potential and limitations of bioenergy options for low .csc ou de la biomasse, et la biomasse...

Download Potential and limitations of bioenergy options for low .CSC ou de la biomasse, et la biomasse apparait

Post on 12-Sep-2018

212 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • C.I.R.E.D. Centre International de Recherches sur l'Environnement et le Dveloppement

    ENPC & CNRS (UMR 8568) / EHESS / AGROPARISTECH / CIRAD / MTO FRANCE

    45 bis, avenue de la Belle Gabrielle F-94736 Nogent sur Marne CEDEX

    Tel : (33) 1 43 94 73 73 / Fax : (33) 1 43 94 73 70 www.centre-cired.fr

    DOCUMENTS DE TRAVAIL / WORKING PAPERS

    No 42-2012

    Potential and limitations of bioenergy options for low carbon transitions Ruben Bibas Aurlie Mjean November 2012

    CIRED Working Papers Series

    http://www.centre-cired.fr/spip.php?rubrique123

  • CIRED Working Papers Series

    http://www.centre-cired.fr/spip.php?rubrique123

  • Potential and limitations of bioenergy options for low carbon transitions

    Abstract

    Sustaining low CO2 emission pathways to 2100 may rely on electricity production from biomass. We analyze the effect of the availability of biomass resources and technologies with and without carbon capture and storage within a general equilibrium framework. Biomass technologies are introduced into the electricity module of the hybrid general equilibrium model Imaclim-R. We assess the robustness of this technology, with and without carbon capture and storage, as a way of reaching the RCP 3.7 stabilization target. The impact of a uniform CO2 tax on energy prices, investments and the structure of the electricity mix is examined. World GDP growth is affected by the absence of the CCS or biomass options, and biomass is shown to be a possible technological answer to the absence of CCS. As the use of biomass on a large scale might prove unsustainable, we illustrate early action as a strategy to reduce the need for biomass and enhance economic growth in the long term. Keywords: General Equilibrium Model, Macro-economic Cost, Low Emission Objective, Electricity from Biomass, Carbon Capture and Storage, Negative Emissions.

    o

    Potentiel et limitations des options bionergtiques dans les transitions faiblement carbones

    Rsum

    La poursuite des trajectoires de faible mission de CO2 lhorizon 2100 peut dpendre de la production dlectricit partir de la biomasse. Nous analysons leffet de la disponibilit des ressources et des technologies de la biomasse avec et sans captage et stockage de carbone dans un cadre dquilibre gnral. Les technologies de la biomasse sont introduites dans le module lectricit du modle dquilibre gnral Imaclim-R. Nous valuons la robustesse de cette technologie avec et sans captage et stockage de carbone, comme moyen datteindre lobjectif de stabilisation RCP 3.7. Limpact dune taxe carbone uniforme sur les prix de lnergie, les investissements et la structure du mix lectricit est examin. La croissance du PIB mondial est affecte par labsence des options du CSC ou de la biomasse, et la biomasse apparait comme une rponse technologique labsence du CSC. Dans la mesure o lutilisation de la biomasse grande chelle peut savrer comme non soutenable, nous illustrons laction prcoce comme une stratgie de rduction des besoins de biomasse et damlioration de la croissance conomique long terme. Mots-cls : modle dquilibre gnral, cot macro-conomique, objectif de faible mission, lectricit issue de la biomasse, captage et stockage du carbone, missions ngatives.

    CIRED Working Papers Series

    http://www.centre-cired.fr/spip.php?rubrique123

  • CIRED Working Papers Series

    http://www.centre-cired.fr/spip.php?rubrique123

  • Potential and limitations of bioenergy options for low carbontransitions

    Ruben Bibas Aurlie Mjean

    November 20, 2012

    CIRED International Research Center on Environment and Development, 45 bis, Avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne, France. Corresponding author: ruben.bibas@centre-cired.fr

    1

    ruben.bibas@centre-cired.fr

  • Bibas & Mjean 2

    Contents

    1 Introduction 4

    2 Methods: the challenges of integrating bioenergy into energy-economy modeling 52.1 Reconciling top-down integration and bottom-up accuracy . . . . . . . . . . . . . . . . . . . . . . 52.2 The hybrid model Imaclim-R: integrating bottom-up modules into a general equilibrium framework 6

