des fragments BamHI comportant des gènes de

tRNA.

Dans ce travail, nous avons utilisé des cosmides recouvranr-Ia totalité des trois

génomes étudiés. Les positions des cosmides des génomes B37-N et B37-cmsT, sont

-indiquées sur les figure 4-a et 4-b. La localisation des cosmides du génome WF9-N a

déja été rapportée (Wintz, 1988; figA-c ). Dans le laboratoire, nos études avaient

commencé sur les cosmides contenant des insertions du génome mitochondrial WF9-N

mais, pour des problèmes de maintenance et d'amplification de ces cosmides, nos

dernières études ont porté sur les cosmides contenant des insertions des génomes

mitochondriaux B37-N et B37-cmsT. C'est ainsi que dans ce travail, la séquence

nucléotidique des gènes des tRNA portés par les fragments BamHI de 22 kb, 4 kb et 3.5

kb (b) du génome B37-N (figA: cosmides N7D7 et N7F3) a été déterminée en utilisant

des fragments de restriction du cosmide 8-3B2 (chap.II.ILE; figA-c) du génome WF9­

N. De même, le gène de tRNA porté par le fragment BamHI 3.2 kb du cosmide N7DlO

du génome B37-N (figA et tableau F) a été séquencé sur un fragment SmaI de 1.25 kb

du cosmide 9-3HlO du génome WF9-N (chap.II.H.A; figA-c). D'autres études ont

aussi été effectuées sur les cosmides 9-1E8 (chap./II.LA; figA-c) et 9-2C4

(chap.IIl.I.B; figA-c) contenant des insertions de DNA mitochondrial de maïs WF9­

N.Tous les autres cosmides utilisés pour le séquençage des gènes de tRNA proviennent

de la variété fertile B37-N. L'organisation des gènes de tRNA a été étudiée dans les deux

vaÎi.étés B37-N et B37-cmsT.

Page 48: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

o 10 20 30 40 50 60 70 80 30 100 Nl ' 1 1 1 Il! !

• N7D4(4) ••

16 o., 4.6

10.3

N8A'(6)~ • N6,Ç6 (8)-

1 •. 2

t---------1

5Kb

N8F3(1)--•••- N8A5 (19)

S ~.4 ~

XB -6·~-'i""",,·,!~....,..JI'([IT

0.110 ..

FIGURE 4·a:LOCALISATION ET IDENTIFICATION DES COSMIDES COMPORTANTDES GENES DE tRNA DU GENOME MITOCHONDRIAL 837-N

Les fragments BamHI comportant des gènes de tRNA sont hachurésS: Smal ; B: BamHI ; X: Xhol.La position sur le cercle maître linéarisé est indiquée au dessus de la cane.

Page 49: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

o 10 20 30 40 50 60 70 80 90 100 T1 ! 1 Il! 1 ! ! 1 1

306(4)--

sXE3

S 7.4 1_\2

X I~~': :y 6''J' \.B:: ." Il"'~J···I .. V Il .. 1"'<lpo'l )I."l v ··I'·'I-·-1 1'.0 v.v Il v.v l '. Il •. v

B 1 0.4 1W7..c. 1 1 1.. .. II 1 1 1 1 1 1 1 1 l'1J.a

• ;;oV;" 3HS(II) wV".'.. 304(13) •1 1 r 11111 1 1 1 • 1 1 1

-3HIO (14).--e

XB

sX 9.4 32.6

B 4,4~ (·0:J:)~=~=/;/770~>77Y;""""'2.S7"'":~ÔZ,--""/:-""';~7'"'7~---ri;i=":'?• 102(18) •

sX

sX

BI----l

5kb

FIGURE 4-b

LOCALISATION ET IDENTIFICATION DES COSMIDES COMPORTANTDES GENES DE tRNA DU GENOME MITOCHONDRIAL 83?-cmsT

Les fragments BamHI comportant des gènes de tRNA sont hachurésS: Smal ; B: BamHI ; X: Xhol.La position sur le cercle maître linéarisé est indiquée au dessus de la carte.

Page 50: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Sm. 1

S.. Il

Xho 1

o 100 2001 ~ 1

~ 11I~ I II~I I__I_I I_I_~_I I I ~I_I I I__~Al (8.3011)

A2 (9-1 E8)

300

A3 19-3F2)

A4 (8-3F2) A6 (6·382)

AS (9-2(;4) A7 (2c65)

400

A6 (9.1 El)

A9 (8·306)

Al0 (9-3H8)

AlI (8.305)

500

A12 (9·301)

Cl (9-ICI0)

C2 (9.1 ES)

Sm. 1

S5' Il

Xho 1

1 1 1

~I~~ 1 0:== III []LJL~l...-----1I ~I-- ;~ ==rro:=1 ~==ë Il Il 1 111 __ ..:L _.. __ __ .._ __ _ _..

C3 (9-102)

C4 (9·2C4)

CS (2c29)

C7 (9-3Hl0)

C9 (2c70)

Cl0 (9-2F7)

El (2cl)

E2 (2c3)

C12 (9·3010)

Al--CS (2c7) CO (2c13) CIl (9·2E5)

----. _ -.._ _..- -.._ ------ Cl·--

FIGURE 4-c

LOCALISATION DES COSMIDES DU GENOME MITOCHONDRIAL WF9-N

La position sur le cercle maître linéarisé est indiquée au dessus de la carte.

Page 51: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

32

B) LOCALISATION DES GENES DE tRNA SUR LES CERCLE­MAITRES DES GENOMES NET T

1) ANALYSE DES tRNA MITOCHONDRIAUX

a) Analyse sur gel d'agarose de la fraction 4S du RNA mitochondrial

Pour localiser les régions du génome mitochondrial du maïs qui codent pour

des gènes de tRNA, nous avons utilisé la méthode de marquage à la tRNA nucléotidyl

transférase (CCAse) qui est très spécifique des tRNA car elle est basée sur la

reconnaissance de leur structure tertiaire. Cependant, il nous est apparu au fil des

expériences qu'il est indispensable de purifier les tRNA marqués par la CCAse, sur une

colonne RPC-5 car, comme nous le verrons plus loin, le marquage à la CCAse présente

aussi des limites. Les tRNA sont élués de la colonne à une concentration saline inférieure

ou égale à 1 M NaCl. La figure 5 montre l'analyse électrophorétique de la fraction 4S

marquée soit au [32p] pCp en utilisant la T4 RNA ligase, soit au a-[32p] ATP en utilisant

la CCAse. Cette expérience met en évidence la spécificité du marquage à la CCAse par

rapport à la T4 RNA ligase qui marque aussi le rRNA 5s.

b) Absence de contaminants chloroplastiques

La méthode utilisée pour s'assurer que nos préparations de tRNA

mitochondriaux sont exemptes de tRNA chloroplastiques a été antérieurement décrite par

WINTZ et coll. (l988-b). Cette méthode est basée sur le fait que le DNA mitochondrial

du maïs contient des insertions de DNA chloroplastique (STERN et LONSDALE,1982)

dont certaines comportent des gènes de tRNA. Il a été démontré que ces gènes de tRNA

ne sont pas exprimés dans la mitochondrie (WINTZ et coll., 1988-b).

Les préparations de tRNA mitochondriaux sont ainsi systématiquement testées

par hybridation avec un cosmide comportant ces gènes de tRNA chloroplastiques

(cosmide 8-3 H4, LONSDALE 1984). Si cette hybridation révèle les fragments

comportant les gènes de tRNA chloroplastiques, c'est que la préparation de tRNA

mitochondriaux est contaminée par des tRNA chloroplastiques.

2) HYBRIDATION D~S tRNA MITOCHONDRIAUX TOTAUX

Nous avons hybridé les tRNA mitochondriaux totaux, marqués au a-[32p] ATP à

l'aide de la CCAse et élués à lM NaCI, avec des filtres comportant des cosmides

représentatifs des cercles-maîtres des génomes mitochondriaux des maïs B37-N et B37­

cmsT. Ces expériences ont été effectuées avec des tRNA homologues extraits de la

Page 52: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

+tRNA,

<Il

~üü

...-....-

Q)CI)

cd.2'<i:zcr

55

a b

FIGURE 5 : Analyse comparative du marquage des tRNA

a): au a_[32p]ATP à l'aide de la CCAse

b): au a -e2p]pCp à l'aide de la T4-RNA ligase

La fraction 45 marquée par les deux méthodes a été fractionnée sur gel de polyacrylamide 15%.Le gel a été exposé en autoradiographie pendant 1 heure au contact d'un film très sensible.

Page 53: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

- -- - - - - ----- ---- --_.......--.." .-

-' . • •..... .-- .\.-..;

• •

- ..'

FIGURE 6-a : Identification des fragments BarnHI du DNA mitochondrialdu maïs de la variété B37-N comportant des gènes de tRNA

En haut: Electrophorèse sur gel d'agarose des fragments BamHI de cosmides représentantla totalité du cercie-maître. Les cosmides sont numérotés de 1 à 20 (cf fig.4-a)

En bas : Hybridation des fragments BamHI avec les tRNA mitochondriaux totaux de lavariété B37-N. Le même profil d'hybridation est obtenu en utilisant les tRNAtotaux extraits de mitochondries de la variété B37-cmsT

Page 54: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

-~-----.---­.. --•

--• -

•..• -.......

••

FIGURE 6-b: Identification des fragments BarnHI du DNA mitochondrialdu maïs de la variété B37-cmsT comportant des gènes de tRNA

En haut: Electrophorèse sur gel d'agarose des fragments BarnHI de cosmides représentantla totalité du cercle-maître. Les cosmides sont numérotés de 1 à 18 (cf figA-b)

En bas : Hybridation des fragments BamHI avec les tRNA mitochondriaux totaux de lavariété B37-N. Le même profil d'hybridation est obtenu en utilisant les tRNAtotaux extraits de mitochondries de la variété B37-cmsT.

Page 55: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU F-1:

QRGANISATIQN DES GENES DEtRNA SUR LE GENOME B37-N

N° du tracé Nom du cosmide Taille des fragments Gènes de tRNAd'hybridation BamHI (en kb ) identifiés

11.5 Asn3 N8811 4 mMet-1 +Asp

3.5a-1 Pro+Glu

4 N7D4 22 Lys

22 Lys+Tyr

5 . N7F3 4 mMet-1 +Asp3.5a-2 Pro+Glu3.5b mMet-2

6 N8A1 2.75 Asn+Phe

9 N787 1.25 Pseudo-Pro

10 N7C95.9 Ser-1 +Pseudo-Phe3.6 Cys

5.9 Ser-1 +Pseudo-Phe11 N5G6 5.1 Gin

3.6 Cys

12 N7E5 3 fMet

13 N8D11 12 His3 fMet

14 N7D1D12 His3.2 Ser-2

Page 56: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU F-2:

ORGANISATION DES GENES DE tRNA SUR LE GENOME B37-cmsT

N° du tracé Nom du cosmide Taille des fragments Gènes de tRNAd'hybridation BamHI (en kb) identifiés

1 4E115.9 Ser-1 +Pseudo-Phe3.6 Cys

2 3H11 5.1 Gin

3 3G53.2 Ser-22.2 Phe

4 306 3 fMet-

8 2G6 1.25 Pseudo-Pro

9 3B10 2.05 Pseudo-Asp

13 304 21.8 Lys+Tyr

14 3H1021.8 Lys+Tyr3.5b mMet-2

21.8 Lys+Tyr10 Asn

15 3E3 4 mMet-1 +Asp3.5b mMet-23.5a-2 Pro+Glu

17 IE4 12 His

18 102 12 His

Page 57: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU F-2:

ORGANISATION DES GENES DE tBNA SUR LE GENOME B37-cmsT

N° du tracé Nom du cosmide Taille des fragments Gènes de tRNAd'hybridation BamHI (en kb) identifiés

1 4E115.9 Ser-1 +Pseudo-Phe3.6 Cys

2 3H11 5.1 Gin

3 3G53.2 Ser-22.2 Phe

4 306 3 fMet-

8 2G6 1.25 Pseudo-Pro

9 3B10 2.05 Pseudo-Asp

13 304 21.8 Lys+Tyr

14 3H1021.8 Lys+Tyr3.5b mMet-2

21.8 Lys+Tyr10 Asn

15 3E3 4 mMet-1 +Asp3.5b mMet-23.5a-2 Pro+Glu

17 IE4 12 His

18 102 12 His

Page 58: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

33

mitochondrie des deux variétés de maïs (B37-N et B37-cmsT). Les filtres comportent des

cosmides digérés par BarnHI.

Les résultats de ces hybridations sont consignés sur les figure 6-a et 6-b. Dans les

tableaux F-a et F-b est indiquée la taille des fragments BamHI qui s'hybrident aux tRNA,

les cosmides auxquels ils appartiennent et les gènes qui y ont été identifiés (chap.II.II et

chapII.II). Au total, 10 cosmides (dont certains chevauchent) de la variété fertile B37-N

comportent des fragments codant pour des gènes de tRNA. Pannis ces gènes un certain

nombre ont déja été séquençés et étudiés (cf introduction). Pour notre part, nous nous

sommes intéréssés aux cosmides dont les fragments comportent des gènes de tRNA qui

n'ont pas été décrits chez le maïs.

Page 59: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir
Page 60: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

G

G -C

G -C

A _ U 70

U _A

G -C

G _C 60

A -U U AC G A

A 10 U C Ü C'C CG GG U C U 1 1 1 1 1 G

G 1 1 1 G G G G G

A A G A C 50 CU

U CU

A GU G U-A A / A

C _G G / U

20 U / A

G-C A / A G

G-CU / G

30 40 U AU -A G

A UC A

U A

U AG

FIGURE 9 : Structure secondaire en feuille de trèfledéduite de la séquence du gène trnS de la mitochondriedu maïs.

Page 61: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

35

par la méthode décrite dans le chapitre 1puis, la mini-banque ainsi obtenue a été criblée

en sélectionnant les clones suivant la taille de leur insertion par électrophorèse sur gel

d'agarose. Nous avons pu ainsi sélectionner un clone contenant un fragment SmaI de

1,25 kb nommé C7-20. Le DNA de ce clone a été transféré sur un filtre nylon et hybridé

avec la sonde de tRNA mitochondriaux pour vérifier qu'il s'agit du clone recherché. Un

contrôle supplémentaire a été effectué en marquant le fragment 1,25 kb du' clone Cl-20

et en l'hybridant avec les fragments SmaI du cosmide Cl (9-3H10).

3. SOUS-CLONAGE ET SEQUENÇAGE DU CLONE C7-20

Nous avons établi la carte de restriction du fragment SmaI de 1,25 kb ( fig.7 ) et

un seul site, en l'occurrence BamHI, s'est avéré utilisable pour le sous-clonage dans le

vecteur Ml3. Nous avons mis à profit ce site et la stratégie de séquençage est montrée sur

la figure 7. L'analyse de ces séquences a révélé la présence d'un gène codant pour un

tRNAScr(UGA)

Le sens de transcription du gène ainsi que l'orientation du fragment SmaI de 1,25

kb ont été obtenus en comparant les cartes BamHI (FAURON et HAVLIK, 1989) et

SmaI (LONS DALE et coll., 1984) de la région contenant l'insert du cosmide 9-3HlO

(fig.7). Le site BamHI utilisé pour le sous-clonage a servi pour superposer les

deux cartes et définir l'orientation du fragment 1,25 kb par rapport aux fragments

voisins.

4. ANALYSE DU GENE DE tRNASer(UGA)

a) Analyse de la partie codante du gène

La structure secondaire en feuille de trèfle déduite de la partie codante du

gène de tRNASer(UGA) est représentée sur la figure 9. Le gène compte 87 nucléotides et

il se caractérise par la présence d'un appariement inhabituel U 10-A26 dans le bras

dihydro-U. En effet, on retrouve généralement à cette position, un appariement GlO-C26

ou plus rarement GlO-U26 et le nucléotide GlO est très conservé dans tous les tRNA. De

plus, ce gène comporte une boucle variable très grande contenant 18 nucléotides dont 10

sont capables de s'apparier. Cette caractéristique, fréquente parmi les tRNASer, est

retrouvée aussi dans le gène de tRNASer(GCU) de la mitochondrie du maïs (WINTZ et

coll., 1988-b). Un seul appariement de faible énergie G50-U64 est retrouvé dans le bras

de la boucle 'V. Le gène ne code pas pour la séquence CCA 3' terminale caractéristique

des tRNA matures.

Comparé aux autres gènes de tRNASer(UGA) décrits dans la littérature

(SPRINTZL et coll., 1989), le gène de tRNAScr(UGA) est identique à celui de la

mitochondrie du blé (JOYCE et coll., 1988-b) et présente une homologie de séquence

d'environ 72% avec les tRNASer(UGA) chloroplastiques. TI n'est homologue qu'à 49%

Page 62: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

34

II. SEQUENÇAGE ET ANALYSE DES GENES DE tRNA

.A. ETUDE DES GENES DE tRNA DU COSMIDE 9-3Hl 01. PRESENTATION DU COSMIDE

Le cosmide 9-3H10 (Cl: fig.4-c) contient une insertion de DNA mitochondrial de

maïs WF9-N qui mesure environ 35 kb. Il est localisé sur le cercle maître entre les

positions 360 et 400 kb (fig.7), c'est-à-dire entre la région où a été localisé le gène

codant pour la sous-unité 1 de la cytochrome oxydase (ISAAC et coll., 1985) et celle

contenant le gène du rRNA 26S (DALE et coll., 1984). Ce fragment de DNA s'est révélé

intéressant parce qu'il s'hybride aux tRNA totaux extraits de la mitochondrie du maïs. Il

ne s'hybride pas aux tRNA chloroplastiques. Nous avons entrepris son sous-clonage

dans le but d'identifier et établir la séquence nucléotidique des plus petits fragments

portant des gènes de tRNA.

3701

- ••----------cosmide C7 ----------------4

100pb

FIGURE 7: Localisation et stratégie de séquençage du gène de tRNA~(UGA)Les grandes flèches réprésentent la stratégie de séquençage du fragment SmaI de 1.25 kb. La petite flèche désigne lesens de transcription du gène de tRNASer . Les tailles sont indiquées en kb. Les chiffres inscrits au dessus de la lignesupérieure indiquent la position sur le cercle maître.

2. ANALYSE DU COSMIDE 9-3HIO ET IDENTIFICATION DU

FRAGMENT PORTANT UN GENE DE tRNA

La carte de restriction Sma! de la région où se localise l'insertion du cosmide 9­

3HlO (fig.7) a déja été publiée (LüNSDALE et coll., 1984). La digestion par SmaI du

DNA du cosmide est montrée sur la figure 8-a. Les fragments de restriction Sma! du

cosmide ont été transférés sur un filtre de nylon et hybridés avec une sonde de tRNA

mitochondriaux totaux. Les résultats d'hybridation montrent (fig.8-b) que ce cosmide

contient un fragment SmaI de 1,25 kb comportant au moins un gène de tRNA.

L'ensemble des fragments SmaI du cosmide a été sous-cloné dans le vecteur Ml3 mp19

Page 63: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

- -

0 0CJ) 0 CJ) 0

I N ~ N I N ..... NC'?

, , ,C'?

. , ., 1'- 1'- 1'- , 1'- 1'- 1'-

CJ) 0 0 0 CJ) 0 0 0kb

2

3

4

12

a) b)

FIGURE 8: Analyse du cosmide 9-3HlO

a) : Electrophorèse sur gel d'agarose des fragments SmaI du cosmide9-3HlO et des sous-clones C7-19, Cl-20 et C7-21

b) : Hybridation des fragments SmaI avec une sonde de tRNAmitochondriaux totaux

Page 64: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

36

aux tRNASer(UGA) de la mitochondrie de drosophile et qu'a 59% à celui de la

mitochondrie de la levure. Les tRNASer(UGA) et les gènes de tRNASer(UGA) de

différentes bacteries lui sont homologues à 67% tandis que le gène de tRNASer(UGA)

cytoplasmique de la levure ne l'est qu'à 54%. Nous avons comparé la séquence primaire

des gènes de tRNASer (GCU) et tRNASer(UGA) dans le but de voir si les deux gènes

pouraient avoir la même origine. Cette analyse a montré que:

-si l'on ampute les boucles variables des deux gènes, ils ont une homologie

de séquence de 70%.

-par contre, si l'on tient compte de ces boucles, l'homologie se réduit à

63%.

Ce degré de ressemblance ne plaide pas pour une origine commune

"récente" des deux gènes car il se range dans la catégorie des homologies retrouvées avec

les tRNASer(UGA) chloroplastiques étudiés (SPRlNTZL et coll. 1989)

13) Etude des régionsjlanquantes du gène de tRNASer(UGA)

Nous avons comparé les régtons flanquantes des deux gènes de

tRNASer(UGA) mitochondriaux du blé et du maïs ( fig.lO ) et on trouve (sur 150

nucléotides), près de 95% d'homologie en amont de leurs régions codantes. En fait, pour

les séquences connues, une seule transition à la position -69 remplaçant un C (blé) par un

T (maïs) est observée dans cette région en plus d'une délétion de 8 nucléotides

(5'CGCfAACC 3')à la position -107. Cette délétion prend place 3 nucléotides en amont

d'une "séquence consensus" (5' CfACCGGAAAAG 3') désignée par Cons-l décrite par

JOYCE (JOYCE et coll., 1988-b) dans le blé et retrouvée aussi dans le maïs (fig.lO).

Cependant, il faut signaler que nous avons trouvé une séquence 5' ATATAGAAAGA 3'

(appelée Cons-2) située à quelques nucléotides en amont de cette séquence consensus,

qui ressemble plus à la séquence d'initiation de la transcription de la levure prise comme

référence par JOYCE (JOYCE et coll., 1988-b) , que Cons-l. En prenant le signal

d'initiation de la transcription de la mitochondrie de la levure ( 5'ATATAAGTA 3')

comme un motif de base, JOYCE avait trouvé un très bon alignement (le meilleur parmi

toutes les autres séquences comparées) entre cette séquence et une séquence en amont du

gène de tRNAAsP du blé (5' ATATAAGAAAAG 3'). La séquence consensus Cons-2 que

nous avons retrouvée en amont du gène de tRNASer(UGA) du maïs s'aligne mieux avec

la séquence identifiée en amont du gène de tRNAAsp, que celle de JOYCE (fig.11). Une

autre séquence de type consensus ( appelée Cons-3 ) est retrouvée à environ 400 pb du

début du gène ( fig. 10 et fig. Il ). A part ces séquences, dont la fonction reste à prouver,

nous n'avons pas trouvé de séquences consensus "-10" et "-35" caractéristiques des

régions promotrices des gènes procaryotiques et identifiés également en amont de

certains gènes de tRNA chloroplastiques (STEINME1Z et coll. 1983).

Page 65: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 10: Séquence nucléotidique du fragment SmaI de1,25kb du cosmide 9-3HIO(C7)

SmaICCCGGGCTAGCTTCTTCATTCATCCATTTAGGTCAGGGGCGGGCTTCTTCCCTTATATACGATGACATAG

ATAGAGCCTCCTTCTTTGATCCATTCATTGATAAAATAAAGTAGTCTTCGGGGGCAGTTTACCTTTTGAA

TCGACAGTAGAGTAGGTTTGATCTTGCTTTCTCAATCTTTCTCTGATCCTAGCCGTGTAGTAGATCCGGC

TTTATTCGGCTAAAAAGAAGTGTGTGCCCGTCGATCTGCTCGCCCCCTTCTTCATTCATCCATTTAGGTC

AGAATGGATCCAGGGAACCTGGCTCGGGAACAGCCCTGAAAAAACACAGTAAGAGAGTCCAATCTCTGAA

ATTTAGCATTTTATCTCCTAACCTAAGTAGTAGTAGTAGTAGTAGAAGGCTTAGTATCTGACTTGATCCA

ATAGAGTAAGAACACACAGTAGATCCAGATTCCACACCTTGCTGTGGACTGGGGAGAGAGCAGCTCTGCG

AACGTGGGCGTTCTGTGTGATTATGGAGGAACTGTAGTACTCGCCCCAAAATGCAAGCCGGGATAGATAC

TT~~GqGGGAGCGGTGGGCCTTC~GGAGCGAGGGAGTGATGGGCAACCTTAGTCTATATGTTGCTCGTGAGCCGCCAAGTACCAGTCTCGCAACAGTACTGGCGTTAAAGGATCGGTCCTTCACTTGCGGA

TCGTTCGCGAGTCGAACTCGCTCTCTTGCCACGCCTTTGACCACGAACTCGAGTCGGACTCATTCACTGC

TTACTTTTTTTAGGATCGTTCGTTCTTCACTCTCTTGCTATTACCCGCAGGGAGCGCAGCAACCGACGGT

cons-2 cons-1 CGCTAAC(-107)GCATATTAT~TATAGAAAG8AGCGAAGCGTAGCGATTCGT~CTACCGGAAAAgTGTGCTAGGCAATAGA

1C (-69)

GTCAGCTTACGGGGTGGGGCGCAAGTAAGCGTAGCGAATCACATAGAGTTGCCCCTACCTGCCAGCGCGC. . -1. . . . .

AGATAGATAGGGCGGGCGAGCGCAqGG~$~rGWC%G~GCGG~m~GAG~CGGWçWW~çq~

TIGT~TTGAtA~T~PbGGGG$wr~G~wcÇQ$c.T.çÇAïqGqCGAGGGCATAAGTTCTCTCTTGCCTTAT

T A GCTATAGATAAGAACGAATCTCCTCGACTCGACGGATATGATGGATGGAATGGGT.GAAGGTTTAGGTTAT

TGTGTGTTGATTTAGTTAGGACTTTGTCTCCCTTTCGTTATGTTCCGCÇCGGG1 SmaI

La partie codante du gène trnS est montrée par une boite grisée. Les séquences consensus alignées sur lafigure Il sont encadrées. Les nucléotides differents dans la séquence de la même région du blé sontinscrits au dessus de la séquence du maïs. Les barres verticales en gras indiquent la fin de la séquence publiéepar Joyce et coll. pour le blé.

FIGURE Il : Alignement des séquences consensus trouvées enamont du gène tmS de la mitochondrie du maïs

cons-Levurecons-2cons-Aspcons-3Consensus

Les séquences consensus sont alignées avec la séquence promotrice des gènes mitoehondriaux de lalevure et la séquence consensus trouvée en amont du gène trnD de la mitochondrie du blé.cons-2 et cons-3 sont les deux autres séquences consensus potentielles différentes de celle publiéespar Joyce et coll.(cons-l) pour le blé.

Page 66: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

--, ' ..,'

f •~

37

En aval de la partie codante du gène, on trouve plus de 95% d'homologie

avec la région en aval du tRNASer(UGA) du blé sur environ 150 nucléotides.

r) Transcription du gène de tRNASer

Nous n'avons pas trouvé d'autre gène de tRNA sur le fragment SmaI de

1,25 kb codant pour le gène de tRNASer (UGA) décrit dans ce travail. Puisque ce

fragment s'hybride aux tRNA totaux mitochondriaux, le tRNA correspondant se trouve

donc dans la mitochondrie. Noùs avons' par ailleurs hybridé un oligOflucléotide de

synthèse complémentaire au gène de tRNASer(UGA) avec un filtre comportant du DNA

nucléaire du maïs hydrolysé par divers enzymes de restriction. Ces expériences ont

montré qu'il n'y avait pas de gène nucléaire homologue au gène séquencé dans ce travail.

Le tRNA mitochondrial qui s'hybride au fragment SmaI de 1.25 kb ne peut, par

conséquent, provenir que de la transcription du gène mitochondrial. En outre, il n'y a

qu'un exemplaire de ce gène dans la mitochondrie du maïs. Ce gène de tRNASer(UGA)

est donc transcrit.

Page 67: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

38

B. ETUDE DES GENES DE tRNA DU COSMIDE N8Al1. PRESENTATlON

Le cosmide N8Al (figA-a) contient une insertion de DNA mitochondrial de maïs

B37-N à cytoplasme mâle fertile qui mesure environ 35 kb. Cette insertion s'étend sur le

cercle maître entre les coordonnées 120 et 165 (fig.12). Elle contient environ 4 kb de

l'une des deux copies de la répétition inversée de 14 kb et porte le gène codant pour

l'URF 25 (DEWEY e.t coll., 1986 ; STAMPER et coll., 1987). Notre intérêt s'est porté

sur le" cosmide N8Al parce que des expériences préliminaires ont montré que son

insertion s'hybride à la fois aux tRNA totaux mitochondriaux et aux tRNA totaux

chloroplastiques du maïs.

140120 160. --,:-------------:------------:

...---------Cosmide N8A1----"-------.1. 1

1 1Hd E.. ..

100pb

11

1

1

11

" tRN,t(\sni'll!EHd

...... .... ...... ...... ...... ...... ......

1 1HdH

1.4

E: EcoRI; H: Hindlll; Hd: Hindll; X: XhoJ

FIGURE 12 : Localisation et stratégie de séquençage des gènes de tRNAdu fragment BarnHI de 2.7 kb.

Les grandes flèches réprésentent la stratégie de séquençage et les petites flèches. lesens de transcription des gènes. Les tailles sont indiquées en kb. Les chiffres inscrits audessus de la ligne supérieure indiquent la position sur le cercle maître.

2. IDENTIFICATION DU FRAGMENT PORTANT DES GENES DE

tRNA

Le cosmide N8A1 a été hydrolysé par l'enzyme de restriction BamHI. Les

fragments issus de cette hydrolyse ont été séparés par électrophorèse sur gel d'agarose

avant d'être transférés sur un filtre nylon. Ce filtre a ensuite été hybridé avec une sonde

Page 68: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

A -U10 U U G G

GA

1 1 1C U C

1 1 1 1 A C C

G A G C C 50

A U

G-C G GA _ U U

G_C

u .G.-l't u

G

GU

20

A

A

IG - C 1

U-G

C-G

A - U

G-C

G - C

70

60

U AA

U C

1 1 A

A G

UC

U

j

111!·1

1jJ

1~

l

1

FIGURE 14 : Structure secondaire en feuille de trèfle déduite de laséquence du gène trnF de la mitochondrie du maïs

Les nucléotides très conservés dans les gènes trnF sont encadrés.Les purines soulignées, A (9; 26; 73) et G (15) sont aussi très conservéesparmi les gènes trnF.

Page 69: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

[

I~

Il

40

4. ANALYSE DES GENES DE tRNA PRESENTS SUR LE

FRAGMENT BamHI DE 2,7 kb

a) Etude du gène de tRNA~(GAA)

a )Analyse de la partie codante du gène de tRNAPhe(GAA)

La structure secondaire en feuille de trèfle déduite de la séquence du gène de

tRNAPhe(GAA) codé par le fragment BamHI-XhoI de 300 pb est montrée sur la figure

14. Ce gène comporte 73 nucléotides et ne présente pas de caractéristique particulière par

rapport aux tRNAPhe(GAA) ou gènes de tRNAPhe(GAA) déjà connus. Au contraire, il

conserve tous les points communs à ces tRNA tels que les appariements du bras dihydro­

U. Il garde aussi la purine A aux positions 9, 26 et 73 comme la plupart des

tRNAPhe(GAA), ainsi que le G en position 15. A ces traits communs s'ajoutent, d'une

part l'appariement G1-Cn, et d'autre part l'ensemble des nucléotides très conservés qui

constituent la boucle et une partie du bras de l'anticodon (fig. 14). Le gène ne code pas

pour le CCA 3' terminal. Un seul appariement de faible énergie U2-G71 est présent dans

la molécule. On retrouve ce même appariement à la même position dans le

tRNAPhe(GAA) de la mitochondrie de haricot (MARECHAL et coll., 1985-a).

La comparaison du gène de tRNAPhe(GAA) avec les tRNAPhe(GAA) et les

gènes correspondants décrits dans la littérature (SPRINTZL et coll., 1989) a montré que

ce gène est identique au gène de tRNAPhe(GAA) chloroplastique du maïs. Par contre, il

n'a que 78% d'homologie avec le tRNAPhe(GAA) mitochondrial de haricot

(MARECHAL et coll., 1985-a). Il est peu probable que cette homologie rende compte

d'une origine commune récente entre les deux tRNAPhe(GAA) mitochondriaux. Il faut

rappeler à ce sujet que le tRNAPhe(GAA) purifié de la mitochondrie de haricot

(MARECHAL et coll., 1985-a) s'hybride à une région du DNA mitochondrial du maïs

différente et très éloignée de la région codant pour le tRNAPhe(GAA) décrit ici, et que le

gène correspondant y est non fonctionnel. Il a été démontré en effet, que la région du

DNA mitochondrial du maïs homologue au tRNAPhe(GAA) de la mitochondrie de haricot

comporte un pseudogène de tRNAPhe (WINrZ et coll., 1988-b).

La similitude observée entre le gène de tRNAPhe(GAA) mitochondrial et

son homologue chloroplastique nous a incité à comparer les régions flanquantes de ces

deux gènes dans leur environnements respectifs.

f3 )Analyse des régionsflanquantes du gène de tRNAPhe

Nous avons utilisé le programme de comparaison des séquences d'acides

nucléiques "WüRDSEARCH" (UWGCG) pour rechercher des.ho~ologies de séquences

eptre le fragment XhoI-BamHI de 300pb contenant le gène de tRNAPhe(GAA)

mitochondrial décrit dans ce travail et la séquence nucléotidique du fragment "Barn 5" du

DNA chlorop1astique du maïs (STEINMETZ et coll., 1982) codant pour les gènes detRNASer3 (GGA), tRNAThr2(UGU), tRNALeu2(CAA) et tRNAPhe(GAA). Le résultat de

Page 70: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 15:

Comparaison des séquences mitochondriales etcWorop1astiques dans la région codant pour legène trnF du maïs

2

1

2

1

2

1

2

1

2

1

2

1

2

ATTAATTCGTTTTTTTTAAGTATTATTAAGTAAGCCATCCACAATGCATAIl Il Il 1 1 1111/ 111111 Il 1 1 1 Il

ATGAACATATTATAGTATAGTATAGGCAAGTAATCCCTTATTATTAAGTA

GG .. ACTACCCCTCCC .... CATTTCCTAATTTTGA.. ATGGAATACTTT1 1 11 1 1 1 11111 11Il 1 j 1 Il 1111111

AGTCATTATCATTATCCTGACATTTACTAAGTCCAATTTTAGAATACTTT"-35"

ATTGATTTTTTAGTCCCTTTAATTGACATAGATGCAA.... ATACTTTAC11 111111111111 11111 11 111 1Il 1 1

.TTTCTTTTTTAGTCCC ACATACATACAAGTACGTACTCTAC"-10" 5'

TAAGATGATGCACAAGAAAGCJI":':'-·T.-C-A-GG""':""""A-TA-G-C':"""T-CA---G-T-T-G-G-T-A-GA-G':"""C-A-G-A-GIl 1111111111111111111111111111111111111111111111

TAGGATGATGCACAAGAAATGGTCAGGATAGCTCAGTTGGTAGAGCAGAG

GACTGAAAATCCTCGTGTCACCAGTTCAAATCTGGTTCCTGGCA~AGAAA

11111111111111111111111111111111111111111111111 IlGACTGAAAATCCTCGTGTCACCAGTTCAAATCTGGTTCCTGGCACAG.AA

+109-<-__AAAAGGATCTACTGAATAGATATTGATACAAATATT TTGAGA1111111 III 111111 Il 11111 Il 1 III Il

AAAAGGA .. TACCGAATAG.. GTTACTACAATTACTCGAGAGGATTGGGA+l3~2,,- _

TGGATTGGGGTAAATATTTATTAAAAATëiAëTTAGTëiT~1 11 Il Il 1 11 1 11 111 1 11 1TACATATTCTAGAATAATATAGAAGGAAGTA.TTATTTTTAA

1: séquences chloroplastiques2: sequences mitochondriales

Les parties codantes des gènes trnF mitochondrial et chloroplastique sont encadrées.La séquence homologue au consensus AAGAANRR est soulignée en gras. Les séquencesimportantes pour la transcription du gène chloroplastique sont représentés par deslignes au dessus des séquences. Les lignes en pointillés désignent le début de lastructure secondaire impliquée dans la terminaison et/ou la stabilisaùon du transcritchloroplastique.