    2.2.1 Imaclim-R: an innovative macroeconomic framework . . . . . . . . . . . . . . . . . . . . 62.2.2 Integrating biomass technologies into the electricity sector . . . . . . . . . . . . . . . . . . 62.2.3 Integrating biomass use in the transportation sector . . . . . . . . . . . . . . . . . . . . . 7

    2.3 Study protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    3 Results: the influence of contrasted technology assumptions 83.1 Decarbonizing the electricity sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83.2 The carbon tax profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93.3 Agricultural and electricity prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.4 The macroeconomic costs of climate policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    3.4.1 The profile of GDP losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103.4.2 Determinants of GDP losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    4 Climate policy as a hedge against technological uncertainty: debating early action 124.1 Biomass production and land competition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.2 Early action as a way to reduce bioenergy and land requirements . . . . . . . . . . . . . . . . . . 12

    5 Conclusion 14

    Acknowledgements 14

    Bibliography 14

    Appendices 18

    A Biomass supply curves in Imaclim-R World 18A.1 Woody biomass supply curve for electricity production . . . . . . . . . . . . . . . . . . . . . . . . 18A.2 Biomass supply curve for biofuel production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18A.3 All biomass types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    B Electricity technologies characteristics 20

    C Matching between EMF27 and paper scenarios 22

    D Emissions trajectories 23D.1 Emissions trajectories for EMF27 study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23D.2 Emissions trajectories for additional discussion case . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    E Imaclim-R model schematics 24

    CIRED

  • Bibas & Mjean 3

    F Electricity demand 25

    G Electricity mixes 26

    H Investments 27

    I Energy shares in production costs 28

    J Consumption Price Index 29

    K Biomass 30K.1 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30K.2 Negative emissions from BECCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    L Sectoral CO2 emissions abatement 31

    M Prices of goods 32

    N Accompanying policies 33

    CIRED

  • Bibas & Mjean 4

    AbstractSustaining low CO2 emission pathways to 2100 may rely on electricity production from biomass. We

    analyze the effect of the availability of biomass resources and technologies with and without carbon captureand storage within a general equilibrium framework. Biomass technologies are introduced into the electricitymodule of the hybrid general equilibrium model Imaclim-R. We assess the robustness of this technology, withand without carbon capture and storage, as a way of reaching the RCP 3.7 stabilization target. The impactof a uniform CO2 tax on energy prices, investments and the structure of the electricity mix is examined.World GDP growth is affected by the absence of the CCS or biomass options, and biomass is shown to bea possible technological answer to the absence of CCS. As the use of biomass on a large scale might proveunsustainable, we illustrate early action as a strategy to reduce the need for biomass and enhance economicgrowth in the long term.Keywords: general equilibrium model ; macro-economic cost ; low emission objective ; electricity frombiomass ; carbon capture and storage ; negative emissions.

    1 Introduction

    Recent studies suggest that energy produced from biomass may play a significant role for reaching ambitiousclimate stabilization objectives (van Vuuren et al., 2010). Bioenergy is usually considered a source of sustainable,clean energy for two crucial uses: (i) transport as a substitute for oil and (ii) electricity as a substitute for fossilfuels into conventional thermal power plants.

    Furthermore, the enthusiasm surrounding bioenergy largely relates to the expectation that it may allownegative CO2 emissions when combined with carbon capture and storage technologies (CCS). Indeed, reachinglow climate stabilization objectives may require net negative emissions towards the end of the century (Fisheret al., 2007). Negative CO2 emissions can be achieved through direct or indirect CO2 removal methods, forinstance by enhancing land carbon sinks through land use management1, natural weathering processes or theoceanic uptake of CO2, by the direct engineered capture of CO2 from ambient air or by using biomass forcarbon sequestration (The Royal Society, 2009). In the latter case, CO2 is removed from the atmospherethrough photosynthesis as vegetation grows, and this carbon can be sequestered in the long term by cutting andburying the grown biomass (Metzger and Benford, 2001) or by combining energy production from biomass andcarbon capture and storage (BECCS2). While they remain very uncertain and controversial, these technologiesare often expected to play quite a significant part in the reduction effort in the long term. In fact, many modelingexercises have shown that

Recommended

View more >