Page 71: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

L

1

~..

41

cette analyse est présenté sur la figure 15. L'homologie entre la région comportant le gène

de tRNAPhe(GAA) mitochondrial et celle codant pour le gène de tRNAPhe(GAA)

chloroplastique du maïs, s'étend en dehors de la partie codante. En effet, la comparaison

montre que les séquences sont conservées sur 160 nucléotides en amont de la parti~

codante du gène (environ 70%). L'analyse de ces homologies fait apparaître qu'il s'agit

en fait de blocs d'homologies allant de 2 à 16 nucléotides communs entre les deux

séquences. De même, sur 50 nucléotides en aval des deux régions codantes, on observe

une assez forte homologie (plus de 60%) entre les deux DNA. Un certain nombre de

remarques peuvent être faites à la suite de ces observations:

1°) Les deux domaines (-35 et -10) représentant potentiellement les

séquences promotrices de la transcription du gène de tRNAPhe(GAA) chloroplastique

sont détruits en amont du gène mitochondrial . En effet, la séquence "-10" (STEINMETZ

et coll., 1983) est partiellement modifiée par la transition du A à la position -19 en un G

(fig. 15). En outre, le bloc "-35" perd 3 nucléotides sur 6 par suite d'une délétion

enlevant 8 nucléotides en amont du tRNAPhe mitochondrial.

2°) Comme ce qui est observé en amont, le gène mitochondrial présente en

aval des altérations affectant des régions importantes pour la transcription du gène

chloroplastique. C'est ainsi que la séquence répétée AAATATIT aux positions +109 et

+132 du gène chloroplastique est détruite en aval du gène mitochondrial. Cette séquence

qui est impliquée dans la terminaison de la transcription du gène chloroplastique

(STEINMETZ et coll., 1983) ne semble pas être fonctionnelle dans la mitochondrie. A

cela s'ajoute le remaniement presque total des séquences impliquées dans la mise en place

de la structure secondaire en épingle à cheveux qui serait le signal d'arrêt potentiel de la

transcription du gène chloroplastique (STEINMETZ et coll.,1983). Il a toutefois été

démontré que ce signal servirait plutôt à la stabilisation des gènes chloroplastiques

(STERN et GRUISSEM, 1987) qu'à la terminaison de la transcription. Dans tous les

cas, la fonction éventuelle de ces structures est abolie pour le gène mitochondrial.

3°) Immédiatement en amont de la région codante du gène chloroplastique,

on trouve une séquence riche en purine 5' AAGAAAGG 3', semblable au consensus

5' AAGAANRR 3' décrite par JOYCE. Cette séquence est conservée devant le gène

mitochondrial à part une transversion ( fig. 15 ) remplaçant un G (chloroplaste) par un T

(mitochondrie) .

Ainsi, en faisant la synthèse de toutes ces observations, il apparaît que le

gène de tRNAPhe(GAA) mitochondrial que nous avons étudié provient très probablement

d'une insertion du DNA chloroplastique dans le génome mitochondrial du maïs mais que

ce gène a subi des modifications dans les régions flanquant sa partie codante. Le fait que,

d'une part les tRNA totaux mitochondriaux s'hybrident au fragment BamID-XhoI de

300 pb, et d'autre part que l'on n'ait trouvé que ce gène de tRNAPhe(GAA) sur ce

Page 72: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

G

U - A

C - G

C _ G 70

U - G

C _ G

A - U 60

G

UG

A

G - U

10 Ur--------, Aeue G

CAU C C

UA

A

G

G U A G G

50 CG G A G C C U

U UU

@A ~

G - C U G

U _ A G

C G

30 G - U 40

FIGURE 16 : Structure secondaire en feuille de trèfle déduite de laséquence du gène tmN de la mitochondrie du maïs

Les nucléotides conservés dans les gènes trnN sont encadrés.Le nucléotide 20 encerclé est absent du gène.

Page 73: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

1'0'

42

fragment montre que ce gène est transcrit dans la mitochondrie du maïs. Nous savons par

ailleurs que les tRNA mitochondriaux totaux de maïs que nous utilisons comme sonde,

ne sont pas contaminés par des tRNA chloroplastiques (cf chap./l- II). De plus, les

essais d'hybridation avec un oligonucléotide complémentaire à la partie 5' du gène de

tRNAPhe(GAA) sur le DNA nucléaire du maïs ont montré que ce gène n'est pas présent

dans le noyau.

Il est remarquable que le gène soit exprimé et qu'il ait conservé beaucoup

d'homologies dans les régions flanquantes avec le gène chloroplastique d'origine. Ceci

montre que l'insertion du DNA chloroplastique contenant le gène de tRNAPhe(GAA) est

récente et s'est produit très probablement dans la même "période" que l'insertion des

gènes de tRNACYs (WINTZ et coll., 1988-b) et de tRNAHis (IAMS et coll., 1985) qui

ont aussi conservé leurs environnements chloroplastiques. Ces séquences

chloroplastiques insérées auraient subi des pressions de sélection suffisantes pour rendre

les gènes qu'ils comportent fonctionnels mais non suffisantes pour rendre leurs

environnements méconnaissables. Dans la mitochondrie du blé, les séquences flanquant

le gène de tRNAPhe sont mieux conservées (C. AUBRY, C. HARTMAN :

communication personnelle) par rapport au maïs et il sera intéressant de déterminer si ce

gène est aussi transcrit. En fait, on sait que le fragment KI du DNA mitochondrial du blé

(QUETIER et coll., 1985) comportant le gène de tRNAPhe s'hybride aux tRNA totaux

mitochondriaux et chloroplastiques du blé, mais on ne sait pas si le gène de tRNAPhe est

le seul gène de tRNA présent sur ce fragment.

b) Etude du gène de tRNAAsn(GUU)

a) Analyse de la partie codame du gène

Le gène de tRNAAsn(GUU) porté par le fragment EcoRI-HindII de 400 pb

est présenté sur la figure 16. Ce gène est long de 72 pb et on peut déduire de la séquence

du DNA, la structure secondaire en feuille de trèfle caractéristique des tRNA. Du point de

vue de sa séquence primaire, ce gène présente un certain nombre de caractéristiques

communes avec d'autres gènes de tRNAAsn(GUU) décrits dans la littérature (SPRINZL

et coll., 1989). En effet, la comparaison de ce gène aux tRNAAsn(GUU) et gènes de

tRNAAsn(GUU) de différents phages et divers espèces bactériennes connus, fait

apparaître que tous les nucléotides impliqués dans la constitution du bras dihydro-U sont

conservés chez toutes ces espèces. Cette caractéristique se retrouve chez certains gènes

(mais pas tous) de tRNAAsn-(GUU) des mitochondries animales et de champignons.

Dans tous les cas analysés, les nucléotides GlO et Cu sont conservés. De la même

manière, on observe une très forte conservation des nucléotides de la boucle de

l'anticodon à l'exception du nucléotide 32. En ce qui concerne les appariements de faible

énergie, on en observe deux à savoir les paires G7-U66 et U4-G69. Ces appariements

Page 74: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

43

sont fréquents dans les gènes de tRNAAsn(GUU) chloroplastiques. Par contre, chez

Halobacterium sp., la paire U4-G69 est remplacée par l'appariement G4-U69 tandis que

l'appariement G7-U66 n'existe pas.

L'absence du nucléotide 20 dans la structure secondaire du tRNAAsn(GUU)

est la caractéristique frappante de ce gène. En fait, l'analyse et l'alignement des

séquences de différents gènes de tRNAAsn(GUU) nous a pennis de constater que ce

caractère se retrouve dans tous les gènes de tRNAAsn(GUU) mitochondriaux,

chloroplastiques et cytoplasmiques connus (fig. 17). La seule exception rapportée est

observée non pas au niveau d'un gène de tRNAAsn mais sur un tRNAAsn. Il s'agit du

tRNAAsn(GUU) cytoplasmique de Lupinus lutéus (BARCISZEWSKA et JONES,

1988) qui comporte un nucléotide modifié X (acp3U) au niveau du nucléotide 20. Ceci

est d'autant plus surprenant que le gene de tRNAAsn(GUU) cytoplasmique de Petunia sp

(BAWNIK et coll. 1983) qui est aussi une dicotylédone, ne comporte pas le nucléotide

20. Chez le lupin, le nucléotide 20 (qui est un U modifié) serait-il ajouté au tRNA puis

modifié après la transcription du gène? Seule, la détennination de la séquence

nucléotidique du gène nucléaire du lupin permettrait de répondre à cette question.

La recherche d'homologies de séquences entre le gène de tRNAAsn(GUU)

décrit dans ce travail et d'autres gènes de tRNAAsn(GUU) décrits dans la littérature

(SPRINZL et coll., 1989) a montré qu'il est très peu semblable aux gènes de

tRNAAsn(GUU) phagiques ( moins de 50% d'homologie) et qu'il a une homologie

d'environ 65% avec les gènes bactériens. na environ 60% d'homologie avec le gène de

tRNAAsn(GUU) de la mitochondrie d'Aspergillus nidulans alors que le tRNAAsn(GUU)

de la mitochondrie du rat ne montre que 52% d'homologie.

Par contre, ce gène de tRNAAsn(GUU) présente une homologie parfaite

(100%) d'une part avec le gène de tRNAAsn(GUU) de la mitochondrie du blé

(CRUZALEGUI et coll., 1989) et d'autre part avec le gène de tRNAAsn(GUU)

cytoplasmique de Petunia sp. (BAWNIK et coll. 1983). Ce gène a 99% d'homologie

avec le gène du chloroplaste de maïs; la seule différence entre les deux gènes étant la

délétion du nucléotide 47 (qui est un U dans le tRNA mitochondrial) de la boucle variable

du gène chloroplastique. Cependant, le nucléotide T47 (U47 sur le tRNA) est retrouvé

dans le gène de tRNAAsn(GUU) du chloroplaste de Pisum sativum (SHAPIRO et

TEWARI 1986) .

Il s'agit là d'un cas particulier où les trois compartiments cellulaires

comportent des gènes montrant une telle res~emblance. En analysant d'autres gènes de

tRNAAsn(GUU) des plantes superieures, il est apparu que chez Lupinus luteus, le

compartiment mitochondrial comporte un gène de tRNAAsn(GUU) qui est homologue à

89% à son équivalent du noyau et ce gène a 97% d'homologie avec le gène de tRNAAsn

décrit ici (fig. 11). Il semble donc que les gènes de tRNAAsn(GUU) mitochondriaux chez

Page 75: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

44

les plantes supérieures dérivent d'un ancêtre commun avec ceux du noyau et du

chloroplaste. Ceci pose évidemment le problème de l'origine du gène et de son évolution.

Pour disposer d'un minimum de données pouvant nous permettre d'aborder ce problème,

nous avons entrepris:

a) de vérifier si un gène homologue au tRNAAsn(GUU) mitochondrial était

présent dans le noyau du maïs. Les tRNAAsn(GUU) et les gènes de tRNAAsn(GUU)

nuc~éaires qui ont été décrits jusqu'à présent proviennent de deux dicotyléd0.nes (lupin et

pétunia ). Il serait par conséquent utile de voir si le gène nucléaire de tRNAAsn(GUU)

des monocotylédones (répresentés ici par le maïs) ressemble à ses homologues nucléaires

et mitochondriaux des dicotylédones.

b) d'étudier les régions avoisinant les différents gènes de tRNAAsn(GUU) à

notre disposition afin d'établir les relations qui existent.

[3) Le noyau du maïs comporte-t-ille même gène de tRNAAsn(GUU) que la mitochondrie?

En tenant compte de la fone homologie qui existe entre le gène de tRNAAsn

de la mitochondrie du maïs et le tRNAAsn du noyau de Petunia sp , il nous a paru utile de

chercher dans le génome nucléaire du maïs la présence d'un gène qui aurait la même

origine que le gène mitochondrial. Pour cela, nous avons utilisé un oligonucléotide de

synthèse (26-mer) complémentaire à la partie 3' du gène de tRNAAsn mitochondrial du

maïs. Cet oligonucléotide a été marqué en S avec du y_[32p] ATP à l'aide ··de la

polynucléotide-kinase et hybridé avec du DNA nucléaire du maïs (variété INRA)

hydrolysé par divers enzymes de restriction. Les hybridations ont été faites dans des

conditions de stringence variées. On a ainsi fait une hybridation à SO°C et une autre à

37°C. Les résultats de nos hybridations ont montré qu'aucune hybridation n'est obtenue

dans ces deux conditions.

Bien qu'il soit difficile d'interpréter l'absence d'hybridation, on peut tout

de même affirmer que le gène de tRNAAsn(GUU) mitochondrial n'est pas homologue à

100% à son équivalent nucléaire.

Notons à ce sujet que nous avons obtenu l'hybridation de cet

oligonucléotide décrit plus haut avec le DNA mitochondrial de pétunia (résultats non

montrés), ce qui suggère (compte tenu de l'homologie entre le gène de tRNAAsn

mitochondrial du maïs et le gène nucléaire chez le pétunia), que le gène mitochondrial est

identique au gène nucléaire chez le pétunia. Ainsi, chez le maïs, le compartiment nucléo­

cytoplasmique, au contraire de ce qui est observé chez Petunia sp, n'a pas le même gène

que la mitochondrie et le chloroplaste.

Page 76: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 17:Analyse et comparaison des séquences mitochondriales,nucléaireset chloroplastiques codant pour des gènes tmN de différentes espèceset du tRNAAsn cytoplasmique du lupin

rot Blerot Maïsrot Lup

CCGCCGCC CCCCTTGTCC TG CCGGCCCGCCGCC CCCCTT TCC TGTCCTGGGG GCTCCC GGCAATTAGTA TATGGGTGGA ATATAATGAA ATAGAGCCAC

rot Blerot Maïsrot Lup

GGGGATTG CTATCGTCAC CCTTTCTCCC GGTGTATGTG AAAGA.GrV~

GGGGATTG CTATCGTCAC CCTTTCTCCC GG A AAAGAGCCTATGAAAT GAGGCATGGA ACGGAGCCAC TGCGAAGAAG TTCCACGAGT

GG.CC .... ...Ii AAG TCC G.TTC...... T AAG TCC G.TTC

---~'~rl~G AG. TC.. GAAGATTTCC CGTTGG CTA GGTC GAA .. TCTCC CCTTGCC. .. . ..~TTL.:.,:.AA::..:....;:G.:,.. ..:....:....:.T:....:C:...:C~. .=.GT:.,:T:.,:G:.:Jc.

CAGTAGCTCl\.GTGGT.AGAG CGGTCGGCTG TTMCTGACT GGTCGTAGGTCAGTAGCTCAGT.GGT,AGAG CGGTCGGCTG TTAACTGACTGGTCGTAGGTCAGTAGCTCAGTGGT.AGAG CGGTCGGCTG TTAACTGACT GGTCGTAGGTCAGTAGCTCA..GTGGT;AGAG CGGTCGGCTGTTAACTGACT GG.CGTAGGTêAGTAGCTêA}GtGGt~AGAG CGGTCGGCTG TTAACCGATT GGTCGTAGGTCAGTAGCTCAGTGGTTAGAG CGGTCGGCTG TTAACCGATA.GGTCGTAGGT

rot Blerot Maisrot Lupcp Maïsnu Pet

rot Blerot Maisrot Lu ­cp Maïsnu Petnu Lup

rot Blerot Maïsrot Lupcp Maïsnu Petnu Lup(tRNA

rot Blerot Maisrot Lupcp Maïsnu Petnue Lup

rot Blerot Maisrot Lupcp tJ'..aïsnu Pet

rot Blerot Maisrot Lupcp Maïsnu Pet

TCGAATCCTACTTGG TTT.. GA. T C.A. T'OCAGA rT:lJGAAITCGAATCCTACTTGGG TTT .. GA. T C.A. TTCTGA ATT .. GAATCGAATCCTACTTGGGG TTT .. GA.T A.A.TTCTGA AT G. GAATCGMTCCTA ··CTTGGGG TTT .. GA. TT C. A. TTCTTT AATGT GAATC~~TCCTA CTTGGG .~~T~T~T~T~T~G~A~G~T~ ATCGCTTTTC TGACCTAGCGTCGAGCCCTACTTGGGG

......... C CCCTGTCCTT

.............TGTC. TTACCTGTTCCC CCCTGTCTTTACCCGTTCGC TA TCCTT G .AAAGCGGTAA GTTGATTGTT GGTTTTTATT

rot Blero Maïsrot Lupcp Maïs

rot Blerot Maïsrot Lup

La boite grise représente la partie codante des gènes. Les boites blanches indiquent l'extension des homologies endehors de la partie codante. La séquence consensus 5'AAGAANRR3' est soulignée en gras. La position du nucléotide20 est indiquée au dessus du gène. Pour la séquence du tRNA. les U et les nucléotides modifiés ont été remplacés parles désoxyribonucléotides correspondants.

Page 77: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

.'

45

.r) Etude des régions flanquantes du gène de tRNAAsn (GUU)

L'analyse de la partie codante des différents gènes de tRNAAsn(GUU) ou

du tRNAAsn(GUU) correspondant ayant montré une forte conservation des séquences de

ce gène dans différents compartiments cellulaires d'une même plante (cas du lupin et du

pétunia), nous avons comparé les régions entourant ces gènes. Puisqu'on dispose d'un

échantillon de séquences correspondant aux trois compartiments cellulaires, nous avons

effectué la comparaison des régions flanquantes du gène de tRNAAsn(G UU)

mitochondrial du maïs avec, séparément, les gènes de tRNAAsn(GUU) mitochondriaux

(blé, lupin), de tRNAAsn(GUU) chloroplastique (maïs) et de tRNAAsn(GUU) nucléaire

(pétunia).

Comparaison entre les régions flanguantes des gènes de tRNAAsnCGUU)

des mitochondries des plantes supérieures

. Gènes de tRNAAsn(GUU} mitochondriaux du blé et du maïs

Entre les deux monocotylédones, l'homologie de séquence s'étend au

delà de 200 pb en amont et en aval des parties codantes des gènes ( plus de 80% ). Les

différences observées sont essentiellement liées à des délétions et/ou des insertions et à

quelques substitutions de bases (fig.17 ).

Il a été décrit en amont du gène de tRNAAsn de la mitochondrie du blé

(CRUZALEGUI, 1987), une structure secondaire en "épingle à cheveux" à environ 50

pb en amont du gène de tRNAAsn(GUU) (fig.18). Cette structure est retrouvée devant le

gène du maïs. Elle se caractérise par le fait qu'elle ressemble à un signal de terminaison

de la transcription procaryotique et/ou à une structure de stabilisation des transcrits

chloroplastiques (STERN et GRUISSEM, 1987). Cette structure précédée par une phase

de lecture ouverte (dont la séquence complète est en cours de détennination au laboratoire

) est exprimée dans la mitochondrie du blé. Il a été postulé (CRUZALEGUI, 1987) que

cette structure de terminaison de transcription et/ou de stabilisation des transcrits,

appartiendrait à une unité de transcription indépendante de celle du gène de

tRNAAsn(GUU). Si on admet cette hypothèse, on peut en déduire que la région

promotrice de la transcription du gène de tRNAAsn(GUU) de la mitochondrie du blé et

du maïs se situerait entre ce signal et le début du gène de tRNAAsn(GUU) (en admettant

aussi que le promoteur n'est pas interne au gène). Il est remarquable que la partie

comprise entre ce signal et le début du gène de tRNAAsn(GUU) soit aussi très conservée

devant les gènes mitochondriaux des deux organismes. En analysant cette région, on peut

remarquer qu'une séquence S'AAGAACGA3' conforme à la séquence consensus 5'

AAGAANRR 3 (JOYCE et coll., 1988-b) est présente à 25 nucléotides du début de la

partie codante des gènes du maïs et du blé (fig.17). L'homologie stricte entre les régions

Page 78: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 18: Structure secondaire déduite de la séquence nucléoLidique dela région en amont du gène tmN

T GAT

GG

G TA

TG

G G

G TA G

A G GAG-GG-GA-TG-TG-TG-G

5'CCCC<rIX,G- TCCCG GGTTGGTTGGTCGAAAGAAG@ _~~e~ t RNA Asn

G-GA-TA-TA-TA-TG·GA·TG-TA-TA-TA-TA-TA-TG-G

T AG A

A GG

La boite représente la séquence ronsensus S'-AAGAANRR-3'

FIGURE 19: Struture secondaire déduite de la séquence du DNA en avaldu gène trnN du chloroplaste du maïs (Donnann et col., 1986)

trnN- AnTG -----3'A-TT-AT-AG-GA-TT_AT

T-AG-GT-AT-AT-AA-T

A AT A

G GT A A

Page 79: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

46

en amont des deux gènes s'achève seulement Il pb en amont de la séquence s'AAGAACGA 3'. Ces observations renforcent l'idée selon laquelle cette séquence pourrait

avoir un rôle dans l'initiation de la transcription des gènes de tRNA des mitochondries

des plantes supérieures. Soulignons toutefois que ces interprétations ne sont fondées que

sur des analyses de séquences et qu'elles demandent à être confirmées par des études

fonctionnelles de ces gènes (transcription in organello, mutagénèse dirigée, etc...).

. Comparaison des gènes de tRNAA~n(GUU) mitochondriaux des

monocotylédones à celui du lupin

Les régions avoisinant le gène de tRNAAsn(GUU) de la mitochondrie de

Lupinus luteus montrent aussi des homologies avec celles des deux gènes

mitochondriaux du blé et du maïs (fig.17). En amont des gènes, les deux

monocotylédones divergent du lupin au même point, c'est-à-dire à 10 pb en amont de la

séquence S'AAGAANRR 3'. Cette dernière séquence est légèrement remaniée chez

Lupinus sp par la transition du A en S'en un G. En aval des gènes, des blocs

d'homologies sont retrouvés sur au moins 100pb.

Comparaison entre les trois gènes de tRNA~(GUU) mitochondriaux et le

gène~ tRNAAsnCGUU) du chloroplaste de maïs

L'alignement des séquences entourant les différents gènes

mitochondriaux analysés ci-dessus (maïs, blé et lupin) avec les régions flanquantes du

gène de tRNAAsn(GUU) du chloroplaste du maïs montre que:

- l'homologie de séquence dans ces régions entre les gènes

mitochondriaux et chloroplastiques s'étend très loin en dehors des parties codantes. En

effet, en amont du gène, des blocs de séquences homologues séparées par des délétions

et/ou insertions sont observées sur environ 90 pb ( fig.17). De plus, on retrouve la

séquence consensus s' AAGAANRR 3' devant le gène chloroplastique mais elle s'aligne

mieux sur les séquences du lupin que celles des deux monocotylédones. La même

situation est rencontrée en aval de la partie codante du gène où des blocs d'homologie

sont retrouvés au delà de 130 pb. La structure en épingle à cheveux flanquant la partie 3'

du transcrit primaire (fig. 19) du gène de tRNAAsn(GUU) chloroplastique (DORMANN

et coll., .1986) est détruite au niveau des gènes mitochondriaux. Ceci est une indication

que la terminaison de la transcription des gènes de tRNAAsn(GUU) dans les deux

organites se fait suivant des processus différents confirmant ce qui a été montré pour le

gène de tRNAPhc(GAA).

- Les séquences des gènes mitochondriaux du lupin sont plus

conservées par rapport au gène chloroplastique que celles des deux monocotylédones.

Page 80: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

47

Ainsi, au regard de ces observations, on peut conclure qu'à l'instar de ce

qui a été montré dans le cas du tRNAPhe (ce travail), du tRNACys (WINTZ et coll.,

1988-b) et du tRNAHis (IAMS et coll., 1985), le gène de tRNAAsn(GUU) de la

mitochondrie du maïs dérive d'une insertion du DNA chloroplastique dans le génome

mitochondrial. Les homologies de séquences trouvées dans les régions environnantes du

gène font penser que cette insertion s'est faite après cell~ des ,séquences codant pour les

gènes de tRNAmMet(ce travail) et tRNACys mais probablement dans la même "période"

que celle du gène de tRNAHis et du tRNAPhe(GAA). Notons à ce propos que les gènes

de tRNAHis et de tRNAAsn(GUU) sont situés chacun, à une extrémité de la séquence

répétée inversée du chloroplaste du maïs. Nous verrons plus tard (chap.III-II.B) que

plus de 90% de cette séquence répétée sont retrouvés dans la mitochondrie du maïs et que

très probablement, l'ensemble d'une des deux copies de cette séquence y a été transféré

en une seule fois. Ce transfert aurait été suivi d'une redistribution de ces séquences

chloroplastiques dans le DNA de la mitochondrie et les blocs de séquences redistribués

auraient évolué indépendamment. Par ailleurs, s'il semble que les gènes de tRNAAsn et

de tRNAHis aient été impliqués lors du transfert d'une des copies de la répétition

inversée, il est difficile d'associer ce transfert à celui qui concerne le gène de tRNAPhe,

car il ne s'agit pas de la m~me région du DNA chloroplastique. On peut par conséquent. , .supposer que plusieurs transferts de séquences choloroplastiques ont eu lieu à des

époques différentes dans la mitochondrie du maïs au cours de l'évolution. Cette

hypothèse a par ailleurs été confirmée par l'analyse des différentes insertions

chloroplastiques dans le DNA mitochondrial chez plusieurs crucifères (NUGENT et

PALMER,1988).

-'- Comparaison entre les gènes de tRNAAsnCGUU) mitochondriaux et

chloroplasriques d'une part et nucléaires d'autre part ~

Les analyses précédentes ont montré que, d'un côté les tRNAAsn(GUU)

et les gènes de tRNAAsn(GUU) de la mitochondrie et du chloroplaste ont une origine

commune, et de l'autre côté que ces gènes de tRNA sont très homologues aux gènes

correspondants du noyau de pétunia et du lupin. Nous avons été tentés comparer les

environnements nucléotidiques de ces gènes de tRNAAsn(GUU) dans les trois

compartiments et d'établir des relations permettant de déterminer la chronologie des

transferts à partir du gène original. Pour cela, nous avons comparé les séquences

flanquantes du gène de tRNAAsn(GUU) du noyau de pétunia aux régions entourant les

gènes mitochondriaux et chloroplastiques. Les résultats globaux des comparaisons de

séquences sont consignés sur la figure 17 et montrent que:

- En amont et en aval du gène, on retrouve de très fortes homologies

entre les séquences nucléaires, mitochondriales et chloroplastiques. Il est remarquable

Page 81: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

-'.

L

48

qu'en amont du gène, les séquences issues des trois compartiments conservent à peu près

les mêmes blocs de séquences et dans le même ordre. Ces blocs sont mis en évidence

sur la figure 17. Devant le gène nucléaire aussi, le bloc contenant la séquence consensus

est conservé mais cette séquence ressemble plus à la séquence consensus des gènes

mitochondriaux du blé et du maïs qu'à celui du gène mitochondrial du lupin et

chloroplastique de maïs.

Au vu des observations faites plus haut, il apparait que tous les gènes de

tRNAAsn(GUU) cités dans ce travail dérivent probablement du même ancêtre. Chez les

dicotylédones, il est difficile avec les données dont on dispose, d'établir avec certitude le

compartiment d'origine de cet ancêtre mais il semble toutefois que le chloroplaste ait joué

un rôle central dans le processus du transfert du gène d'un compartiment à l'autre. En

effet, deux alternatives plausibles peuvent être envisagées: soit, le gène est à l'origine

nucléaire et dans ce cas le premier transfert aurait impliqué le noyau et le chloroplaste,

soit le gène est chloroplastique au départ et dans ces conditions, il y aurait eu deux

événements distincts ayant entraîné l'insertion du gène d'une part dans le noyau et d'autre

part dans la mitochondrie. En effet, on peut admettre que le gène n'est pas mitochondrial

à l'origine puisque nous avons des données suggérant que le ,tRNAAsn(GUU) a été

transféré du chloroplaste vers la mitochondrie.du maïs. En se référant aux homologies

trouvées entre les gènes de tRNAAsn(GUU) de la mitochondrie du lupin et du

chloroplaste du maïs, on peut dire que ce gène a aussi été transféré du chloroplaste vers la

mitochondrie chez les dicotylédones. On peut alors penser que c'est le même évènement

qui a entrainé l'insertion du gène chloroplastique dans la mitochondrie d'un organisme

qui serait l'ancêtre commun des monocotylédones et des dicotylédones. 11 faut rappeler à

cet effet que les séquences environnantes du gène mitochondrial du lupin sont plus

homologues aux régions flanquantes du gène chloroplastique du maïs que celle du gène

mitochondrial du maïs.

Le fait que toutes les plantes supérieures ne semblent pas avoir le même

gène de tRNAAsn(GUU) dans leur noyau (comme le maïs) alors que tous les gènes

mitochondriaux sont identiques, indique que:

- le transfert du gène du noyau au chloroplaste ou du chloroplaste au

noyau n'a probablement pas été un phénomène général a toutes les plantes supérieures. Il

est peut être limité aux dicotylédones ou seulement au lupin et pétunia. Ces indications

impliquent par conséquent que les deux types de transferts (chloroplaste-noyau et

chloroplaste-mitochondrie) se sont déroulés indépendamment l'un de l'autre.

- le gène nucléaire provient très probablement du chloroplaste. En effet,

si c'etait le gène de tRNAAsn(GUU) nucléaire qui avait été transféré, on devrait trouver

ce même gène (au moins homologue à 90%) dans le noyau de toutes les plantes

supérieures. Le cas du maïs prouve le contraire.

Page 82: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

49

Par ailleurs, puisque:

a) les tRNA mitochondriaux totaux s'hybrident au fragment de 400pb

EcoRI-HindII comportant le gène de tRNA Aso(GUU) et que nous n'y avons identifié

que ce gène,

b) nos préparations de tRNA mitochondriaux ne sont pas contaminés

par des tRNA chloroplastiques (chapitre II-II),

c) l'oligonucléotide de synthèse complémentaire au gène mitochondrial

ne s'hybride pas au DNA nucléaire, .

on peut affIrmer que le gène de tRNA étudié dans ce travail est transcrit.

De même, BAWNIK et coll. (1983) et DORMANN et coll., (1986) ont montré que les

gènes de tRNAAso(GUU) sont transcrits respectivement, dans le noyau de pétunia et

dans le chloroplaste du maïs. Les gènes de tRNAAso(GUU) des trois companiments

cellulaires chez le pétunia sont par conséquent homologues et fonctionnels.

Les travaux de Tllv1MIS & SCOTI (1983) avaient déja mis en évidence

la présence de séquences chloroplastiques dans le DNA nucléaire de l'épinard mais ces

études n'avaient pas permis, ni d'établir le sens dans lequel les évènements se sont

déroulés, ni de démontrer que ces séquences pourraient avoir des rôles au point de vue

fonctionnel. L'exemple du gène de tRNAAso(GUU) est le premier montrant l'existence,

dans les trois compartiments cellulaire de certaines plantes, de séquences de DNA

fonctionnelles ayant une origine commune "récente",

Page 83: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

50

C. ETUDE DES GENES DE tRNA DU COSMIDE N7F3

1. PRESENTATION DU COSMIDE

Le cosmide N7F3 (cf fig A-a) contient une insenion de DNA mitochondrial

d'environ 40 kb issu de la souche de maïs normal B37 (B37-N). Cette insertion contient

la totalité d'une des copies de la répétition inversée de 14 kb. Elle est située sur le cercle

maître entre les positions 85 et 130 (fig.20). Des études préalables faites sur le cosmide

N7F3 ont montré qu'il s'hybride aux tRNA totaux rnitochondriaux et aux tRNA totaux

chloroplastiques de maïs. De plus, cinq oligonucléotides de synthèse, dont chacun est

complémentaire à un gène caractérisé et déjà publié dans la littérature, s'hybrident à ce

cosmide. li s'agit des oligonucléotides complémentaires aux gènes de tRNAmMet1 et de

tRNAAsp du maïs (PARKS et coll., 1984; PARKS et coll., 1985), de tRNAGlu de soja

(WINTZ et coll., 1987), de tRNAPro du blé (RUNEBERG-ROOS et coll., 1987) et de

tRNAAsn décrit dans le paragraphe précédent. Ces gènes sont répétés sur le cercle maître

car ils font panie de la répétition inversée de 14 kb (l4-A). Outre le gène de tRNAAsn (ce

travail), les gènes de tRNAAsP et de tRNAmMet1 de la mitochondrie du maïs ont déja été

séquencés. Ces derniers sont situés sur un fragment EcoRI de 4kb dont la séquence

nucléotidique a été établie par PARKS (1985) et ce fragment ne contient que ces deux

gènes.

Nous nous sommes intéressés au cosmide N7F3 pour plusieurs raisons:

1°) Notre objectif étant dans un premier temps de caractériser l'ensemble des

gènes de tRNA fonctionnels de la mitochondrie du maïs, il nous a paru indispensable de

déterminer la séquence nucléotidique des fragments de DNA qui s'hybrident aux

oligonucléotides de synthèse car l'hybridation de ces derniers sur des fragments de DNA

ne saurait être la preuve que les séquences correspondantes comportent des gènes entiers

et fonctionnels de tRNA.

2°) En plus de la séquence de la région codante des gènes, il est important d'avoir

la séquence des régions flanquantes de ces gènes. En effet, ces données peuvent être,

utiles d'une part pour la recherche d'éventuelles séquences consensus pouvant être

impliquées dans l'initiation de la transcription de ces gènes, et d'autre pan pour étudier

les réarrangements que pouraient subir ces régions.

3°) Enfin, il s'agit dans notre étude, de s'assurer du nombre exact de gènes de

tRNA codés par cette partie du génome mitochoridrial.

Page 84: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

801

51

1001

120

1

- .........--------Cosmide N7F3------I.~·- -

14Kb I.A.

Smal 9.7

Xhol

BamHI 22

tRNALys tRNATyr

... ...... ...

... ...... ...

... ...... ......... ...

tRNAPro

1 .. 1 1Sa Hd Sa... ..

FIGURE 20 : Localisation et stratégie de séquençage des gènes detRNA du 'fragment BamHI de 3,5kb

B: BamHI; Hd: Hindll; Sa: Sacl; St: Stl1l; x: Xhol; Xb: Xbal

Séquence répétée ailleurs dans le génôme N

Les grandes flèches réprésentent la stratégie de séquençage et les petites flèches, le sens detranscription des gènes. Les tailles sont indiquées en kb. Les chiffres inscrits au dessus dela ligne supérieure indiquent la position sur le cercle maître. 14 kb tR.: répétition inverséede 14 kb A

2. ANALYSE DU COSMIDE N7F3 ET IDENTIFICATION DES

FRAGMENTS COMPORTANT DES GENES DE tRNA

Nous disposons des cartographies complètes BamID (FAURON et HAVLIK,

1988), SmaI (LONSDALE et coll., 1984), et partielles XbaI, EcoRI (PARKS et coll.,

1985) de la région du DNA mitochondrial couverte par le cosmide N7F3. L'hybridation

des tRNA totaux mitochondriaux avec les fragments BamHI du cosmide N7F3 révèle (cf

chap.ll-II fig.3-a, piste nOS) trois bandes (16 kb, 4 kb et 3,5 kb).

Le fragment BamHI de 16 kb comporte le vecteur (PHC79) et les deux extrémités

de l'insertion correspondant d'une part, à la région du DNA mitochondrial codant pour

Page 85: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

52

les gènes de tRNALys et de tRNATyr et d'autre part, à celle codant pour le gène de

tRNAAsn (fig.20).

En comparant les cartes Smal, Xbal et EcoRl à la carte BamHl de la région

contenant l'insert du cosmide N7F3, nous avons pu déduire que le fragment de 4 kb

BarnHl qui s'hybride aux tRNA totaux, chevauche presque totalement le fragment de 4

kb EcoRl comportant les gènes de tRNAAsp et de tRNAmMet l décrits par PARKS. Nous

avons hybridé avec la sonde de tRNA totaux, les fragments de restriction correspondant

aux régions qui ne se recouvrent pas entre ces deux fragments de 4 kb . Aucun de ces

fragments ne comporte des genes de tRNA. Ainsi, le fragment de 4 kb BamHI ne

comporte-t-il que les gènes de tRNAmMet l et de tRNAASP.

La bande à 3,5 kb contient en réalité deux fragments BamID. Le cosmide contient

en effet deux fragments BamHl de 3,5 kb (fig.20 ) qui contiennent tous les deux des

gènes de tRNA. La région contenant un des deux fragments sera caractérisée dans le

chapitre II.I.E et comporte le gène de tRNAmMe~ (cosmide 8-3B2). L'autre fragment

correspond à la région qui s'hybride aux oligonucléotides complémentaires aux gènes de

tRNAGlu du soja (WINTZ et coll., 1987) et de tRNAPro du blé (RUNEBERG-ROOS et

coll., 1987). Nous avons entrepris de cloner ce dernier fragment dans le but, de

caractériser les gènes correspondant aux oligonucléotides précités et de voir si ce

fragment contient d'autres gènes de tRNA.

3. SOUS-CLONAGE DU FRAGMENT BarnHI 3,5 kb DU COSMIDE

N7F3

Nous avons effectué le sous-clonage de l'ensemble des fragments BamHl du

cosmide N7F3 dans le vecteur M l3mp 19. La banque de phages recombinants a été

criblée en utilisant comme sonde la bande de 3,5 kb isolée du gel d'agarose et marquée.

Cinq clones positifs ont été obtenus. Les DNA plasmidiques extraits des bactéries de ces

clones ont été digérés par BamHl et les fragments de restriction ont été séparés par

électrophorèse sur gel d'agarose pour vérifier qu'ils contiennent bien le fragment BamHI

de 3,5 kb. Cependant, (comme on l'a signalé plus haut) puisque la bande à 3,5 kb de la

digestion BamHI du cosmide N7F3 contient deux fragments distincts, la sonde qu'on a

utilisée révèle donc deux types de clones correspondant chacun à un des deux fragments

BamHI de 3,5 kb . Par cartographie, on sait que le fragment de 3,5 kb qui comporte le

gène de tRNAmMet contient un site SmaI situé à 750 pb de l'un des sites BarnHI

(fig.20). Nous avons par conséquent utilisé la présence ou l'absence de ce site pour

différencier les clones contenant un fragment de 3,5 kb. Ainsi, deux clones ont été

sélectionnés parce qu'ils ne contenaient pas le site Smal décrit plus haut.

Page 86: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

() C13 0C13 .D L C13 0 0 C13

Cf) X X .D L L E~ ~ ~ ::::: x x x Cf)Q) "0 "0 "0 ~ ::::: '- :::::

L "0() () () ~ ~ 0C C C C()

l l C13 C13 C13 .D .D r:.kb w :r: :r: Cf) Cf) Cf) X X X

::l21.6-

0.5

a)

() ~ 0C13 .D L C13 0 0 C13Cf) X X .D L L E

.E2 ::::: ::::: ::::: x x xCf)

Q) "0 "0 "0 "0 ::::: :::::~

~ :::::L c C c c () () () C13 0()

l l C13 C13 C13 .D .D LW :r: :r: Cf) Cf) Cf) x x x

b)

•.-•

••--

..•

• ••

FIGURE 21 : Analyse du fragment BamHI de 3.5 kb du cosmide N7F3

a) Electrophorèse sur gel d'agarose 1.5% des fragments de restriction

b) Hybridation des fragments de restriction avec une sonde de tRNAmitochondriaux totaux

Page 87: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

53

4. CARTOGRAPHIE DU FRAGMENT BarnHI 3.5 kb ET

IDENTIFICATION DES REGIONS CODANT POUR DES GENES

DEtRNA

Le clone contenant le fragment BamHl de 3.5 kb a été baptisé "3.5B ". Une

cartographie du clone 3.5B utilisant plusieurs enzymes de restriction a été établie

(fig.20). Les enzymes utilisés pour cette cartographie ont servi pour le fractionner et les

fragments de restriction résultants ont été séparés par électrophorèse sur gel d'agarose

(fig.21-a) avant d'être transférés sur une membrane de nylon. Ces fragments de

restriction ainsi fixés sur la membrane ont été hybridés avec la sonde de tRNA totaux

mitochondriaux. Les résultats de cette hybridation montrent (fig.21-b) qu'un fragment

SacI-HindI! de 1,25kb et un autre, BamHI-Xhol de 750 pb, codent pour des gènes de

tRNA. Le dernier fragment cité est situé à l'une des extrémités du fragment de 3,5 B

alors que le premier est interne à ce fragment (fig.20).

En utilisant le fragment 3,5 B dans l'orientation adéquate, nous avons établi la

séquence nucléotidique du fragment de 750 pb BamHl-Xhol sur 600 pb (jusqu'au site

Stul montré sur la figure 20) et nous y avons identifié un gène de tRNAGlu(UUC). Ce

gène est identique à celui de la mitochondrie de soja (WINTZ et coll., 1987).

Par ailleurs, l'hybridation de l'oligonucléotide complémentaire à la partie 3' du

gène de tRNAPro (UGG) de la mitochondrie du blé (RUNEBERG-ROOS et coll., 1987),

avec les fragments de restriction du clone 3,5 B a montré que le gène correspondant du

maïs est situé sur le fragment Sad-HindI! 1,25 kb cité plus haut. Nous nous sommes

servi de cet oligonucléotide pour déterminer la séquence de la partie S' du gène et de la

région en amont. A l'aide de cette séquence, nous avons synthétisé un nouvel

oligonucléotide complémentaire cette fois-ci à la séquence en amont du gène. Cet

oligonucléotide nous a permis d'établir la séquence nucléotidique de la région en aval du

gène de tRNAPrO(UGG) (fig.20).

5. ANALYSE DES GENES DE tRNA PRESENTS SUR LE

FRAGMENT 3.5 kb BarnHI

a) Etude du gène de tRNAQluCUUC)

a) Analyse de la partie codante du gène

La structure secondaire en feuille de trèfle déduite de la séquence

nucléotidique du gène de tRNAGlu(UUC) codé par le fragment de 750 pb Barn Hl-Xho l

est représenté sur la figure 22. Ce gène est long de 72 pb. Il se caractérise par la présence

dans le bras de l'anticodon, d'un appariement U30*U40. Cette caractéristique retrouvée

dans le gène de tRNAGlU(UUC) de la mitochondrie de soja, est absente dans les

Page 88: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

, ..... ''!~!'' h

A ....G (soja)G-UU-AC - G 70

A (blé) C - G~ C - G 60'\ U-A

U GA 10 J-J-AUGCCCUG CCUG C 1 1 1 1 1

G 1 Il 1 ACGGGUGGA C A A C'so

U U A U - ft:. GA20 C-G

G-C30 U· U 40

C-GU UU AU U C

UA

G

UC

FIGURE 22 : Structure secondaire en feuille de trèfledéduite de la séquence du gène trnE du maïs

L'appariement U30-U40 est désigné par une étoile.La düférence avec les gènes unE des mitochondries du blé etdu soja sont indiquées par une flèche.

Page 89: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

54

tRNAGlu(UUC) des bactéries, des mitochondries des champignons et des animaux, et du

chloroplaste des plantes supérieures. En outre, le nucléotide 9, qui est en principe semi­

invariant et généralement une purine est remplacé par un C. Cette dernière caractéristique

n'est pas particulière au tRNA décrit ici, car le gène de tRNAGlu(UUC) de la

mitochondrie du soja et le tRNAGlu(UUC) d'E.coli ont un C à cette position.

Un appariement de faible énergie, est présent sur la molécule à la position

GI-Un, et le gène ne code pas pour la séquence CCA 3' terminale.

Comparé aux gènes de tRNAGIU(UUC) décrits dans la littérature

(SPRINZL et coll., 1989) le gène de tRNAGlu(UUC) de la mitochondrie du maïs montre

une homologie de 99% avec le gène de tRNAGlu(UUC) de la mitochondrie du soja. En

fait, la seule différence entre les deux gènes est due à la transition du A73 (maïs) en un

G73 (soja).

Ce gène de tRNAGlU(UUC) a 73% d'homologie avec le tRNAGlu(UUC)

d'E.coli et 70% d'homologie avec le gène de tRNAGlU(UUC) de la mitochondrie de la

levure. Il est plus proche de ces derniers que de ses homologues chloroplastiques des

plantes supérieures (65-66%).

13) Analyse des régions flanquantes du gène

Nous avons comparé les séquences entourant les gènes de tRNAGlu(UUC)

de la mitochondrie du maïs (ce travail), du soja (WINTZ et coll., 1987) et du blé

(GUALBERTO et coll., 1989). Ces analyses (fig.23) montrent que:

- en amont des gènes du soja et du maïs, on observe plus de 95%

d'homologies sur 120pb. Les différences sont dues à des délétions et/ou insertions

impliquant au maximum 4 nucléotides, et à des substitutions de bases. L'homologie que

l'on a observée continue jusqu'à la fm de la séquence publiée par WINTZ (1987). Il est à

noter qu'en amont du gène de tRNAGlu du soja il y a une séquence s' AAGAATGG 3'

conforme à la séquence consensus de JOYCE, qui est située à 7 pb du début du gène

(fig.23). Dans la mitochondrie du maïs, un nucléotide de cette séquence a subit une

transversion, donnant une séquence s' AAGAATTG 3' qui dévie quelque peu de la

séquence consensus. Cependant, 53 pb en amont du gène du maïs, il y a une séquence s'AAGAAAAG 3' conforme au consensus. En amont du gène de soja, la même région

présente une séquence S'AACAAAAC 3' qui, elle, n'est pas conforme à la séquence

consensus.

L'homologie entre ces deux gènes et le gène mitochondrial du blé s'arrête

83 pb en amont de la séquence codante. Une délétion de 10 nucléotides (par rapport au

maïs) ou 5 nucléotides (par rapport au soja) intervient 36 nucléotides avant le gène. Le

gène du blé a la même séquence consensus que son homologue du maïs.

- en aval des trois gènes, l'homologie s'arrête après seulement 19 pb.

Page 90: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 23:

Analyse et comparaison des séquences flanquantes desgènes tmE mitochondriaux du maïs, du blé et du soja.

oMAIS CGTATGGGCT GGAGTCAAAG GAGCTTTCAT AGACATAGAA ATGATAATAGMAIS AAAGAGCAGG CCTGCGAGCA GCGAGTGCCC TTTGTAAGTT GCGAGCCTGCMAIS CTGTCAAACC ATAGCGCCTT ACCGCCCCCC CTTTCTTTTT TGAATTAGAABLE CTGGAGCGT TTTACCCTCG TGTCACTAGCMAIS AGGAAGGGAT GAAAGACAAA GAAAGAGATC AGGTTATTTA TGATCGGAGABLE GCAACACGAG CCATTCAAAA AAAAGTCTTG GAACTGAAGA GAAATCCATC

MAIS AAAGGAAGGG GCGTGGTTGA TGTGTCACTG GGAACCCGTA GGAAGGGGAGBLE TCTATACAAA CTCTTTATGT TCTTGATATT GATTGAGTTA CGAGAATGAA

SOJA GAATTCACAT CAGAAATCGC CA.... GAAC ACAAACGAAAMAIS ACGACCGGCC TCATTCACAT CTGAAATCGC CAACATGAAC ACAAACGAAABLE GAAGCGTAGC A~CCTTTTë - TcTCAA-TTCA- AGTTTCCATT -CA.ii:TAAGTGC

1 _

SOJA TC.TTGAATT GCGTATAGAA ACAAAACGAA CCAC ..... T TCTATTCTCGMAIS T~G..T.ÇçzJldl.l'I _T,Ç~'tAl'aGM_~Gh.Yg\Ç~JIdI._ ÇÇ,A,ÇI'tC1'8't l'Ç'tCl'IÇ,T,ÇIBLE ATCAAGTATT TCGTATAGAA AGAAAAGGAA CCAC TTCTCT

SOJA GAGëTGAPGT ATATGAAGAA TGGCTTTTTG GTCCCTTTCG TCCAGTGGTTMAIS 1:'cr~1:U\T;Gr: 'AT.Itr.G~ :rl'GO'l'!~- '1"BLE TCTCTTAAGT ATATGAAAAA TAGCTTTTTG GTCCCTTTCG TCCAGAGGTT

SOJA AGGACATCGT CTTTTCATGT CGAAGACACG GGTTCGATTC CCGTAAGGGAMAIS 1\GGAClITCGT' t:TT'l"I'CRI'GT"t:G~C~BLE AGGACATCGT CTTTTCATGT CGAAGACACG CCGTAAGGGA

SOJA TG.GCTACTC TTTCCCGGCC GCTTTCAGTT AGTGTTCATT GCTGAGTGATMAIS TA.. TTACTT CATCCTGGCC TTCAAATCGT TGGTGCTGAT TATCATATAABLE JAG.TAëTT-ATTCëcGGëc-qGCGGTATCA AGAACCCGGA TAGTCAGTAG

1 549SOJA u::GC:r.AT_O'.GGO'.G~ l:tAGGTGGTCC GGAAGCTTMAIS TGTCCTTGCT TTGGAGTGAA GAAAAGAAGT TCGATCAG

Les région codantes des gènes sont encadrées en traits pleins. L'extensiondes homologies entre les séquences flanquantes est indiquée par des boites~en pointillé. Les séquences soulignées désignent' la séquence consensus5'AAGAANRR 3'

Page 91: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

i.

55

b) Etude du gène de tRNAE!:QCUGG)

a) Analyse de la région codante du gène

Le gène de tRNAPro(UGG) de la mitochondrie du maïs (voir fig.26) est

entièrement homologue au gène de tRNAPro(UGG) de la mitochondrie du blé et au

tRNAPrO(UGG) de la mitochondrie du haricot. Toutes les caractéristiques de ce gène,

qui semble être très conservé dans les mitochondries des plantes supérieures, ont été

décrits par RUNEBERG-ROOS et coll. (1987).

f3) Analyse des régionsflanquantes du gène

Cette partie du travail sera traitée dans le chapitre suivant en comparaison

avec les régions flanquantes d'un gène de tRNAPro incomplet localisé dans une autre

région du cercle maître

Page 92: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

56

D. ETUDE DU PSEUDO-GENE DE tRNAEm DU COSMIDE N7B7

1. PRESENTATION DU COSMIDE

Le cosmide N7B7 (cf figA-a) contient une insertion de DNA mitochondrial de

maïs B37-N (FAURON et HAVLIK, 1988) mesurant environ 35 k!J. Cette insertion est

localisée sur le cercle maître entre les coordonnées 205 et 250 (fig.24). Elle précède la

région contenant une des copies de la répétition directe de 5 kb . Notre intérêt s'est porté

sur ce cosmide parce que son insert s'hybride aux tRNA totaux extraits de la

mitochondrie du maïs.

210 230 250. - - - - --+1-------11---------+1---

.. - -4et--------Cosmide N7B7------.--1.8 0.4

...

#

##,. 5##..

##

##..

##

##

##

##

pseucfbtRNAPro

l'~100pb

Smal

Xhol

BamHI 11.9--~-L.-,;".,;,.:.----L..~---:~---:.~~~----7-L.Y------J"P--.Lf_I_----I...-----..J....;".......I...--

FIGURE 24: Localisation et straté~e de sé<.Iuença~e du fra~ment BamHI de1.25kb

Les grandes flèches réprésentenlla stratégie de séquençage et la petite flèche désigne l'orientationdu pseudo gène de tRNAPro. Les tailles des fragments sont indiquées en kb. Les chiffres inscritsau dessus de la ligne supérieure indiquenlla position sur le cercle maître. .

2. ANALYSE DU COSMIDE ET DETERMINATION DU FRAGMENT

PORTANT UN GENE DE tRNA

Nous disposons de la carte SmaI, XhoI (LONSDALE et coll., 1984) et BamHI

(FAURON et HAVLIK, 1989) de la région contenant l'insertion du cosmide N7B7.

L'hybridation des fragments BamHI du cosmide N7B7 avec les tRNA totaux

Page 93: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

57

mitochondriaux a révélé qu'un fragment de 1,25 kb comporte au moins un gène de

tRNA. Nous avons constitué une banque des fragments BamHI du cosmide N7B7 dans

le vecteur M13 mp19. Le fragment BarnHI de 1,25 kb a été sélectionné par la méthode

décrite dans le chapitre 1 .

Nous avons aussi sélectionné des clones ayant le fragment inséré dans les deux

orientations opposées par la métllode d'analyse directe des phages (chapitre!).

3. DÉTERMINATION DE LA SEQUENCE NUCLEOTIDIQUE DU

FRAGMENT BamHI 1,25 kb ET IDENTIFICATION D'UN GENE

INCOMPLET DE tRNAPro

Le fragment Bam:m de 1,25 kb a été sous cloné par la méthode de délétion

séquentielle (cyclone) utilisant la T4 DNA polymérase. La stratégie de détennination de la

séquence nucléotidique du fragment BamHI de 1,25 kb est montrée sur la figure 24.

Nous avons trouvé sur ce fragment un gène de tRNA spécifique de la proline mais qui est

amputé de la boucle du dihydro-U, d'une panie constituant le bras dihydro-U et de la

partie 5' du gène (fig.25 et fig..26).

4. LE DNA MITOCHONDRIAL DU MAIS A T-IL PERDU LA PARTIE

5' DU DEUXIEME GENE DE tRNAPro ?

Dans le blé, le cercle maître déduit de la canographie du DNA mitochondrial

comporte deux gènes de tRNAPro (JOYCE et coll., 1988-c). Ces deux gènes ont des

environnements différents mais leurs parties codantes sont totalement conservées. Il

n'est pas surprenant par conséquent que l'on retrouve un deuxième gène de tRNAPro

dans la mitochondrie du maïs qui est évolutivement proche du blé. En fait, dans le maïs,

il y a trois régions codant pour des gènes de tRNAPrO : le gène complet est répété dans

les variétés fertiles de maïs B37 et WF9 car il fait partie de la répétition inversée de 14 kb

alors que le gène incomplet est présent dans une autre région (N7B7). Ces données

laissent penser que, dans le cercle maître du maïs, la partie 5' du gène de tRNAPro

incomplet pourrait exister ailleurs dans un autre environnement. Pour vérifier cette

supposition, nous avons hybridé un oligonucléotide complémentaire à la partie 5' du

gène de tRNAPro avec un filtre comportant des cosmides représentatifs du cercle maître.

Les résultats de ces expériences ont montré qu'aucune autre région à part celles contenant

les gènes complets ne s'hybride avec l'oligonucléotide. Le maïs a donc perdu la partie 5'

du deuxième gène de tRNAPro.

Page 94: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

f1GURE 25: Séquence nucléolidique et org~misalion des régions COd:Ullpour les gènes U11P comp!ct et illlcompict Je !:.llllILCc~lcIIJric du 111~U"S

oProCOMP TAACCCTACG TTCGCCTAAG ATCGAAAATG CGATGTGACA TCACTCTTCA

TTCAGTTCAG TCCATTTGCT TAACACATGC ATGTCCAAAG AGATGGCGAT

100GATCTGTCAA ATCGAGATTG TGTGGGTGTT CAGTGGATCA AACCCTGTAT

Tx~~;~~TC~~GGCGAGCTGC TGGCGTGGGA CTTCTTTCGC ~CCCTT~.200

IGGAGTCTAAA TCCTTCCGGA GTGAGTGTTTCGAT7CCACT CTCAGAAC4A

D250TCAAGTCATT efGAAAGAAA ATGCAAGTGA AACGAGlfGA GAATCAAATA

300AAATTGTAGG

E .~

CTT~TTCCTAAAAGCGGTG GTTCTFGCCT CCCTGTGCCG

l'ROINC

l'roCOMP

"~ F350 ---'-.--------------,CGGGGTGGGC GACTGc#GTT CGAGTCTTTTTCGATCGGGT AGATCCATAC 1

18400 1

GGATCCATCC CTCCAGGGGG TCAGCGCATC

CATATGTTCCGGGGGGGAGA CGAGGTGTAGCGCAGTCTGG TCAGCGCATC

450TGTTTTGGGT ACAGAGGGCC ATAGGTTCGA ATCCTGTCAC CTTGATGTGG

TGTTTTGGGT ACAGAGGGCC ATAGGTTCGA 'ATCCTGTCAC CTTGATGTGG

500TATTCACAGG GGCCGAAGTT GCAAAGCCCC GTAGCCTATC CGTGGTCGGG

TATTCACAGG GGCCGCCGTT GCAAAGCCCC'GTAGCCTATC CGTGGTCGGG

--------~-------~-----------------------

550AAGGCAGGCG AAAAGCACGC ACCAAAAAAA AAGAAAGCTA TAATTTTCTT----------------------------------------ËG:9~-cr~~~~~C~~_A~~_~~~~~~~:~.:~~!!

600!T_T:n:'C_T!!T_ f!TS!!T..:§! AGTACACGAG TGAAATIGGT TACGGTGGTA

TTTTTCTTTT CTICTTTCGT GTTTCAAACC CATTATCAGG CTTTTGCTTT

La description des séquences encadrées est donnée dans le lCxte. Les séquences soulignées indiquent la région codante dugène troP et l'extension de l'homologie entre les séquences en aval des gènes complet et incomplet tmP est montrée pardes lignes en pointillés. proComp et prolnc désignent les séquences contenant respectivement les gènes complet etincomplet de troP. Le nucléotide du tRNA au niveau duquel s'arrête l'homologie entre les deux séquences est montré (18).La séquence rappelant le consensus AAGAANRR est soulignée en gras dans le bloc D

Page 95: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

A

C -G

G-U

A _ U 70

G -C

G - C

U -A 60

U G-C U A

CG A

A 10 U U G U C CC G C G

AGU 1 1 1.-

1 1 1 1 U A G GAG G C G C C 50 U C

A C UG A

C U-A G GU GC _ G20

U_A

30 G_C 40

U-A

U U

U G

U GG

FIGURE 26 : Structure secondaire déduite de la séquence nucléotidiquedu gène trnP de la mitochondrie du maïs.

La flèche indique la limite de l'homologie entre les gènes trnP complet et incomplet

Page 96: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

58

S. ANALYSE DES REGIONS FLANQUANTES DU GENE DE

tRNAPro(UGA) ET DU GENE INCOMPLET DE tRNAPro

a) Comparaison entre les régions flanquantes des deux gènes du maïs

L'alignement des séquences des gènes complet et incomplet de

tRNAPro(UGA) a montré que l'homologie entre les deux séquences s'arrête en 5' au

niveau du nucléotide 18 du tRNA codé par le gène complet (fig.25 et fig.26). En amont

du nucléotide 18, on ne retrouve plus aucune homologie entre les deux séquences

jusqu'à la fin du clone 1,25 kb BamHI qui contient le gène incomplet. Par contre, en

plus de la partie 3' de la région codante, l'homologie entre les deux régions en aval du

gène continue sur 120 pb. Elle s'arrête après une séquence riche en résidus T.

b) Comparaison entre les régions flanquantes des gènes de tRNAfu2(UGA) du

blé et du maïs

Comme on l'a indiqué plus haut, le cercle maître du DNA mitochondrial de blé

comporte deux gènes de tRNAPro(UGA) identiques qui sont cependant dans des

environnements différents. L'organisation des régions flanquantes des deux gènes qui a

été décrite par JOYCE et coll., (l988-c) est représentée sur la figure 27-a . Pour

peImettre une meilleure compréhension, nous appellerons HP-1 la région du DNA de blé

codant pour le tRNAfMet, un des gènes de tRNAPro(UGA), les gènes rrn18 et rrnS

(fig.27a). L'autre région s'appellera HP-2, (nous utilisons en fait la nomenclature de

JOYCE). En comparant les séquences entourant les deux gènes du blé, JOYCE avait

remarqué que malgré la divergence des séquences, on pouvait retrouver (entre HP-1 et

HP-2) des blocs d'homologies situés à des distances variées. Il avait alors désigné ces

blocs par les lettres D, E et F. Les positions de ces blocs sont indiquées sur la figure 27­

a. Outre ces blocs, il a identifié des séquences baptisées "T éléments" qui peuvent

adopter une structure secondaire en feuille de trèfle rappellant la snucture des tRNA. Ces

"T éléments" sont appelés Tl, T2, T3 ... etc. (fig.27-a). Ils se ressemblent tous mais

sont différents à des degrés divers et sont présents sur HP-1 et HP-2. De plus, JOYCE a

mis en évidence le caractère très recombinogène de la région HP-2 en y identifiant des. .

séquences homologues à des séquences contenues dans les gènes rrn26 et atp6 (fig.27-

a).

Nous avons comparé la séquence des régions entourant les gènes de tRNAPro

de la mitochondrie du maïs avec les séquences des régions HP-l et HP-2. Les résultats

de ces comparaisons sont représentés sur la figure 27-a. Nous avons retrouvé en amont

du gène complet du maïs, la même structure que la région HP-2 du blé. Les blocs D, E et

F sont situés aux mêmes endroits et on retrouve une région correspondant à un "T

Page 97: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 27-a: Réprésentation schématique de l'organisation des régions flanquantesdes gènes trnP du maïs et du blé

T5 tRNA ProW*M*?*W c::=:J

atp6 rrn26 0 E F____________________ 1 0 0 1 1 1 --------- HP-2(blé)

1 1 11 Tx 1 1

:'NPWonw ~ :IDE , F 11 1 1______________________________ 1 0 0 Iii 1 _ 3.5 B(maïs)

111

e:t::::ltrnfM rrn18 rrn5 T1 T2 T3 0 E 1 F :

" 1 1nssssSSSSSSSSSS'f __ rzzJ IlliI ...m.. IIJI_ Cl 0: 1 1 HP.1(blé)

11: pseudo tRNtPro(3')c::J1

DEI F'? --, r- 1_________________________________________1__ I__ --=--...r_- r 1 __ N7B7(maïs)

Les boites nommées atp6 et rm26 sont homologues à des séquences contenues dans les gènes atp6 et rm26Les gènes trnfM •rml8 et rm5 et les éléments T sont réprésentés à des échelles plus réduites par rapport auxautres séquences schématisées.

.,::.}~(.

°o.:.:\~\:i:

Page 98: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 27-b: Schéma théorique des recombinaisons qui seraient à l'originede la structure actuelle des régions codant pour le gène tmPde la mitochondrie du maïs

rec.! rec.2

HP-! X HP-2 • 3.5 B X Autres séquences -. N7B7

+ ~tRNA Pro Tx

pseudo tRNAPro

(5 ')c::::=J &&& c::::J

0 E F 0 F"

Cl 0 ~ il

Eliminés du génome mitochondrial du ma'is (B37-N)

rccl: recombinaison probable dans le maïs entre les séquences (ancêtres) de type HP-l et HP-2. Celle recombinaisonaurait engendré la structure retrouvée dans le fragment 3,5B en plus d'une autre structure qui, elle, a été éliminée par lamitochondrie du mais.

rec2: deuxième recombinaison entre les séquences du type 3,5B avec d'autres séquences (n'ayant pas de parenté avec lesséquences impliquées dans la première recombinaison). Cette recombinaison aurait été à l'origine du gène incomplet ets'est probablement déroulé à l'intérieur du gène. La partie 5' du gène incomplet ainsi que les régions en amont auraientété aussi éliminés par la mitochondrie du maïs.

Page 99: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 28: Structure secondaire en feuille de trèfledéduite de la séquence du DNA de l'élément Txtrouvé en amont du gène troP de la mitochondrie dumaïs

G

G- e

T -A

T A

e G

T A

G- eG G

GG TI/ T

G A G- T T

T e Ae G e e

T e A eA eT A

A T e G G GA T

1 1 A T GG GT e ee e e e T G T

T e ® T Te

T G T • (D(Ç) GT

T G CD ®@)Ae G e T •

G---A- \\ G-G e TG e A TG --GGG_ et

A - T ee A

T A

e AT

tG

Les flèches désignent les nucléotides substilués par rapport au T5 du blé.Les cercles indiquent les nucléotides absenLS du T5 alors que les séquencesabsentes du maïs mais présentes sur le T5 du blé sont représentés par desaccolades

Page 100: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

59

élément". La structure secondaire de ce "T élément" désigné par Tx est représentée sur la

figure 28. Il a les mêmes caractéristiques que TS identifié sur HP-2 mais en diffère par

des particularités qui sont montrées sur la figure 28. L'homologie entre HP-2 et la région

du DNA du maïs en amont du gène complet de tRNAPro s'arrête immédiatement après la

séquence Tx et on n'y observe donc pas les homologies avec les gènes rrn26 et atp6.

L'analyse des régions en aval du gène a montré qu'au lieu de retrouver des homologies

entre la région en aval des gènes (complet et incomplet) du maïs avec celle de HP-2, on

en retrouve plutôt avec HP-1 (fig.27-a). Le gène complet du maïs comporte donc en

amont des régions homologues à HP-2 et en aval, des régions homologues à HP-l.

Toutes ces observations nous amènent à tirer les conclusions suivantes:

1) Les gènes de tRNAPro du blé et du maïs dérivent sans aucun doute du même

ancêtre.

2) Dans le maïs, une recombinaison intervenue dans le bloc F entre les ancêtres

des séquences du maïs équivalents à HP-l et HP-2 a donné la structure actuelle. Le

schéma de cette recombinaison est montré sur la figure 27-b. Il est probable que la

recombinaison est intervenue à l'intérie.ur du gène de tRJ.'·lAPro car la présence d'un gène

incomplet de tRNAPro dans le maïs met en évidence le caractère recombinogène de ce

gène.

3) Les blocs D, E et la séquence "T élément" ont probablement une importance

au niveau de la transcription car on les retrouve devant tous les gènes de tRNAPro, même

si leurs positions changent d'un gène à l'autre. Notons à ce sujet que dans le maïs, le

bloc D contient une séquence S'AAGAAAAT3' rappelant la séquence consensus mais

comportant un T en 3' au lieu d'une purine. Cependant, dans le blé, deux séquences

S'AAGAAAAA 3' et S'AAGAAGAA3' sont retrouvées en amont du gène de tRNAPro

codé par le fragment HP-l et ce, dans des régions différentes des blocs D et E.

,.-t.. ~.-;.---r"""'-"'---"------'---- __ - _

Page 101: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

h()

E. ETUDE DES GENES DE TRNA DU COSMIDE 8-3B2

Présentation d'un article sous presse à CUITent Genetics

Le cosmide 8-3B2 contient une insertion de DNA mitochondrial de maïs de la

variété WF9-N. Cette insertion est localisée sur le cercle-maître entre les coordonnées 85

et 120 (figA-c). Nous nous sommes intéressés à ce cosmide parce que son insertion

s'hybride à la fois au tRNA totàux mitochondriaux et chloroplastiques. La cartographie

de restriction de ce cosmide a été établie et l'hybridation des différents fragments de

restriction avec les tRNA totaux mitochondriaux a montré que 3 fragments comportent des

gènes de tRNA. Ces fragments ont été sous-clonés et leur séquence nucléotidique a été

établie. Des gènes de tRNATyr, tRNALys et tRNAMet ont été identifiés respectivement sur

des fragments HindIII de 335 pb, RsaI-EcoRI de 295 pb et SstI-Sau3A de 324 pb.

Le gène de tRNALys mitochondrial qui est le premier décrit chez les plantes

supérieures a une homologie de 63 à 81 % avec des gènes de tRNALys chloroplastiques et

bactériens.

Le gène de tRNATyr de mitochondries de ma'is est identique à son homologue du

blé (JOYCE et coll., 1988-b) et il ne diffère du tRNATyr de mitochondries de haricot

(MARECHAL et coll., 1987) que de 2 nucleotides (positions 16 et 47; 1).. Le nucléotide 16

est l'~ne dés positions qui différencient les 2 isofom1es du tRNATyr mitochondrial du

haricot (MARECHAL et coll., 1987-c).

Le gène de tRNAMet a 95% d'homologie avec les gènes de tRNA

chloroplastiques. La comparaison de la région comportant ce gène avec celle comportant

son homologue chloroplastique du maïs a montré que l'homologie entre ces 2 régions est

limitée à la partie codante des 2 gènes. Ce gène qui a probablement une origine

chloroplastique provient donc d'une ancienne insertion de DNA chloroplastique dans le

génome mitochondrial du ma'is.

Page 102: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Current Genetics© Springer- Verlag 1989

sous presse

Sequence Analysis of the tRNATyr and tRN!'lys genes and evidence for

the transcription of a chloroplast· Iike tRNAMet in maize mitochondria.

Abdourahamane SANGARE, David LONSDALE1, Jacques-Henry WEIL and

Jean-Michel GRIENENBERGER*

Institut de Biologie Moléculaire des Plantes, 12 rue du Général ZIMMER,

67084 STRASBOURG - Cedex (FRANCE)

1- Institut for Plant Research, Maris lane, TRUMPINGTON

CB2 2LQ CAMBRIDGE (UK)

*Corresponding author

KEYWORDS

Maize mitochondria, tRNA genes, transcription

Page 103: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

2

SUMMARY

The nucleotide sequences of three tRNA genes and their flanking regions

fram the maize mitochondrial genome is reported. These genes are located in the

same region of the genome between the 14 kb inverted repeats. These genes which

are transcribed in the mitochondria, are coding for tRNALys (anticodon UUU)

tRNAMet(CAU) and tRNATyr (GUA). Because of its very high homology with its

chloraplast counterpart, the tRNAMet gene prabably originates fram a chloraplast

DNA insertion. The analysis of the upstream regions of these genes show that the

tRNATyr and the tRNALys genes possess the consensus sequence AAGAANRR

which could act as a pramoter sequence in higher plant mitochondria.

Page 104: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

3

1NTROOUCTION

Mitochondria possess ail the components necessary to perform protein

synthesis. In higher plant mitochondria (mt) , it has been shown that the genome

encodes the 268, 188 and 58 rRNAs, sorne ribosomal proteins (Gualberto et al.,

1988) and a number of tRNAs (for a review, see Lonsdale, 1988). Except for the

rRNAs (258, 188 and 58), the genes coding for the other components of the higher

plant mitochondrial protein synthesyzing system have not been fully described. This

is particularly the case for the genes coding for the set of tRNAs which are

necessary for protein synthesis.

A number of tRNA genes have been sequenced in the maize mitochondrial

genome, namely the genes coding for tRNAHis, (Iams et al., 1985), tRNAAsp (Parks

et al., 1985), tRNAmMet and tRNAfMet (Parks et al.,1984), tRNASer and tRNACYs

(Wintz et al., 1988) and tRNATrp (Maréchal et al.,1987). It has not been proven that

ail these genes, especially not in the case of tRNAHis, tRNAAsp and tRNAmMet are

expressed in the mitochondrion into mature tRNAs which are active in protein

synthesis. Because of the complexity of the molecular organization of higher plant

mitochondrial genome which are subjected to recombination events, there are a

number of tRNA - pseudogenes which are not expressed in the mitochondria (Wintz

et al., 1988; Oron et al.,1985 ). It is therefore quite important, when describing tRNA

genes, to be sure that these genes are functional.

Page 105: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

4

Some mt tRNA genes and in their flanking regions, are very similar to their

chloroplast (cp) counterparts. It has been postulated that they originate fram

chloroplast DNA insertions in the mt DNA (Iams et al.,1985). In some cases, they

are expressed from these insertions and this has been demonstrated for the maize

mt tRNATrp and tRNACys genes ( Maréchal et al.,1987; Wintz et al.,1988 ).

ln addition, the import of cytoplasmic tRNAsLeu into bean mitochondria has

been reported and it has been postulated that a number of other tRNAs could be

imported as weil (Maréchal et al.,1988). This phenomenon which also occurs in

Chlamydomonas reinhardii (Boer and Gray,1989) and in Tetrahymena pyriformis

(Suyama et al., 1986) may be a feature common to many eukaryotes.

It is therefore of great importance to determine the total number of tRNA

genes which are encoded in the mt DNA of higher plants. The identification of ail

these mt tRNA genes will give an idea of the number and the identity of the mt tRNAs

which are coded outside the mitochondria and are imported.

Because of the diversity of the origin of the tRNAs which are involved in the

decoding of mitochondrial messenger RNAs in higher plants, the minimal number

of tRNAs which are necessary for mt pratein synthesis is not known. According to the

wobble hypothesis, this number should be 31, but in mammalian or in fungal

mitochondria, there are only 22-24 tRNAs (Heckman et al., 1980 ) and the rule of

"two out of three" should be used (Lagervist, 1978).

ln order to identify the tRNA genes which are encoded in the maize mt

genome, we have been analysing the restriction fragments of the maize

mitochondrial genome which hybridize with total mt tRNAs.

Recently, by comparison with the sequences of yeast mitochondrial

promoters, Joyce et al., (1988) detected a purine-rich sequence AAGAANRR,

Page 106: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

5

which could be a consensus sequence for the promoters of wheat mt tRNA genes.

This sequence is also present upstream of the maize mt tRNATyr and tRNALys genes

described in this report and it will be interesting to see whether this consensus

sequence is also present in other higher plant mitochondria.

ln this paper, we present the nucleotide sequence of three maize mt tRNA

genes and the analysis of their flanking regions. These genes, encoding a

tRNALys, a tRNATyr and a tRNAMet , are transcribed and are therefore functional

genes.

Page 107: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

6

MATERIAL AND METHODS

Total mitochondrial tRNAs have been extracted from 5-7 days old etiolated

seedlings of Zea mays (WF9-N) as previously described (Runeberg-Roos et

al.,1987). Chloroplast tRNAs were extracted as already described (Wintz et al.,

1988).

Purified mt and cp tRNAs have been specifically labeled at their 3' end with

[32P]_ Cl ATP using yeast tRNA nucleotidyl transferase (Silberklang et al., 1979).

Total RNAs of the soluble fraction were labeled at their 3' end with [32p]_pCp using

T4-RNA Iigase as described by Bruce and Uhlenbeck (1978).

Cosmid and plasmid DNAs were prepared by the alkaline Iysis method

(Birnboin and Doly, 1979). DNA was digested with restriction enzymes using the

conditions specified by the manufacturer, analysed by agarose gel electrophoresis

and blotted onto nylon membranes as described (Maniatis et al., 1982).

Hybridization procedures were as described (Wintz et al., 1988).

DNA sequencing has been carried by the dideoxynucleotide chain

termination method (Sanger et al., 1977) using M13 single stranded DNA as

template. The templates were obtained by subcloning the fragments of interest in

M13mp18 and M13mp19 phages and creating a set of nested deletion as described

(Dale et al. , 1985).

Nucleotide sequences were analysed using the programs obtained

from the University of Wi~consin Genetic Computer Group (Devereux et al., 1984).

Sequence comparison were done using the EMBL, Genbank and NBRF data banks

on a Digital MicroVax Il computer.

Page 108: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

7

RESULT8 AND DISCUSSION

Specificity of the mt tRNA probe

ln order to localize the tRNA genes on the genome of maize mitochondria, a

complete set of cosmids covering the master circle (Lonsdale et al., 1984) was

hybridized with total mt tRNAs extracted fram sucrase-gradient purified maize

mitochondria. Because these tRNAs were obtained fram the LiCI-soluble fraction of

mt RNA, they are Iikely to be contaminated by 5S rRNA and by degradation

fragments of rRNAs and mRNAs. The tRNAs were labeled by a-[32p] ATP using the

yeast tRNA nucleotidyl transferase. This enzyme is specifie for tRNAs, in contrast to

T4 RNA ligase which can add P2P]_pCp to every 3'OH end. This is shown in Figure

1B where, by using T4 RNA ligase, it is possible to label 58 rRNA, in contrast with

the specifie labeling of tRNAs shown in Figure 1A. This specifie labeling is due to the

fact that tRNA nudeotidyl transferase recognize the tRNA structure in order to add

or to exchange the 3' terminal CCA sequence (Orozco, 1982). The specificity of this

enzyme has been confirmed, on maize mt tRNAs, because it has not been possible

to obtain any labeling, in the same conditions, using a-[32p] GTP which is not

incorporated into the CCA end of tRNAs, or [32P]pCp instead of a-[32p] ATP,

indicating that the enzymatic preparation is not contaminated by any aspecific RNA

polymerase and/or RNA ligase.

Page 109: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

+tRNA

+

CD

~üü

1_.- ..

CDCIlCIl.!?

<zCl:

55

Figure 1.

a b

Comparison of the labeling pattern of maize mt soluble RNAs with either tRNA

specifie tRNA nueleotidyl-transferase (A) or T4 RNA Iigase (B). The labeled

RNAs were separated on a 15% polyaerylamide gel and autoradiographed.

Page 110: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

8

Homologous hybridization of such specifically labeled maize mt tRNAs to a

maize mt DNA fragment containing only one tRNA gene, is the proof that this gene

is transcribed. It should be noted that this is not always the case when heterologous

hybridizations are performed, as in the case of the hybridization of mt tRNAPhe in

bean (Maréchal et al., 1985) and the corresponding tRNAPhe pseudo-gene in maize

and wheat (Gualberto et al.,1988).

That the maize mt tRNAs probe was not contamined by chloroplastic tRNA

was tested as described earlier (Wintz et al., 1988).

Location and sequence of tRNA genes on the cosmid 8-382.

. The cosmid 8-382 is located.between the t~o ,14 kb inverted repeats of the

master circle of maize mt DNA (Lonsdale et al., 1984). This cosmid which is about

40 kb long spans from map coordinates 85 to 120 as shown in Figure 2. Total

specifically labeled maize mt tRNAs have been hybridized with the DNA fragments

obtained by restriction of this cosmid with Bam HI, Eco RI, Hind III, Sma 1and Sst 1

(Figure 3). These hybridization experiments indicate that three Eco RI fragments

contained at least one tRNA gene each. These three Eco RI fragments (A,B,C) are

respectively 3.0 kb, 5.0 kb and 4.0 kb long and their positions on the map are shown

in Figure 2. When the same digests were hybridized with specifically labeled maize

cp tRNAs, one of these fragments, namely the Eco RI fragment C (4.0 kb) was

shown to contain a tRNA gene with homologies with the chloroplast tRNAs

(Figure 3).

The localization of the tRNA genes was further refined after c10ning DNA

subfragments (obtained from the Eco RI fragments A, Band C) into the M13mp19

Page 111: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

1111

10, 100 "1 ,It!

....s... ,

......Il.1

,1.]

......... ............. ... .........

/ lp \::':'" Tl' ...................\ 11011",;" •••

:.........---,-_----0. "-,,,...--.4'T"i----..:..>.' 1,...'----.-..-+1-.=-;'• • • •

".

,,,,

Ld110"

Figure 2.

B c

Restriction map of cosmid 8-3B2. The position of one of the 14 kb repeats is

indicated on the top of the figure (open box). The Eco RI fragments which

hybridize to total mt tRNAs (dotted boxes) and total mt and cp tRNAs (hatched

box) are indicated. The respective positions and orientations of the tRNA

genes (arrowhead) which are described in this paper are indicated on the

extension of these Eco RI fragments. Restriction sites are abbreviated as

follows : B =Bam HI, H =Hind III, P =Pst l, S =Sst 1. The restriction fragment

containing the gene coding for tRNAMet1 is indicated as weil as the orientation

of the gene.

Page 112: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

9

vector. Each of these subclones hybridizing with mt tRNAs was entirely sequenced

and was found to contain only one tRNA gene indicating that the three tRNA genes

are expressed in the maize mitochondria. The tRNAs encoded by these three genes

can be folded into the typical clover-Ieaf secondary structure of tRNAs (Figure 4).

A tRNALys gene was found in a 295 bp Rsa 1- Eco RI subfragment of Eco RI

fragment A. A tRNATyr gene was found in a Hind III - Hae III subfragment of 335 bp

of Eco RI fragment B and a tRNAMet gene was found in a Sst 1 - Sau 3A subfragment

of 324 bp of fragment C. The location of these tRNA genes is shown in Figure 2.

The tRNALys and tRNATyr genes are coded for by the same DNA strand, whereas

the tRNAMet gene has the opposite orientation. These sequences have been

submitted to the EMBL data bank and have been respectively given the following

accession numbers : X15681 ,X15682, X15680

The tRNALys (UUU) gene

On the basis of its anticodon (UUU), the tRNA gene which is contained in

fragment A is specifie for lysine. The gene is 73 nucleotide long and the 3' terminal

CCA sequence is not coded for by the gene. This tRNALys is the only one which is

necessary to decode both codons specifying lysine (AAA and AAG) according to the

wobble hypothesis.

This is the first tRNALys gene found in higher plant mitochondrial DNA.

When compared with other tRNAsLys and tRNALys genes, the maize mt tRNALys

gene has only 35 to 60% sequence homology with the mammalian and fungal~

mitochondrial tRNALys genes and between 63 to 81% sequence homology with

Page 113: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

mttRNA cptRNA

FIGURE 3. Hybridisation of the 3' labeled maize total mt and cp tRNAson a restriction digest of cosmid 8-382

Page 114: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

10

bacterial and chloraplastic tRNALys genes. These levels of similarity are commonly

found between these tRNA genes and higher plant mt tRNA and tRNA genes.

The tRNATyr (GUA) gene

Fragment B contains a tRNATyr gene according ta its anticodon GUA.

The tRNATyr gene is 86 nucleotide long. When compared with ta the other plant mt

tRNAsTyr or tRNATyr genes, this gene is fully homologous ta the mt tRNATyr gene

which has been sequenced in wheat (Joyce et al., 1988) and therefore has the

same large 0 loop and a low energy base pairing in the D stem.

The maize mt tRNATyr gene sequence is very homologous ta the tRNATyr

sequence which has been purified 'fram bean mitochondrial (Maréchal et al.,

1985). It is therefore Iikely that this tRNATyr is also encoded in the mitochondrial

DNA in bean. There are only two differences between the bean mt tRNATyr and the

wheat and maize mt tRNATyr genes. One of them is the change of T in position 47;1

in the variable loop of bean mt tRNATyr ta a G in the maize gene. The second

difference is the change of the U (or D) into a C at position 16. This is one of the

positions which differentiate the two isoforms of bean mt tRNATyr.

On the other hand, the maize mt tRNATyr gene has only 46% of sequence

homology with the mt tRNATyr gene of Arabidopsis thaliana .This mt tRNATyr gene

(which has the same anticodon GUA) is thought ta have arisen fram a pseudogene

of tRNAPhe, following a number of DNA rearrangements (Chen et al., 1989). It has

not been established whether this gene is expressed or whether A. Thaliana

mitochondria also contains another tRNATyr gene similar ta the one identified here. It

should be noted that the same pseudogene of tRNAPhe has been found in wheat

Page 115: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

20

A

G- CG- CG_ C 70T-AG- TT- A 60

G 10 A - T T GAT A T CG TCC

T CTCGA 11111 Al'II GCAGG

G A GA GC A C T' TTCG T T_AT G 50

T-A GG-T

JO o-C 40G-C

C AT A

T T T

AG-CG-CG - C 70A-T

T G_C ~, A_T

10 G _ C T A ACGT CGTCC

GAG CCG G l , l , 1 G

G GI 1 cG~GGT CAA C -.... T

T A A G TT AT 50C A- G C

C -G A T20 A- T A T

JO G- C 40 G G TA_T 1 T

C -A TT A

G TA

AA _ TC - GC - G 70T - AA - TC - G 60

CG 10TT-ATAACCTAAA CTCA G 1 1 1 lIA

G 1 1 lIATT G G T CG GAGT AC" T

TT A T_AG TSO

20 C - G AGG-C

30 C - G 40C-GT C

T ACAT

A

B

c

Rsal ~GTACGAGCCCCATACAGAGCCGCGCCCTTGTGATATGA§A ilGGGCCAGGCCACCCTCTTTTCTTTTCCGCACCAAGCCTTCTTGTAAAATA

150GGGTGTATAGCTCAGTTGG1'TlGAGCATIGGGCTTTTMCCTMIGGTCGC

200ACmTCAAGTCcrç,crATACCAAAAAAAACCACTCTIGTATTCGTAAr:x:.A

TGCGGGACAAAGACCCTAATCACATGCATCCATTTAGGTCAGAATTCEcoRI

HindIIl 50AAGCTTTGCCCCTTGCTTTACATAAATTGTTATGAACTTACTMATGACC

100TTATTTATTCTCCCGGAACGCTAGCMATCTAATAGTTCCATCTGCTCTT

150CTTAACTTAACTiAAGAA11$?AAC§tGGCCGCCATCCTTCTTATTCAG

200GAACCCTTTGTTTGAr:x:.AGGI:::I:-GTATCCCAGGGAAGGC,GAGAGIC.,ç,ççC,A

250ÇÇC,GTCAAAAOCGACAGACTGIAAAICTGTIGAAC'GTTITCTACGTAQGT

300TCGAATCCTGÇCTCTCCCACTTGTTGTAGACTTAAGAGAAGAGAAAGTAG

GCGGMGCCTAGGAGGI:::I:-CAACCGAGCGAAGCTCTTTCTTITTTTGGCC

HaeIII

SstI 50CCGCGGGAACTCTGGTTGCGCTTTGGTTGGCTTTCTCTTTTTTTCTATTT

100TCTCTGACTTGACTCAGCTTGTlCCTACTTGACICAOCC,GTTAGAGTAICG

150CTTTCATACÇÇÇGAGAGTCA'l'TGGTTCAMTCCAAIAGTAGGTMA.ACCG

200GCCGAAACCCCCGCTTT1'GCCAGCATGACAGCAAGCACAGACTGGCATCA

250AGGAGTCGAATGACCAAAGCATCGGTTGCTTCCACGAGACTAAACAATCA

300ATGACCAATAAAAGACCAACGAAACGACGAGTGAGAAAGATAAAGAACGC

GACGTGGTTCATTCAAGTAGAGGTTTGATCSau3A

Figure 4.

Nucleotide sequence of the fragments and deduced cloverleaf secondary

structures of the three maize mt tRNA genes. A : tRNALys gene ; B : tRNATyr

gene ; C tRNAMet2 gene. In the sequences. the genes are underligned. The

putative consensus sequences are boxed. On the mt tRNATyr gene secondary

structure, the two nucleotides which are different between this gene and the mt

tRNATyr of bean (Maréchal et al., 1985) are indicated.

Page 116: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

11

and maize mitochondria and is not expressed in the two organelles (Gualberto et

al., 1988).

Ali mt tRNATyrgenes sequenced up to now have a GUA anticodon which is

is able to decode both codons of tyrosine (UAU and UAC) according to the wobble

hypothesis. In bean mitochondria the anticodon was found to be NUA, N being an

unknown modified nucleotide (it is probable that N is a modified nucleotide derived

from G).

The tRNAMet (CAU) gene

Fragment C was shown to hybridize with both total maize mt tRNAs and total

ma.ize cp tRNA. Upon sequencing, one tRNA gene was found in this fragment. When

folded (figure 4), the deduced tRNA has a CAU anticodon and the gene was then

identified as coding for a mitochondrial tRNAMet . When compared with other

tRNAsMet or tRNAMet genes, the sequence of this gene appears to be identical to

the sequence of bean mt tRNAMet (Maréchal et al., 1986) as weil as to the

sequence of the mt tRNAMet genes from soybean and A. thaliana (Wintz et

al.,1988). The maize mt tRNAMet gene displays a high level of homology (90-

95 %) with the chloroplast elongator tRNAMet genes described so far (Sprinzl et

al., 1989).

Tilis tRNAMet gene is the only gene which could be found in fragment C and

hybridization to total mt tRNAs shows that it is expressed in the maize

mitochondrion. This has not been demonstrated for the similar mt tRNAMet genes

which have been found in soybean and A. thaliana (Wintz et al., 1988)

The near complete homology of this maize mt tRNAMet with the

corresponding maize cp tRNAMet (95 %) (Steinmetz et al., 1983) and with other cp

Page 117: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

Asp (Wheat) AAGAAAAG

Lys 1 AAGAAGAA ...-53 n-----.

Lys 2 AAGAAAAG .-50 n---.

Tyr 1 AAGAATAA .-63 n---.

Tyr 2 AAGAACGA ...-57 n-----.

CONSENSUS AAGAANRR

Figure 5.

Comparison of the putative consensus sequences found upstream of the

maize mt tRNA genes compared with the sequence described by Joyce et al..

(1988) upstream of wheat mt tRNAAsp. The distance of these sequences to the

first nucleotide of the tRNA genes is indicated.

Page 118: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

12

tRNAMet genes could be explained if one assume that this tRNA originates fram a

chloraplast DNA insertion into the mitochondrial genome. To study this assumption,

we have compared the flanking regions of the three mt tRNAMet genes with their

chloraplast counterpart. Ail mt tRNAMet genes are completely homologous up to 24

nucleotides in the upstream region, in the coding region and the 17 nucleotides

downstream except for a 4 nucleotides deletion in A. thaliana . The homology with

the immediate flanking regions of the corresponding gene in cp DNA is low « 50

%). It is therefore difficult to say that this gene originated fram a cp DNA insertion.

However, in rice mitochondria, it has been shown (Moon et al., 1988) that a

fragment of cp DNA inserted into the mt genome does contain the gene of cp

tRN~Met together with rbcl, atp~, atpE and trnV. Furthermore, Nugent and Palmer

(1988) have studied the regions of the mt genome which contain fragments

homologous to the cp genome of 6 species of the crucifer family. One of these

regions consisted of a small restriction restriction fragment (Sac l, 1.6 Kb) containing

the atpE and the tRNAMet genes. This small fragment is present in ail mt genomes

studied by these authors. Considering these two exemples, it seems quite clear

that this region constitutes a "hot spot" of the cp genome for insertion into the mt

DNA. It can thus be considered that the mt tRNAMet genes fram maize, soybean and

A.thaliana were inserted into their respective mt genome fram the corresponding

cp DNA fragment and that their flanking regions have been deleted or transposed

as a result of genome rearrangements. The fact that the mt tRNAMet gene is

expressed in maize mitochondria could explain why these tRNAMet genes keep

such high sequence homology with their cp counterparts.

ln addition to the maize mt tRNAMet gene (trnM2) reported in this paper,

another tRNAMet gene (trnM1) has been sequenced in the maize mitochondrial

Page 119: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

13

DNA (Parks et al., 1984). The expression of this gene has not been documented. By

hybridization with an oligonucleotide complementary to the 3' end of trnM1 , this

gene was mapped on the maize mt genome. It is present in two copies in the 14 kb

inverted repeat in a Sma 1- Bam HI restriction fragment of 2.7 kb fram ordinate

39.3 to 42 and 122 to 127.7 respectively (one of these inverted repeats is shown in

Figure 2). Specifically labeled maize total mt tRNAs hybridize to this restriction

fragment which conta.ins only this genet showing that trnM1 is also expressed in

the mitochondria. According to their anticodon and sequences, both trnM1 and

trnM2 are coding for an elongator tRNAMet. It would be interesting to understand

why such a situation exists. It has been shown in spinach chloraplast DNA that a

tRNA gene having a CAU anticodon can encode a tRNAlle, because of an unknown

modification of the C at the wobble position (Kashdan and Dudock, 1982 ). The

same phenomenon has been described in E.coli where Iysidine. a novel type of

modified cytidine (with a lysine moiety) has been found at the first nucleotide of the

anticodon of a tRNA with the anticodon LAU (Muramatsu et al.. 1988). In this tRNA,

the presence of Iysidine at the wobble nucleotide allows the tRNA to decode AUA

(isoleucine) and not AUG (methionine). The tRNAMet coded for by the trnM2 gene

which is reported in this paper has been found to accept methionine in bean

mitochondria (Maréchal et al., 1986). One can wonder whether the tRNA encoded

by trnM1 is able to accept isoleucine. Up to now, no tRNAlie gene or tRNAlle has. . . .

been found in higher plant mitochondria. It would be of interest to isolate the praduct

of trnM1 in sufficient amount to see whether this tRNA has a modified anticodon

allowing it to function as a tRNAlie.

Page 120: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

14

Analysis of f1anking regions.

When analysed ( Joyce et al., 1988) the upstream regions of five wheat mt

tRNA genes reveal a purine-rich motif wt1ich has som~ homology with the yeast mt

DNA promoter (Tabak et al., 1983). From these studies, it was possible ta derive a

consensus sequence AAGAANRR which is likely ta act as a promoter sequence in

higher plant mitochondria. When the upstream regions of the maize mt tRNA genes

coding for tRNATyr, tRNAMet and tRNALys were examined for such a purine-rich

motif, it was found for tRNALys and tRNATyr, as shawn in figure 4 and figure 5. Two

motifs with a perfect homology with the consensus sequence are present 53

nucleotides and 50 nucleotides upstream of the tRNALys gene and 63 and 57

nucleotides upstream of the tRNATyr gene (Figure 5). This motif was not found

upstream of the tRNAMet gene at least in the determined sequence. However, it has

been shawn that this region of the maize mt genome contains a transcribed protein

gene (unpublished results) and it is possible that the tRNAMet gene is

co-transcribed with this protein gene. In this case, the consensus sequence could

be present far away from the tRNA gene.

Page 121: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

IJl:IO

(Q)~@~[N]O~~ "ü"0(Q)~ [Q)~~ @~[N]~~ [Q)~ ~~[N]~ ~lUJ~ Ib~~

©~~©Ib~c [M]~O'U'~~~ [Q)~~ @~[N](Q)[M]~~ ~1]tr(Q)©[fi](Q)~[Q)~O~l1DlA

[Q)~ ~~~~ [Q)~~ ~~~I]~IJ~~ ®~~o~ ~u ®~'FC@UiJil@u

Page 122: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

61

III. ORGANISATION DES GENES DE tRNA SUR LESCERCLE-MAITRES DES GENOMES MITOCHONDRIAUX DEMAIS DES VARIETES B37-N ET B37-CMST

Comme nous l'avions signalé plus haut (Introduction), il existe de très

grandes différences structurales entre les génomes mitochondriaux B37-N et B37-cmsT.

Comme cela a été décrit par FAVRON et coll., (1989), ces différences peuvent être mises

en évidence par la réorganisation de la structure linéaire du cercle maître (fig.29). En

outre, le génome B37-cmsT comporte des séquences de DNA qui ne sont pas retrouvées

dans le génome B37-N et réciproquement. Ces pertes (ou gains) et ces réarrangements de

séquences pourraient être à l'origine du phénotype de stérilité mâle de type T (DEWEY et

coll., 1986).

Dans ce travail, nous avons entrepris de voir si les réarrangements génomiques

observés affectent aussi l'organisation et/ou le fonctionnement-des gènes de tRNA

mitochondriaux et si, en particulier, les deux génomes N et T contiennent les mêmes

-gènes de tRNA spécifiques des mêmes amino-acides.

.A. HYBRIDATION AVEC DES OLIGONUCLEOTIDES DESYNTHESENous avons utilisé des oligonucléotides de synthèse qui correspondent à la séquence

de gènes de tRNA publiés dans la littérature et/ou à ceux dont les structures ont été

déterminées dans notre laboratoire. Ces oligonucléotides ayant des tailles qui varient entre

17 mer et 27 mer, les hybridations ont été faites en tenant compte de la température

optimale d'hybridation des oligonucléotides les plus courts (entre 42°C et SO°C).

Dans un premier temps, nous avons fait des hybridations avec l'ensemble des

oligonucléotides disponibles. Cette expérience avait pour but de voir si on pouvait

observer des différences entre les génomes mitochondriaux normaux B37-N et WF9-N

en ce qui concerne et la nature et la distribution des gènes de tRNA connus. Dans un

deuxième temps, nous avons utilisé individuellement chaque oligonucléotide que nous

avons hybridé avec des filtres comportant les cosmides recombinants réprésentatifs du

génome mitochondrial B37-cmsT. L'objectif de cette expérience a été de localiser les

gènes de tRNA connus sur le cercle maître du génome mitochondrial B37-cmsT.

Les résultats de ces hybridations sont résumés sur le tableau A du chapitre 11.1.

Page 123: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

.. .., ....,.-

FIGURE 29: Comparaison des struc~ures linéarisées des cercles maîtresdes génômes mitochcndriaux B37-N et B37-cmsT(Fauron et col.. 1989)

o 10 10 )Q 40 )0 .0 10 .0

T 1-1---'----'------'----''---......' ---'-'-----',--......' _---..L.7_---i'j'.1.... .1••!

Ar--.,.,..__-... c 0 E F 0 ..

:ml~',II,I~100~. _ ~ ~" m

sP~~ Il ~ 1 ~I(t.~'~'T"'--jr--.:;;i''T"'-....,..:----r"Ix Dili J: Il III Il 1 1] 18 __ ..."D.....I--'-rl~... 111111 III 1 III'0; ....,.

"!'I

s liil------"'ïli'l""rl--...........---...I-Il-..-l"'"j.....,.,'1...---x Il Il Il .. 1 l""'I""'I~-8 Il 1 1111 III .. 1 1

)00 c~ U.' ~'S

:=ri (III~ i ,:1 ..Li .u1l_

T

_-L-..ll.-_-l.

8 =:=:f Il 1 ~I--.-1"1-,I-Y--I----r(-:,'r)----...... 11 it.41 CI-li 1(1-)

••~". ! Q CJ

s 1 n Il II~~WXT Z AIÎ: §ilCrn"cc:x 1 1 IlIlf . 18 1 fi 1 1.) Il 1 1........

=!EE FY' QQ

s~1x 6 r Il• 1 ) 1

--.....

..=

N '~l_--'-.°_--'->0--=------'':'_----'7__00'--_.......' _----'ro=----_.:....-_..:.:...-~'~

°&...J' "r 1 0.1

;z:r:::=:Jl 8 WVl1i?pmma_ Pl " U • T

S ~mll-Ï'lïll--r--r1-ttJ-n-r--":'1'11""--x . 1 1 IlIl . !-rIL,1-'---1f--......II ---r11,-!1-i ~ r-----

otf1;rs .1100 C§SSS§%S§§§1. ~

E i ..

: 1~:l 1Il 1 IIH~~I~I~1r-1'-'r11::-Ir'rI:1~I:II'T'I_I:~:I:II:::0:':1:\I~:I~I=• 1 1. 1 1 ~r-.....J1.....1.....1.J.1...J1u.1_..l..I-ILII--uII---iI.J...IIL......LIIL-----iI_

100

'00

c..

• 1.~C'.''1 ceg" !a.

1 nl-----'-.J...I.J...I_Ol---l..

!!•• C DO

III ~~II1 III 1 1 1 1 11.. 1 1 1111 • 1

soo a~~1'~ °i:!c... -r C'lZ

H .... Q V GO

:~ljllll:lll~ 0--0...

Q

.o

Les blocs de séquences transférés par des rccombinaisons multiples sont représentés en traits ~ras et désignés pardes lettres capitales. Les séquences répétées sont indiquées par des boites hachurées et les boitcs blanches dési~nenl

les insertions chloroplasLiques identifiées dans les deux génômes. Les gènes connus sont localisés (boites noires).La posilion sur le cercle maîlre est montrée au dessus des cartes.

Page 124: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

62

.B) ANALYSE DE L'ORGANISATION DES GENES DE tRNAMlTOCHONDRIAUX.1) COMPARAISON ENTRE LES GENOMES B37-N ET WF9-N

L'hybridation des tRNA totaux mitochondriaux avec le DNA mitochondrial du

maïs WF9-N a été faite dans notre laboratoire par WINTZ (1988). De même, les gènes

de tRNA connus ont été localisés sur ce génome en utilisant les oligonucléotides de

synthèse correspondant à ces gènes.

En comparant les hybridations obtenues avec le génome B37-N ( chap.Il.I:

fig.6-a) à celles obtenues avec le génome WF9-N (WINTZ, 1988) il est apparu qu'il n'y

a pas de différence fondamentale dans l'organisation et la localisation des différents

gènes de tRNA entre ces deux génomes fertiles. On a pu simplement observer une

"micro-hétérogenéité" entre ces deux génomes. En effet, en aval du gène du rRNA 18S,

le génome WF9-N contient une séquence de DNA qui s'hybride à un oligonucléotide de

synthèse complémentaire à la partie 5' du gène de tRNAASP. Nous ne savons pas si cette

région comporte un pseudogène, un gène incomplet ou un gène de tRNAAsp ayant une

structure primaire légèrement différente de celle du gène de tRNAAsp décrit par PARKS

et coll. (1986). Nous savons cependant que les tRNA mitochondriaux totaux ne

s'hybrident à la région contenant ce gène que dans des conditions de stringence faible

(50°C) ; ce qui semble indiquer qu'il pourrait s'agir d'un pseudogène ou au moins d'un

gène incomplet.

2) COMPARAISON ENTRE LES GENOMES B37-N ET

B37-cmsT

La comparaison de l'organisation des gènes de tRNA mitochondriaux du génome

mâle stérile B37-cmsT par rapport au génome fertile B37-N montre que:

a) Conformément à l'importante réorganisation de l'ensemble du génome, il y a

une nouvelle distribution des gènes de tRNA mitochondriaux dans le génome B37-cmsT.

Tous les gènes de tRNA portés par les génomes normaux (B37-N et WF9-N) sont

retrouvés dans le génome B37-cmsT. Dans la plupart des cas, ces gènes de tRNA

conservent leur environnement nucléotidique immédiat (sur au moins 1kb) ce qui fait que

la majeure partie des fragments BamHI du génome B37-N comportant des gènes de

tRNA sont retrouvés dans le génome B37-cmsT. Ce qui change, c'est la position relative

de ces fragments sur le cercle maître. Le cas des gènes de tRNAPhe, de tRNAAsn et de

tRNASer illustre bien ces remaniements (fig.30). Dans le génome normal B37-N, le gène

de tRNAAsn est répété car il est situé dans la répétition inversée de 14 kb. Une des copies

de ce gène se trouve sur le même fragment (2,7 kb Bamm) que le gène de tRNAPhe

(chap.II.II.B ; chap.II.I: fig.6-a, piste 6). Par contre, le gène de tRNASer est contenu

Page 125: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 30: Exemple de recombinaison entrainant la réorganisationdes gènes de tRNA entre les génomes fertileset mâle-stériles T

N7D1Ü B Ser B1< 1 .... 1 Lignées fertiles1

Phe 1 Asn Asp mMet-1 ( B37-N)N8A1 1 .. x 41 1 .. 1 4B

BIs S

Asn Asp mMet-1T3E3 1( 4 B S .. S 4 Lignée mâle-stérile T

1Phe 1 Ser (B37-cmsT)

T3G5 1 ... )( 1 4 1B B B

B: BarnHI; S: SmaILes petites flèches indiquent le sens de transcription des gènes de tRNALes noms des cosmides portant les fragments réarrangés sont inscritsen face et à gauche des lignes correspondantes.Les croix représentent les régions potentielles de recombinaison

Page 126: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

63

dans un fragment BamHI de 3.2 kb, qui est situé sur le cercle maître à environ 250 kb de

ce fragment BamHI de 2,7 kb (chap.lI.ILA ; chap.lI.I: fig.6-b, piste 14). Dans le

génome B37-cmsT, le gène de tRNAAsn est séparé du gène de tRNAPhe d'environ 350

kb (sur le cercle maître). Le gène de tRNAPhe est rapproché du gène de tRNASer et ils

sont portés par deux fragments BamHI contigus ( chap.lI.I: fig.6-b piste 3).

b) Un bloc de DNA mitochondrial B37-N comportant des gènes de tRNA

disparait dans le génome B37-cmsT. En effet, la séquence répétée inversée de 14 kb du

génome B37-N codant pour les gènes de tRNAAsp, de tRNAmMeL 1, de tRNAGlu, de

tRNAPro et de tRNAAsn, n'est plus présente qu'en un seul exemplaire dans le génome

B37-cmsT. Tous les gènes de tRNA qui étaient par conséquent dupliqués dans le

génome N ne le sont plus dans le génome T. Cette perte relative d'information, bien que

concernant une grande région de DNA (plus de 14 kb) ne semble pas dramatique pour la

mitochondrie. Cependant, nous ne savons pas si la disparition d'une des copies de la

répétition inversée de 14 kb a une influence sur l'expression des gènes qu'elle comporte.

Dans les chloroplastes, on a observé que les concentrations des tRNA codés par des

gènes présents en deux exemplaires (car situés dans la région inversée répétée) ne sont

pas supérieures aux concentrations des tRNA codés par un gène unique (PFITZINGER

et coll., 1987). Par ailleurs, dans le génome B37-cmsT, on retrouve l'hybridation du

gène de tRNAAsp en aval du gène de rRNA 185. Nous n'avons aucune donnée qui

puisse nous permettre d'expliquer pourquoi les génomes WF9-N et B37 cms-T

contiennent ce gène ou pseudo-gène de tRNAAsp alors que le génome B37-N ne l'a pas.

c) Tous les gènes de tRNA qui sont retrouvés sur le cercle maître du génome B37­

cmsT sont transcrits dans la mitochondrie du maïs B37-cmsT. En effet, on obtient le

même profil d'hybridation sur les filtres comportant le DNA mitochondrial B37-cmsT,

quels que soient les tRNA totaux mitochondriaux utilisés (B37-cmsT, B37-N ou INRA).

De même, les tRNA de la mitochondrie du maïs B37-cmsT révèlent toutes les régions du

génome B37-N comportant des gènes de [RNA. La réorganisation génomique n'affecte

donc pas la transcription des gènes de tRNA.

Page 127: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

('

ETUDE D~UTRES REGiOfNJS DU ([)fNJAMiTOCHOfNJDfPJAL DES VARiETES DE

MAiS 837=fNJ ET 83'l=(Cm~T

Page 128: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

L

~1YQ:iJ[Q)~ [Q)~ [Q)~Q:iJ~ [F[Rl~@[M]~lNro'~ [Q)~ [Q)[N]~ [MJ~Ir©©[FJ©[N][Q)[Rl~~[L

[Q)QJJ ~I]~ ~°[J=l])1[ID~I][Q)~[NJ1r ~ IL~ [F~~©'TII](Q)[NJ ~ [Q)l!JJ ~[NJ~

[MJ~IY©©[X]©[N][Q)[Rl~~[L [MJ~~~ [NJ~ ~©[MJ~@[RlIr~[N][J ~~~ [Q)~ @~[N]~

[Q)~~~[N]~

Page 129: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

64

I. ETUDE DE 2 FRAGMENTS DE DNA MITOCHONDRIAL DEMAIS S'HYBRIDANT À LA FRACTION 4S DU RNAMITOCHONDRIAL MAIS NE COMPORTANT PAS DEGENE DE TRNA

A.ETUDE DU FRAGMENT 1,25 kb )(hoI DU COSMIDE 9-1E8CA2)1. PRESENTATION DU COSMIDE 9-1E8

Le cosmide 9-1E8 (cf fig.4-c) contient une insertion de DNA mitochondrial de

maïs à cytoplasme fertile de la variété WF9-N. Cette insertion mesure environ 35 kb. Elle

est située entre les positions 0 et 40 du cer;cle maître (fig.31). Nous nous sommes

intéressés à ce cosmide parce qu'il s'hybride aux tRNA mitochondriaux totaux du maïs

marqués au [32 P] pCp (à l'aide de la T4 RNA ligase) ou avec de l'a.-[32p]ATP (à l'aide

de la tRNA nucléotidyl transférase: CCAse).

2. SOUS-CLONAGE ET SEQUENCAGE D'UN FRAGMENT XHOI

DU COSMIDE 9-1E8

Nous disposons de la cartographie XhoI (LüNSDALE et coll., 1984) de la région

du DNA mitochondrial couverte par le cosmide 9-1E8. Nous avons utilisé cette

cartographie pour rechercher les fragments du cosmide qui s'hybrident à la fraction 4S du

RNA mitochondrial du maïs. Les fragments XhoI de ce cosmide ont été clonés dans le

vecteur Ml3 um31. La figure 32-a montre l'électrophorèse sur gel d'agarose d'une

selection des clones qui représentent tous les fragments XhoI de ce cosmide. Ces

fragments ont été hybridés avec la sonde constituée par la fraction 4S (enrichie en tRNA

totaux) marquée au a.-[32p]ATP à l'aide de la CCAse. La figure 32-b montre que cette

sonde s'hybride à un fragment XhoI de 1,25 kb.

Nous avons établi une cartographie fine du fragment XhoI de 1,25 kb . A l'aide

de cette cartographie nous, avons pu obtenir des sous-clones de ce fragment pour le

séquençage. Dans les régions où nous ne disposions pas de sous-clones adéquats nous

avons aussi utilisé des oligonucléotides de synthèse pour compléter la séquence

nucléotidique du fragment étudié.

3. ANALYSE DE LA SEQUENCE DU FRAGMENT XHOI DE 1,25kb

La recherche de gènes de tRNA sur le fragment XhoI de 1.25kb, en utilisant les

caractéristiques qui permettent leur identification (recherche de la boucle 'P) a été

infructueuse. Par contre, en utilisant le programme d'analyse de séquences UWGCG,

nous avons pu identifier sur ce fragment une phase de lecture ·ouverte d~ 240 acides

aminés. Cette URF (pour Unidentified Reading Frame) s'étend du nucléotide 1 du

fragment XhoI de 1,25 kb (1259 pb) au nucléotide 720 pb (fig.33). Nous avons cherché

dans les banques de données, des homologies de séquences entre l'urf du fragment

Page 130: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 31:

Localisation et représentation schématique de la structurechimérique du fragment XhoI de 1,25 kb du cosmide 9-1E8

60

19.5

14

40

0.96 2.4•

0.6 " --, ... -~ ~-,~-

" ... -J -~,~

1 ~-~, -~~-

1 ,," 147 306 720 ............ _ 1259

Ut" "<;sh5$3~s sS sS S S <S S S sS <S I--J-..._---...-.......~Jurt240

0 201

5 1 0.7~ CJ CJ

- . cosmide 9-1 E8

Smal 26

Xhol 14.8 11.8

urf138

• Régions homologues au fragment 2.7Kb du cosmide 9-2C4

~ insertion atp6

ES] urf240

o insertion coxll

CJ séquences répétées ailleurs dans le génôme (les chiffres inscrits au dessus de ces boitesindiquent la taille des répétitions)

Les tailles des fragments sont indiquées en kb. Les coordonnées ( en nucléotides) désignant lesextrémités des différentes composantes de la structure chimérique sont indiquées au dessus dufragment XhoI de 1.25 kb. Les chiffres inscrits au dessus de la ligne supérieure désignent laposition des fragments sur le cercle maître.

Page 131: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

65

XhoI de 1,25 kb et d'autres gènes de protéines connues (code universel). Les résultats

de ces recherches sont schématisés sur les figures 31 et 33 et montrent que:

- Du nucléotide 1 au nucléotide 306 (soit 102 acides aminés), on observe une

homologie de plus de 95% entre le fragment XhoI de 1,25 kb et la région située en

amont du gène coxII de la mitochondrie du maïs (FOX and LEAVER, 1981). Cette

région correspond en outre à une partie de la séquence répétée de 0,7 kb (LaNSOALE et

coll., 1984) dont une copie se trouve en amont du gène coxIf (fig.31)

- Du nucléotide 147 au nucléotide 306 (53 acides aminés) le fragment XhoI de

1,25 kb a une forte homologie avec une séquence interne au gène atp6 (DEWEY et coll.,

1985a). Cette séquence est entièrement incluse dans la région précédente contenant les

séquences en amont du gène coxIf.

- Du nucléotide 306 au nucléotide 720, correspondant au reste de l'url, on

n'observe aucune homologie avec les gènes connus dans la banque de données.

Au vu de ces observations, il apparaît que la région du DNA mitochondrial étudiée

comporte une structure chimérique contenant une partie des gènes coxIf et atp6 et une

partie inconnue. II nous a donc paru utile de déterminer si cette structure chimérique est

exprimée dans la mitochondrie du maïs. La phase de lecture ouverte de 240 acides aminés

sera appelée urf240 et la partie inconnue (138 acides aminés) sera nommée urf138 .

. L'wj}38 est-elle ex,primée dans la mitochondrie du maïs?

Pour étudier la transcription de l'urlI3 8, nous avons tenté d'identifier des

transcrits correspondants à cette urfpar hybridation du fragment XhoI de 1,25 kb avec

l'ensemble des RNA mitochondriaux. De manière à faire la différence entre les transcrits

de l'atp6 et du coxII (qui vont être mis en évidence par les séquences homologues

contenues dans le fragment XhoI de 1,25 kb) et les transcrits spécifiques de l'urf138,

nous avons utilisé deux sondes différentes: l'une correspond au fragment entier

(comportant donc tout l'urj24D ) et l'autre à un fragment de restriction BamHI-StuI

(fig.34) ne contenant pas les insertions des gènes coxIl et atp6 et spécifique à l'urf138.

Ces sondes ont ainsi été hybridés séparément avec du RNA total de la mitochondrie du

maïs extrait des variétés B37-N et B37-cmsT. Les résultats de ces hybridations sont

présentés sur la figure 34. L'analyse de ces hybridations montre que:

- Le fragment entier XhoI de 1259 pb s'hybride à plusieurs grands transcrits

distincts de la variété normale B37-N en plus de certaines petites molécules de RNA de la

fraction "5s-4s". Il s'agit de transcrits ayant 6.5 kb, 4.2 kb, 3.5 kb, 2.6 kb, 2.3 kb, 1.9

kb, 1kb, 0.8 kb et 0.65 kb (fig.34-a, piste N). Les transcrits de 3.5 kb, 2.6 kb et 0.65

kb correspondent à des RNA qui s'hybrident aussi avec une sonde du gène coxIf du maïs

(FOX et LEAVER, 1981).

Par contre, le fragment XhoI de 1259 pb s'hybride à beaucoup plus de transcrits

de la mitochondrie de la variété stérile B37-cmsT par rapport à la variété fertile. Les

Page 132: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

0.5

kb

C') a ~ ~~ __ N (J)--Q5

1 1 1 ..cC\J C\J C\J C\J C\J ()~~~ ~~UJ------

21.6

a

C') a ~ ~~ .,.. C\J al ~ Qi. 1

, . 1 .c;C\J C\J C\J C\J C\J ()~ ~ ~ ~ ~ UJ- ----

b

FIGURE 32: Analyse des sous-clones du cosmide 9-1E8

a) Elecrrophorèse sur gel d'agarose 0.8% des fragments derestriction XhoI des sous-clones du cosmide 9-1E8

b) Hybridation des fragments de restriction aVrr la fraction4S du RNA mitochondrial marqué au ex -[ P] ATP à l'aide dela CCAse

Page 133: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 33: Séquence nucléotidique du fragment XhoI de 1,25kbdu cosmide 9-3E8

XhOICTCGAGGAGATTCACACACCT~AGGGACGTAGTTGTTTTGGTgAGAGAATAgAAr,ATCTGCACGCCCG~

IIY>E<E(·:tH T:··P:/·:·····G ·:#:sc:#H::d:(R 1 <·····D L···H:······A· RI

TGTCTGCCGAGGGCAACTGGGACTACTTGATTGCCCAACAAGGCAGAGGGTATTTTGGTAACCTACCTAA1·::····S·A::/ffitUN;:<W.ti·::M::y:::t.::~:.Q··Q.G::F(::d.::.Xté.:>. G·:.··>NL)P.··.·•..::.·N::.•:.• ··.: ••: 1

147TCTCAACAGCCCGTTGGATCAATATCAATTTGGAATTCACCCAATTCTGGATCTGAATATTGGTGAGTAC

1t{: ••:NtS-fP •• ;::r:;'::(.O;:f··::ct.Y.QF;GI:j::'·;::aj.·.E·.:r//U:::b':J:jN.I:!1·Ë(Y 1

3'--CUAAGUUAGGTGGG--5'TATGTCTCATTCACA AA TCTATCCIIGTCI8IGTCI8IGCT8CICaCTCTCGGITTGGTCIT8CTTCTG8ly.v••S(piHT:':·'>··'N::::n.:i§::·f;?,@:M.fS:'ff.':.iH?ïPfTL.G··;r;··.:·::V.:::t··•••·····L.·····I{·.·.•··'r.

T ATC 306

IS0~~j~t~;:'~r~~<~~2~~s,ijGcgAG~~GGgG~GA~CC~AT~CT~TC~TA~AG~CC~CG~CG~G

TGCTTCCGCTACGCCTAATTCTGAGGATGATGATAAGCGGAAAAAAGTGTCCCGCCAAGACGCCAATGGCA S A T P N S E D D D KRK K V S R Q DAN G

AAAGAGTCAGAGCCGCCCATAAATGGGGCGCAACCTGAAGTACCATCCATTGCGTTCTTAAAGAAAAGAAK E SEP PIN G A Q P E V PSI A F L K K R l

TTAAAACAGTTCTAAGGTCCTGTCGAGATAGGAACCCTAGGGAGAGCACATTACGCTCTACTTACGAGGAK T V L R S C R D R N PRE S T L R S T y E D

TCTTCACCTTGAAACGGCGAGCGCCGAGAAGCGGGTAAAAATCGCCCAGGCCCTAGAAAATCTGTACAGGL H LET A S A E K R V K l A Q ALE N L Y R

CGAAGCCAATATTTCCGGAGTAACAAAAGGCAGCAGCCCCATACCGACTTGATTATTCAAATCTGCGATTR S Q y F R S N K R Q Q P H T D L l l Q l C D W

720GGGAGCGTACGAAGAGGTAAAGAAATTCACTGGTGTAGGCATAGGAAACCGAGGCCCCCCAAACCCATCT

E R T K R *

ACTATACGGTTGAGGtGAGGGGGGGAAAGAAGAGTGGGéATGTGGGCT~CTTTCACTG~GTCTTTTgTGA

AGCAAAGGéATCGCGGCG~ATCAACACCAGACTAGTTGéTGATTCAATAGCTGACTTCéfrTTCAAATATGI

IATATGAT+ACACAT~~GCTCGGCACCCTTGTTTCCeAAACTAACTACTëATCTAGCTAGATCCGGATCAG

AAATGGTAGGAACTAGATCAAGAAATACGAGACTTTTCCTTCACTGGAAACTCCCGAGCCCGAGTCATCA

CCCTAGCCCGACTCATCCATTGAAGCGAGCCAGGTGGCAAATCCATTAATATAACTTCTGGAATCCCAGC

AATAGAGCTGGCAAGGTTGAAGTGAAGCTGGAATGGATCCGATCTTCAGTGTGGAAAGAGCTTCAATCCT

CTGTAGCAAGGAAAAGCCG~CCGCTCTTGTCTTGCCTTAAATAGCTGGAAGCGAAAGCAGiTCTCGAGXhoI

..La séquence peptidique de l'urf'240 et de l'urfl38 est représentée en dessous de la séquence nucléolidique.Les boites en pointillé indiquent les séquences homologues à la région en amont du gène coxII. Les limitesde l'insertion d'une partie du gène atp6 sont indiquées (147; 306). La séquence de type Shine et Delgarno dela séquence 3' du rRNA l8s du maïs est montrée au dessus de la séquence qui lui est complémentaire en amontde l'urf138. Les nucléotides T-ATC au dessus de la séquence indiquent la différence par rapport au gène coxI!.La séquence ATGGAA inserée comparativement ail gène coxII est montrée par une barre au dessus de la séquence.La méthionine initiatrice potentielle est encercléeLes boites blanches représentent des séquences homologues au fragment BamHI-XhoI de lkb du cosmide9-3C4(chapJll-II.B)

Page 134: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

X coxlllatp6 St urft38~ 1~«««««l~ssssssssssss<'d

\ urf240,, "l 'l ",,_~l " -~' ......... ,.~ ,-,, -~ ,, ~-,

'N T ,_ ... -- " N T-_.-,- '--

x

a

-.,. """

•DNA

>8

6.5 6.8. ~ -, ._.~

4.2 4.6

3.3 4.0 3.5

2.6 2.3 2.21.9 1.6

1.2L3

0.80.65

"' .•,.v,€<~

"i. .e...'

.';

~,.'

b

FIGURE 34 : Etude de la transcription de l'urf138

a) Hybridation du fragment XhoI de 1.25 kb du cosmide 9-lE8comportant lDutl'urf240 avec les RNA mitochondriaux totaux

b) Hybridation du fragment StuI- XhoI comportant seulementl'urfl38 avec les RNA mitoehondriaux totaux

N: RNA total extrait de la mitoehondrie du mals de lavariété normale 837-N

T: RNA IDtal extrait de la mitochondrie du mals de lavariété mâle stérile 837-cmsT

La taille des transcrits est indiquée en kb

r:zJ insertion coxlltalp6

IS::J ur/240

o urf138

X: XhoI; St: Stul

Page 135: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

66

transcrits de 2.6 kb, 2.3 kb, 1.9 kb, 1 kb et 0.8 kb de la variété nonnale sont retrouvées

alors que de nouveaux transcrits de 6.8 kb, 4.6 kb, 4.1 kb, 3.3 kb et 1.6 kb apparaisent

dans la variété mâle stérile (fig.34-a, piste T). Parmi tous ces transcrits, ceux de 6.8 kb,

4.6 kb, 4.1 kb, 3.3 kb, 2.5 kb, 2.2 kb, 1.9 kb et 1.6 kb s'hybrident à une sonde du gène

atp6 de la mitochondrie du maïs (DEWEY et coll., 1985).

- La sonde correspondant à l'urfI38 seule révèle dans la variété fertile, les

transcrits de 3.3 kb, 1.9 kb, 1 kb, 0.8 kb et 0.6 kb ainsi qu'un transcrit spécifique de 1.3

kb.

Dans la variété stérile, les 5 premiers transcrits identifiés dans la variété nonnale

sont retrouvés en plus des transcrits de 6.8 kb, 4.6 kb et 1.6 kb.

En récapitulant toutes ces informations, on peut dire que:

1°) L'wf138 est transcrite dans la mitochondrie du maïs. On trouve en effet au

moins un transcrit spécifique de 1.3 kb qui ne s'hybride ni à la sonde coxI! ni à la sonde

atp6.

2°) Il est probable que le transcrit primaire contenant l'uifI38 contienne des

séquences homologues aux gènes atp6 et coxI! car la sonde correspondant à l'urf240 et

celle correspondant à l'urf138 révèlent des transcrits communs quelle que soit l'origine

des RNA sur lesquels les hybridations ont été réalisées.

3°) L'urf240 fait partie de d'unités de transcription différentes dans les lignées de

maïs à cytoplasme nonnal et à cytoplasme stérile. Ceci suggère que la région codant pour

ces urf subissent des remaniements importants d'un type de cytoplasme à un autre.

L'analyse des régions codant pour l'urf240 et l'urfI38 au niveau des différentes cartes de

restriction des génomes B37-N et B37-cmsT (FAURON et HAVLIK, 1988, FAURON

et coll., 1989 ) confirment ces observations.

Ces résultats de transcription nous ont incités à analyser la séquence

nucléotidique de l'urf138 et des régions qui l'entourent. Sachant que la partie en amont

du coxII que l'on retrouve dans l'urf240 n'est pas contenue dans la protéine mature de

COXII (FOX et LEAVER, 1981) nous avons supposé que l'urf138 pourrait coder elle

aussi pour une protéine indépendante.

L'analyse des séquences en amont de l'urfI38 montre que:

- Le codon ATG (en position 284 sur la fig.33) qui spécifie la méthionine

initiatrice du gène coxII est détruit devant l'uifI38. Ce codon ATG est transformé en

AAG.

- A 5 nucléotides en aval du codon ATG potentiel du coxII, on observe

l'insertion d'une séquence 5'ATGGAA3' ( par rapport à la séquence du gène coxII ).

Cette séquence conserve la phase de lecture mais crée un nouveau codon ATG. Ce codon

ATG pOWTait servir de codon initiateur pour l'urfI38.

Page 136: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

67

- 16 nucléotides en amont du nouveau codon initiateur potentiel, on a pu identifier

une séquence de type SHINE et DALGARNO capable de s'apparier avec la région 3' du

rRNA 18S de la mitochondrie du maïs. Cette séquence est montrée sur la figure 33.

Ainsi, si l'on tient compte de toutes ces données, on peut soutenir l'hypothèse

suivant laquelle l'urf138 coderait pour une protéine indépendante du reste de l'urj240.

Nous ne savons toutefois pas s'il y a un intron qui intervient avant le codon stop

commun aux deuxurf ou si cette phase ouverte represente le dernier exon (extrémité

carboxy-terminale) d'une protéine plus grande. La taille du plus petit transcrit

correspondant à l'urf138 étant d'environ 650 pb (fig.34) alors que la taille de cette urf

représente 414 nucléotides (138 aa) il est difficile d'imaginer que cette urf code pour une

proteïne entière. Cependant, une autre méthionine est présente au niveau du nucléotide 69

de l'urf240 et si elle correspondait au début de la protéine, le transcrit mature

comporterait alors 651 nucléotides. Cette taille coïncide avec celle du plus petit transcrit

révélé par les différentes sondes. De plus, cette possibilité expliquerait pourquoi la sonde

spécifique à l'urf138 s'hybride avec des transcrits révélés par des sondes atp6 et coxII.

En effet, le RNA correspondant à cette urf(qui coderait pour une protéine de 217 aa)

comporterait des séquences homologues à ces deux gènes. Le seul problème à ce niveau

est qu'on ne trouve pas de séquence de type SHINE et DALGARNO en amont de la

méthionine en position 69. Des études sont en cours pour élucider ces problèmes. Dans

tous les cas, l'analyse de la transcription de l'urf138 suggère q util existe des grand

transcrits de .plus de 8 kb impliqués dans des processus de maturation complexes.

Page 137: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

68

B. ETUDE DU FRAGMENT SmaI DE 2.7 kb DU COSMIDE <9-2C4)

1. PRESENTATION DU COSMIDE

Le cosmide 9-2C4 ( cf figA-c) contient une insertion de DNA mitochondrial de

maïs à cytoplasme nonnal de la variété WF9-N. Ce fragment est situé sur le cercle maître

entre les positions 295 et 235. Il contient les régions codant pour les gènes cob

(DAWSON et coll., 1984), atp9 (DEWEY et coll., 1985-b) et de tRNAfMel (PARKS et

coll., 1984). Il comporte une partie de l'insertion chloroplastique de 12 kb dans la

mitochondrie du maïs (STERN et LONS DALE, 1982). Nous nous sommes intéressés à

ce cosmide car son insertion s'hybride aux tRNA totaux mitochondriaux. En fait,

l'objectif de cette étude a été de rechercher les gènes de tRNA qui pourraient être codés

par ce cosmide en plus du gène de tRNAfMet

2. SOUS-CLONAGE DES FRAGMENTS DU COSMIDE 9-2C4

Le cosmide 9-2C4 a été hydrolysé par l'enzyme de restriction SmaI et les

fragments de restriction obtenus ont été séparés par électrophorèse sur gel d'agarose,

puis transférés sur un filtre Nylon. Ces fragments ont alors été hybridés à une sonde de

tRNA totaux (plus précisément la fraction 4S enrichie en tRNA) marquée au a-[32P]ATP

à l'aide de la CCAse. Les résultats de ces expériences ont montré qu'en plus du fragment

SmaI de 7,4 kb codant pour le gène de tRNAfMet ( PARKS et coll., 1984) un fragment

de 2,7 kb s'hybride à la fraction 4S marquée au a-[32P]ATP à l'aide de la CCAse. Ce

fragment code aussi pour le gène atp9. Nous avons pensé que le gène atp9 pouvait être

proche d'un gène de tRNA.

Nous avons donc cloné spécifiquement le fragment SmaI de 2,7 kb dans le

vecteur M 13 mp 19 et nous en avons établi une carte de restriction fine. Par des séries

d'hybridation des différents fragments de restriction du fragment de 2,7 kb avec les

tRNA totaux mitochondriaux, nous avons pu identifier un fragment BamHI-XhoI de 1

kb qui s'hybride à la sonde. Ce fragment de 1 kb a été sous-cloné dans le vecteur Ml3

(um30 et um31) et sa séquence nucléotidique a été déterminée par la méthode de

SANGER.

3. ANALYSE DE LA SEQUENCE NUCLEOTIDIQUE DU

FRAGMENT BamHI-XhoI DE 1 kb

L'analyse de la séquence du fragment BamHI-XhoI de 1 kb n'a révélé la

présence d'aucun gène de tRNA reconnaissable. En effet, à l'image du cas du fragment

1,25 kb XhoI du cosmide 9-1E8 (chap.llI-I.A), la recherche des gènes de tRNA à l'aide

des caractéristiques classiques de ces gènes a été infructueuse. On ne retrouve sur ce

Page 138: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

69

fragment, que le gène de l'atp9 . Nous essayerons, dans un chapitre consacré à cet effet

(chapitrelV), de savoir pourquoi des fragments de DNA mitochondrial ne contenant

aucun gène de tRNA s'hybrident à des molécules de tRNA marquées spécifiquement en

utilisant la CCAse.

Page 139: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

f:1

l',1".l: .1"i

l!

~1

1

t-i

r1

11

1

11l"

!

11i

l

1JO

1l,l,

l

i1

111"jl 'j

~

~if(]JJ[Q)~ [Q)~® ~~@~@!Nl® [Q)UJJ [Q)!Nl~ [M]~uOC[)={]@!Nl[Q)~~~lL [Q)lUJ

[M]~I]® (Ç@~~@~if~!Nlif [Q)~® 1][N]®~~m@!Nl®

(Ç[)={]lL@~@~IL&®ifI]©(]JJ~®

Page 140: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 35: Organisation du fragment 5,7 TB

~ ------ DNA commun -.aux génomes N et T

..Insertion-~chloroplastique

DNA unique au génOme T

::;:::::::::::;::::;:::;:::::::;:::::

tmAcp

I~

235cp 1.5

10

.-1.7 kb--.1--~II-+I------1II--------+I-----:11-I-1---ilB X S X H HX B

~~~~~~] Séquences chloroplastiques

]:::::: 1 Séquences retrouvées seulement dans le génome T

c=J Séquences répétées ailleurs dans le génome T

1.5 : Séquence répétée de 1.5Kb

10 Séquence répétée de 10 Kb

Intron du gène trnA chloroplastique

E2 Deuxième exon du gène trnA chloroplastique

B: BamHI; H: HindllI; S: Sma!; X: XhoI

La séquence répétée de 1,5 kb est entièrement contenue dans celle de 10 kb mais elle estrépétée 3 fois dans le génôme T. La croix entre la région contenant du DNA unique augénôme T et celle comportant l'insertion clùoroplastique indique la zone probable derecombinaison

250pb

Page 141: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

71

partie 5' du gène de rRNA 23S chloroplastique du maïs. Cette insertion chloroplastique

mesure environ 1,2 kb.

Ces observations nous ont conduits à nous poser certaines questions:

a) L'hybridation observée est-elle due à la présence de l'exon 2 du gène

de tRNAAla chlorop/astique ?

Avant de répondre à cette question, il faut rappeler que les tRNA

mitochondriaux (ou la fraction 4S) utilisés dans nos expériences sont exempts de

contaminants chloroplastiques (cLchapitreII-I). Par conséquent, admettre que

l'hybridation sur le fragment est liée à l'exon 2 du gène de tRNAAla chloroplastique

suppose que ce dernier est transcrit dans la mitochondrie. Dans la mesure où le gène

complet (les deux exons et l'intron entier) n'existe pas de manière continue dans le

génome mitochondrial, cette hypothèse est peu probable (sauf si on suppose un

phénomène de trans-splicing dans mitochondrie impliquant d'une part cet exon et d'autre

part, l'exon 1 du gène de tRNAAla présent dans l'insertion chloroplastique de l2kb

situés à environ 250 kb l'un de l'autre). Néanmoins, pour plus d'assurance, nous avons

tenté de voir si dans nos conditions expérimentales d'hybridation (65°C; lM NaCI ; 1%

SOS) il est possible d'obtenir une hybridation entre l'exon 2 du gène de tRNAAla et le

tRNA chloroplastique correspondant. Nous avons ainsi hybridé les fragments de

digestion du plasmide 5.7TB avec les tRNA chloroplastiques totaux du maïs marqués.

Comme témoin, nous avons utilisé le fragment de DNA codant pour le gène de

tRNAmMet mitochondrial (cosmide 8-3B2) qui a 95% d'homologie avec son équivalent

chloroplastique. Les résultats de ces hybridations ont montré qu'aucune hybridation n'est

observée sur les fragments comportant l'exon 2 du tRNAAJ.a chloroplastique alors que les

fragments comportant le tRNAmMet mitochondrial s'hybrident. L'interprétation de ces

résultats est simple: il n'y a pas de tRNAAla chloroplastique dans la mitochondrie du

maïs et même s'il y en avait, ce tRNA ne pourrait pas s'hybrider au fragment 1,7 kb dans

nos conditions d'hybridation. Par conséquent, l'hybridation observée sur le fragment 1,7

kb n'est pas due à la présence, sur ce fragment, de l'exon 2 du gène de tRNAAIa.

f3) L'hybridation est-elle liée à la présence de séquences ch/orop/astiques

ou à la présence des gènes de rRNA ?

Pour répondre à cette question, nous avons pensé qu'il fallait élargir les

hybridations de la fraction 4S du RNA mitochondrial à l'ensemble des génomes

mitochondriaux B37-N et B37-emsT. Nous avons donc utilisé des filtres comportant des

cosmides (digérés par BarnHI) représentatifs des génomes entiers des mitochondries des

maïs à cytoplasme fertile (B37-N) et à cytoplasme stérile (B37-cmsT). Ces filtres ont été

Page 142: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 36-a : Séquence nucléotidique du fragment HindlII-XhoIde 1,7 kb du plasmide 5.7TB

. . .CTCGAGCCCAGATATCGATTTACCATGGATGTCCGAAACGGGAAACAAGAAAAGTAATAGAAATCGTGTG

. .CCAGCGGGAGATACGAAATTCACTGGCAGACCGAGTTGGGCGCAGGTGCCAGATCCTCAAAGTATCGTAA

. . .AGTTAAGTTAAGTATCGTAAAGTATCGATCAGCCTAGTGTACCAACCACGTGGTACGACGGGCACTCAAA

.GACCTGGCGAATGAGGGCCCACCCAAGAGCGCTTATGTCATATGGGAACTCTTGGCTGGAAACAATCCTT

.ATGGTTTTTATACCGGTTAGAATAATAAGAAAGAATCAAAGTCCAGGTTGGTTGGTGAGCCTAGTGATAG

. .GAGACTATCTkGCTTGGTTCGGAGAGCACTTGTTGGGTTTAGATTAGTTTTGCAAATGTTACGGCCTAAA

TGCTGAACTATTGACCCTACTTGTTCGGATGGGTGTTCACCCCAAAGTGTTCCCGGACTGCATGCATACA

TCCGTAAGTAACTTAGTGCAACATGGCAAATTTCATTGAGAGGAATCAGCAAAGAAAAG88ATÇTTÇ~Çç

GGGTGACTGGATCSCCCCGGAACCACAAGAATCCTTAGAATCCCATTCCAACTCAGCACCTTTTGTTTTG

GGATTTTGAGAAGAGTTGCTCTTTGGAGAGCACAGTACGATGAAAGTTGTAAGCTGTGTTAGGGGGGGAG

TTATTGCCTATCGTTGTCCTCTATGGTAGAACCCGTCGGGGAGGCCTGAGAGGCGGTGGTTTACCCTGTG

GCGGATGTCAGCGGTTCGAGTCCGCTTATCTCCAGCCCGTGAACTTAGCGGATACTATGATAGCACCGAA

GTTGCCAATTCGTCAGTTCGATCTATGATTTCGCATTCATGGACGTTGATAAGATCCTTCCATTTAGTAG

CACCTTAGGATGGCATAGCTTAACGTTAATGGCGAGGTTCAAAAGAGGAAAGGCTTGCGGTGGATACCTA

GGCACCCAGAGACGAGGAAGGGCGTAGCAAGCGACGAAATGCTTCGGGGAGTTGAAAATAAGCATAGATC

CGGAGATTCCCAAATAGGTCAACCTTTTGAACTGCCTGCTGAATCCATGAGCAGGCAAGAGACAACCTGG

CGAACTGAAACATCTTAGTAGCCAGAGGAAAAGAAAGCAAAAGCGATTCCGTACCGTACGTAGTAGCGGC

GAGCGAAATGGGAGCAGCCTAAACCGTGAAAACGGGTTGTGGGAGCAATACAAGCGTTGTGCTGCTAGCA

AGCGGTTGAGTGCCGCACCCTAGATGGCTAAAGTCCAGTAGCCGAAAGCATCACTACGTTACGCTCTGAC

CCGAGTAGCATGGGGCACGTGGAATCCCGTGTGAATCAGCAAGGAAAGGACCACCTTGCAAGGCTAAATA

CTCCTGGGTGACCGATAGCGAAGTAGTACCGTGAGGGAAAGGTGAAAAGAACCCCCAGTGGGTAGTGAAA

TAGAACGTGAAACCGTGCTGAGCTCCGCGGAGGGGAAGTGATCTCTGACCGCGTGCCTGTTGAAGAATGA

GCCGGCGAGTGATAGGCAGTGGCTTGGTTAAGGGAATGGAACCCACCGGAGCCGTAGCGAAAGCGAGTCT

TCATAGGGCGATTGTCACTGCTTATGGACCCGAACCTGGGTGATCTATCCATGACCAGGATGAAGCTT

FIGURE 36-b: Séquence nuc1éotidique de l'extrémité de l'insertionchloroplastique de 12kb comportant l'intron du gène trnA cp

trnA .GGATCCCTGGGGAATAGGATCAAGTTGGCCCTTGCGAATAGCTTGATGCACTATCTCCCTTCAACCCTTT

· .GAGCGAATGTGGCAAAAGGAAGGAAAATCCATGGACCGACCCCATTGTCTCCACCCCGTAGGAACTACGA

·GATCACCCCAAGGACGCCTTCGGCGTCCAGGGGTCACGGACCGACCAT.GATTCCTCTTCAATAAGTGGA· . .

ACACATTAGCCGTCCGCTCTCCGGTGGGCAGTAAGGGTCGGAGAATGGCAATCACTCGTTCTTAAAACCA

ATCTAAGTAGTAGATTGCTTCCCLes séquences homologues aux séquences chloroplastiques sont encadrées et les séquences alignées sur la figure

39 sont soulignées en gras.

Page 143: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

72

hybridés avec la fraction 4S du RNA mitochondrial marquée au a-[32PJATP à l'aide de

la CCAse. Deux types de résultas ont été obtenus:

-Si on élue d'une colonne RPC-S la fraction 4S marquée à la CCAse à une

force ionique comprise entre O.7M NaCl et 1 M NaCl, on obtient le profil d'hybridation

déja étudié dans le chapitre 11-1 (fig.6-a et fig.6-b). Toutes les hybridations observées

correspondent à des fragments de DNA comportant des gènes de tRNA et ces fragments

ont été étudiés dans les chapitres précédents (chapitre In-Si on élue la fraction 4S marquée à une concentration saline supérieure à

lM NaCl, on obtient le profil d'hybridation montré sur la figure 37.

En comparant les deux profils d'hybridation obtenus, on note la présence de

plusieurs bandes additionnelles sur les filtres hybridés avec la fraction 4S marquée et

éluée à une concentration saline supérieure à lM NaCl. On peut classer ces bandes

additionnelles en deux catégories. Certaines bandes présentent des signaux d'hybridation

très forts, suggérant que les RNA correspondants sont soit très abondants dans la

mitochondrie, soit des substrats privilégiés pour la CCAse. D'autres bandes

additionnelles ont des signaux d'hybqdation beaucoup plus faibles. La nature des RNA

correspondant à ces derniers signaux sera discutée plus tard (ChapitreV).

En utilisant la cartographie de restriction des deux génomes N et T et en se

servant de la localisation des différents gènes connus, nous avons pu établir que toutes

les bandes de forte intensité correspondaient à des régions comportant des gènes de

rRNA. Dans le génome N, l'hybridation révèle les fragments suivants:

- le fragment BamHI de 5,2 kb du cosmide N7D4 (piste N°4) correspond à

la région du génome T que nous avons étudié c'est-à-dire au fragment S,7TB. Comme ce

dernier, il s'hybride à la fraction 4S et contient la partie 5' du gène du rRNA 23S

chloroplastique.

- le fragment de 3,2 kb du cosmide N8D Il (piste N° 13) comporte le gène

du rRNA l6S chloroplastique. Il fait partie de l'insertion des 12 kb chloroplastique

(STERN et LONSDALE, 1984) dans le génome mitochondrial.

- le fragment à environ 14 kb du cosmide NSF6 (piste N°lS) comporte le

gène du rRNA 26S mitochondrial (DALE et coll., 1984)

- le fragment à environ 16 kb du cosmide N8Bl (piste N°16) contient les

gènes des rRNA 5S (CHAO et coll., 1983) et rRNA l8S (CHAO et coll., 1984)

mitochondriaux.

-le fragment de 5,5 kb du cosmide N7E8 (piste N°18) comporte la partie 3'

du rRNA 23S chloroplastique. La séquence nuc1éotidique de la région comportant cette

insertion chloroplastique a été récemment établie par FElES et coll. (1988).

Tous les fragments détectés dans le génome N ont leur équivalent dans le

génom~ T à l'exception du fragment BamH1 de 3,2 kb contenant le gène de rRNA l6S

Page 144: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

a) kb

1614

5.55.2

3.2

kb1816

5.7 5 .55.2

32

--- --.- - -- ---.•--'.-.- ~.

~------~-•b)

:

FIGURE 37:

Hybridation des fragments BarnHI : a) de cosmides représentatifsdu DNA mitochondrial du maïs de la variété B37-N; b) de cosmidesreprésentatifs du DNA mitochondrial du maïs de la variété B37-cmsT,avec la fraction 45 totale marquée au a-e2p]ATP à l'aide de la CCAse

Page 145: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

73

chloroplastique. En fait, l'insertion chloroplastique de 12 kb présente dans le génome

mitochondrial du maïs fertile, a perdu environ 9 kb par une délétion inteIVenue lors du

passage du génome N au génome T (FAURON et coll., 1989; Cf cartes respectives N et

T ). Le fragment de 3,2 kb fait partie de ces 9 kb perdus.

A l'issus de ces analyses, il ressort que les fortes hybridations que nous

avons obtenues avec la fraction 4S du RNA mitochondrial du maïs sont beaucoup plus

liées à la présence de gènes de rRNA qu'à la présence de séquences d'insertion

chloroplastique. En effet, les autres fragments BamHI contenant des séquences

chloroplastiques ou des séquences homologues à des gènes chloroplastiques ne sont pas

systématiquement révélés lors de nos expériences d'hybridation. Par contre, tous les

fragments qui montrent des signaux d'hybridation très forts comportent des gènes de

rRNA. Ces obseIVations posent des questions auxquelles nous tenterons de répondre

dans le ChapitreIII.ILB.

B. LE GENOME MITOCHONDRIAL DES VARIETES NORMALESCONTIENT LA QUASI TOTALITE DE LA SEQUENCE REPETEEDU DNA CHLOROPLASTIQUE DU MAIS

Les obseIVations et les analyses faites précédemment ont montré que le

DNA mitochondrial contient plusieurs insertions d'origine chloroplastique. Pour notre

part, nous avons établi la séquence nucléotidique d'une région du DNA mitochondrial

comportant la partie S' du gène du rRNA 23S, l'exon 2 et une partie de l'intron du

tRN A AJa chloroplastique. Cette région se situe, dans la séquence du DNA

chloroplastique, entre d'une part, la région séquencée par FElES et coll. (1989)

comportant la partie 3' du gène du rRNA 23S, les gènes codant pour le rRNA 5S, le

rRNA 4.5S et le tRNAArg ( gène incomplet dans la mitochondrie) et d'autre part

l'insertion chloroplastique de 12 kb. Autrement dit, on retrouve presque toute la séquence

répétée inversée du DNA chloroplastique dans la mitochondrie du maïs. A ces régions,

on peut ajouter les deux gènes de tRNAAsn (GUU) (ChapitreII-B) et de tRNAHis (lAMS

et coll., 1985 ) qui sont situés chacun à une extrémité de la séquence répétée

chloroplastique. L'ensemble de ces régions et leur localisation dans les génomes

mitochondriaux N sont montrés sur la figure 38. Tout se présente comme si la séquence

répétée avait été transférée en une seule fois dans le DNA mitochondrial du maïs mâle

fertile. Cette insertion aurait été suivie d'une redistribution des blocs de séquences

chloroplastiques probablement à travers des recombinaisons et/ou des insertions de DNA

mitochondrial. Il est possible d'imaginer ce scénario car on connait maintenant plusieurs

exemples de remaniements qui sont inteIVenus dans la mitochondrie du maïs:

Page 146: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

• ••.;0 •.••. ..~-.:-

f.::::lE::::J

1D~

FIGURE 38: Schéma montrant la redistribution des séquenceschloroplastiques inserées dans le DNA mitochondrialdes souches fertiles de maIs.

Séquences S1 et S2

Gènes connus (cf introduction)

Séquences chloroplastiques insérées

Séquences répétées

Les séquences chloroplastiques d'origine sont réprésentées au centre et l'orientation de laséquence répétée chloroplastique est indiquée par la flèche. Les séquences d'origines ainsique leur localisation sur le cercle-maître du génome mitochondrial B37-N sont montrées.

Page 147: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

74

(a) lors du passage d'un type de cytoplasme à un autre (N vers T par

exemple; voir FAURON et coll., 1989),

(b) lors de la réversion des cytoplasmes stériles vers la fertilité (SMALL et

coll., 1988; FAURON et coll., 1987)

(c) entre différentes souches de maïs et un ancêtre du maïs appelé Téosinte

(SMALL et coll., 1987).

Ce type de réarrangement a aussi été remarqué lors de la culture de

protoplastes de diverses lignées de blé (RODE et coll., 1987). Cette hypothèse est, de

plus, supportée par le fait que le maïs à cytoplasme stérile T a perdu 9 kb des 12 kb

d'insertion chloroplastique à travers des recombinaisons intramoléculaires (FAURON et.coll., 1989) montrant le caractère recombinogène de ces séquences chloroplastiques

étrangères. Plusieurs insertions et/ou recombinaisons ont certainement été nécessaires

pour aboutir à l'organisation actuelle de ces séquences chloroplastiques dans la

mitochondrie. Nous ne sommes pas en mesure de définir la chronologie de ces

événements mais on peut supposer que les premières pressions de sélection qu'ont subies

ces séquences étrangères ont 'Opéré essentiellement aux extrémités de la séquence répétée.

Cela peut être remarqué par l'analyse des parties flanquantes des gènes de tRNA

(tRNAAsn et tRNAHis) qui sont localisés aux extrémités de la séquence répétée

chloroplastique. Ces derniers, (qui ont fini par être fonctionnels dans la mitochondrie),

ont conservé leur environnement immédiat mais ne se trouvent pas dans un grand

ensemble d'insertion chloroplastique.

Restent cependant les questions suivantes dont les réponses sont par ailleurs

liées:

- y a -t-il eu vraiment un seul événement ayant entraîné le transfert de la

séquence répétée chloroplastique ?

- Si c'est le cas, y a-t-il eu un ou plusieurs événements ayant entraîné la

redistribution des séquences chloroplastiques dans le génome mitochondrial ?

En fait, deux possibilités existent pour rendre compte de la présence de

toute la séquence répétée chloroplastique :

- Soit, comme nous le supposons, il y a eu un seul transfert et par

conséquent, les différentes panies de la séquence répétée chloroplastique retrouvées dans

la mitochondrie doivent pouvoir se juxtaposer linéairement.

- Soit, il y a eu plusieurs transferts et on devrait retrouver les différentes

parties de la répétition avec des séquences manquantes et/ou des chevauchements entre

les différentes parties.

Il est très difficile en effet d'imaginer que le transfert se soit produit en

plusieurs étapes et qu'en fin de compte, tous les éléments transférés puissent être

ordonnés bout à bout de manière à reconstruire toute la séquence répétée.

Page 148: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

75

Exemple de !'intron dy cène de tRNAAla...çhlo[oplastigye

Pour essayer de vérifier, à un niveau plus fin, l'hypothèse du transfert

unique, nous avons entrepris de voir si on pouvait aligner bout à bout les séquences de

l'intron du gène de tRNAAla chloroplastique inséré dans la mitochondrie. Pour ce faire,

nous avons cloné le fragment BamHI de 1,5 kb du DNA mitochondrial B37-N contenant

la fin de l'insertion de 12 kb chloroplastique (qui contient une partie de l'intron du gène

de tRNAAla). Nous avons détenniné la séquence nucléotidique de la région où s'arrête

l'homologie entre la séquence chloroplastique insérée et la séquence d'origine (fig.36-b).

Par la suite, nous avons aligné ces séquences avec d'une part, le gène chloroplastique

complet de tRNAAla et d'autre part avec la séquence du fragment HindIT-XhoI de 1,7 kb

du plasmide 5,7 TB. Les résultats de ces comparaisons sont montrées sur la figure 39 et

indiquent qu'il ya une continuité entre les deux séquences insérées par rapport au gène

d'origine.

Seulement 17 pb semblent avoir été perdus lors des recombinaisons

successives ayant entraîné d'une part la séparation des deux exons du gène et d'autre

part l'intégration du fragment de DNA spécifique au génome T. Cependant les

substitutions de bases sont relativement fréquentes sur 100 pb autour de la région de

recombinaison.

12kb CGGGCGGAAAAAGGGG TATCCTcnc--

Intron trnAcp CGGGCGGAAAAAGGGG GAGCTCCCCGnCCT nCTCCTGTAGCTGGATTCCCCGGAA--•• •••

1,7kb CTCCGGG -CTGGTCGCCCCGGAA---

FIGURE 39: Comparaison des extrémités des insertions chloroplastiquescontenant l'intron du gène trnA chloroplastique avec laséquence du gène d'origine

12kb: Extrémité de l'insertion chloroplastique de 12 kb. 1,7 kb: Séquence du fragmentHindlII-XhoI de 1,7 kb au niveau de l'insertion chloroplastique. Ces séquences sont extraites de cellesmontrées sur la figure 36. Les 17 nucléotides délélés lors des recombinaisons sont encadrés. L'étoile montreles nucléotides substitués.

Ainsi, il apparaît que la coupure du gène de tRNAAla s'est produite dans la

mitochondrie après le transfert du gène entier. Le site de coupure situé dans l'intron

semble justement très actif dans la mitochondrie car c'est au niveau de la même séquence

que l'insertion du DNA spécifique au génome T s'est produite.

Page 149: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

CHAPiTRE IV

QUELQUES ANALYSES SUR LES HYBRIDATiONSDE RNA MARQUES A L~iDIE DE LA CCA~~ AVEC

DES FRAGMENTS DE DNA NE COMPORTANT PASDE GENE DIE tRNA

Page 150: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

-::=:

76

Dans les chapitres précédents, nous avons étudié trois fragments de DNA

mitochondrial qui sont situés à de très grandes distances les uns des autres sur le cercle

maître, mais qui partagent néanmoins un certain nombre de caractéristiques. li s'agit des

fragments de:

1,25 kb XhoI (Cosmide 9-1E8 ) qu'on nommera A, (chap.III.LA)

1 kb BarnHI-XhoI (Cosmide 9-2C4) appelé fragment B (chap.III.LB) et,

1,7 kb HindIII-XhoI (plasmide 5.7 TB: chap.III.ILA).

Ces fragments ont en commun les caractéristiques suivantes:

1°) Ils s'hybrident tous à la fraction 45 extraite de la mitochondrie du maïs et

marquée au a-[32P]ATP à l'aide de CCAse.

2°) Aucun de ces fragments ne contient un gène de tRNA mitochondrial

identifiable.

3°) lis comportent, par contre, soit un gène codant pour une protéine, soit un gène

codant pour un rRNA.

Ces observations sont assez troublantes car elles mettent en cause la spécificité du

marquage des tRNA avec la CCAse. En fait, plusieurs hypothèses peuvent expliquer ces

"hybridations aspécifiques":

- la fraction enzymatique que nous avons utilisée contient une autre activité (RNA

ligase, RNA polymérase...) qui permettrait la fixation d'un (des) ribonucléotide(s) sur les

RNA,

- les tRNA marqués s'hybrident à des séquences homologues contenues dans les

gènes des rRNA et/ou des protéines,

- nous ne disposons pas d'informations suffisantes pouvant nous permettre

d'identifier certains gènes de tRNA (présence d'introns séparant des régions non

reconnaissables, pseudogènes ou tRNA bizarres, n'ayant pas les caractéristiques

classiques, notamment au niveau de la boucle 'f).

- la CCAse de levure n'est pas assez spécifique pour discriminer les tRNA

mitochondriaux parmi d'autres molécules de RNA dans des conditions de réaction

hétérologue et in vitro,

- la CCAse marque spécifiquement les tRNA mais est aussi impliquée dans

d'autres mécanismes de maturation des RNA mitochondriaux.

Npus avons tenté de répondre·à certaines des'questions posées :

Page 151: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

QJ

<D 'QJ

""id;;::~

§ :::>0...'0

c c Ü0 0 Q..

Ü u cr:~ eu ~

~ :::>u. u. <Il

FIGURE 40 : Analyse par électrophorèse monodimensionnelle sur gelde polyacrylarnide de la fraction 45 marquée au a- [32 P] ATP à l'aide de la CCAse

Les RNA contenus dans la fracùon 4s ont été marqués a l'aide de la CCAse. Une partie a étédirectement déposée sur le gel et une autre a été purifiée sur une colonne RPC-S avant d'êtredéposée. Le résultat d'électrophorèse a été exposé pendant deux jours au contact d'un filmde grande sensibilité.

Page 152: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

77

1) L'EXTRAIT ENZYMATIQUE UTILISE DANS NOS REACTIONS

POSSEDE-T-IL UNE AUTRE ACTIVITE?

Nous avons pensé que la fraction enzymatique utilisée dans nos réactions pouvait

contenir d'autres enzymes qui seraient à l'origine de marquages non spécifiques d'autres

petits RNA. Cependant, nous ne sommes jamais arrivé à marquer la fraction 45 ni avec

du [32p] pCp, ni du a-[32p] GTP en utilisant l'extrait enzymatique contenant la CCAse.

Cela montre que cette fraction ne contient ni RNA-ligase, ni RNA polymérase-DNA

indépendante. Par ai,Heurs, nous n'avons jamais remarqué de différence, dans les

expériences d'hybridation, effectuées avec des tRNA marqués au a-[32p] CTP (avec

l'ATP froid) et avec ceux marqués au a-[32p]ATP (avec' du CfP froid) en utilisant le

même extrait de CCAse. Cela montre que le marquage obtenu n'est pas lié à la présence

d'une polyA polymérase incorporant spécifiquement de l'ATP.

L'ensemble de ces observations nous ont conduit à admettre que la préparation de CCAse

ne contenait pas d'autres activités enzymatiques susceptibles de provoquer des

marquages aspécifiques. Par conséquent, il est probable que les molécules de RNA qui

s'hybrident aux fragments de DNA cités plus i)aut, aient été effectivement marquées par

la CCAse,

2) LES MOLECULES MARQUEES SONT-ELLES DES tRNA ?

Le problème qui s'est posé à 'propos de ces rparquages éta~t de savoir si les

hybridations observées étaient liées à la présence ou non de gènes de tRNA. Il est donc

important de savoir si les molécules marquées par la CCAse sont exclusivement des

tRNA.

al Analyse de la fraction 4S marquée au a -[.32P1ATP à l'aide de la CCAse

Si l'on surexpose la fraction 45 extraite de la mitochondrie du maïs et marquée

à la CCAse et séparée sur gel de polyacrylamide monodimensionnelle, on observe le

profil montré sur la figure 40. L'analyse de ce profil montre que plusieurs molécules de

RNA (plus grandes que les tRNA) sont aussi marquées. Ces marquages sont très faibles

mais leur intensité concorde avec les signaux observés lors des hybridations de la

fraction 45 avec les fragments A et B. Ces "grands" RNA marqués ne sont pas présents

dans la fraction 4S purifiée sur une colonne RPC-S (fig.40).

bl Analyse des régions de DNA s'hybridant à la fraction 4S

Dans le chapitrelll-II, nous avons montré que certaines hybridations étaient

liées à la présence de séquences codant pour des rRNA. Dans ce paragraphe, nous nous

sommes focalisés sur les deux fragments codant pour des gènes de protéines (A et B).

L'intensité d'hybridation des RNA marquées à la CCAse avec ces fragments est très

faible. Plusieurs questions se posent:

Page 153: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

5' orf240 3'

l' s s s S S S S $ S S f S S S S S s S S S $ S S S S \1

x St B9

1- 1

Ba

hlE

xFragmentA

1B

1Bs

1- hIr

Jl''V"

3' atp9 5'III ! 11111111111111

1X

Fragment B

FIGURE 41 : Carte de resniction des fragments A et B

B: BarnHI; Ba: BanI; Bg: BglII; Bs: BstN1; Hd: H.indlI; St: SluI; X: Xhol

Les boites noires nommées h, i et j réprésentent les séquences homologuesentre les fragments A et B.

1-- A --"-B ---'1 1 1 r- A --..rB---j

b}

=c:;~=oCl CIl - <1) .S~~~~~

." .:.'".:,

a}

570

340

470

200

1100

930

FIGURE 42: Analyse des fragments A et B:

a) Electrophorèse sur gel d'agarose 1.8% desfragments de resniction des fragments A et B

b) Hybridation des fragments de restriction avecune sonde de tRNA mitochondriaux totaux marquéeau u- [32p]ATP à l'aide de la CCAse

Page 154: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

78

ex) Y a-t-il des séquences communes entre les fragments A et B comportant

les gènes arp9 et urj240 ?

On peut penser que l'hybridation, observée sur les régions codant pour des

gènes de protéines est due aux mêmes RNA qui reconnaitraient alors une séquence

commune. Nous avons donc comparé les séquences nuc1éotidiques des deux fragments

A et B en utilisant le programme d'analyse de séquences WORDSEARCH (UWGCG).

Ces recherches ont révélé la présence de certaines homologies qui sont représentées sur la

figure 41. Aucune des séquences homologues ne se localise dans les parties codantes des

gènes atp9 et urf240.

/3) L'hybridation est-elle liée aux séquences communes?

Dans le but de mettre en évidence les parties de ces clones qui s'hybrident,

les fragments A et B ont été purifiés et analysés par restriction. Les fragments de

restriction ont ensuite été séparés sur gel d'agarose avant d'être transferés sur un filtre

Nylon. Ce filtre a été hybridé avec la fraction 45 marquée au a-[32P]ATP à l'aide de la

CCAse. Les résultats de ces hybridations sont montrés sur la figure 42

L'analyse de ces hybridations montre que dans les deux cas (A et B), les

hybridations sont confinées dans la partie codante des gènes. Par conséquent, elles ne

sont pas liées aux séquences communes aux deux fragments comportant les gènes atp9 et

urf240 puisque ces séquences sont localisées en dehors des parties codantes.

c) Hybridation des fragments A et B avec la fraction 45

Dans le but de savoir si les hybridations obtenues sur les fragments A et B sont

dues à des molécules de RNA différentes des tRNA mais contenues dans la fraction 4s

du RNA mitochondrial du maïs, nous avons fait l'expérience suivante:

La fraction 45 du RNA mitochondrial a été fractionnée par électrophorèse

monodimensionnelle sur gel de polyacrylamide et transféré sur filtre nylon (chapitre!).

Ce filtre a ensuite été hybridé avec des sondes radioactives constituées par les fragments

A et B purifiés. Le résultat de ces hybridations est montrés sur la figure 43. Les profils

d'hybridation obtenus montrent que pour le fragment B, il y a principalement une

molécule de RNA d'environ 150 nucléotides qui s'hybride. Cette molécule est beaucoup

plus grande que les tRNA et semble relativement abondante. Pour ce qui concerne le

fragment A, plusieurs molécules sont mis en évidence mais elles sont toutes plus grandes

que les tRNA. La taille des molécules révélées est compatibles avec les "grands RNA" de

la fraction 45 qui sont marqués par la CCAse.

Page 155: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

a b c

.. ' -",:,,:

j

FIGURE 43: Hybridation des fragments A et B avec la fraction 4sdu RNA mitochondrial:

a): Electrophorèse monodimensionnelle sur gel de polyacrylamide 15%en condition dénaturantes de la fraction 4s.Les bandes de tRNA sont révélées par incubation du gel dans untampon contenant du Bromure d'éthidium.

b) Hybridation du fragment A avec la fraction 4s

c) Hybridation du fragment B avec la fraction 4s

Page 156: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

79

3) DISCUSSIONS

En résumant les expériences et les observations décrites plus haut, il apparait que

la CCAse est susceptible de marquer d'autres molécules de RNA de la fraction 4S

mitochondriale du maïs, différentes des tRNA. Ceci est confmné par le fait qu'il est

possible de séparer sélectivement les tRNA de ces molécules par fractionnement sur une

colonne hydrophobe RPC-5. Il faut cependant remarquer qu'aucune de ces molécules de

RNA n'est fortement marquée par la CCAse. Cela contraste avec la forte hybridation

obtenue pour les régions qui comportent des gènes de rRNA. Les ~olécules de RNA qui

s'hybrident aux gènes de rRNA ont très certainement le même comportement

électrophorétique que les tRNA mais elles sont probablement plus hydrophobes que ces

derniers car elles ne s'éluent pas à 1 M NaCl.

L'objectif de cette étude, c'est de montrer que toutes les hybridations obtenues en

utilisant une sonde constituée par la faction 4S marqués à la CCAse ne correspondent pas

forcément à des régions de DNA comportant des gènes de tRNA. Puisque toutes les

hybridations que l'on obtient en utilisant les tRNA totaux purifiés sur une colonne RPC-5

correspondent à des régions comportant des gènes de tRN~, pour l'étude de

l'organisation des gènes de tRNA mitochondriaux nous n'avons tenu compte que des

fragments de DNA qui s'hybrident dans ces conditions.

. En ce qui concerne les hybridations non-spécifiques, on peut penser qu'il s'agit

de pseudo-gènes de tRNA ou de gènes de tRNA comportant des introns. Cependant,

comme nous l'avons démontré dans le cas du gène de tRNAAla chloroplastique, dans nos

conditions d'hybridation (65°C, 1 M NaCl, 1% SDS), il est impossible de détecter une

hybridation avec la moitié d'un gène de tRNA. Aucun exon ne peut donc être détecté

dans des conditions d'hybridation aussi stringentes. Par conséquent, ces hybridations ne

sont pas liées à la présence de pseudo-gènes ou de gènes morcelés. Reste alors la

possibilité qu'il puisse y avoir des gènes codant pour des tRNA bizarres. Sans l'exclure,

nous n'avons aucune donnée permettant de supposer cette possibilité. Seule, l'analyse

complète des tRNA mitochondriaux peut confinner ou infinner cette possibilité.

De même, il est difficile de concevoir que les hybridations observées soient dues

au fait que des tRNA mitochondriaux reconnaissent des séquences contenues dans les

gènes de rRNA par exemple. Même si on admet la théorie de BLOCH (BLOCH et

coll.,1983; BLOCH et coll., 1985) suivant laquelle les tRNA et les rRNA auraient une

origine commune et par conséquent partageraient plusieurs séquences communes, on ne

peut pas expliquer pourquoi les tRNA élués de la colonne RPC-5 à 1 M NaCI ne

s'hybrident pas aux gènes de rRNA. Nous pensons plutôt que ce sont, dans ce cas-là,

soit des produits de dégradation des rRNA qui sont marqués par la CCAse soit des

molécules de RNA dont la structure est proche de celle des tRNA mais qui sont plus

hydrophobes que ces derniers. Ces molécules auraient aussi des homologies de séquence

Page 157: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

80

avec les rRNA. On se rapprocherait du cas observé dans le RNA du virus de la mosaïque

jaune du navet (TYMV) décrit par HAENNI et coll. (1982) qui est en effet, capable

d'incorporer le CfP et l'ATP en présence de la CCAse. Cependant, il semble que les

situations soient différentes car le fait que les RNA marqués à la CCAse puissent

s'hybrider indifféremment à tous les gènes de rRNA (mitochondriaux et

chloroplastiques) implique qu'il y a plusieurs molécules de RNA différentes qui sont

concernées. En effet, le contraire supposerait qu'il y ait des homologies de séquences

entre les rRNA 23S/ 26S avec les rRNA 16S/ 18S ou 5S/ 4,5S ce qui n'a jamais été

rapporté. Par ailleurs, on observe des hybridations avec des gènes qui n'ont aucune

homologie de séquence. Ceci renforce l'idée suivant laquelle plusieurs molécules de

RNA différentes sont concernées par le phénomène.

A partir de ces informations, on peut émettre l'hypothèse selon laquelle, la CCAse

marque les tRNA de manière très spécifique, mais est peut-être aussi impliquée dans

d'autres processus biologiques propres à la mitochondrie. L'enzyme que nous avons

utilisée est extraite de la levure et plusieurs exemples d'enzymes polyfonctionnels codés

par le noyau et actifs dans la mitochondrie de la levure ont été décrits (LABOUESSE et

coll., 1987). Il ne serait donc pas étonnant que la CCAse puisse avoir d'autres rôles dans

le cas de la mitochondrie végétale notamment, même s'ils sont mineurs.

Page 158: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

CHAPiTRE IV

CONCLUSiONS GENERALES SUR LES GENES DE~RNA MliTOCHONDRiAUX DUJ MAiS

Page 159: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

8 l

1. ORIGINES DES GENES MITOCHONDRIAUX

Du point de vue évolutif, le degré de parenté entre différents organismes ou entre

des gènes homologues provenant de diverses espèces, s'évalue généralement à l'aide de

la distance génétique qui est une valeur calculée à partir de différents paramètres

génétiques. Une des composantes essentielles de la distance génétique est la similarité

entre les gènes étudiés. Dans le cas des gènes de tRNA, cette similarité est évaluée à

travers le pourcentage d'homologie qui est lui même déterminé en faisant le rapport entre

le nombre de nucléotides conservés (entre différents gènes homologues) et le nombre de

nucléotides que comptent ces gènes. Le résumé des différentes homologies trouvées entre

les gènes de tRNA mitochondriaux du maïs et les gènes de tRNA bactériens et

eucaryotiques (nucléaires, mitochondriaux et chloroplastiques) est représenté sur le

Tableau G. L'analyse de ce tableau révèle deux caractéristiques:

1°) Si on compare les gènes de tRNA mitochondriaux du maïs aux tRNA

correspondants des autres organismes, on constate qu'ils sont en moyenne plus proches

des tRNA chloroplastiques (homologie supérieure à 75%) et bactériens (environ 75%)

qu'ils ne le sont des tRNA nucléaires (environ 60%) et des tRNA des mitochondries

d'animaux, d'algues et des champignons (homologie généralement inférieure à 50%).

Les gènes de tRNA de la mitochondrie du mais ont donc une nature procaryotique.

2°) Ces gènes mitochondriaux peuvent être classés en deux grands groupes:

a) Les gènes mitochondriaux rrès homologues à leurs équivalents

chloroplastigues: (entre 95 et 100%)

Il s'agit en l'occurrence des gènes de tRNAAsn, tRNAPhe, tRNA mMeL2,

tRNAHis, tRNACys et tRNATrp. A la suite des différentes analyses effectuées sur ces

gènes (voir chapitre II), il est clair que ce sont en fait des gènes chloroplastiques qui ont

été insérés dans le DNA mitochondrial et qui ont évolué pour être fonctionnels dans la

mitochondrie.

b) les gènes mitochondriaux moyennement homologues à leur éguivalents

chloroplastigues : (entre 65 et 75%)

Dans ce groupe, on retrouve la majorité des gènes de tRNA mitochondriaux à

savoir les gènes de tRNAAsp, tRNAGln, tRNAGlu, tRNALys, tRNAfMet, tRNAPro,

tRNASer(UGA), tRNASer(GCU) et de tRNATyr. Ces gènes sont dans l'ensemble plus

proches des gènes bactériens que des gènes chloroplastiques.

Une seule exception à cette classification: le gène de tRNAmMeq qui est très

éloigné des gènes chloroplastiques et des gènes bactériens «50%). Ce gène pourrait

constituer une troisième classe de gènes de tRNA mitochondriaux.

En se basant sur les homologies et sur la classification précédente, on peut

soutenir l'hypothèse suivant laquelle les gènes de tRNA mitochondriaux de plantes

supérieures dérivent d'une part d'ancêtres procaryotiques et d'autre part de gènes

Page 160: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU G

Homologies de séquences entre les gènes de tRNA mitochondriauxdu maïs et leurs homologues d'autres organismes procaryotiqueset eucaryotiques

Gènes Gènes Gènes Autres gènes Gènes d'mt Maïs nucléaires cp mt eubactéries

Animaux algues champignons

Asp 50.7 72 <50 .. 55 71

Asn 50-100 98 52 . 60 65

Cys <50 95 <50 .. 40 65-88

Gin° <50 75 <50 76 <50 75

Glu 65 65 <50 .. 70 73-

His <50 98 <50 .. 50 65

Lys 73 75 <50 .. 60 75

fMet <50 71 52 <50· 61 71

mMet·1 <50 <50 <50 <50· 61 60

mMet·2 <50 95 <50 50· 60 50

Phe 64 98 <50 .. 60 73

Pro 52 75 51 " <50 73

Ser(GCU) 65 63 <50 .. <30 61

Ser(UGA) 54 72 <50 .. <50 67

Trp 50 98 <50 52 52 63

Tyr 56 67 55 .. <50 67

Les homologies sont exprimées en pourcentage et les chiffres représentent desmoyennes calculées à partir des séquences de plusieurs gènes homologues.Le petit cercle (0) indique les gènes de tRNA séquencés dans la mitochondrie du blé etlocalisés dans le maïs par hybridation avec des oligonucléotides. La transcription deces gènes a été confirmée dans le maïs par hybridation des plus petits fragments lescomportant avec les tRNA totaux extraits de la mitochondrie du maïs.L'étoile (.) signifie que les trois gènes trnM ont été comparés au même gène trnM dede la mitochondrie de Chlamydomonas reinhardtii. Le signe (") indique qu'il n'y a pasde gène correspondant publié dans la littérature.

Page 161: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

chloroplastiques. Cette hypothèse est en faveur de la théorie endosymbiotique des

organites cellulaires et confirme l'idée désormais acquise du transfert de matériel

génétique entre les organites. Si on analyse les homologies des gènes mitochondriaux

des plantes supérieures par rapport aux gènes mitochondriaux des autres

embranchements, on voit qu'il est difficile de comprendre comment ces gènes

proviendraient du même événement endosymbiotique. Il y a en effet une très grande

différence entre les gènes des mitochondries des animaux, champignons et algues d'une

part et des plantes supérieures d'autre part. Il semble que les gènes du premier groupe

aient évolué pendant plus longtemps et/ou plus vite par rappon aux gènes procaryotiques

d'origine que ceux du deuxième groupe. De telles observations ont déjà été faites par

GRAy sur les gènes de rRNA (GRAY et coll., 1989) et d'après cet auteur, la grande

distance évolutive entre les gènes mitochondriaux des plantes supérieures et ceux des

autres mitochondries (algues, champignons, animaux) s'explique par le fait que l'ancêtre

des végétaux supérieurs aurait subit une deuxième endosymbiose. Cet événement serait

intervenu après la divergence entre les algues vertes et les végétaux supérieurs (fig.44).

Cette explication cadre parfaitement avec ce que l'on observe dans le cas des gènes de .

tRNA. En effet, dans la logique de deux endosymbioses successives, la présence de

deux génomes entraînerait (selon GRAY), une compétition entre le nouveau matériel

génétique (future mitochondrie) et l'ancien (issue de la première endosymbiose). Le

résultat de cette compétition serait alors l'élimination ou le transfen vers le noyau de

plusieurs gènes. Ceci pourrait évidemment provoquer un déficit en information génétique

dans les mitochondries des plantes supérieures. Dans le cas des gènes de tRNA, il

semble que tous les gènes issus de la première endosymbiose aient été éliminés. Le seul

vestige de ces anciens gènes de tRNA pourrait être le gène de tRNAmMeL I décrit par

PARKS. Ce qui explique la position complètement atypique de ce gène dans le tableau

d'homologie. Cependant, la compétition entre les deux matériels génétiques a peut-être

aussi pu entraîner la perte de gènes de tRNA "nouvellement acquis" après la deuxième

endosymbiose. La conséquence de cene perte est que la mitochondrie pourrait ne pas

posséder tous les gènes dont elle a besoin. A partir du moment où ce besoin existe, tous

les événements cellulaires et moléculaires pouvant permettre la "capture de nouveaux

gènes" seront favorisés dans l'organelle; d'où la mise à profit des évenements entraînant

l'insertion de séquences chloroplastiques dans le génome mitochondrial. De cette

manière, les gènes de tRNA chloroplastiques susceptibles de completer l'ensemble des

gènes existant déjà dans la mitochondrie subissent une pression de sélection favorable à

leur mise en fonction.

Nous avons décrit dans notre étude un certain nombre de gènes

mitochondriaux d'origine chloroplastique qui sont fonctionnels. Il est très intéressant de

noter à ce sujet la complémentarité presque parfaite entre les gènes de tRNA

Page 162: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

blzherQ.ÙlD.U

FIGURE 44: Arbre phylogénétique montrant les deux endosymbiosesprobables qui seraient à l'origines des mitochondries.

( GRAY et coll., 1989 )

Première endosymbiose qui est admise comme étant à l'origine de toutes lesmitochondries.

Deuxième endosymbiose qui, selon GRAY, serait à l'origine desmitochondries végétales, si l'on se base sur les homologies des rRNA .

Page 163: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

~. . .

83

chloroplastiques qui sont encore non fonctionnels (contenus en particulier dans

l'insertion de 12 kb chloroplastique) et les gènes existant déjà dans la mitochondrie. Si

l'évolution suit son cours, on peut penser que ces gènes deviendront fonctionnels (voir

figure 38, chapitreIlI-ILB). Cette évolution serait certainement plus économique

(énergétiquement) pour la mitochondrie qui éviterait ainsi d'importer ces tRNA ce qui est

le cas actuellement (cf paragraphe suivant). Le seul gène dont on n'a trouvé aucune trace

(même comme gène inactif ou comme pseudo-gène) chez aucune plante reste le gène de

tRNAThr. Il est par conséquent possible que le tRNA correspondant soit importé dans la

mitochondrie de la plupart des plantes étudiés.

2.LE CODE GENETIQUE DANS LA MITOCHONDRIE DU MAIS

Selon la théorie du Wobble (CRICK, 1966), le nombre minimum d'anticodons

(donc de tRNA différents) nécessaires pour assurer la synthèse protéique est de 32.

Cependant, dans les mitochondries animales et de champignons, on ne trouve pas autant

de gènes de tRNA. Une autre théorie dite du "two out of three" a été proposée

(LAGERKVIST, 1978), selon laquelle, pour l'utilisation des codons dans le cas des

cases contenant 4 codons (tableau H), seuls les deux premiers nucléotides de ces codons

seraient indispensables. Cette théorie ramène le nombre minimal de tRNA différents

indispensables à 23; ce qui est en accord avec le nombre de gènes de t~~A trouvés dans

les mitochondries animales et fongiques (SIBLER et colL, 1986). Dans la mitochondrie

du maïs, le nombre de gènes de tRNA différents identifiés s'élève à 16. La détermination

de ce nombre repose sur l'hybridation de sondes spécifiques (tRNA marqués à la

CCAse) et/ou par le séquençage des gènes mis en évidence par ces hybridations. Ces 16

gènes correspondent à 13 acides aminés (cf tableau H) et portent 14 anticodons

différents. Par conséquent, la mitochondrie du maïs a besoin au minimum de 9 gènes de

tRNA supplémentaires pour mener à bien sa synthèse protéique. Logiquement, si ces

gènes ne sont pas codés par la mitochondrie, c'est que les tRNA correspondants sont

importés dans l'organite. Le cas des tRNALeu imprtés dans la mitochondrie du haricot

(GREEN et coll., 1987; MARECHAL-DROUARD et coll., 1988) illustre cette situation.

Pour avoir une première information, nous avons effectué l'hybridation des

tRNA totaux extraits de la mitochondrie de maïs et purifiés sur une colonne RPC-5, avec

des fragments de restriction du DNA nucléaire du maïs. Les résultats de ces hybridations

sont montrés sur la figure 45. Au total, 4 fragments de restriction différents sont révélés. .par les tRNA totaux mitochondriaux. Dans la mesure où ces hybridations correspondent

réellement à la présence de gènes de tRNA sur ces fragments nucléaires (nous avons vu

que n'est pas toujours le cas), ces résultats confinnent d'une part que tous les tRNA

mitochondrlaux ne sont pas codés par le DNA mitochondrlal et d'autre part, que certains

tRNA sont importés dans l'organite. Cependant, ces hybridations restent des indications

Page 164: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

TABLEAU H: Codons pour lesquels un gène de tRNA a étéidentifié dans la mitochondrie du maïs.

GGU Gly(GCC)

GGC (,)

GGA g(ucC)

GGG

CGU Arg(GCG;

(!)

CGA g(uCG)

CGG

CGC

.. .. .------ .. --- .. -.- .•..............

AlaGCU(GGC;

GCC

GCA(UGC)

GCG

CUU Leu(GAG)

CUC(!)

CUA §(UAG)

CUG

GUU Val(GAC)

GUC(,)

GUA §(UAC)

GUG

UUA Leu(UAA)

UUG

.-----_ .... ---- ..... _-_ .._.._--- •.....•...•..

···U UU ·······Ph ....:.:. ::.:.:~.:.:. e .:.:.::.:.:.::::::::.(GAA):.:.:.:.:.:.:.:.:.:.,·"·"'·C .···UU .-- ._-------------_.--- -._--_ .... --.- ..

AUU Ile(GAU)

AUC :;:)AUA ("CAU) §

( UAU)

:::~j:tiG:~[~l~rM~t.~::~.. _- -. ---

~:i=~:Z-:3 Codons correspondant à des tRNA homologues à leurs équivalents chloroplastiques(95-100% ) .

~"\."\.~ Codons correspondant à des tRNA moyennement homologues à leurs équivalentschloroplastiques (60-75% )

Codons pour lesquels aucun gène de tRNA n'a été identifié

Les anticodons représentés entre parenthèses sont ceux qui peuvent déchiffrer le code suivantla théorie du Wobble alors que les anticodons nécessaires pour la lecture du code selon lathéorie du "two out of three" sont représentés en gras (verticalement)

Page 165: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

·'

>15

10. ~

5

..,>15

" 10~.. " .'. 5... .. ..W' a. 4

4

a b

..'

0.5

FIGURE 45: Hybridation des tRNA mitochondriaux totaux avec desfragments de restriction du DNA nucléaire du maïs

a) Longue migration du gel d'agarose 0.7%: plus de 24 heures à 50V

b) Migration 15 heures à 50V

Les tailles sont indiquées en kb

Page 166: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 46 : Séquences consensus trouvées en amont de différents gènes de tRNA

Gènes de tRNA Espèces Différentsconsensustrouvés

trnC (GCA)-l MaïstrnC (GCA)-2 Tomate cons-l

cons-2trnD (GUC) BlétrnE(UUC) Maïs

BléSoja

trnF (AAA) MaïstrnG (GCC) LupintrnH (GUC) MaïstrnK (UUU) Maïs cons-l

cons-2trnM(CAU) Lupin

SojaOenothera

trnM (CAU)-2 SojaArabidopsis

trnN(GUU) LupinPhaseolus vulgarisMaïsBlé

trnP (UGG) Blé-lBlé-2 cons-l

cons-2trnQ(UUG) Blé-l

Blé-2trnS (GCU) Blé

MarstrnS (UGA) Blé

Maïs cons-lcons-2cons-3

trnS (GGA)trnW(CCA) Blé

MaïstrnY(GUA) Blé

Maïs

CONSENSUS

Séquences

AAGTCAAGAATAATAAGAAGGAAGAACl\ACCGAGAAAAAGAAGGAGCGTATATMGAAAAGTACATAGAAAGAAAAGGAAATAGAAAGAAAAGGAAATATGAAGAATGGCTTTGCACAAGAAATGGTCGAAAAAAGAGAAGTCGGAAAAAAGAGAAAATCATGATAAGAAGAAGAAATAAGAAGAAAAGGGGAAGAAAAGAAAGAGAACGAGTAAGAA}.ATAAGAGTGAAAGAAGAGAAGGGTTTAAGAAGGAGGCCAAAAAAGAAAGAAA4TTACGAAGGAAACTTCTGTCC~hGAACr-~GAG

GTCCAAAGAACGAGCAGGCCAAAGAACGAGAGGTAAGAAGAACGAGAGCAAGCAAGAAAAAGGTCGAAAAAGAA;.ACCTATTCGTAAGAAAGAACTCGGGAAAGAAGGAbGACAGTAAAGAAGAGTACCAGTAAAGAAGAGTACACTACCGGAAAAGTGTACTACCGGA&~AGTGT

TCATATAGAAAGAAGCACTTAAAGAA~GGGGG

TATCAAAGAAAGTTCGGGCGTAAGAAAGCGCTG------GAAAGCGCTAACTTAAGAACGAAGGAGAATMGAACGAAGG

AAGAANRR

Les différentes séquences consensus sont trouvées à des distances diverses du début des différentsgènes. Pour le gène trnP, blé-l et blé-2 désignent des séquences consensus n:ouvées en amont de2 gènes identiques qui sont dans 2 environnements différents. Pour le gène trnQ ces mêmesappellations désignent 2 gènes qui diffèrent en plus d'un nucléotide.

Page 167: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

~ : :;

84

grossières car elles peuvent paradoxalement constituer en même temps une surestimation

et une sous-estimation du nombre de gènes de tRNA nucléaires dont les produits

d'expression sont destinés à la mitochondrie: En effet, le même gène peut se retrouver

dans plusieurs environnements nucléotidiques différents et dans ce cas, plusieurs

fragments de restriction peuvent le poner. Cela conduit à une sur-estimation. A l'opposé,

la présence de plusieurs gènes différents sur le même fragment peut conduire à en sous­

estimer le nombre.

Ainsi, on peut penser que plusieurs tRNA sont imponés dans la mitochondrie du

maïs même si on n'en connait pas le nombre exact. Ceci expliquerait alors le fait que

seulement 14 gènes différents soient trouvées dans le génome mitochondrial.

Restent cependant encore deux ambiguïtés dans le code génétique de la

mitochondrie du maïs: ce sont des cas des gènes tRNAMeL 1 et de tRNATrp. En effet,

nous ne savons pas si le tRNAMeL 1 est spécifique de la méthionine ou de l'isoleucine.

De même, l'ambiguïté concernant le codon CGG qui spécifierait l'arginine et/ou le

tryptophane persiste. Rappelons que le tRNATrp trouvé dans la mitochondrie de haricot

(MARECHAL et coll., 1987) compone l'anticodon CCA et qu'un gène correspondant à

ce tRNA a été localisé sur le réplicon linéaire de 2.3 kb du maïs (MARECHAL et coll.,

1987 ; BEDINGER et coll., 1986).

On peut donc supposer que, bien que des tRNA de spécificités complémentaires à

ceux codés par la mitochondrie soient importés du cytoplasme, il existe probablement

dans le système de synthèse protéique mitochondriale, d'autres mécanismes de

reconnaissance codon-anticodon permettant le déroulement de la traduction. Signalons à

cet effet que dans le cas des deux cases à 4 codons pour lesquelles il existe un tRNA codé

par le génome mitochondrial du maïs (tRNAPro, tRNASer), la première lettre de

l'anticodon est un U, ce qui est aussi en accord avec l'hypothèse de LAGERKVIST

(tableau H).

3. SIGNAUX DE TRANSCRIPTION DES GENES DE tRNA

MITOCHONDRIAUX

al Recherche de séquences consensus dans les régions flanquantes des gènes de

tRNA

Dans le chapitre traitant des gènes de tRNA, nous avons noté la présence d'une

séquence riche en purine: 5' AAGAANRR 3' en amont de.s gènes de tRNA. Cette

séquence est apparue lors d'une analyse faite sur plusieurs gènes de tRNA

mitochQndriaux de blé (JOYCE et coll., 1988-b) et on la retrouve devant la majorité des

gènes de tRNA mitochondriaux publiés dans la littérature (fig.46). Cependant, les

séquences retrouvées ne s'alignent pas toutes à 100% avec cette séquence et on retrouve

souvent d'autres séquences beaucoup plus riches en purines en amont de cenains gènes.

Page 168: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

FIGURE 47: Alignement des séquences codantes des gènes de tRNAmitochondriaux du maïs

1 10 20 30 40 50 60 70Trp GCGCTCT TA GTTC AGTTCGGT ..A GAAC G TGTGT CTCCAAA ACCCA .... C GTAGG TTCAAAT CCTAC AGAGCGT G

SerUGA GGATGGA TG ICTG AGC .. GGTTGA AAG~G TCGGT CTTGAAA ACCGA. '" C GGGGG TTCGAAT CCCTC TCCATCC G

SerGCU GGAGGTA TG GCTG AGT .. GGCTTA AGGC A TTGGT TTGCTAA ATCGA.... C ATGGG TTCGAAT CCCAT TTCCTCC G

Pro CGAGGTG TA GCGC AGTCTGGTC.A GCGC A TCTGT TTTGGGT ACAGA C ATAGG TTCGAAT CCTGT CACCTTG A

Phe GTCAGGA TA GCTC AGTT.GGT .. A GAGC A GAGGA CTGAAAA TCCTC C ACCAG TTCAAAT CTGGT TCCTGGC A

Met2 ACCTACT TG ACTC AGC .. GGTT.A GAGT A TCGCC TTCATAC GGCGA .... C ATTGG TTCAAAT CCAAT AGTAGGT A

Metl GGGCTTA TA GTTT AATT.GGTT.G AAAC G TACCG CTCATAA CGGTG .... T GTAGG TTCGAGC CCTAC TAAGCCC A

fMet AGCGGGG TA GAGG AATT.GGTC.G ACTC A TCAGG CTCATGA CCTGA T GCAGG TTCGAAT CCTGT CCCCGCC T

Lys GGGTGTA TA GCTC AGTT.GGT .. A GAGC A TTGGG CTTTTAA CCTAA C GCAGG TTCAAGT CCTGC TATACCC A

His GGCGGATG TA GCCA AGT .. GGATCA AGGC A GTGGA TTGTGAA TCCAC C GCGGG TTCAATT CCCGT CGTTCGC C

Glu GTCCCTT TC GTCC AGT .. GGTT.A GGAC A TCGTC TTTTCAT GTCGA .... C ACGGG TTCGATT CCCGT AAGGGAT A

Gln TGGAGTA TA GCCA AGT .. GGT .. A AGGC A TCGGT TTTTGGT ATCGG .... C AAAGG TTCGAAT CCTTT TACTCCA G

Cys GGCGGCA TG GCCA AGC .. GGT .. A AGGC A GGGGA CTGCAAA TCCTT C CCCAG TTCAAAT CTGGG TGTCGCC T

Asn TCCTCAG TA GCTC AGT .. GGT .. A GAGC G GTCGG CTGTTAA CTGAC C GTAGG TTCGAAT CCTAC TTGGGGA G

Asp GGGGAAA TA GCTC AGTT.GGTT.A GAGT G CTGGT CTGTCAC GCCAG C GCGGG TTCGAAC CCCGT TTTCCCC G

Tyr GGGAAGG TG GCCG AGC .. GGTCAA AAGC G ACAGA CTGTAAA TCTGT C GTAGG TTCGAAT CCTGC CCTTCCC A

CONSENSUS TR RYYN ARY .. GGir R RRRY R

TR RYNN ARY .. GG

BOITE A

C RG TTCRANY CY

GG TTCRANT CC

BOITE B

R

Les boites A et B représentent les promoteurs internes des gènes de tRNA nucléaires et de certains gènes chloroplastiques.Les nucléotides faisant exception à la séquence consensus sont soulignés. Le gène trnH comporte 8 nucléotides appariés dansle bras de l'aminoacide.

Page 169: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

j.'

85

Dans la mesure où aucune donnée expérimentale n'a été publ,iée concernant cette

séquence consensus, celle-ci n'est valable qu'à titre indicatif. De plus, les différentes

séquences consensus retrouvées sont situées à des distances très variables du gène lui­

même, qui vont de 0 nucléotides dans le cas du gène de tRNAPhe (chap.III.II.B) à plus

de 400 nucléotides pour le gène de tRNASer(UGA) (chapitre II.II.A). En dehors de cette

séquence 5' AAGAANRR 3', aucune autre homologie n'est décelable dans les régions en

amont des différents gènes de tRNA. La même situation existe en aval des gènes de

tRNA où aucun signal commun n'est observé. Dans certains cas, comme celui du gène

de tRNASer(UGA), on remarque de courtes séquences répétées directes ou inverses,

mais les structures secondaires que l'on peut déduire à partir de ces répétitions ne sont

pas thermodynamiquement stables. On peut donc difficilement leur assigner des rôles de

stabilisateur ou de signaux de terminaison des transcrits (STERN et coll., 1987).

b) Recherche de promoteurs internes

L'absence de mise en évidence de véritables signaux d'initiation de la

transcription des gènes de tRNA à l'image de ceux qui sont retrouvés devant les gènes

procaryotiques ou de mitochondrie de levure, nous a incité à analyser les régions

codantes de ces gènes. Dans les noyaux des cellules eucaryotes (SHARP et coll., 1985)

et pour certains gènes chloroplastiques (GRUISSEM et coll., 1986), la transcription des

gènes de tRNA se fait à partir de promoteurs internes constitués par deux blocs de

séquence nommées boites A et boites B. Les nucléotides impliqués dans la constitution

de ces blocs sont indispensables à la fois pour la transcription et la structure tertiaire de la

molécule de tRNA (Pour une revue, voir SHARP et coll., 1985).

Nous avons recherché ces blocs de séquences dans les gènes de tRNA de la

mitochondrie du maïs. L'alignement de ces gènes ainsi que les séquences consensus qui

en découlent sont montrés sur la figure 47. On peut constater sur cette figure que les

gènes mitochondriaux comportent eux aussi les boîtes A et B. Quelques déviations sont

observées dans la boîte A, mais la boîte B est très conservée.

La transcription des gènes de tRNA nucléaires est assurée par la RNA

polymérase III (FOLK et coll., 1982). Cette polymérase reconnait les promoteurs

internes A et B mais il semble que certains éléments extérieurs aux gènes soient aussi

impliqués dans l'initiation de la transcription des gènes de tRNA (DINGERMANN et

coll., 1982). Le fait qu'on retrouve les séquences correspondantes au promoteurs

internes dans les gènes de tRNA mitochondriaux amène à se demander si la RNA

polymérase III est impliquée dans la transcription des gènes de tRNA mitochondriaux.

Cette question mérite d'être posée car en plus des séquences rappelant celles des

promoteurs internes des gènes nucléaires, certaines observations ont été faites qui vont

dans le sens de cette hypothèse. Le cas le plus remarquable est celui du gène de tRNAAsn

Page 170: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

86

du noyau de pétunia. En effet, BAWNIK et coll. (1983) ont démontré que ce gène de

tRNAAsn était transcrit in vitro par la RNA polymérase III. Or, ce gène est identique à

son homologue de la mitochondrie et comporte non seulement les boites A et B mais

aussi une séquence 5' AAGAANRR 3' située entre les nucléotides -38 et -30 (inclus).

Les gènes de tRNAAsn mitochondriaux qui lui sont homologues conservent aussi la

séquence 5' AAGAANRR 3'. Il serait donc important de voir si les gènes

mitochondriaux peuvent aussi être transcrits in vitro par la RNA polymérase III. On peut

signaler, par ailleurs les analyses faites par MARTIN et coll. (1987), montrant qu'il n'y a

pas plusieurs activités RNA polYmérasiques dans la mitochondrie du blé.

4. CONCLUSIONS

Un certain nombre de caractéristiques concernant les gènes de tRNA de la

mitochondrie du maïs peuvent être dégagées à l'issue de cette étude:

- Le génome mitochondrial ne code pas pour tous les gènes de tRNA nécessaires à

la synthèse protéique dans l'organite

- L'organisation des gènes de tRNA varie d'un génome à l'autre mais leurs

séquences sont toutes très conservées

- Il n'y a pas de déviation notable dans la structure secondaire des tRNA par

rapport au modèle classique en feuille de trèfle. Dans la majorité des cas, les nucléotides

invariants et semi-invariants sont conservés

- Aucun gène ne code pour la séquence CCA 3' terminale

- Ces gènes de tRNA ne sont pas organisés en familles. Ils sont tous indépendants

les uns des autres. Les plus proches (les gènes de tRNAAsp et de tRNAmMeLl) sont

codés par deux brins opposés. Leur expression n'est certainement pas coordonnée non

plus. Cependant, il est possible que certains gènes soient compris dans de grandes unités

de transcription et soient par conséquent co-transcrits avec des gènes de protéines (gène

de tRNAmMeL2 par exemple).

- Aucun gène de tRNA ne contient un intron

- Il n'y a pas de séquence consensus typique en amont et en aval des gènes. La

seule séquence trouvée en amont (5'A AGAANRR 3') n'est pas retrouvée de manière

stricte devant tous les gènes. De plus cette séquence se retrouve assez fréquemment

ailleurs dans des régions totalement indépendantes des gènes de tRNA.

- On retrouve des séquences homologues aux promoteurs internes des gènes de

tRNA des noyaux eucaryotiques

- Le noyau code vraisemblablement pour une partie des gènes de tRNA

mitochondriaux. Il s'agit essentiellement de gènes codant pour les tRNA correspondants

à des acides aminés qui peuvent être spécifiés par 3, 4 ou 6 codons. Les deux exceptions

constituent les gènes de tRNAPro et de tRNASer.

Page 171: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

\-

Page 172: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

"

i ..,

87

BIBLIOGRAPHIE

BAILEY-SERRES, J., MANSON, D. K., LIDDELL, D. K., FOX. T. D. and LEAVER,C. J. (1986). Mitochondrial genome rearrangement lead to extension and relocation of thecytochrome c oxydase subunit 1gene in Sorghum. Ce1l47, 567-576.

BARCISZEWSKA. M. and JONES, D. S. (1988). The nucleotide sequences of twolupinus luteus asparagine tRNAs. Nucleic Acid Res. 16,9349.

BARTNIK. E. and BORSUK, P. (1986). A glycine tRNA gene from lupinemitochondria. Nucleic Acids Res. 14,2407.

BAWNIK, N., BECKMANN, J. S., SARID. S. and DANIEL, V. (1983). Isolation andnucleotide sequence of a plant tRNA gene: petunia asparagine tRNA. Nucleic Acids Res.11,1117-1122.

BEDINGER, P., DE HOSTOS, E. L., LEON. P. and WALBOT, V. (1986). Cloning andcharacterisation of a linear 2.3 kb mitochondrial plasmid of maize. Mol. Gen. Genet. 205,206-212.

BIRD, S., DUNCKER, B., GARBER. P. and BONEN, L. (1989). Nucleotide sequenceof the bean mitochondrial DNA region containing the tRNAAsn and tRNATyr genes.Nucleic Acids Res. 17,4379.

BLAND, M. M., LEVINGS. C. S. III and MATZINGER, D. F. (1986). The tobaccomitochondrial ATPase subunit 9 gene is closely linked to an open reading frame for aribosomal protein. Mol. Gen. Genet. 204, 8-16.

BLAND, M. M., LEVINGS. C. S. III and MATZINGER, D. F. (1987). The ATPasesubunit 6 gene of tobacco mitochondria contains an unusual sequence. CUIT. Genet. 12,475-481.

BLOCH, D. P., MCARTHUR. B. and MIRROP, S. (1985). tRNA-rRNA sequencehomologies: Evidence for an ancient modular format shared by tRNAs and rRNAs..Biosystems 17 209, 225-Yeast.

BLOCH, D. P., MCARTHUR, B., WIDDOWSON, R., SPECTROR, O.,GUIMARAES. R. C. and SMITH, J. (1983). tRNA-rRNA sequence homologies:Evidence for a common evolutionary origin? J. Mol. Evol. 19,420-428.

BOER, P. H., MCINTOSH, J. E., GRAY. M. W. and BONEN, L. (1985). The wheatmitochondrial gene for apocytochrome b: absence of a prokaryotic ribosome binding site.Nucleic Acids Res. 13,2281-2292.

BONEN, L. (1987). The mitochondrial S13 ribosomal protein gene is silent in wheatembryos and seedlings.. Nucleic Acids Res. 15, 10393-10404.

BONEN, L., BOER. P. H. and GRAY, M. W. (1984). The wheat cytochrome oxidasesubunit II gene has an intron insert and three radical arn!noacid changes rélative to maize.EMBO J 3,2531-2536.

Page 173: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

88

BONEN, L., BOER, P. H., MCINTOSH. 1. E. and GRAY, M. W. (1987). Nucleotidesequence of the wheat mitochondrial gene for subunit 1of cytochrome oxidase. NucleicAcids Res. 15, 6734.

BORSUK, P., SIRKO. A. and BARTNlK, E. (1986). A methionine tRNA gene fromlupine mitochondria. Nucleic Acids Res. 14, 7508.

BRAUN. C. 1. and LEVINGS, C. S. III (1985). Nucleotide sequence of the F1-ATPasea subunit gene from maize mitochondria. Plant Physiol. 79, 571-577.

BRENNICIŒ, A., MOLLER. S. and BLANZ, P. (1985). The 18S and 5S ribosomalRNA genes in Oenothera mitochondria: sequence rearrangements in the 18S and 5SrRNA genes of higher plants. Mol. Gen. Genet. 198,404-410.

BRUCE. A. G. and UHLENBECK, O. C. (1978). Reaction at the termini of tRNA withT4 RNA ligase. Nuc1eic Acids Res. 3, 3665-3677.

CHAO, S., SEDEROFF. R. and LEVINGS, C. S. III (1983). Partial sequence analysisof the 5S to 18S rRNA gene region of the maize mitochondrial genome. Plant Physiol.71, 190-193.

CHAO, S., SEDEROFF. R. and LEVINGS, C. S. III (1984). Nucleotide sequence andevolution of the 18S ribosomal RNA gene in maize mitochondria. Nucleic Acids Res. 12,6629-6644.

CHASE. C. D. and PRING, D. R. (1985). Circular plasmid DNAs from mitochondria ofSorghum bicolor. Plant Mol. Biol. 5, 303-311.

CHASE. C. D. and PRING, D. R. (1986). Properties of the linear NI and N2 plasmid­like DNAs from mitochondria of cytoplasmic male-sterile Sorghum bicolor. Plant MoLBiol. 6, 53-64.

CRICK, F. H. C. (1966). codon-anticodon pairing: the wobble hypothesis. J.Mol.Biol.19, 548-555.

CROUZILLAT, D., GENZBITTEL, L., de la CANAL, L., VAURY, c., PERRAULT,A., NlCOLAS. P. and LEDOIGT, G. (1989). Properties and nucleotide sequence of amitochondrial plasmid from sunflower. CUIT. Genet 15,283-289.

CRUZALEGUI, F. (1987). DEA de biologie moléculaire et cellulaire -option biologiemoléculaire végétale. Université LOUIS PASTEUR, Strasbourg, France.

CRUZALEGUI, F., WEIL. J. H. and GRIENENBERGER, J. M. (1989). Nucleotidesequence of a wheat mitochondrial tRNAAsn gene. Nucleic Acids Res. submitted..

DALE, R. M. K, DUESING. 1. H. and KEENE, D. (1981). Supercoiled mitochondrialDNAs from plant tissue culture cells. Nucleic Acids Res. 9, 4583-4593.

DALE, R. M. K, McCLURE. B. A. and HOUCHINS, J. P. (1985). A rapid single­stranded cloning strategy for producing a sequential series of overlapping clones for.lIsein DNA sequencing: Application to sequencing the corn mitochondrial 18 S rDNA.Plasmid 13, 31-40.

DALE, R. M. K, MENDU, N., GINSBURG. H. and KRIDL, J. C. (1984). Sequenceanalysis of the maize mitochondrial26S rRNA and flanking regions. Plasmid Il, 141­150.

Page 174: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

89

DAVIS, L. G., DIBNER. M. D. and BATIEY, J. F. (1986). Basic methods inMolecular Biology, Elsevier Science Publishing Co, New York, Amsterdam, London.

DAWSON, A. J., JONES. V. P. and LEAVER, C. J. (1984). The apocytochrome bgene in maize mitochondria does not contain introns and is preceeded by a potentialribosome binding site. EMBa J. 3,2107-2113.

DEVEREUX, J., HAEBERLI. P. and SMITIUES, O. (1984). A comprehensive set ofsequence analysis programs for the VAX. Nucleic Acids Res. 12,387-395.

DEWEY, R. E., LEVINGS. C. S. III and TIMOTHY, D. H. (1985-a). Nucleotidesequence of ATPase subunit 6 gene of maize mitochondria. Plant Physiol. 79, 914-919.

DEWEY, R. E., LEVINGS. C. S. III and TIMOTHY, D. H. (1986). Novelrecombinations in the maize mitochondrial genome produce a unique transcriptional unitin the Texas male sterile cytoplasm.. Cell 44, 439-449.

DEWEY, R. E., SCHUSTER, A. M., LEVINGS. C. S. III and TIMOTHY, D. H.(1985-b). Nucleotide sequence of FO-ATPase proteolipid (subunit 9) gene of maizemitochondria. Proc. Natl. Acad. Sei. USA 82, 1015-1019.

DINGERMAN, T., BURJE, D. J., SHARP, S., SCHAAK. J. and SOLL, D. (1982).The 5' flanking sequences of Drosophila tRNAArg genes control their in vitrotranscription in Drosophila cell extract. J. Biol. Chem. ?57, 14738-.

DORMANN-PRZYBYL, D., STRITTMATIER. G. and KOSSEL, H. (1986). Theregion distal to the rRNA operon from chloroplast of maize contains genes coding fortRNAArg(ACG) and tRNAAsnGUU). Plant Mol. Biol. 7,419-431.

DRON, M., HARTMANN, C., RODE. A. and SEVIGNAC, M. (1985). Geneconversion as a mechanism for divergence of a chloroplast tRNA gene in themitochondrial genome of Brassica oleracea. Nucleic Acids Res. 13,8603-8610.

ENGLAND. T. E. and UHLENBECK, O. C. (1978). 3'-terminallabelling of RNA withT4 RNA ligase. Nature 275, 560-561.

ERICKSON, L., GRANT.!. and BEVERSDORF, W. (1986). Cytoplasmic malesterility in rapeseed (Brassica napus L.) 1. Restriction patterns of chloroplast andmitochondrial DNA. Theor. Appl. Genet. 72, 145-150.

FALCONET, D., SEVIGNAC. M. and QUETIER, F. (1988). Nucleotide sequence anddetermination of the extremities of the 26S ribosomal RNA gene in wheat mitochondria:evidence for sequence rearrangements in the ribosomal genes of higher plants. CUIT.Genet. 13, 75-82.

FAURON. C. M. R. and HAVLIK, M. (1988). The BamHI,XhoI,SmaI restrictionenzyme maps of the normal maize mitochondrial genome genotype B37. Nucleic AcidsRes. 16, 10395-10396.

FAURON, C. M. R., HAVLIK, M., LONSDALE. D. and NICHOLS, L. (1989).Mitochondrial genome organization of the maize cytoplasmic male sterile type T. Mol.Gen. Genet. 216, 395-401.

FEINBERG. A. P. and VOGELSTEIN, B. (1983). Technique forradiolabeling DNArestriction endonuclease fragments to high specific activity. Anal. Biochem. 132,6-13.

Page 175: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

90

FEJES, E., MASTERS, B. S., MCCARTY. D. M. and HAUSWIRTH, W. W. (1988).Sequence and transcriptional analysis of a chloroplast insert in the mitochondrial genomeofZea mays. CUIT. Genet. 13,509-515.

FOLK, W. R., HOFSTETER. H. and BIRNSTEIL, M. L. (1982). Sorne bacterial tRNAgenes are transcribed by eukaryotic RNA polymerase III. Nucleic Acids Res. 10, 7153-.

FOX. T. D. and LEAVER, C. J. (1981). The Zea mays mitochondrial gene codingcytochrome oxydase subunit II has an intervening sequence and does not contain TGAcodons. Cell 26, 315-323.

GOBLET, J. P., BOUTRY, M., DUC. G. and BRIQUET, M. (1983). Mitochondrialplasmid like molecules in fertile and male sterile Vicia Faba L.. Plant Mol. Biol. 2, 305­309.

GOBLET, J. P., FLAMAND. M. C. and BRIQUET, M. (1985). A mitochondria1plasmid specifically associated with male sterility and its relation with other mitochondria1plasmids in Vicia faba L.. CUIT. Genet. 9,423-426.

GOTISCHALK. M. and BRENNICKE, A (1985). Initiator methionine tRNA inOenothera mitochondria. Cur. Genet. 9, 165-168.

GRABAU, E. A (1985). Nucleotide sequence of the soybean mitochondrial18S rRNAgene: evidence for a slow rate of divergence in the plant mitochondrial genome. PlantMol. Biol. 5, 119-124.

GRABAU, E. A (1986). Nucleotide sequence of the cytochrome oxydase subunit 1 fromsoybean mitochondria. Plant Mol. Biol. 7,377-384.

GRABAU, E. A. (1987). Cytochrome Oxydase subunit II gene is adjacent to an initiatormethionine tRNA gene in soybean mitochondrial DNA CUIT. Genet.· Il, 287-293.

GRABAU, E. A, HAVLIK. M. and GESTELAND, R. (1988). Chimeric organizationof two genes for the soybean mitochondrial ATPase subunit 6. CUIT. Genet. 13,83-89.

GRAY, M. W., CEDERGREN, R., ABEL. Y. and SANKOFF, D. (1989). On theevolutionary origin of the plant mitochondrion and its genome. Proc. Naù. Acad. Sei.USA 86, 2267-2271.

GRAY. M. W. and SPENCER, D. F. (1983). Wheat mitochondrial DNA encodes aeubacterial-like initiator methionine transfer RNA FEBS Leu. 161, 323-327.

GREEN, G., MARECHAL, L., WEIL. J. H. and GUILLEMAUT, P. (1987). APhaseolus vulgaris mitochondrial tRNALeu is identical to its cytoplasmic counterpart:sequencing and in vivo transcription of the gene corresponding to the cytoplasmictRNALeu. Plant Mol. Biol. 10, 13-19.

GRIVELL, L. (1983). Mitochondrial DNA. Scientific American 248, 60-73.

GRUISSEM, W., ELSNER-MENZEL, c., LATSHAW, S., NARITA, J. O.,SCHAFFER. M. A. and ZURAWSKI, G. (1986). A subpopu1ation of spinachchlorop1ast tRNA genes does not require upstream promoter elements for transcription.Nucleic Acids Res. 14, 7541-7556.

GUALBERTO, J. M., DOMON, C., WEIL. J. H. and GRIENENBERGER, 1. M.(1989). Nucleotide sequence of the wheat mitochondria1 tRNAGlu(UUC) gene. NucleicAcids Res. 17, 3586.

Page 176: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

9 l

GUALBERTO, J. M., WINTZ, H., WEIL. J. H. and GRIENENBERGER, J. M.(1988). The genes coding for subunit 3 of NADHdehydrogenase and for ribosomalprotein S12 are present in the wheat and maize rIÙtochondrial genomes and are co­transcribed. Mol. Gen. Genet. 215,118-127.

GUILLEMAUT, P., BURKARD. G. and WEIL, J. H. (1972). Characterization of N­formyl-methionyl-tRNA in bean mitochondria and etioplasts. Phytochem. Il,2217­2220.

GWYNN, B., DEWEY, R. E., SEDEROFF, R. R., TIMOTHY. D. H. and LEVINGS,C. S. III (1987). Sequence of the 18S-5S ribosomal gene region and the cytochromeoxidase II gene from mtDNA of Zea diploperennis. Theor. Appl. Genet. 74, 781-788.

HACK. E. and LEAVER, C. 1. (1983). The alpha subunit of the maize F1-ATPase issynthesized in the mitochondria. EMBO J. 2, 1783-1789.

HAENNI, A. L., JOsm. S. and CHAPEVILLE, F. (1982). tRNA-like structures in thegenome of RJ."IA vïruses. Prog. Nucleic Acids Res. Mol. Biol. 27, 85-104.

HANAHAN, D. (1983). Studies on transfonnation of Escherichia coli with plasmids. J.Mol. Biol. 166, 557-580.

HANSEN. B. M. and MARCKER, L. A. (1984). DNA sequence and transcription of aDNA minicircle isolated from male sterile sugar beet mitochondria. Nucleic Acids Res.12, 4747-4756.

HIESEL. R. and BRENNICKE, A. (1983). Cytochrome Oxydase subunit II inmitochondria of Oenothera has no intron. EMBO J. 2,2173-2178.

HIESEL, R., SCHOBEL, W., SCHUSTER. W. and BRENNICKE, A. (1987). Thecytochrome oxydase subunit l and III genes of Oenothera rIÙtochondria are transcribedfrom identical promoter sequences. EMBO J. 6,29-34.

IAMS, K. P., HECKMAN. J. E. and SINCLAIR, J. H. (1985). Sequence of histidyltRNA present as a chloroplast insert in mtDNA of Zea mays. Plant Mol. Biol. 4, 225­232.

ISAAC, P. G., BRENNICKE, A., DUNBAR. S. M. and LEAVER, C. J. (1985-a). Themitochondrial genome of fertile maize (Zea mays L.) contains two copies of the geneencoding the alpha subunit of the FI ATPase. CUlT. Genet. 10,321-328.

ISAAC, P. G., JONES. V. P. and LEAVER, C. J. (1985-b). The maize cytochrome coxydase subunit I gene: sequence,expression,and rearrangement in cytoplasmic malesterile plants. EMBO J. 4, 1617-1623.

IZUCm. S. and SUGITA, M. (1989). Nucleotide sequence of a tomato mitochondrialtRNACYS(GCA) gene. Nucleic Acids Res. 17, 1248.

JOYCE. P. B. M. and GRAY, M. W. (l988-a). Nucleotide sequence of a wheatmitochondrial glutarIÙne tRNA gene. Nucleic Acids Res. 16, 1210.

JOYCE, P. B. M., SPENCER, D. F., BONEN. L. and GRAY, M. W. (1988-b). Genesfor tRNAAsp, tRNAPro, tRNATyr and two tRNASer in wheat rIÙtochondrial DNA. PlantMol. Biol. 10, 251-262.

Page 177: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

92

JOYCE, P. B. M., SPENCER. D. F. and GRAY, M. W. (1988-c). Multiple sequencerearrangements accompanying the duplication of a tRNAPro gene in wheat mitochondrialDNA. Plant Mol. Biol. Il,833-843.

JOYCE, P. B. M., GRAY, M. W. (1989). Nucleotide sequence of a second glutaminetRNA gene in wheat mitochondrial DNA. Nucleic Acids Res. 17,4885

KAO, T. H., MOON. E. and WU, R. (1984). Cytochrome oxydase subunit II gene ofrice has an insertion sequence with intron. Nucleic Acids Res. 12,7305-7315.

KARPINSKA. B. and AUGUSTYNIAK, H. (1988). An asparagine tRNA gene from1upine mitochondria. Nucleic Acids Res. 16,6235.

KEMBLE. R. J. and BEDBROOK, J. R. (1980). Low molecular weight eircular andlinear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm.. Nature284, 565-566.

KOLODNER. R. and TEWARI, K. K. (1972). Physicochemical characterization ofmitochondrial DNA from pea leaves. Proc. Nat!. Acad. Sci. USA 69, 1830-1834.

LABOUESSE, M., HERBERT, C. J., DUJARDIN. G. and SLONIMSKI, P. P.(1987). Three suppresor mutations which cure a mitochondrial RNA maturase deficiencyoccur at the same codon in the open reading frame of the nuclear NAM2 gene. EMBO J.6,713-721.

LAGERKVIST, U. (1978). "Two out of three": an alternative method for codon reading.Proc. Natl. Acad. Sci. USA 75, 1759-1762.

LEHRACH, H., DIAMOND, D., WOZNEY. J. M. and BOEDTKER, H. (1977). RNAmolecular weight determinationby gel electrophoresis under denaturating conditions, acritical reexamination. Biochem. 16,4743-.

LEROY, P., BAZETOUX, S., QUETIER, F., DELBUT. J. and BERVILLE, A. (1985).A comparison between mitochondrial DNA of an isogenic male-sterile (S) and male-fertile(F) couple (HA89) of sunflower. CUIT. Genet. 9, 245-251.

LEVINGS. C. S. III and SEDEROFF, R. R. (1983). Nucleotide sequence of the S2mitochondrial DNA from S cytoplasm of maize. Proc. Nat!. Acad. Sei. USA 80, 4055­4059.

LONSDALE, D. M. (1988). The plant mitochondrial genome. In "The biochemistry ofPlants". Springer, Berlin, New York, Tokyo, in press.

LONSDALE, D. M., HODGE. T. P. and FAURON, C. M. R. (1984). The physical mapand organisation of the mitochondrial genome from the fertile cytop1asm of maize.Nucleic Acids Res. 12,9249-9261.

LONSDALE, D. M., HODGE, T. P., HOWE. C. J. and STERN, D. B. (1983). Maizemitochondrial DNA contains a sequence homologous to the ribulose-1,5-bisphosphatecarboxylase large subunit gene of chloroplast DNA. Ce1l34, 1007-1014.

MAKAROFF. C. A. and PALMER, J. D. (1987). Extensive mitochondrial transcriptionof the Brassica campestris mitochondrial genome. Nucleic Acids Res. 15,5141-5156.

MANIATIS, T., FRITSCH. E. and SAMBROOK, J. (1982). Molecular cloning: Alaboratory manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor, N.Y.

Page 178: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

93

MANNA. E. and BRENNICKE, A. (1985). Primary and secondary structure of 26Sribosomal RNA of Oenothera mitochondria. CUIT. Genet. 9, 505-515.

MARECHAL-DROUARD. L. and GUILLEMAUT, P. (1988). Nucleotide sequence ofbean mitochondrial tRNALeu-4 and its cytoplasmic coumerpart. Reexamination of themodified nucleotide present in position 12 in bean mitochondrial and cytoplasmictRNALeu-1 sequences. Nucleic Acids Res. 16, 11812.

MARECHAL-DROUARD, L., WEIL. J. H. and GUILLEMAUT, P. (1988). Import ofseveral tRNAs from the cytoplasm into the mitochondria in bean Phaseolus vulgaris.Nucleic Acids Res. 16,4777-4788.

MARECHAL, L., GUILLEMAUT, P., GRIENENBERGER, J. M., JEANNIN. G. andWEIL, 1. H. (1985-a). Structure of bean mitochondrial tRNAPhe and localization of thetRNAPhe gene on the mitochondrial genomes of maize and wheat. FEBS Leu. 184,289­293.

MARECHAL, L., GUILLEMAUT, P., GRIENENBERGER, J. M., JEANNIN. G. andWEIL, J. H. (1985-b). Sequence and codon recognition of bean mitochondria andchloroplast tRNAsTrp: evidence for a high degree of homology. Nucleic Acids Res. 13,4411-4416.

MARECHAL, L., GUILLEMAUT, P., GRIENENBERGER, J. M., JEANNIN. G. andWEIL, J. H. (1986). Sequences of initiator and elongator methionine tRNAs in beanmitochondria. Plant Mol. Biol. 7, 245-253.

MARECHAL, L., GUILLEMAUT. P. and WEIL, 1. H. (1985-c). Sequence of two beanmitochondria tRNAsTyr which differ in the level of post-transcriptional modification andhave a prokaryotic-like large extra-Ioop. Plant Mol. Biol. 5, 347-351.

MARECHAL, L., RUNEBERG-ROOS, P., GRIENENBERGER, J. M., COLIN, 1.,WEIL, J. H., LEJEUNE, B., QUETIER. F. and LONSDALE, D. M. (1987).Homology in the region containing a tRNATrp gene and a (complete or partial) tRNAProgene in wheat mitochondrial and chloroplast genomes. CUIT. Genet. 12,91-98.

MARTIN, M. T., ECHEVARRIA, M., LITVAK. S. and ARAVA, A. (1987). Studies oftranscription in isolated wheat mitochondrial and organelle extracts. Plant Sci. 49, 199­207.

MESSING, J. (1983). New M13 vectors for cloning. Methods in enzymology 101,20­77.

MESSING, J., GRONENBORN, B., MULLER-HILL. B. and HOFSCHNEIDER, P.H. (1977). Filamentous coliphages M 13 as a cloning vehicle: Insertion of a Hind IIfragment of the lac regulatory region in M13 replicating form "in vitro". Proc .Natl. Acad.Sci. USA 74,3642-3646.

MOON, E., KAO. T. H. and WU, R. (1985). Pea cytochrome oxydase subunit II genehas no intron and generates two rnRNA transcripts with differem 5' tennini. NucleicAcids Res. 13,3195-3212.

MORGENS, P. M., GRABAU. E. A. and GESTELAND, R. F. (1984). A novelsoybean mitochondrial rranscript resulting from a DNA rearrangement invo1ving the 5SrRNA gene. Nucleic Acids Res. 12,5665-5684.

Page 179: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

94

MORIKAM1. A. and NAKAMURA, K. (1987). Structure and expression of peamitochondrial F1ATPase a subunit gene and its pseudogene involved in homologousrecombination. J. Biochem 101,967-976.

NEGRUK, V. L, EISNER, G. L, REDICHKINA, T. D., DUMANSKAy A, N. N.,CHERNY, D. L, ALEXANDROV, A. A., SHEMYAKIN. M. F. and BUTENKO, R.G. (1986). Diversity of Vicia faba circular mtDNA in whole plants and suspensioncultures. Theor. Appl. Genet. 72, 541-547.

NIKIFOROVA. 1. D. and NEGRUK, V. 1. (1983). Comparative electrophoreticalanalysis of plasmid-like mitochondrial DNAs in Vicia faba and in sorne other legumes.Planta, 157-81. .

NUGENT. J. M. and PALMER, J. D. (1988). Location, identity, amount and seriaIentry of chloroplast sequences in crucifer mitochondrial DNAs. CUIT. Genet. 14,501­509.

PAILLARD, M., SEDEROFF. R. R. and LEVINGS, C. S. III (1985). Nucleotidesequence of the S-l mitochondrial DNA from the S cytoplasm of maize. EMBO J. 4,1125-1128.

PALMER. J. D. and HERBON, L. A. (1987). Unicircular structure of the Brassica hirtamitochondrial genome. CUIT. Genet. Il,565-570.

PALMER. J. D. and SHIELDS, C. R. (1984). Tripartite structure of Brassica campestrismitochondrial genome. Nature 307, 436-440.

PALMER, J. D., SHIELDS, C. R., COHEN. D. B. and ORTON, T. J. (1983). Anunusual mitoch0ndrial DNA plasmid in the genus Brassica. Nature 301, 725-728.

PARKS, T. D., DOUGHERTY, W. G., LEVINGS. C. S. III and TIMOTHY, D. H.(1984). Identification of two methionine transfer RNA genes in the maize mitochondrialgenome. Plant Physiol. 76, 1079-1082.

PARKS, T. D., DOUGHERTY, W. G., LEVINGS. C. S. III and TIMOTHY, D. H.(1985). Identification of an aspartate transfer RNA gene in maize mitochondrial DNA.CUIT. Genet. 9, 517-519.

PEARSON, R. L., WEISS. J. F. and KELMERS, A. D. (1971). Improved separation,of tRNAs on polychlorotrifluoroethylene supported reverse-phase chromatographycolumns. Biochim. Biophys. Acta 228, 770-.

PFITZINGER, H., GUILLEMAUT, P., WEIL, J., H. and PILLAY, D., T., N. (1987).Adjustrnent of the tRNA population to the codon usage in chloroplasts. Nucleic AcidsRes. 15, 1377-1386.

POWLING, A. (1981). Species,of small DNA molecules found in mitochondria fromsugarbeet with notmal and male sterile cytoplasm~. Mol. Gen. Gertet. 183;82-84.

QUETIER, F., LEJEUNÊ, B., DELORME. S. and FALCONET, D. (1985). Molecularorganization and expression of the mitochondrial genome of higher plants. In"Encyclopedia cd Plant Physiology" new series vol. 18, R.Douce and DA Dayeds,Springer Verlag, Berlin, pp. 25-35.

QUETIER. F. and VEDEL, F. (1977). Heterogenous population of mitochondrial DNAmolecules in higher plants. Nature 268,365-368.

Page 180: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

1

tL.·

95

RASMUSSEN. J. and HANSON, M. R. (1989). A NADH dehydrogenase subunit geneis co-transcribed with the abnonnal Petunia mitochondrial gene associated withcytoplasmic male sterility. Mol. Gen. Genet. 215, 332-336.

RODE, A., HARTMANN, c., FALCONET, D., LEJEUNE, B., QUETIER, F.,BENSLIMANE, A., HENRY. Y. and DE BUYSER, 1. (1987). Extensive mitochondrialvariation in somatic tissue cultures initiated from wheat immature embryos. CUlT. Genet.12, 369-376.

ROTHENBERG. M. and HANSON, M. R. (1988). A functional mitochondrial ATPsynthase proteolipid gene produced by recombination of parental genes in a petuniasomaric hybrid. Genetics 118, 155-161.

RUNEBERG-ROOS, P., GRIENENBERGER, J. M., GUILLEMAUT, P.,MARECHAL, L., GRUBER. V. and WEIL, J. H. (1987). Localization,sequence andexpression of the gene coding for tRNAPrO(UGG) in plant mitochondria. Plant Mol. Biol.9, 237-246.

SANGER. F. and COULSON, A. R. (1978). The use of thin acrylamide gels for DNAsequencing. FEBS Leu. 87, 107-110.

SANGER, F., NICKLEN. S. and COULSON, A. R. (1977). DNA sequencing withchain-terminaring inhibitors. Proc. Nad. Acad. Sei. USA 74, 5463-5467.

SCHUSTER. W. and BRENNICKE, A. (1985). TGA terminarion codon in theapocytochrome b gene from Oenothera mitochondria. Curr. Genet. 9, 157-163.

SCHUSTER. W. and BRENNICKE, A. (1986). Pseudocopies of the ATPase (alpha)­subunit gene in Oenothera mitochondria are present on different circu1ar molecules. Mol.Gen. Genet. 204, 29-35.

SCHUSTER. W. and BRENNICKE, A. (1987-a). P1astid,nuclear and reversetranscriptase sequences in the mitochondrial genome of Oenothera: is genetic infonnationtransferred between organelles via RNA? EMBO 1. 6,2857-2863.

SCHUSTER. W. and BRENNICKE, A. (1987-b). Nucleotide sequence of the OenotheraATPase subunit 6 gene. Nucleic Acids Res. 15,9092.

SCHUSTER. W. and BRENNICKE, A. (1987-c). Plastid DNA in the mitochondria1genome of Oenothera: intra- and interorganellar rearrangemems invo1ving part of theplastid ribosomal cistron. Mol. Gen. Genet. 210, 44-51.

SHAPIRO. D. R. and TEWARI, K. K. (1986). Nucleotide sequences of transfer RNAgenes in the Pisum sativum chloroplast DNA. Plant Mol. Biol. 6, 1-12.

SHARP, S. J., SCHAAK, J., COOLEY, L., BURKE. D. J. and SOLL, D. (1985).Structure and transcription of eucaryote tRNA genes. CRC crirical review in Biochemistry19, 107-144.

SmLER, A. P., DIRHEIMER. G. and MARTIN, R. P. (1986). Codon reading patternin Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs.FEBS Leu. 194, 131-138.

SILBERKLANG, M. N., GILUM. A. M. and RAJBHANDARY, U. L. (1979). Use ofin vitro (32)P labelling in the sequence analysis od non radioactive tRNAs. Methods inEnzymology 59,58-109.

Page 181: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

96

SMALL,1. O., EARLE, E. O., ESCOTE-CARLSON, L. J., GABAY-LAUGHAN, S.,LAUGHAN. J. R. and LEAVER, C. J. (1988). A comparison of cytoplasmic revertantsto fertility from different cms-S maize sources. Theor. Appl. Genet. 76, 609-618.

SMALL,1. O., ISAAC. P. G. and LEAVER, C. J. (1987). Stoichiometric differences inDNA molecules containing the atpA gene suggest mechanisms for the generation ofmitochondrial genome diversity in maize. EMBO J. 6, 865-869.

SOUTHERN, E. M. (1975). Detection of specific sequences among ONA fragmentsseparated by gel electrophoresis. J. Mol. Biol. 98, 503-518.

SPENCER, D. F., BONEN. L. and GRAY, M. W. (1981). Primary sequence of wheatmitochondrial 5S ribosomal ribonucleic acid: functional and evolutionary implications.Biochem. 20,4022-4029.

SPENCER, D. F., SCHNARE. M. N. and GRAY, M. W. (1984). Pronouncedstructural similarities between the small subunit ribosomal RNA genes of wheatmitochondria and Escherichia coli. Proc. Nat!. Acad. Sci. USA 81, 493-497.

SPRINZL, M., HARTMANN, T., WEBER, J., BLANK. J. and ZEIDLER, R. (1989).Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.17suppl, r1-r172.

STAMPER, S. E., DEWEY, R. E., BLAND. M. M. and LEVINGS, C. S. III (1987).Characterization of the gene urf13-T and an unidentified reading frame, ORF 25, in maizeand tobacco mitochondria. CUIT. Genet. 12,457-463.

STEINMETZ, A. A., KREBBERS, E. T., SCHWARZ, Z., GUBBINS. E. J. andBOGORAD, L. (1983). Nucleotide sequences of five maize chloroplast transfer RNAgenes and their flanking regions. J. Biol. Chem. 258,5503-5511.

STERN, D. B., BANG. A. G. and THOMPSON, W. F. (1986). The watermelonmitochondrial URF-1 gene: evidence for a complex structure. CUIT. Genet. 10,857-869.

STERN. D. B. and GRUISSEM, W. (1987). Control of plastid gene expression: 3'inverted repeats act as rnRNA processing and stabilizing elements, but not terminatetranscription. Cell 51, 1145-1157.

STERN. D. B. and LONSDALE, D. M. (1982). Mitochondrial and chloroplast genomesof maize have a 12-kilobase DNA sequence in common. Nature 299, 698-702.

STERN. D. B. and NEWTON, K. J. (1984). Isolation of intact plant mitochondrial RNAusing aurintricarboxylic acid. Plant Mol. Biol. Reporter 2,8-15.

STERN. D. B. and PALMER, J. D. (1984). Extensive and widespread homologiesbetween mitochondrial DNA and chloroplast DNA in plants. Proc. Nad. Acad. Sci. USA81, 1946-1950.

SUGINO, A., GOODMANN, H. M., HEYNECKER, H. L., SHlNE, J., BOYER. H.W. and COZZARELLI, N. R. (1977). Interaction of the bacteriophage T4 RNA andDNA ligases in joining of duplex DNA at base-paired ends. J.Biol.Chem. 252, 3987-.

SYNENSKI, R. M., LEVINGS. C. S. III and SHAH, D. M. (1978). Physicochemicalcharacterization of mitochondrial DNA from soybean. Plant Physiol. 61, 460-464.

TIMMIS. J. N. and SCOTT, N. S. (1983). Sequence homology between spinach nuclearand chloroplast genomes. Nature 305, 65-67.

Page 182: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

97

TIMOTHY, D. H., LEVINGS, C. S. III, HU. W. W. L. and GOODMAN, H. H.(1983). Plasmid-like mitochondrial DNAs in diploperennial teosinte. Maydica 28, 139­149.

VEDEL. F. and QUETIER, F. (1974). Physico-chemical characterization ofmitochondrial DNA from potato tubers. Biochim. Biophys. Acta 340, 374-387.

WAHLEITHNER. J. A. and WOLSTENHOLME, D. R. (1987). Mitochondrial plasmidDNAs of broad bean: nucleotide sequence, complex secondary structures, andtranscription. CUIT. Genet. 12,55-67.

WAHLEITHNER. J. A. and WOLSTENHOLME, D. R. (1988). Ribosomal protein S14in broad bean mitochondrial DNA. Nucleic Acids Res. 16,6897-6913.

WALLACE, R. B., SHAFFER, J., MURPHY, R. F., BONNER, J., HIROSE. T. andITAKURA, K. (1979). Hybridization of synthetic oligodeoxyribonucleotides to f X174DNA: the effect of single base pair mismatch. Nucleic Acids Res. 6, 3543-3557.

WARD, B. L., ANDERSON. R. S. and BENDICH, A. J. (1981). Mitochondrialgenome is large and variable in a family of plants (cucurbitaceae). Ce1l26, 793-803.

WEISS, B., JACQUEMIN-SABLON, A., LIVE, T. R., FAREED. G. C. andRICHARDSON, C. C. (1968). Enzymatic breakage and joining of deoxyribonucleicacids.VI. Further purification and properties of polynucleotide ligase from Escherichiacoli infected with bacteriophage T4. J.Biol.Chem. 243,4543-4555.

WEISSINGER, A. K., TIMOTHY, D. H., LEVINGS, C. S. III, HU. W. W. L. andGOODMAN, M. M. (1982). Unique plasmid-like mitochondrial DNAs from indigenousmaize races of latin America. Proc. Nat!. Acad. Sei. USA 79, 1-5.

WINTZ, H. (1988). Contribution à l'étude de l'organisation et de la structure des gènesde tRNA mitochondriaux des plantes. Thèse de Doctorat, Université LOUIS PASTEUR,Strasbourg, France.

WINTZ, R, CHEN. H. C. and PILLAY, D. T. N. (1987). Nucleotide sequence of asoybean mitochondria tRNA Glu (TTC) gene. Nucleic Acids Res. 15, 10588.

WINTZ, R, CHEN. H. C. and PILLAY, D. T. N. (1988-a). Presence of a chloroplast­like elongator tRNAMet gene in the mitochondrial genomes of soybean and Arabidopsisthaliana. CUIT. Genet. 13, 255-260.

WINTZ, R, CHEN. H. C. and PILLAY, D. T. N. (1989). Partial characterization of thegene coding for subunit IV of soybean mitochondrial NADH dehydrogenase. CUIT.Genet. 15, 155-160.

WINTZ, H., GRIENENBERGER, 1. M., WEIL. J. H. and LONSDALE, D. M.(1988-b). Location and nucleotide sequence of two tRNA genes and a tRNA pseudo­

gene in the maize mitochondrial genome: evidence for the transcription of a chloroplastgene in mitochondria. CUIT. Genet. 13,247-254.

WISSINGER, B., HIESEL, R., SCHUSTER. W. and BRENNICKE, A. (1988). TheNADH-dehydrogenase subunit 5 gene in Oenothera mitochondJia contains two intronsans is co-transcribed with the 5S rRNA gene. Mol. Gen. Genet. 212, 56-65.

YOUNG, E. G., HANSON. M. R. and DIERKS, P. M. (1986). Sequence,andtranscription analysis of the Petunia mitochondrial gene for the ATP synthase proteolipidsubunit. Nucleic Acids Res. 14, 7995-8006.

Page 183: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir
Page 184: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

99

INTRODUCfION 1

CHAPITRE 1 : MATERIELS ET METHODES

1. Matériel d'étude; le maïs 6

II. Purification des acides nucléiques 6A. Extraction des acides nucléique mitochondriaux 6

1. Principe 62. Purification des mitochondries 7

a) Croissance des plantes 7b) Broyage 7c) Centrifugations différentielles (Kolodner etTewari, 1972) 7d) Purification des mitochondries sur gradient desaccharose 8

3. Lyse des mitochondries et extraction des acidesn ucléiq ues 84. Purification des acides nucléiques : 9

a) Purification des RNA de haut poidsmoléculaire 9b) Purification des tRNA 9

a) Dégradation du DNA 9(3) Purification des tRNA par .chromatographie ; 9

5. Dosage des RNA 106. Analyse des RNA par électrophorèse .1 0

a) Fractionnement des RNA de grandes tailles 10b) Fractionnement des tRNA 11

B. Extraction du DNA nucléaire .12C. Extraction des tRNA chloroplastiques 12

1. Isolement des chloroplastes 122. Purification des tRNA 13

III. Méthodes de clonage et analyse des acides nucléiques 13A. Méthodes de clonage 13

1. Réalisation et criblage des mini-banques 13a) Digestion du DNA par les enzymes derestriction 13b) Analyse des fragments de restriction parélectrophorèse sur gel d'agarose .14c) Ligation des fragments de restriction avec levecteur de clonage 14d) Transformation d'E.coli par les plasmidesrecombinants 15

Page 185: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

100

a) Souches d'E.coli utilisées 15~) Transformation des bactéries par laméthode de Hanahan 15

- Préparation des cellulescompétentes 15- Transformation 16- Sélection des bactériestransformées 16

· Le vecteur M 13 16· Principe 17· Culture et sélection des cellulesrecombinantes 17

e) Analyse des clones recombinants .1 7a) Analyse des phages .1 8

- Analyse directe 18- Analyse des phages aprèspurification du DNA 18

- Hybridation croisée des DNAphagiques 19

~) Analyse des plasmides 19- Méthodes de purification desplasmides 19

· Méthode alcaline 19· Méthode du lysat clair .20

'Y) Autres méthodes de criblage de la mini-banq ue 20

- Criblage par analyse des profits derestriction 20- Criblage par hybridation 21

2. Clonage de fragments purifiés .2 1a) Purification des fragments de restriction 21

a) Utilisation de gel d'agarose à bassetempérature de fusion 21~) Filtration des morceaux d'agarosecontenant du DNA 22

b) Clonage des fragments purifiés 223. Sous-clonage des fragments de DNA en vue de leurséquençage 22

a) Sous-clonage basé sur la cartographie derestriction 22b) Utilisation d'oligonucléotides de synthèse .22c) Sous-clonage par la technique du cyclone 23

B. Techniques de marquage radioactif des sondes 231. Marquage du DNA 23

a) Marquage à partir de DNA simple brin 23

Page 186: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

..'

(

iL

(,

l 0 l

b) Marquage du DNA double brin 24c) Marquage des oligonucléotides de synthèse 24

2. Marquage des tRNA 25a) Marquage à l'extrémité en 3' à l'aide de la T4RNA ligase 25b) Marquage à l'extrémité 3' à l'aide de la tRNAnucléotidyl transférase 25

C) Techniques de transfert et d'hybridation 261. Méthodes de transfert 26

a) Transfert des acides nucléiques par capillarité 26b) Transfert des tRNA sur membrane nylon 27

2. Techniques d'hybridation 27a) Membranes comportant des fragments deDNA 27

ex) Préhybridation 27~) Hybridation 28y) Lavage 28

b) Membranes comportant du RNA 28c) Membranes comportant des tRNA : 29

D. Séquençage du DNA 291. Principe 292. Les réactions 29

a) Hybridation de l'amorce 29b) Elongation et arrêt de la synthèse 30c) Electrophorèse verticale sur gel depolyacrylamide 30d) Analyse des séquences nucléotidiques .30

Chapitre II : ETUDE DES GENES DE tRNA MITOCHONDRIAUXDU MAIS

I. Détermination des cosmides portant des gènes de tRNA 31

A) Cartes de restriction des génomes mitochondriaux B37-Net B37-cms T 3 1

B) Localisation des gènes de tRNA sur les cercle-maîtres desgénomes N et T 32

1) Analyse des tRNA mitochondriaux .3 2a) Analyse sur gel d'agarose de la fraction 4S duRNA mitochondrial. 32b) Absence de contaminants chloroplastiques 32

2) Hybridation des tRNA mitochondriaux totaux 32

Page 187: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

102

Il. Séquençage et analyse des gènes de tRNA 34

A) Etude du gène de tRNA du cosmide 9-3HIO 341. Présentation du cosmide 342. Analyse du cosmide 9-3HI0 et identification dufragment portant un gène de tRNA 343. Sous-clonage et séquençage du clone C7-20 354. Analyse du gène de tRNASer(UGA) 35

CI) Analyse de la partie codante du gène 35~) Etude des régions flanquantes du gène detRNASer(lJGA) 36y) Transcription du gène de tRNASer 37

B) Etude des gènes de tRNA du cosmide N8AI1. Présentation 382. Identification du fragment portant des gènes detRNA 383. Cartographie du fragment BamHI de 2,7 kb etdétermination de la séquence nucléotidique des gènesde tRNAAsn(GUU) et de tRNAPhe(GAA) 394. Analyse des gènes de tRNA présents sur le fragmentBarnIII de 2,7 kb 40

a) Etude du gène de tRNAPhe(GAA) .40CI) Analyse de la partie codante du gène detRNAPhe(GAA) 40

~) Analyse des régions flanquantes du gènede tRNAPhe 40

b) Etude du gène de tRNAAsn(GUU) .42CI) Analyse de la partie codante du gène .42~) Le noyau du maïs comporte-t-il le mêmegène de tRNAAsn(GUU) que lamitochondrie ? 44y) Etude des régions flanquantes du gène detRNAAsll(GUU) 45

- Comparaison entre les régions flanquantesdes gènes de tRNAAsn(GUU) desmitochondries des plantes supérieures .45

. Gènes de tRNAAsn(GUU)mitochondriaux du blé et du maïs .45. Comparaison des gènes detRNAAsn(GUU) mitochondriauxdes monocotylédones à celui dulupin 46

Page 188: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

1

1

1

\1

i;(

103

- Comparaison entre les trois gènes detRN AAsn(GUU) mitochondriaux et le gène detRN AAsn(GUU) du chloroplaste de maïs .46

- Comparaison entre les gènes detRNAAsn(GUU) mitochondriaux etchloroplastiques d'une part etnucléaire d'autre part.. .47

C) Etude des gènes de tRNA du cosmide N7F3 501. Présentation du cosmide 502. Analyse du cosmide N7F3 et identification desfragments comportant des gènes de tRNA 513. Sous-clonage du fragment BamHI 3,5 kb du cosmideN7F3 524. Cartographie du fragment BamHI 3.5 kb etidentification des régions codant pour des gènes detRNA ; 53

.5. Analyse des gènes de tRNA présents sur le fragment3,5 kb BamHI 53

a) Etude du gène de tRNAGlu(UUC) .53a) Analyse de la partie codante du gène 53~) Analyse des régions flanquantes dugène 54

b) Etude du gène de tRNAPro(UGG) .55a) Analyse de la région codante du gène 55~) Analyse des régions flanquantes dugène 5 5

C. Etude du pseudogène de tRNAPro du cosmide N7B7 561. Présentation du cosmide 562. Analyse du cosmide et détermination du fragmentportant un gène de tRNA 563. Détermination de la séquence nucIéotidique dufragment BamHI 1,25 kb et identification d'un gèneincomplet de tRNAPro 574. Le DNA mitochondrial du maïs a t-il perdu la partie5' du deuxième gène de tRNAPro ? 575. Analyse des régions flanquantes du gène detRNAPro(UGA) et du gène incomplet de tRNAPro 58

a) Comparaison entre les régions flanquantes desdeux gènes du maïs 58b) Comparaison entre les régions flanquantes desgènes de tRNAPro(UGA) du blé et du maïs .5 8

E. Etude des gènes de tRNA du cosmide 8-3B2 60

Page 189: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

104

III. Organisation des gènes de tRNA sur les cercle-maîtresdes génomes mitochondriaux de maïs des variétés B37-N etB37-cmsT 61

A. Hybridation avec des oligonucléotides de synthèse 61

B. Analyse de l'organisation des gènes de tRNA mitoêhondriaux 621) Comparaison entre les génomes B37-N et WF9-N 62Z) Comparaison entre les génomes B37-N et

B37cmsT 62

Chapitre III : ETUDE D'AUTRES REGIONS DU DNAMITOCHONDRIAL DES VARIETES DE MAIS B37-N ET B37­cmsT

1. Etude de deux fragments de DNA mitochondrial de maïss'hybridant à la fraction 4S du RNA mitochondrial mais necomportant pas de gène de tRNA 64

A. Etude du fragment 1,25 kb XhoI du cosmide 9-1E8 (A2) 641. Présentation du cosmide 9-1E8 642. Sous-clonage et séquençage d'un fragment XhoI ducosmide 9-1E8 643. Analyse de la séquence du fragment XhoI de1,25 kb 64

. L'urf138 est-elle expriméedans la mitochondrie du maïs ? 65

B. Etude du fragment SmaI de 2.7 kb du cosmide (9-2C4) 6 81. Présentation du cosmide 682. Sous-clonage des fragments du cosmide 9-2C4 683. Analyse de la séquence nucléotidique du fragmentBamHI-XhoI de 1 kb 68

II. Etude des régions du DNA mitochondrial du maïscomportant des insertions chloroplastiques 70

A. Etude du plasmide 5.7TB 701. Présentation du plasmide 702. Sous-clonage et séquençage du fragment s'hybridantaux tRNA totaux 703. Analyse de la séquence nucléotidique du fragmentHindIII-XhoI de 1,7 kb 70

a) L'hybridation observée est-elle due à laprésence de l'exon 2 du gène 71

Page 190: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

;'1.,",

105

~) L'hybridation est-elle liée à la présencede séquences chloroplastiques 71

B. Le génome mitochondrial des variétés normales contient laquasi totalité de la séquence répétée du DNA chloroplastiquedu maïs 73

Chapitre IV : QUELQUES ANALYSES SUR LES HYBRIDATIONSDE RNA MARQUES À L'AIDE DE LA CCAse AVEC DESFRAGMENTS DE DNA NE COMPORTANT PAS DE GENE DE tRNA

1) L'extrait enzymatique utilisé dans nos réactions'd '1 .. , ? 77posse e-t-l une autre actlvlte .

2) Les molécules marquées sont-elles des tRNA ? 77a) Analyse de la fraction 4S marquée aua-[32P]ATP à l'aide de la CCAse 77b) Analyse des- régions de DNA s'hybridant à lafraction 4S 77

a) y a-t-il des séquences communes entreles fragments A et B comportant les gènesatp9 et urf240 ? 7 8~) L'hybridation est-elle liée aux. séquencescommunes ? : 78

c) Hybridation des fragments A et B avec lafraction 4S 78

3)·Discussion 79

Chapitre V : CONCLUSIONS GENERALES SUR LES GENES DEtRNA MITOCHONDRIAUX DU MAIS

1. Origines des gènes mitochondriaux. 812. Le code génétique dans la mitochondrie du maïs 833. Signaux de transcription des gènes de tRNAmitoc ho nd ri au x. 84

a) Recherche de séquences consensus dans lesrégions flanquantes des gènes de tRNA 84b) Recherche de promoteurs in ternes 85

4. Conclusion 86

BffiLIOGRAPHIE 87

Page 191: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

ANNEXE 1 : ORIGINE PHYLOGENETIQUE (PROBABLE) DU MAIS

-Origine américaine (centre du Mexique)-Découvert lors du creusement d'un gratteciel de Mexico à 70m de profondeur

-Morphologie inconnue (grain de pollenseuls découverts)

introgression .....-------.génétique Téosynte

• x--i (Euchlaena ouZea maxicana)

1maïs ancestral f-x---1 Tripsacum 1 -pér~~~e(mauvaise herbe -ramlfl~eactuelle des champs -~onolque

maïs -Mexique et -InflorescenceGuatemala) apicale hermaphrodite

-inflorescencelatérale hermaphroditemâle à l'extrémité etfemelle à la base

Environ20.000 av. J.C.(dernière périodeinterglacière)

5000 av. J.C.-monoïque-inflorescenceapicale mâle

-inflorescencelatérales femelle ouhermaphrodite

-épillets vêtus-taillage élévé-épis de 2g environ-plante annuelle

1 maïs primitif11111111111

--------------------~-----------------------------------------11111

+

,..~----x--ITripsacum 1

2n= 20 chromosomes

Z.m. Z.m.ceratina tunicatamaïs cireux maïs vêtu

Z.m.saccharatamaïs sucré

/I\~Z.m.amylaceamaïs farineux

Lm. Z.m Z.m.indunata indentata evertamaïs corné maïs denté pop-corn

Page 192: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

ANNEXE 2: Milieux et tampons utilisés

Milieu S.O.B.: par litre :

Bacto-tryptone: 20gYeast extract: 5gNaCl: O.5gAjuster le pH à 7,5 avec du KOHet stériliser par autoclavage.

MilieuL.B.: par litre:

Bacto-Tryptone: lOgBacto-yeast extract: 5gNaCl: lOgAjuster le pH à 7,5 avec du KOH

MilieuL.B.-agar: par litre:

Bacto-agar: l5g (15%)Bacto-agar: 7g (7% )dans le milieu L.B.ajouter le bacto-agar justeavant l'autoclavage.

Tampon TFB:KCl(ultrapure): lOOmMMnCl,4H20 45mMCaC12,2H20 lOmMHACoC13 3mMK-MES lOmMFiltrer et conserver à4oC

Tampon TEA x 50 : par litre:

Tris base: 242gHO glacial 57, lm!EDTA O,5M; pH 8 100 ml

Page 193: 1 : . n . .i-.'. - greenstone.lecames.orggreenstone.lecames.org/collect/thefe/index/assoc/HASH4db0/080cdc4b... · Je tiens à remercier Monsieur le Professeur J.H. WEIL de m'avoir

77

1) L'EXTRAIT ENZYMATIQUE UTILISE DANS NOS REACTIONS

POSSEDE-T-IL UNE AUTRE ACTIVITE?

Nous avons pensé que la fraction enzymatique utilisée dans nos réactions pouvait

contenir d'autres enzymes qui seraient à l'origine de marquages non spécifiques d'autres

petits RNA. Cependant, nous ne sommes jamais arrivé à marquer la fraction 45 ni avec

du [32p] pCp, ni du a-[32p] GTP en utilisant l'extrait enzymatique contenant la CCAse.

Cela montre que cette fraction ne contient ni RNA-ligase, ni RNA polymérase-DNA

indépendante. Par ailleurs, nous n'avons jamais remarqué de différence, dans les

expériences d'hybridation, effectuées avec des tRNA marqués au a-[32p] CTP (avec

l'ATP froid) et avec ceux marqués au a-[32P]ATP (avec"du CfP froid) en utilisant le

même extrait de CCAse. Cela montre que le marquage obtenu n'est pas lié à la présence

d'une polyA polymérase incorporant spécifiquement de l'ATP.

L'ensemble de ces observations nous ont conduit à admettre que la préparation de CCAse

ne contenait pas d'autres activités enzymatiques susceptibles de provoquer des

marquages aspécifiques. Par conséquent, il est probable que les molécules de RNA qui

s'hybrident aux fragments de DNA cités plus l}.aut, aient été effectivement marquées par

la CCAse.

2) LES MOLECULES MARQUEES SONT-ELLES DES tRNA ?

Le problème qui s'est posé à propos de ces Iparquages éta~t de savoir si les

hybridations observées étaient liées à la présence ou non de gènes de tRNA. Il est donc

important de savoir si les molécules marquées par la CCAse sont exclusivement des

tRNA.

a) Analvse de la fraction 45 marquée au a -[32P1ATP à l'aide de la CCAse

5i l'on surexpose la fraction 45 extraite de la mitochondrie du maïs et marquée

à la CCAse et séparée sur gel de polyacrylamide monodimensionnelle, on observe le

profil montré sur la figure 40. L'analyse de ce profil montre que plusieurs molécules de

RNA (plus grandes que les tRNA) sont aussi marquées. Ces marquages sont très faibles

mais leur intensité concorde avec les signaux observés lors des hybridations de la

fraction 45 avec les fragments A et B. Ces "grands" RNA marqués ne sont pas présents

dans la fraction 4S purifiée sur une colonne RPC-S (fig.40).

b) Analyse des régions de DNA s'hybridant à la fraction 45

Dans le chapitreIlI-II, nous avons montré que certaines hybridations étaient

liées à la présence de séquences codant pour des rRNA. Dans ce paragraphe, nous nous

sommes focalisés sur les deux fragments codant pour des gènes de protéines (A et B).

L'intensité d'hybridation des RNA marquées à la CCAse avec ces fragments est très

faible. Plusieurs questions se posent: