532831 eca 491 d

88
Options Exotiques Emmanuel BIOUX Projet De Fin D’étude École Internationale des Sciences du Traitement de l’Information Version Finale - Compte Rendu - lundi 15 mars 2004 http://optionsexotiques.free.fr

Upload: dounia

Post on 29-Jan-2016

23 views

Category:

Documents


0 download

DESCRIPTION

les options exotique

TRANSCRIPT

Page 1: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Options Exotiques

Emmanuel BIOUX Pr

oje

t D

e F

in D

’étu

de

École Internationale des Sciences du Traitement de l’Information

Version Finale - Compte Rendu - lundi 15 mars 2004

http://optionsexotiques.free.fr

Page 2: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Sommaire REMERCIEMENTS................................................................................................................................................4

INTRODUCTION....................................................................................................................................................5

PARTIE 1 MODELISATION DES OPTIONS EXOTIQUES...........................................................................7

1. INTRODUCTION CONCERNANT LES MODELISATIONS ..................................................................................10 1.1 Modélisation à temps discret...........................................................................................................10 1.2 Modélisation à temps continu..........................................................................................................10

2. LES OPTIONS NON PATH -DEPENDANT ........................................................................................................12 2.1 Option Binaire..................................................................................................................................12

a) Défnitions et caractéristiques...........................................................................................................................12 b) Intérêt.................................................................................................................................................................14 c) Modélisation en temps discret...........................................................................................................................14 d) Modélisation en temps continu.........................................................................................................................16 e) Exemples de stratégie........................................................................................................................................22

2.2 Option à panier................................................................................................................................24 a) Défnitions et caractéristiques...........................................................................................................................24 b) Éléments de « pricing ».....................................................................................................................................24 c) Intérêt.................................................................................................................................................................25 d) Exemple de stratégie..........................................................................................................................................26

2.3 Option Chooser................................................................................................................................29 a) Défnitions et caractéristiques...........................................................................................................................29 b) Intérêt.................................................................................................................................................................30 c) Modélisation en temps continu.........................................................................................................................31 d) Exemples de stratégie........................................................................................................................................31

3. LES OPTIONS PATH-DEPENDENT .................................................................................................................33 3.1 Option barrière................................................................................................................................33

a) Défnitions et caractéristiques...........................................................................................................................33 b) Intérêt.................................................................................................................................................................35 c) Modélisation en temps continu.........................................................................................................................35 d) Exemple de stratégie..........................................................................................................................................40

3.2 Option Lookback..............................................................................................................................41 a) Défnitions et caractéristiques...........................................................................................................................41 b) Intérêt.................................................................................................................................................................46 c) Modélisation en temps continu.........................................................................................................................46 d) Exemple de stratégie..........................................................................................................................................51

3.3 Option Asiatique (ou à Moyenne)....................................................................................................54 a) Défnitions et caractéristiques...........................................................................................................................54 b) Intérêt.................................................................................................................................................................55 c) Modélisation en temps discret...........................................................................................................................55 d) Modélisation en temps continu.........................................................................................................................56 e) Exemple de stratégie..........................................................................................................................................58

PARTIE 2 SIMULATION DES OPTIONS EXOTIQUES...............................................................................60

1. INTRODUCTION A LA SIMULATION .............................................................................................................61 1.1 Problématique..................................................................................................................................61 1.2 Génération de Variables Normalement Distribuées.......................................................................64

f) Génération de variables uniformément distribuées...........................................................................................64 g) Transformation d'une variable aléatoire uniformément distribuée en variable aléatoire normalement

Page 3: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2.3 Volatilité implicite............................................................................................................................81

CONCLUSION.......................................................................................................................................................82

REFERENCES.......................................................................................................................................................85

GLOSSAIRE...........................................................................................................................................................87

Page 4: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

REMERCIEMENTS

Ce rapport est l’aboutissement d’un travail continu de quatre mois au sein de l’option Ingénierie Financière à l’EISTI et constitue notre projet de fin d’étude.

Nous tenons à remercier particulièrement M. Erik Tafiln – Responsable de l’option – pour nous avoir conseillé et encadré tout au long de ce travail.

Nous adressons également un remerciement particulier à Mme Marieta Manolessou pour nous avoir conseillé et encadré tout au long de notre PFE.

Enfin, nous tenons à associer à ces remerciements M. Nesim Fintz pour son

soutien et sa grande disponibilité.

Page 5: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

INTRODUCTION

Page 6: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Lorsqu'en 1973, Black et Scholes ont découvert la formule d'évaluation des options sur actions, un nouvel espace de stratégies d'investissement a été

ouvert aux financiers. Le grand choix de possibilités offertes, tant pour la

couverture d'actifs, que pour la spéculation ou l'arbitrage, a permis le développement rapide de ce marché.

En agissant sur la quantité de refinancement offerte au système bancaire, la

politique monétariste de Paul Volker, à partir de 1979, a eu pour conséquence

un brusque décrochage des taux d'intérêt. Les opérateurs financiers ont alors été amenés à prendre des positions importantes sur les taux, dont la volatilité

croissait fortement. La technique optionnelle constituait à cette époque, une réponse appropriée à ces mouvements de cours, faisant des opérations à terme ferme des instruments de couverture trop contraignants.

Les faillites du Comté d'Orange (perte de 1.5 milliard de dollars) et de la banque Barings, ainsi que les procès intentés par Procter and Gamble (perte

de 102 millions de dollars) à Bankers Trust ou récemment par la Seita (perte

de 150 millions de francs) à Salomon Brothers, démontrent que ces produits peuvent générer de lourdes pertes. La Seita a notamment reproché à sa

contrepartie de ne pas avoir respecté son devoir d'information et de conseil, et d'avoir volontairement présenté «de manière inexacte ou incomplète des données relatives aux produits». Les deux obstacles à l'emploi des options

sont ainsi clairement mis en avant dans cette accusation. D'une part, le

paiement de l'investissement optionnel par l'entreprise constitue souvent une charge financière importante. Cachée dans un produit structuré, l'option est

parfois vendue par l'entreprise et peut générer des pertes considérables. La

contrepartie a un rôle de formation et de conseil auprès de l'investisseur, dans la détermination du risque. D'autre part, les banques, contreparties

obligatoires d'intérêts très spécifiques des investisseurs, ont développé des structures optionnelles de plus en plus complexes. Afin de mettre en avant leur capacité d'innovation et de créativité, elles ont investi dans des

ordinateurs, puissants et dans le recrutement de scientifiques de haut niveau,

contribuant à une sophistication croissante de l'option. Des formules d'évaluation d'options dites de «seconde génération», ou «exotiques», sont ainsi apparues. Elles ont initialement été développées, afin de réduire le coût

de leurs aînées.

Page 7: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

PARTIE 1 MODELISATION DES

OPTIONS EXOTIQUES

Page 8: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Nous présenterons dans cette partie les différentes options exotiques, et pour chacune d’entre elles, nous les modéliserons en temps discret et temps

continu.

Or, il est courant de distinguer les options exotiques en deux grandes catégories :

• Les option « non-path-dependent » : ce sont les options dont la valeur

finale ne dépendent pas du chemin suivi par le cours du sous jacent pendant toute la durée de vie de l'option.

• Les options « path-dependent » : le prix de ces options dépend du chemin suivi par le cours du sous jacent pendant toute la durée de vie

de l'option.

C’est ainsi que nous avons choisi de classer les différentes options exotiques

selon ce critère de path dependent.

Page 9: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Page 9 sur 88

Page 10: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

1. INTRODUCTION CONCERNANT LES MODELISATIONS

Nous décrirons dans ces parties les principales notations utilisées dans notre

PFE. De plus, nous présenterons les principes généraux des deux modélisations que sont la modélisation en temps discret et la modélisation en

temps continu.

1.1 Modélisation à temps discret

• Notations

Les temps possibles t de transaction sont donnés par Tt ,,1,0 K=∈ où

l’entier 1≥T est l’horizon temporel du modèle.

Soit l’espace de probabilité P,,Ω munie d’une filtration ( ∈

=tt ) qui

décrit l’incertitude et la dynamique informationnelle.

Nous définissons une option dans cet espace.

Soient :

• K : Prix d’exercice de l’option

• tS : Cours de l’actif sous-jacent au temps t

• X : Payoff de l’option

Nous modéliserons les options exotiques en temps discret en utilisant un modèle binomial.

1.2 Modélisation à temps continu

Pour les parties modélisation, nous effectuerons les hypothèses suivantes :

- Les marchés financiers sont considérés comme parfaits (bonne liquidité,

pas d’écart entre le prix demandé et le prix offert pour l’option, absence

Page 11: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

- La cotation de l’actif sous jacent se fait en temps continu sans saut ni décrochement.

- L’option est de type européen. Elle n’est donc exerçable qu’à la date

d’échéance.

- Aucune distribution de dividendes n’a lieu avant échéance de l’option.

- La volatilité historique est supposée constante sur toute la durée de vie

résiduelle de l’option

Page 12: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2. LES OPTIONS NON PATH-DEPENDANT

2.1 Option Binaire

a) Définitions et caractéristiques

L'option binaire ou encore appelée digitale confère à son acheteur une somme

fixe d'argent si le cours du sous-jacent atteint ou franchit le prix d'exercice préalablement fixé. Ce prix est le prix d’exercice de l’option binaire.

La famille des options binaires regroupe 4 types d’options :

• L’option all or nothing (Tout ou rien) : (Aussi appelée « Cash or

nothing ») Le détenteur d’une telle option reçoit un coupon fixe, déterminé à l’avance, si l’option arrive à l’échéance dans la monnaie.

Dans le cas contraire, la prime de l’option est perdue.

• L’option « asset or nothing » (Actif ou rien) : Cette option présente quasiment les mêmes caractéristiques que l’option « all or nothing », à la seule exception, que si elle arrive à l’échéance le coupon versé ne

sera pas un montant fixé mais la valeur de l’actif sous-jacent ou un

multiple de celui-ci.

• L’option gap : Cette option permet de recevoir un coupon représentant la différence entre la valeur de l’actif sous-jacent et une constante

déterminée à l’avance si l’option arrive dans la monnaie.

• L’option « contingent premium » : Aussi appelée option à prime

contingente, ou « Capitalized option ». Dans sa version « standard », elle présente la particularité de définir une prime contingente qui est

retranchée au prix d’exercice lors du remboursement final. A l’opposé,

les options à prime contingente dite complexe, définissent une ou plusieurs zones de cours de l’actif sous-jacent à l’échéance, dans lesquelles un montant cash, ou prime contingente complexe, est ajouté

au remboursement final. Nous ne traiterons ici, dans un souci de clarté,

que les options à prime contingent standard.

Page 13: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• Dans le cas contraire, le remboursement est réduit au montant de la prime contingente, en comparaison avec une option

standard.

Nous pouvons regrouper dans un tableau l’ensemble des pay-off pour les différents cas :

Payoff X Type

Call Put

All or nothing ⎩⎨⎧

<

KS

KSN

T

T

si 0

si

⎩⎨⎧

>

KS

KSN

T

T

si 0

si

Asset or nothing ⎩⎨⎧

<

≥⋅

KS

KSSM

T

TT

si 0

si

⎩⎨⎧

>

≤⋅

KS

KSSM

T

TT

si 0

si

Gap1

( )

⎩⎨⎧

<

≥−

KS

KSYS

T

TT

si 0

si

( )

⎩⎨⎧

>

≤−

KS

KSYS

T

TT

si 0

si

Contingent Premium ⎩

⎨⎧

<

≥−−

KS

KSDSK

T

TT

si 0

si

⎩⎨⎧

>

≤−−

XS

KSDSK

T

TT

si 0

si

Avec les notations :

- N : coupon payé à l’échéance, - K : prix d’exercice du sous-jacent, - M : Multiple constant, - Y : Constante prédéterminée à l’avance appelée montant cash - D : prime contingente

En utilisant une fonction de Heaviside H , nous pouvons définir d’une manière générale le payoff d’une option binaire dans le cas d’un call :

( )⋅−=

Page 14: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Avec G le « gain » de l’option considérée en cas de réussite de la condition:

• NG ngAllOrNothi=

• ThingAssetOrNot SMG ⋅=

• YSG TGap−=

• Pr DSKGTemiumContingent

−−=

b) Intérêt

Certitude du « pay-off » : contrairement aux options standards, dont le « pay-off » est aléatoire (puisque fonction de la valeur finale du sous-jacent),

l'acheteur d'une option digitale ou binaire est certain de recevoir Q (en cas d'évolution favorable) ou zéro.

Flexibilité pour le client : outre la possibilité de choisir le prix d'exercice, le

client est libre de déterminer le montant qu'il souhaite recevoir en cas d'évolution favorable du sous-jacent.

Vente d'options binaires ou digitales : lorsqu'un client décide de vendre

une option standard, il reçoit immédiatement une prime, mais s'expose des pertes illimitées en cas d'évolution défavorable du sous-jacent. La vente

d'options digitales permet également de bénéficier de primes de façon

instantanée tout en connaissant parfaitement le risque maximal de pertes.

c) Modélisation en temps discret

Nous considérons donc un marché avec un seul actif risqué, et un actif sans risque. Soit le modèle binomial, représenté ici avec 2 périodes de temps :

Page 15: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

La présence d’un actif sans risque fait que la probabilité p peut s’exprimer :

du

drp −

−+= 1

Et immédiatement il vient:

du

rup −

−−=− 1

1

Le prix à l’instant 0=t d’une option s’écrit :

( )() ⎥

⎥⎦

⎢⎢⎣

+=

T

T

r

SXEP

10 π

D’où :

()() ()∑

=

−− ⋅⋅⋅−⋅⋅⋅+

=T

n

nTnnTnn

TTduSXppC

rP

000 1

1

1

Or, en remplaçant p et p−1 par leurs valeurs, nous obtenons :

()()∑ −

⋅⋅⋅⎟⎠

⎞⎜⎝

−−⋅⎟

⎞⎜⎝

−+⋅⋅

+=

TnTn

nTn

n

TTduSX

rudrCP 00

111

p−1

0S

0Su ⋅

0Su ⋅

02 Su ⋅

0Su ⋅

0Su ⋅

02 Sd ⋅

p

Page 16: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Nous partirons donc dans la plupart des modélisations de cette formule que nous adapterons en fonction des payoffs respectifs.

Nous introduisons une fonction H dite de Heaviside :

()⎩⎨⎧

<

>=

0 si 0

0 si 1

x

xxH

On obtient les valeurs d’un call et d’un put pour chacune des options binaires.

En effet, nous avons :

()()()()() ( )∑

=

−− ⋅⋅⋅−−⋅−+⋅⋅−+

=T

n

nTnnTnn

TTduSXrudrC

durP

000 11

1

1

Or, () GKSHX TeCallBinair⋅−= et ( ) GSKHX TPutBinaire

⋅−=

Donc en remplaçant, nous obtenons :

()()()()() ( )∑

=

−− ⋅−⋅⋅−−−+⋅⋅−+

=T

n

nTnnTnn

TTBinaire GKduSHrudrCdur

C0

0111

1

()()()()() ( )∑

=

−− ⋅⋅⋅−−−−+⋅⋅−+

=T

n

nTnnTnn

TTBinaire GduSKHrudrCdur

C0

0111

1

Avec :

• NG ngAllOrNothi=

• ThingAssetOrNot SMG ⋅=

• YSG TGap−=

• Pr DSKGTemiumContingent

−−=

Page 17: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Nous devons de plus distinguer les différentes options constituant cette famille d’option binaire.

Nous utilisons l’équation de Black and Scholes et nous pricons un call d’une

telle option.

La solution de l’équation de Black and Scholes s’écrit :

() () ()()

()

()∫∞

∞−

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

= dytT

rtTy

tTxefextF ytTr

2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

Or, le payoff d’une option call binaire est ( )GKSHX TeCallBinair

⋅−=

Nous prenons donc : ( ) ( )GKeSHeSf y

T

y

T⋅−=

• L’option all or nothing (Tout ou rien) :

Soit ngAllOrNothiC le prix d’un call binaire de type all or nothing

Plus précisément, ici : ( ) ( )NKeSHeSf y

T

y

T⋅−=

Alors,

() () ()()

()

()∫∞

∞−

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

⋅⋅−= dytT

rtTy

tTNKeSHeStC y

T

tTr

TngAllOrNothi 2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

Or, ⎟⎟⎠

⎞⎜⎜⎝

⎛≥⇒>−

T

y

T S

KyKeS ln0

Page 18: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Soit, () () ()∫∞

⎟⎟

⎜⎜

−− ⋅⋅=

TS

K

tTr

TngAllOrNothi dyytnNeStC

ln

,,

On effectue un changement de variable, avec :

()

tT

rtTy

z−

⎟⎠

⎞⎜⎝

⎛−−−

σ 2

2

1

Soit

()

2

2

0

2

1ln

dtT

tTrK

S

z

T

−=−⋅

−⋅⎟⎠

⎞⎜⎝

⎛⋅−+⎟

⎞⎜⎝

−=σ

σ

(calculé à pour : ⎟⎟⎠

⎞⎜⎜⎝

⎛=

TS

Ky ln )

Nous obtenons :

( )TngAllOrNothi StC ,

() ∫∞−

−−− ⋅⋅=

22

2

2

1d z

tTr dzeNe π

D’où le résultat :

( ) ( )2dNeNC tTr

ngAllOrNothi⋅⋅= −⋅−

• L’option asset or nothing (Actif ou rien) :

Soit hingAssetOrNotC le prix d’un call binaire de type Asset or nothing

Cette option donne un payoff ( )TT SMKSHX ⋅⋅−=

Donc la fonction f s’écrit : ( ) ( )TTT SMKSHSf ⋅⋅−=

()()

∞ ⎟⎟⎞

⎜⎜⎛

⎟⎟⎞

⎜⎜⎛

⎟⎞

⎜⎛

−−−⋅ rtTy

2

21 σ

Page 19: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Donc :

() ()

()

()

()∫∞

⎟⎟

⎜⎜

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

⋅⋅⋅=

TS

K

T

tTr

ThingAssetOrNot dytT

rtTy

ytT

SMeStC

ln

2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

() ()

()

()()

()∫∞

⎟⎟

⎜⎜

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−+−−

−−

⋅⋅⋅=

TS

K

T

tTr

ThingAssetOrNot

dytT

rtTytTy

tT

SMeStC

ln

2

2

22

2 2

2

12

exp2

1

,

σ

σσ

πσ

Or, si nous posons :

() ()()2

22

2

12 ⎟⎟

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−+−−= σσ rtTytTyyq et () ⎟

⎞⎜⎝

⎛−−= 2

2

1 σrtTa

Alors :

() () ( )222 22 aayytTyyq +−+−−= σ

() ()( )( )222 22 atTayyyq +−−−+= σ

()( )() ( )( ) ()( )

2

222222

2

22

2

22

2

222 a

tTatTatTayyyq +⎟⎟

⎞⎜⎜⎝

⎛ −−−−⎟⎟

⎞⎜⎜⎝

⎛ −−−+

−−−+=

σσσ

Remplaçons a par sa valeur :

()() ()() ()

()2

2

2

22

2

22

2

1

2

22

12

2

22

12

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−+

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟

⎞⎜⎝

⎛−−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−−⎟

⎞⎜⎝

⎛−−−

+=

σ

σσσσ

rtT

tTrtTtTrtT

yyq

Page 20: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Nous en déduisons :

() ( )

()

() ()

()∫∞

⎟⎟

⎜⎜

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

−−⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛+−−

−−

⋅⋅⋅=

TS

K

T

tTr

ThingAssetOrNot

dytT

tTrrtTy

tT

SMeStC

ln

2

22

2

2

2 2

22

1

exp2

1

,

σ

σσ

πσ

Soit,

() () ()

()

()

()∫∞

⎟⎟

⎜⎜

−−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛+−−

−−

⋅⋅⋅=

TS

K

tTr

T

tTr

ThingAssetOrNot dytT

rtTy

tTeSMeStC

ln

2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

()()

()

()∫∞

⎟⎟

⎜⎜

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛+−−

−−

⋅⋅=

TS

K

TThingAssetOrNot dytT

rtTy

tTSMStC

ln

2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

Nous effectuons un changement de variable, avec :

()

tT

rtTy

z−

⎟⎠

⎞⎜⎝

⎛+−−

σ 2

2

1

()

1

2

0

2

1ln

dtT

tTrK

x

z =−⋅

−⋅⎟⎠

⎞⎜⎝

⎛⋅++⎟

⎞⎜⎝

σ

Nous obtenons :

Page 21: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

D’où le résultat :

( )1dNSMC hingAssetOrNot

⋅⋅=

• L’option « Gap » :

Soit GapC le prix d’un call binaire de type gap

Plus précisément, ici : ( ) ( ) ( )YSKSHSf TTT−⋅−=

() () ()()()

()

()∫∞

∞−

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

⋅−⋅−= dytT

rtTy

tTYeSKeSHeStC y

T

y

T

tTr

TGap 2

2

2

2 2

2

1

exp2

1, σ

σ

πσ

() () ()()

()

()

() ()()

()

()∫

∞−

−−

∞−

−−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

⋅−⋅⋅−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−−

−−

⋅⋅−⋅⋅=

dytT

rtTy

tTKeSHYe

dytT

rtTy

tTeKeSHSeStC

y

T

tTr

yy

TT

tTr

TGap

2

2

2

2

2

2

2

2

2

2

1

exp2

1

2

2

1

exp2

1,

σ

σ

πσ

σ

σ

πσ

Or, ⎟⎟⎠

⎞⎜⎜⎝

⎛≥⇒>−

T

y

T S

KyKeS ln0

Donc :

() ()

()∫∞ ⎟

⎟⎞

⎜⎜⎛

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−− rtTy

2

2

2

1

Page 22: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Or, les deux intégrales ont été calculées précédemment dans les parties All or Nothing et Asset Or Nothing. Donc :

() () () ( )21, dNedNSStC tTr

TGap⋅−⋅= −⋅−

( ) ( )tbxbNeXbxbNeSbC trtd

gap⋅⋅−⋅⋅⋅⋅−⋅⋅⋅⋅= ⋅−⋅− σ

Avec : tt

eX

eS

xtr

td

⋅⋅+⎟⎟⎠

⎞⎜⎜⎝

=⋅−

⋅−

σσ 2

1ln

, b un coefficient binaire égal à 1 pour un

call, et -1 pour un put.

e) Exemples de stratégie

Combinaison d'options binaires : Les options corridor sont composées d'une série d'options binaires comprenant, pour chaque jour entre la date de

l'opération et la date d'échéance, l'achat d'un call binaire et la vente d'un call

binaire de strike plus élevé. Cette combinaison permet de recevoir un montant proportionnel au nombre de jours durant lesquels le sous-jacent restera entre les bornes choisies.

L'acheteur d'options corridor anticipe que le sous-jacent restera le plus longtemps possible l'intérieur d'une bande de « trading » pendant la durée de

vie de l'option.

L'indice étant à 3000 points, un trésorier anticipe qu'il va rester entre 2750 et 3250 points au cours de l'année à. venir. Il achète une option corridor qui lui

versera un coupon proportionnel à 8.25%, selon le nombre de jours durant lesquels l'indice sera resté dans la bande de « trading ». L'option corridor coûte 3.87 %. A l'échéance de I'option, on constate que l'indice a côté 300

fois entre 2750 et 3250 points. Le trésorier de l'option reçoit donc un coupon

de 6,78% (=300/365*8,25%).

Page 23: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

montant fixe de 100000 Euros (soit un coupon de 10%) en cas d'exercice de l'option. L'option étant très en dehors de la monnaie, le prix de l'option n'est

que de 2.85%. A l'échéance de l'option, l'indice est 2450 points.

CARACTÉRISTIQUE ACHAT PUT BINAIRE ACHAT PUT STANDARD

Maturité 1 an 1 an

Strike 2500 2500

Prix 2.85% 1.98%

Pay-off 10% 1.9%

Remarques :

1. Le choix de l'option binaire a été judicieux puisque le levier obtenu est

positif et nettement supérieur à celui d'un put standard.

2. Le levier important en cas de gain compense le paiement d'une prime plus

élevée lors de l'achat de l'option.

3. L'option étant binaire, le choix de la date d'échéance est essentiel. Si la baisse de l'indice était intervenue à une autre date que le 10 mai, il est

probable que l'indice n'aurait pas franchi le seuil de 2500 points à cette date

là. En cas de doute sur la date d'occurrence d'un événement, on préférera l'option digitale à I'option binaire, bien que son coût soit nettement supérieur.

Page 24: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2.2 Option à panier

a) Définitions et caractéristiques

Cette option, aussi appelée « panier » ou « basket », se classe dans la famille des options sur plusieurs actifs sous-jacents. Cette option ne prend pas en

compte la somme des performances de chacun des actifs sous-jacent du panier, pris de façon indépendante, mais elle a les mêmes caractéristiques de

remboursement à l’échéance que l’option standard, mais l’actif sous-jacent servant de référence représente, en fait, un panier de plusieurs actifs équipondérants ou non. Le détenteur de ce panier peut ainsi voir la baisse

d’un actif compenser, en tout ou partie, la hausse d’un autre.

Il est aisé de comprendre que l’effet de corrélation entre les actifs vient grandement diminuer le coût d’achat de cette option par rapport à la somme

des primes d’options standard sur chacun des actifs retenus. En outre, la volatilité résultante est toujours plus faible que la moyenne arithmétique des

volatilités respectives de chaque actif. Cette option offrant ce grand avantage, connaît en engouement important sur les marchés à forte volatilité.

Par la suite, nous ne considérerons des paniers avec que deux actifs sous-

jacents.

b) Éléments de « pricing »

Comme beaucoup d’option impliquant plusieurs actifs sous-jacents, il n’existe

pas de formule analytique simple permettant de réaliser le « pricing » de

l’option, il et ainsi nécessaire de recourir à une approche binomiale ou à une intégration numérique.

Le remboursement à l’échéance de l’option sur panier de n actifs s’exprime

sous la forme algébrique suivante :

Pour un call sur panier : ( )( )0,max 2211 XSaSaSaX nnc−⋅++⋅+⋅⋅= K

Pour un put sur panier : ( )( )0,max 2211 nnp SaSaSaXX ⋅++⋅+⋅−⋅= K

Avec : S cours du nième actif sous-jacent, constaté à l’échéance

Page 25: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

cours de A et de B aient un comportement dit lognormal, il n’en va pas de même de l’évolution du panier A+B, c’est pourquoi il n’existe pas de solution

immédiate. Afin d’évaluer les paramètres de l’option, il est nécessaire

d’effectuer l’approximation que A+B est lognormal et d’observer l’écart de divergence. La formule de Black & Scholes peut être utilisée. Ainsi, si A+B est lognormal, les valeurs de la volatilité et du cours « forward » du panier sont

les suivantes :

BABA FFF +=+

( ) ( )

t

FFeFeFFeF BAt

Bt

BAABA

BBAA +⋅−⋅+⋅⋅⋅+⋅=

⋅⋅⋅⋅

+ln22ln

22 222

σσσρσ

σ

Avec :

AF : cours forward de l’actif A

BF : cours forward de l’actif B

BAF + : cours forward de la valeur du panier

Aσ : volatilité de l’actif A

Bσ : volatilité de l’actif B

ρ : coefficient de corrélation entre A et B

t : durée de vie résiduelle de l’option

BA+σ : volatilité du panier

Nous observons que la valeur de la volatilité est très sensible au cœfficient de corrélation entre A et B. Si la corrélation décroît, la volatilité du panier

diminue et par conséquent, la prime de l’option sur panier baisse. L’intégration numérique qui procure les valeurs exactes de la prime nous

apprend que l’approximation susvisée donne des résultats excellents, conduisant à un écart de divergence inférieur à 1%, pour des niveaux de

corrélation compris entre -0.85 et +1. Pour des niveaux inférieurs à -0.85,

Page 26: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

panier. Lorsque les composantes sont assez peu corrélées entre elles, le prix de l'option sur panier sera largement inférieur à la somme des options sur

chacune.

Diversification des risques : le client souhaitant acheter ou vendre ce genre d'options a la possibilité de créer un produit synthétique pouvant intégrer tous les indices et actions de son choix. Il devient donc possible de

créer une option sur l'ensemble de son portefeuille : le client bénéficie alors

des avantages de la diversification et des avantages liés à l'option.

Le choix de la devise de référence : lorsque le client décide d'investir sur des indices ou des actions cotées dans des devises différentes, la prime et le « pay-off » de l'option seront exprimés dans la devise de référence de

l'investisseur (option quanto), ce qui lui évite la gestion du risque de change sur chacun des sous-jacents.

d) Exemple de stratégie

Anticipation directionnelle : le panier sur actions. Un gérant français, qui anticipe une bonne performance du secteur européen des « Telecoms », aura la possibilité de créer un panier intégrant les titres les plus représentatifs du

secteur et de souscrire une option sur ce panier.

Nous pourrions lui proposer un panier équipondéré de cinq valeurs

représentant autant de pays européens:

« British Telecom », « Deutsche Telekom », « Telefonica Espagna », « Telecom Italia », « France Telecom ».

Le « pay-off » à l'échéance sera fonction des évolutions respectives de chaque

action considérée sur son marché boursier et dans sa devise d'origine, mais qui seront agrégées sous forme d'une somme algébrique de pourcentages

d'évolution. Si cette somme est positive, le « pay-off » sera égal à son produit

par le rationnel en Euros de l'option.

Illustration :

Page 27: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Action Évolution sur 1 an

British Telecom +5%

Deutsche Telekom -15%

Telefonica Espana +35%

Telecom Italia +25%

France Telecom 10%

L'évolution du panier équipondéré sur l'année est de :

(5-15+35+25+10):5=+12%.

Le « pay-off » du Call sera de +12 % x 100 M EUR = 12 M EUR.

Choix de la diversification : le panier d'indices. Un client souhaite investir dans un panier d'actifs représentant les différentes économies industrialisées

mondiales. L'objectif est d'utiliser la faible corrélation entre des indices de places internationales différentes afin de réduire le prix de l'option. Pour

représenter la zone Europe, il choisi le DAX et le FTSE, le SP500 pour la zone Amérique et le NIKKEI pour la zone Asie. La matrice de corrélation entre les différents indices est la suivante :

CORRELATION ENTRE INDICES

DAX 30

FTSE 100

NIKKEI 225

FTSE 100 0.5

NIKKEI 225 0.2 0.1

SP 500 0.5 0.5 0.3

Page 28: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Ces corrélations, très inférieures à la limite supérieure de 1, permettent de réduire fortement le prix par rapport à une somme pondérée de quatre

options sur ces quatre indices. En admettant que l'investissement a une

maturité de 2 ans et que les quatre indices ont la même pondération de 25 %, le prix de l'option sur panier sera de 13.5 %, alors que la moyenne pondérée des quatre options aurait été de 16.7%, chacun des « Calls » individuels étant

plus cher que le « Call » sur le panier (DAX: 18.5%; FTSE: 16.5%; S&P: 17%; Nikkei : 14%).

Page 29: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2.3 Option Chooser

a) Définitions et caractéristiques

Une «as-you-like-it» option, plus communément appelée « chooser option » spécifie les prix d'exercice de deux options standards à la date d'émission, et

permet à son détenteur de décider après cette période, déterminée à l'origine (« the choose, choice date ou conversion period »), de convertir l'option en

call ou en put. Après avoir décidé la conversion de la « chooser option », le profil de performance est celui d'une option standard avec un prix d'exercice connu. Pendant la première période, l'investisseur peut attendre que

l'événement générant l'incertitude se résolve et choisir, au début de la

seconde période, la classe d'option optimale. En d'autres termes, cette option n'est ni un call ni un put jusqu'à ce que, à une date définie à la date

d'émission (fin de la première période), le détenteur choisisse sa

transformation en call ou en put standard, sur un actif sous-jacent déterminé.

La prime de la « chooser option » est plus élevée que celle d'un call ou d'un put, mais bien moins chère que le coût d'acquisition d'un « straddle » (primes

du call et du put additionnées, de même échéance et de même prix d'exercice). En comparant la « chooser option » avec le « straddle », nous

observons que le remboursement final d'une « chooser option » ne sera

inférieur à celui d'un « straddle » que si, après la « choice date » et la conversion en call ou en put, d'autres événements viennent inverser la

tendance dans le sens opposé à celui choisi.

Précisons, en outre, que si le call et le put ont les mêmes prix d'exercice et les mêmes dates d'échéance, l'option est dite « regular chooser» .et peut être

évaluée selon un modèle analytique. si, au contraire les prix d'exercice sont

différents et/ou les dates d'échéance différentes, ces «complex choosers» nécessitent l'utilisation de modèles numériques pour leurs évaluations.

Les options « chooser » donnent le droit, et non l’obligation, à leurs

acheteurs, contre paiement immédiat d’une prime, de choisir à une date donnée du futur fixée à l’avance T de recevoir soit un call soit un put de

Page 30: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

la valeur du put. En considérant la parité call/put pour des options de type européen, nous obtenons I'égalité suivante :

() ( ) ( )( )1212,max,max ttrttd eXSeCCPC

−−−− ⋅+−=

Ou encore

() ( ) ( )( )( )SeXeCPC ttdrttd −⋅++= −⋅−−−−

1212 ,0max,max

Avec

S : cours de l’actif sous-jacent

X : prix d’exercice

r : taux d’intérêt sans risque

d : taux de dividende

t : date actuelle

1t : choice date

2t : date d’échéance de l’option

b) Intérêt

Dans des moments de grande incertitude sur l'évolution future du cours d'un actif, beaucoup d'investisseurs choisissent de rester en dehors du marché.

Nous pouvons citer, par exemple, le cas d'élections dont l'issue n'est pas sûre, ou encore le cas d'un conflit armée, lors des négociations avec l'Irak après.

Dans ces scénarios, les investisseurs pensent que ces événements auront un

impact important sur la valeur d'un marché boursier, amenant de très fortes fluctuations des cours à la hausse ou à la baisse.

Une « chooser », convient à ce type de situation incertaine, en permettant à

l'investisseur de reporter des décisions de couverture d'actifs ou de

Page 31: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

c) Modélisation en temps continu

L’expression vu précédemment dans la partie définition montre qu’une « regular chooser option » résulte de la combinaison d’un call standard, de prix d’exercice X et de maturité

2t et de ( )

12 ttde−−

put standard, de prix

d’exercice ()()

12 ttdreX−⋅−−⋅ et de maturité

1t .

D’une façon plus générale, la valorisation d’une « regular chooser option » est

la suivante :

( ) ( ) ( ) ( )() () () ()

ttyNeXyNeS

ttxNeXxNeSC

ttrttd

ttrttdreg

−⋅+−⋅⋅+−⋅⋅−

−⋅−⋅⋅−⋅⋅=

−⋅−−⋅−

−⋅−−⋅−

1

2

22

22

σ

σ

Avec

()

()

tttt

eX

eS

xttr

ttd

−⋅⋅+−⋅

⎟⎟⎠

⎞⎜⎜⎝

=−⋅−

−⋅−

2

22

1ln

2

2

σσ

()

()

tttt

eX

eS

yttr

ttd

−⋅⋅+−⋅

⎟⎟⎠

⎞⎜⎜⎝

=−⋅−

−⋅−

1

12

1ln

2

2

σσ

d) Exemples de stratégie

Une « complex chooser option » présente les mêmes caractéristiques qu’une « regular chooser option », à l’exception que les prix d’exercice et/ou les échéances du call et du put, à choisir ultérieurement, ne sont pas identiques.

Type d'option : « complex chooser option »

Sous-jacent : indice CAC 40

Nominal : 1000000 €

Page 32: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Date d'émission : 2 janvier N

Date d'échéance : 2 janvier N+1

Choice date : 2 mars N

Prime de l'option : 7.1%

Résultat théorique :

La « choice date » est essentielle, puisqu'elle impose au détenteur de cette

option de choisir la transformation en put ou en call standard, de maturité le 2 janvier N+1.

Nous pouvons envisager deux évolutions possibles du cours de l'indice CAC 40 sur la période :

1) Le cours de l'indice CAC 40 s'établit à 2200 points le 2 mars N (« choice

date »). Le détenteur de cette « complex chooser option » décide, bien

entendu, de convertir celle-ci en call européen standard.

Ainsi, en considérant un cours de l'indice égal à 2384 points le 2 janvier N+1 (date d'échéance), le remboursement final par option s'élèvera à 284 (2384 -

2100).

La contrepartie s'engage donc à verser un coupon de 14,2% (284/2000), soit

142000 €, pour un investissement initial de 71000 € La performance de l'investissement s'établit à 100%.

2) Le cours de l'indice vient à se déprécier fortement sur les deux premiers

mois de l'année, pour s'établir à 1700 points le 2 mars N. L'investisseur décide alors de transformer son option en put européen, de prix d'exercice 1900 points.

A maturité, si le cours de l'indice s'élève à 1722.5 points, le remboursement

final par option sera égal à 177.5 (1900 – 1722.5), ou un coupon de 8.88% (177.5/2000), représentant un montant de 88.750 €. Sous ces hypothèses, la performance de l'investissement est égale à 25%.

Page 33: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

3. LES OPTIONS PATH-DEPENDENT

3.1 Option barrière

a) Définitions et caractéristiques

Les options à barrière sont des options dont la valeur est conditionnée par

l’évolution, pendant leur durée de vie, du prix du sous-jacent par rapport à un ou plusieurs seuils. Nous pouvons distinguer deux catégories de produit :

• Les options à barrière désactivantes :

Ces options, dites de type « out », sont des options européennes classiques en tout point sauf qu’elles disparaissent si le cours du

sous jacent atteint dans la période de référence un seuil

prédéterminé. Ces options peuvent être « down and out » si la barrière est atteinte par une baisse du cours du sous-jacent ou « up and out » si elle est, au contraire, atteinte par une hausse de celui-

ci.

• Les options à barrière activantes :

Ces options ne commencent à exister que si le cours du sous-jacent

atteint un certain cours fixé à l’avance. Cependant, la prime est payée dès le départ, qu’une option apparaisse ou non par la suite.

Ces options peuvent également être « down and in » si la barrière activante est atteinte une baisse du cours du sous-jacent ou « up

and in » si la barrière est atteinte par une hausse de celui-ci.

Il est important de préciser quelques termes notamment sur les noms qui sont

le plus souvent utilisés pour définir ces options :

o Barrière activante : « in barrier » ou « knock-in » ou « lightable

Page 34: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Utilisons les notations suivantes pour définir leurs « payoff » respectifs :

- K : prix strike, - S : cours spot, - B : barrière

Calls barrière :

Type Payoff

Down and out

( )

⎩⎨⎧ >∀−

=Sinon 0

si ,0max_

BStKSX

tT

CDOB

Up and out

( )

⎩⎨⎧ <∀−

=Sinon 0

si ,0max_

BStKSX

tT

CUOB

Down and in

( )

⎩⎨⎧ ≤∃−

=Sinon 0

/ si ,0max_

BStKSX

tT

CDIB

Up and in

( )

⎩⎨⎧ ≥∃−

=Sinon 0

/ si ,0max_

BStKSX

tT

CUIB

Puts barrière :

Type Payoff

Up and out

( )

⎩⎨⎧ <∀−

=Sinon 0

si ,0max_

BStSKX

tT

PUOB

Down and out

( )

⎩⎨⎧ >∀−

=Sinon 0

si ,0max_

BStSKX

tT

PDOB

( )⎧ ≥∃−

Page 35: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

b) Intérêt

Nous pouvons remarquer trois points principaux dans l’utilisation des options

à barrière :

Prix des options : le prix des options à barrière peut être selon le niveau de

la barrière, nettement plus faible que celui d'une option standard de mêmes

caractéristiques.

Grande flexibilité : la multiplicité des options à barrière permet d'élaborer

des stratégies très précises tant en terme d'anticipation, qu'en terme de

couverture : pour une classe donnée d'options standard, il existe quatre types d'options à barrière.

Levier et rendement importants : le versement d'une prime faible combiné

à un « pay-off » identique à celui d'une option standard en cas d'évolution favorable du sous-jacent permettent d'améliorer le levier de façon

significative, ainsi que le rendement de l'option.

c) Modélisation en temps continu

Nous allons ici donner la modélisation temps continu des options « Down and

out call » et « Up and out call » proposée par Musiela & Rutkowski [1].

Call Down and Out:

Nous supposons que KB < et que 0SB < sont satisfaites. Vues les

caractéristiques générales de l’option, il est clair qu’elle est annulée lorsqu’elle est out-of-the-money. Nous rappelons que sous la mesure de martingale

nous avons :

ttS XtWt eSeSS ⋅=⋅= ⋅+⋅ ∗

00

λσ

Page 36: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

() DD

XBSKStt IKIeSIKSC T

tTtt

⋅−⋅⋅=⋅−=≥≥ ≤≤ 0min,

1

0

Où D est dans l’ensemble :

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥⎟⎟

⎞⎜⎜⎝

⎛≥Ω∈=

00

ln,lnS

Bm

S

KXD tt

ω

Nous pouvons alors conclure que le prix au temps 0=t de l’option « down-

and-out call », admet les représentations suivantes :

() ( ) ( ) DKTrIeSTrC DXT

∗⋅⋅⋅−−⋅⋅⋅⋅−=∗

expexp 0

10

Où ∗

est une mesure de martingale sur le marché. Dans le but d’évaluer

directement 10C au moyen de l’intégration, nous avons besoin de trouver en

premier la distribution de probabilité jointe pour les variables aléatoires TX et

tm . Nous pouvons voir que pour tout yx, tel que 0≤y et xy ≤ , nous avons :

() ⎟⎠

⎞⎜⎝

⋅+⋅+−⋅⋅⋅⋅−⎟

⎞⎜⎝

⋅+−=≥ −

≥∗

T

TyxNy

T

TxNmxX ytT σ

λσλ

σ

λ 22exp, 2

Où pour la convention d'écriture, nous notons σ pour Sσ , par conséquent, la

fonction de densité probabiliste de ( )TT mX, est la suivante :

() ( ) () ⎟⎠

⎞⎜⎝

⋅+⋅+−⋅⋅⋅⋅⋅

−⋅⋅−= −

T

Tyxny

T

xyyxf

σ

λσλ

σ

22exp

22, 2

2

33

Pour xyy ≤≤ ,0 où n est la fonction de densité standard Gaussienne. Nous

avons alors :

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⋅+⎟⎟⎠

⎞⎜⎜⎝

⋅⋅⎟⎟

⎞⎜⎜⎝

⎛−

⎟⎟⎟⎟

⎜⎜⎜⎜

⋅+⎟⎠

⎞⎜⎝

=

−⋅⋅

T

TKS

B

NS

B

T

TK

S

NDσ

λ

σ

λ σλ

0

2

2

0

0 lnln 2

Et ainsi :

Page 37: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

( )∫∫ ⋅⋅⋅

A

x dydxyxfe ,

()⎭⎬⎫

⎩⎨⎧

≤≤⎟⎟⎠

⎞⎜⎜⎝

⎛≥⎟⎟

⎞⎜⎜⎝

⎛≥= xyy

S

By

S

KxyxA ,0,ln,ln;,

00

Et nous mène au résultat suivant :

() ()()() ()⎟⎟⎟

⎜⎜⎜

⎛⋅⎟⎟

⎞⎜⎜⎝

⎛−=

+⋅⋅

⋅−

TScNS

BTShNeI

Trr fd ,, 01

22

0

011

2σλ

()t

trK

s

tsh⋅

⋅⎟⎠

⎞⎜⎝

⎛⋅±+⎟

⎞⎜⎝

σ 2

2,1

2

1ln

,

Et

()t

trKs

B

tsc⋅

⋅⎟⎠

⎞⎜⎝

⎛⋅±+⎟⎟

⎞⎜⎜⎝

⋅=

σ

σ 22

2,1

2

1ln

,

En reprenant les formules précédentes nous arrivons à la conclusion que le

prix initial de l’option knock-out admet les représentations suivantes :

DiscountKnockoutcallStandard0010

−=−= JCC S

( ) ( )2100 hNeKhNSC TrS ⋅⋅−⋅= ⋅−

Et

22 −− ⋅⋅+⋅⋅ σλσλ

Page 38: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

saTWd

dTT

⋅=⎟⎠

⎞⎜⎝

⎛⋅⋅−⋅= ∗∗

,

2

1exp 2 ησσ

Le théorème de Girsanov indique que le processus tWW ttσ−= ∗

suit un

mouvement Brownien standard sous la mesure de probabilité . De plus nous

pouvons établir la définition suivante :

( ) ( ) ( )DT

TrD

X IEeIeE t ⋅⋅⋅=⋅⋅∗∗

⋅ η

et ainsi

() ()

⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥⎟⎟

⎞⎜⎜⎝

⎛≥⋅=⋅= ⋅⋅

00

T1 ln,lnXDS

Bm

S

KeeI T

TrTr

Finalement, la semi martingale du processus X sous est

[]TttrWX tt ,0,2

1 2 ∈∀⋅⎟⎠

⎞⎜⎝

⎛⋅++⋅= σσ

par conséquent pour tout xyy ≤≤ ,0 nous avons :

( )()() () TScNS

BTShN ,,D 01

22

0

01

2

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−=

+⋅⋅ −σλ

Call Up and Out:

Quand 00 SBetSK << nous avons:

⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥Ω∈=

0

lnS

BmD T

ω

Tant que ⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥⊂

⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥

00

lnlnS

KX

S

Bm TT ce qui est bien connu depuis

Harrison (1985) où pour tout 0≤y nous avons :

⎞⎛ ⋅+⎞⎛ ⋅+− λλ

Page 39: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⋅+⎟⎠

⎞⎜⎝

⎛−

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

⋅+⎟⎠

⎞⎜⎝

=

−⋅⋅

T

TB

S

NS

B

T

TB

S

NDσ

λ

σ

λ σλ 02

0

0 lnln 2

D’un autre coté, nous avons :

() ()

⎭⎬⎫

⎩⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛≥⋅=⋅= ⋅

0

1 lnS

BeIeI Tr

DXT

Donc

() ()() ()()⎟⎟⎟

⎜⎜⎜

⎛⋅⎟⎟

⎞⎜⎜⎝

⎛−⋅=

+⋅⋅

TScNS

BTShNeI Tr ,, 01

22

0

011

2

))σλ

()t

trB

s

tsh ⋅

⋅⎟⎠

⎞⎜⎝

⎛⋅±+⎟

⎞⎜⎝

σ 2

2,1

2

1ln

,)

Et

()t

trs

B

tsc ⋅

⋅⎟⎠

⎞⎜⎝

⎛⋅±+⎟

⎞⎜⎝

σ 2

2,1

2

1ln

Par conséquent, le prix de l’option au temps 0=t est 0010

ˆˆ JCC −= où

( )( ) ( )( )TShNeKTShNSC Tr ,ˆ,ˆˆ

020100⋅⋅−⋅= ⋅−

Est le prix standard du call avec un strike B et nous avons alors () TScc ,ˆˆ 02,12,1

= et :

() ()222

ˆˆˆ

22

BB Tr ⋅⎟⎞

⎜⎛

⋅⋅−⋅⎟⎞

⎜⎛

⋅=

−− ⋅⋅

⋅−

+⋅⋅ σλσλ

Page 40: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

d) Exemple de stratégie

Couverture : les « calls down-and-out » et les « puts up-and-out » sont très utilisés pour la couverture d'une position sur action, car ils permettent

d'abandonner la couverture si le sous-jacent évolue de façon favorable.

Un gérant souhaite se protéger contre une éventuelle baisse du titre qu'il détient. Le cours étant actuellement de 700 €, il achète un « put up-and-

out », avec une barrière a 750 € et un « strike » à 700 € ; l'option est « à la monnaie ». Le prix de cette option est de 5.50 % contre 13 % pour l'achat

d'un « put » standard.

A l'échéance de l'option plusieurs possibilités sont envisageables selon le

processus d'évolution du titre au cours de la durée de vie de l'option :

Si la barrière est franchie, le détenteur de l'option à barrière perd sa

couverture : cette perte de couverture n'est à priori pas gênante puisque le cours du titre évolue dans un sens favorable. Cependant, si le titre se met à

baisser fortement après le franchissement de la barrière, la position n'est plus

couverte et les pertes peuvent être importantes.

Si la barrière n'est pas franchie, le détenteur de l'option possède un put standard qu'il a acquis en payant une faible prime : l'opérateur est alors

parfaitement couvert tout au long de la durée de vie de l'option.

Page 41: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

3.2 Option Lookback

a) Définitions et caractéristiques

Le profil de performance de ces options est extrêmement intéressant pour leur détenteur, car elles procurent à ce dernier le niveau le plus favorable atteint

par le cours de l’actif sous-jacent, sur une période définie à l’origine. En contrepartie, la prime est inévitablement très chère, conduisant à un effet de

levier souvent assez bas. Cependant, ces options résolvent totalement le problème de la détermination du moment optimal d’acquisition d’un actif sur un marché donné (« market timing »).

Il existe 3 types d’options Lookback :

o “price lookback option”, appelée également Lookforward option

o “strike lookback option”

o “partial lookback option”

Elles sont toutes les 3 régulièrement utilisées sur le marché, et seront donc toutes 3 analysées.

• “price lookback option”

Elle permet à son détenteur de recevoir à l’échéance la différence entre le prix

d’exercice défini à l’origine, et le cours du plus haut dans le cas d’un call, ou du plus bas dans le cas d’un put, atteint par l’actif sous-jacent, sur une période déterminée.

Bien que beaucoup plus chère, l'option revêt des avantages nets par rapport à

une option standard. En effet, tout en ayant les mêmes caractéristiques que cette dernière, elle offre, sur une période donnée, le plus haut rendement d'un actif sous-jacent, sans se soucier au jour le jour des performances en cours et

à prévoir. Ceci donne la garantie à l’investisseur de vendre au plus haut.

Page 42: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• “Strike lookback option”

Comme les options à moyenne, les options « lookback » peuvent avoir un prix d’exercice fixe ou flottant. Les « strike lookback options » donnent à leur

détenteur le droit de choisir comme prix d’exercice, le cours de l’actif le plus favorable sur la période considérée.

Dans la pratique, et comme pour la « price lookback option », cet

investissement est digne d’intérêt, si l’acheteur pense qu’il existera une forte variation des cours sur la période, mais en en ignorant complètement la date,

ainsi que le parfait moment d’investissement.

Bien entendu, puisque cette option permet de choisir le prix d’exercice, elle

s’avère beaucoup plus chère qu’une option européenne standard semblables

en tout autre point.

Le « payoff » de l’option « strike lookback » est le suivant :

• “Partial lookback option”

Il s’agit d’une option de type européen, dont le prix d’exercice est déterminé

comme étant le cours le plus bas (call), ou le plus haut (put), pendant une période restreinte préalablement fixée. Après cette première période, l’option

devient une option standard, européenne ou américaine, avec une échéance déterminée dès l’origine de la transaction. La durée de la première période,

qui commence à l’origine et qui s’achève avant l’échéance, représente un des critères importants d’évaluation de l’option, le montant de la prime étant une

fonction croissante de la durée de cette dite période.

Dans la pratique, cette période s’étend habituellement de 1 à 3 mois, permettant à l’investisseur un recul complémentaire, pour seulement 2 à 3% de prime supplémentaire.

• ( )( )

0,infmax_ SSXTstrikeLBC

−= dans le cas d’un call

• ( )( )

0,supmax_ TstrikeLBP SSX −= , dans le cas d’un put

Page 43: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

« partial lookback call » se retrouve détenteur d'un call de style européen, avec le prix d'exercice le plus favorable depuis la date de négociation du

contrat.

Le « payoff » de l’option « partial lookforward » est le suivant :

Et celui de la « partial strike lookback » est le suivant :

• Option High-Low (Hi-Lo Option)

Il s’agit d’un outil de gestion de la volatilité. En effet, cette option offre à son

détenteur la différence entre les extrêmes du cours d’un sous-jacent pendant

la vie de l’option. Elle résulte en fait de la combinaison d’un « lookback call » et d’un « put ». Néanmoins, son prix dissuasif rend son utilisation

exceptionnelle au cas où l’investisseur s’attend une volatilité inaccoutumée.

Le « payoff » s’écrit alors sur la période donnée :

• ()⎟⎟

⎜⎜

⎛−= 0,infmax_ SSX

PériodePemièrelTkForwardpStrikeLooLBC dans le cas d’un call

• ()

⎟⎟⎟

⎜⎜⎜

⎛−= 0,supmax_ lT

PériodePemière

kForwardpStrikeLooLBP SSX , dans le cas d’un put

• ⎟⎟⎟

⎜⎜⎜

⎛−= 0,)(supmax_ KSX

PériodePemière

dlookforwarLBC dans le cas d’un call

• ()

⎟⎟

⎜⎜

⎛−= 0,infmax_ SKX

PériodePemière

dlookforwarLBP, dans le cas d’un put

Page 44: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• Option Refixable (Reset Option)

Une « reset option » présente des caractéristiques très proches de celles d'une « partial lookback option ». En effet, dans son sens général, cette

option offre un profil de remboursement dépendant de niveaux préétablis. Son prix est déterminé, dès que le cours de l'actif sous-jacent franchit un palier préalablement fixé. Le prix d'exercice d'un reset « call », par exemple, est

abaissé lorsque le cours de l'actif baisse en dessous d'un niveau défini à

l'origine. La « reset option » présente une alternative moins coûteuse que la « strike lookback option ». Son prix est compris entre celui d'une option

standard et celui d'une « partial lookback option ». En fait il s’agit d’une variante à la baisse de la « ladder option » des options à barrière.

Il convient d'apporter deux précisions supplémentaires sur les caractéristiques de l'option :

• Lorsque le palier atteint correspond au nouveau prix d'exercice,

l'option est appelée « automatic strike price reset option ». Il est

possible en effet de choisir un prix d'exercice différent de la barrière préétablie. Dans cette hypothèse, trois niveaux sont nécessaires pour décrire la reset option : le prix d'exercice si la

barrière n'est pas atteinte, la barrière proprement dite et le prix

d'exercice en cas de franchissement de cette barrière.

• La faculté pour le détenteur de la « reset option », d'obtenir un

meilleur prix d'exercice, peut, ou bien s'appliquer durant toute la vie de l'option, ou bien être limitée dans le temps. Dans ce

dernier cas, la constatation du franchissement potentiel de la barrière n'est observable que pendant une ou plusieurs périodes définies à l'origine de la transaction, appelées « reset dates ».

Seuls le premier et le dernier cours de cette période sont pris en

compte. Pour un « reset call », par exemple, le prix d'exercice définitif sera ainsi la valeur la plus basse des deux.

Dans la majorité des cas, ce type d'option ne comporte qu'une seule « reset date », permettant à l'investisseur d'acheter une option à temps voulu, sans

craindre des variations ultérieures (limitées à la « reset date ») du cours de

Page 45: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Type Payoff X

Call/Call

( )()⎩

⎨⎧

≥−

sinon 0,max

si 0,max

1

2

KS

BSKS

T

resetDateT

Call/Put

( )()⎩

⎨⎧

<−

sinon 0,max

si 0,max

2

1

T

resetDateT

SK

BSSK

Put/Call

( )()⎩

⎨⎧

>−

sinon 0,max

si 0,max

2

1

KS

BSKS

T

resetDateT

Put/Put

( )()⎩

⎨⎧

>−

sinon 0,max

si 0,max

2

1

T

resetDateT

SK

BSSK

Avec : ⎪⎩

⎪⎨

strikeresetK

initialexercicedprixK

barrièreladeniveauB

:

':

:

2

1

Page 46: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

b) Intérêt

Capter les point extrêmes : les options « lookback » permettent d'obtenir le niveau le plus favorable atteint par le cours de l'actif sous-jacent sur la

période d'observation. Ces options offrent l'avantage de ne pas avoir à

déterminer le moment optimal d'acquisition de l'actif (résout le problème du « market-timing »).

La vente d'options « lookback » : permet de bénéficier de primes élevées,

les primes pouvant être deux fois plus importantes que celles des options

standards. Cependant, le vendeur est exposé à des pertes importantes si le sous-jacent est très volatile.

c) Modélisation en temps continu

Voici la modélisation en temps continu des options énoncées précédemment :

• price lookback option

« CALL » Europeen « LookForward »

() () ()()

() ⎥⎦

⎤⎢⎣

⎡−⋅⋅

−⋅−⋅−−⋅

⋅⋅−⋅= ⋅−

3

2

21

2

11

22aNe

draNeSaN

rSaNSC ctr

MINdlookforwar

σσ

avec:

t

trS

S

a MIN

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛++⎟⎟

⎞⎜⎜⎝

σ

2ln

2

1

taa ⋅−= σ

Page 47: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2

2

1

ln2

2

σ

σ⎟⎟⎠

⎞⎜⎜⎝

⎛⋅⎟⎟

⎞⎜⎜⎝

⎛−⋅

−= MINS

Sr

c

Avec:

MINS : cours le plus bas atteint par l’actif Durant la vie de l’option

S : cours actuel de l’actif

t : durée de vie résiduelle de l’option « lookforward »

« PUT » européen « Lookforward » :

() () ()()22

2

3

2

122

2 bNSbNr

SbNer

bNeSP ctrMAXdlookforwar

⋅−−⋅⋅

⋅+⎥⎦

⎤⎢⎣

⎡−⋅⋅

⋅−⋅⋅= ⋅− σσ

Avec :

t

trS

S

b

MAX

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛+−+⎟

⎞⎜⎝

σ

2ln

2

1

tbb ⋅−= σ12

t

trS

S

b

MAX

⋅⎟⎟⎠

⎞⎜⎜⎝

⎛−+⎟

⎞⎜⎝

σ

2ln

2

3

2

ln2σ

⎟⎞

⎜⎛

⋅⎟⎟⎞

⎜⎜⎛

−⋅ Sr MAX

Page 48: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

« CALL Strike lookback »

SBCslook CCC +=

avec

() ()⎥⎥⎦

⎢⎢⎣

⎡−⋅⋅+⋅⎟

⎞⎜⎝

⎛⋅⋅⎟

⎞⎜⎝

⎛=

⋅−xNtxN

B

Se

SC tr

SBCσλ

λ

λ

« PUT Strike lookback »

SBCSlook PPP +=

avec

()() ()()⎥⎥⎦

⎢⎢⎣

⎡−−−⋅⋅+⋅⎟

⎞⎜⎝

⎛⋅⋅⎟

⎞⎜⎝

⎛=

⋅−11 yNtyN

H

Se

SP tr

SBCσλ

λ

λ

Avec

t

tB

S

x⋅

⋅⎟⎠

⎞⎜⎝

⎛++⎟

⎞⎜⎝

⎛−

σδ

2

²ln

t

tH

S

y⋅

⋅⎟⎠

⎞⎜⎝

⎛++⎟

⎞⎜⎝

⎛−

σδ

2

²ln

lookC : prime d’un « strike lookback call »

SBCC : prime d’un « strike bonus call »

P

Page 49: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

r : taux d’intérêt sans risque

r=δ

t : durée de vie résiduelle de l’option

B : cours de l’actif le plus bas de la période

H : cours de l’actif le plus haut de la période

σ : volatilité

Vérifier le nom

• Partial lookforward option

« CALL partial lookforward option »

() ( ) ( )

()

()()

()()()

()()

()()()

() ()()21

122

111

111

11

11

²

2

210

2

²1

;,

1;,

1;,

;2

,2

2

²

1 eNfNSr

e

tT

ttdfMXe

tT

ttdeMS

tT

ttdeMe

tT

ttttrf

tTrdM

K

S

Sr

e

dNXedNSC

tTr

tTr

tTr

r

tTr

tTr

−⋅⋅⋅⎟⎠

⎞⎜⎝

⋅−⋅+

⎟⎟

⎜⎜

−−−⋅⋅−

⎟⎟

⎜⎜

−−−−⋅−

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎟⎟

⎜⎜

−−⋅+

⎟⎟

⎜⎜

−−

⎟⎟

⎜⎜

⎛ −⋅⋅+−⎟

⎟⎠

⎞⎜⎜⎝

⎛ −⋅⋅−⋅⎟

⎞⎜⎝

⎛−

⋅⋅⋅

⋅+

⋅⋅−⋅=

−⋅−

−⋅−

−⋅

⋅−

−⋅−

−⋅−

σ

σσσ

σ

Page 50: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

()

tT

tTrS

B

d−⋅

−⋅⎟⎠

⎞⎜⎝

⎛⋅++⎟

⎞⎜⎝

⎛−

σ ²2

1ln

1

tTdd −⋅−= σ12

()

1

1

1

²2

1

tT

tTr

e−⋅

−⋅⎟⎠

⎞⎜⎝

⎛⋅+

σ

112 tTee −⋅−= σ

()

tt

ttrS

b

f−⋅

−⋅⎟⎠

⎞⎜⎝

⎛⋅++⎟

⎞⎜⎝

⎛−

=

1

1

1

²2

1ln

σ

σ

ttff −⋅−=112

σ

Avec

S : cours de l’actif sous-jacent

B : cours le plus bas atteint par l’actif sur la période

t : date actuelle

1t : fin de la période d’application de l’effet « lookback »

T : échéance de l’option

X : prix d’exercice

().,.;.M : fonction de la loi normale bivariée

Page 51: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• Partial strike lookback option

« CALL partial strike lookback option »

avec

λ : Constante ajustant le cours extrême (le prix d’exercice est considéré

comme un pourcentage de ce ours extrême) Ici 1≥λ

tTg

−⋅=

σ

λln1

1

2

ln

tTg

−⋅=

σ

λ

d) Exemple de stratégie

• Prenons l'exemple d’un investisseur anticipant que le marché approche

() ( ) ( )

()

()()

()()()

()()

()()()

() ()()122

1122

12111

12111

²

2

111

1

1

²

2

12110

2

²1

;,

1;,

;,

;2

,2

2

²

1 fNgeNSr

e

tT

ttgdfMBe

tT

ttgegdMS

tT

ttgegdMe

tT

ttg

tTrd

ttrfM

B

S

Sr

e

gdNeBgdNSC

tTr

tTr

rtTr

r

tTr

tTr

−⋅−⋅⋅⋅⎟⎠

⎞⎜⎝

⋅+⋅+

⎟⎟

⎜⎜

−−−−⋅⋅⋅+

⎟⎟

⎜⎜

−−−−+−⋅+

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎟⎟

⎜⎜

−−++−⋅⋅−

⎟⎟

⎜⎜

−−

−⋅⋅+−

−⋅⋅+−⋅⎟

⎞⎜⎝

⋅⋅⋅⋅

⋅+

−⋅⋅⋅−−⋅=

−⋅−

−⋅−

−⋅

⋅−

−⋅−

−⋅−

λσ

λ

λ

σσλ

σ

λ

σ

σ

Page 52: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

si le marché repart à la hausse comme attendu, il profitera de ne pas avoir manqué la reprise.

Bien entendu, du fait de l’opportunité supplémentaire procurée, la

« reset option » est légèrement plus chère qu’une option standard de caractéristiques semblables. Son coût dépend évidemment du niveau de la barrière, du niveau du « reset », et de la période d’application.

• Option « lookback » à strike flottant : Nous sommes au mois de mars

2004, et le trend de l'indice est haussier. A cette date le niveau de l'indice est de 2650 points. Cependant, des élections vont avoir lieu

dans un peu moins d'un mois en France. Dans ce contexte troublé, on

risque d'assister à une forte baisse de l'indice, même si celle-ci n'est que ponctuelle. Le client souhaite bénéficier de cette incertitude en investissant pour une durée de trois mois.

Deux stratégies sont alors possibles : achat d'un « call » strike flottant

ou bien achat d'un « put » standard « at the money ». Au cours de ces trois mois, l'indice atteint un plus bas à 2200 points, et cote 2550 à l’échéance de l'option.

CARACTÉRISTIQUES ACHAT « CALL LOOKBACK »

STRIKE FLOTTANT

ACHAT PUT STANDARD

Date d'achat 01 mars 2004 01 mars 2004

Date d'échéance 01 août 2004 01 août 2004

Strike 2250 2650

Prix de l'option 10.23% 6.03%

Pay-off 2550-2250 = 300 2650-2550 = 100

Page 53: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

point mort, l'indice doit atteindre des valeurs très éloignées de sa valeur initiale.

Page 54: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

3.3 Option Asiatique (ou à Moyenne)

a) Définitions et caractéristiques

Il existe deux types d’options Asiatiques :

• L’option à moyenne sur le prix : C’est une option de type européen donnant droit à son détenteur de recevoir à l’échéance de l’option et à

concurrence de son montant nominal, la différence positive éventuelle

entre le prix d’exercice de cette option et la moyenne arithmétique (ou éventuellement géométrique) des cours du sous-jacent.

Le « payoff » d’un « call » peut donc s’exprimer par :

() ⎟⎠

⎞⎜⎝

⎛ −= 0,max KSMoyX tt

queCallAsiati

Avec :

- K : Prix d’exercice de l’option -

tS : Cours de l’actif sous-jacent au temps t

- ()t

t

SMoy : moyenne de l’actif sous-jacent.

Elle est calculée sur n observations et peut se calculer des deux manières :

- Moyenne arithmétique : () ∑=

⋅=N

iObst

Arithmi

SN

SMoy1.

1

- Moyenne géométrique : ()N

N

iObst

Géomi

SSMoy ∏=

=

1.

iObsS étant i-ème cours de l’actif sous jacent observé (Avec un total de

N observations. Et celui d’un « put » d’une telle option en utilisant les mêmes notations :

() ⎟⎠

⎞⎜⎝

⎛ −= 0,max tt

uePutAsiatiq SMoyKX

Page 55: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

b) Intérêt

Réduction du risque : contrairement aux options classiques, dont le « pay-

off » est exposé à un mouvement brutal du cours de l'actif sous-jacent à I'échéance, les options asiatiques permettent de figer des valeurs du Sous-jacent au cours de la durée de vie de l'option. Ces options sont donc

particulièrement intéressantes lorsque le marché est faiblement liquide ou fortement volatil.

Flexibilité du produit : outre le choix de la maturité et du prix d'exercice, l'acheteur d'une option asiatique l’acheteur à la possibilité de déterminer :

• la période de constatation : au lieu de calculer une moyenne sur l'ensemble de la durée de vie de l'option, il est possible de réduire la

période d'observation.

• La fréquence de constatation : décidée lors de la négociation du

contrat, elle peut être quotidienne, hebdomadaire, mensuelle,

trimestrielle, semestrielle...

• le type de moyenne : généralement, le calcul de la moyenne se fait de

façon arithmétique. Cependant, il est aussi possible d'utiliser des

moyennes géométriques ou bien d'affecter une pondération différente à chacune des valeurs au gré de la volonté de l'acheteur.

c) Modélisation en temps discret

Nous modéliserons ici l’option à moyenne sur le prix pour une moyenne arithmétique et géométrique.

Partons de la fin de la partie modélisation temps discret, nous avons compte

tenu du nombre d’observations :

()()() ( )∑

=

−− ⋅⋅⋅−−⋅−+⋅⋅−+

=T

n

nTnnTnn

TTduSXrudrC

durP

000 11

))(1(

1

Page 56: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

() ⎟⎠

⎞⎜⎝

⎛⋅−=⎟

⎞⎜⎝

⎛ −= ∑=

0,1

max0,max1

N

iObst

tuePutAsiatiq i

SN

KKSMoyX

En remplaçant, nous obtenons :

• Moyenne géométrique :

Nous avons juste à changer la moyenne arithmétique par la moyenne

géométrique. En effet, nous avons les « payoffs » :

()⎟⎟

⎜⎜

⎛−=⎟

⎞⎜⎝

⎛ −= ∏=

0,max0,max1

KSKSMoyX N

N

iObst

tqueCallAsiati i

()⎟⎟

⎜⎜

⎛−=⎟

⎞⎜⎝

⎛ −= ∏=

0,max0,max1

N

N

iObst

tuePutAsiatiq i

SKSMoyKX

()()()∑ ∏

=+

=

−−

⎟⎟

⎜⎜

⎟⎟

⎜⎜

⎛−⋅⋅⋅−−⋅−+⋅⋅

−+=

T

n

N

N

i

iNinTnn

TTArithmAs KduSrudrCdur

C0 1

0. 11))(1(

1

()()()∑ ∏

=+

=

−−

⎟⎟

⎜⎜

⎟⎟

⎜⎜

⎛⋅⋅−⋅−−⋅−+⋅⋅

−+=

T

n

N

N

i

iNinTnn

TTArithm

As duSKrudrCdur

P0 1

0. 11))(1(

1

ArithmAsC . ()()()()() ()∑∑

= +=

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−⋅⋅⋅⋅−−⋅−+⋅⋅

−+=

T

n

N

i

iNinTnn

TTKduS

NrudrC

dur 010

111

1

1

ArithmAsP . ()()() ()∑∑

= +=

−−

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛⋅⋅⋅−⋅−−⋅−+⋅⋅

−+=

T

n

N

i

iNinTnn

TTduS

NKrudrC

dur 010

111

))(1(

1

Page 57: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• Moyenne géométrique :

Kemna et Vorst ont montré, [9] que cette option pouvait être évaluée de la même façon qu'une option standard, de caractéristiques semblables, mais en

retenant, comme niveau de volatilité et de taux de dividende, les valeurs suivantes :

3

σσ=′

⎟⎟⎠

⎞⎜⎜⎝

⎛++⋅=′

62

1 2σdrd

Dans le cas où le calcul de la moyenne correspond à la durée de vie de

l'option, Rubinstein et Reiner ont en outre fourni la formule suivante [10] :

() ( )zxNeXxNeeXC trz

ytr

ag−⋅⋅−⋅⋅⋅= ⋅−

+⋅−

2

²

0

Avec

zz

yX

X

x +

+⎟⎠

⎞⎜⎝

=

0ln

()()

() fTT

fT

fTT

T

SAX++

+

++ ⋅= 21

2

21

1

00

()() ⎟

⎞⎜⎝

⎛−−⋅⎥

⎤⎢⎣

++⋅

+⋅+=

2

²

2 21

220

σdr

fTT

fTTTy

()()() ²

6

2

21

2220

σ⋅⎥⎦

⎤⎢⎣

++⋅

+⋅⋅+⋅+=

fTT

fTfTTTz

0S : cours de l'actif sous-jacent à l'origine

t : durée de vie résiduelle de l'option

Page 58: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

()02 : TTT − temps restant pour le calcul de la moyenne

A : moyenne géométrique, à l'instant où le calcul de la valeur de l'option est effectué (si 0,>T ). Dans le cas où la moyenne n'est pas encore calculée, alors

1=A avec 0,=T

f : Fréquence utilisée dans le calcul de la moyenne

• Moyenne arithmétique :

Geman et Yor ont apporté une solution pour la formule des options asiatiques [11], considérant une moyenne arithmétique de cours. Elle prend pour

hypothèse, que le moment t, de l'analyse appartient à la période de calcul de la moyenne ( Ttt <<

0 ), et que les valeurs déjà retenues dans ce calcul sont

suffisamment élevées pour que l'option soit déjà dans la monnaie. En évitant les approximations et en retenant un faible écart de temps entre deux points

de référence, l'expression mathématique de la formule de cette option est

relativement simple :

()()()

() ()⎥⎥⎦

⎢⎢⎣

⎡⋅⋅

−−⋅−

−⋅

−⋅= ∫−⋅−

−⋅−1

0

1

1

00

11t

t

tTrtTr

aa duuStT

XetTr

eSC

Avec

()∫ ⋅⋅−

T

t

duuStT

00

1 : moyenne calculée entre 0t et T

S : cours de l’actif à l’instant t , de l’analyse

e) Exemple de stratégie

Cession de participations : une société souhaite utiliser une stratégie

optionnelle pour céder sa participation dans un autre groupe. La méthode

Page 59: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Anticipations directionnelles : pour l'année à venir, un gérant anticipe une forte hausse de l'indice, suivie d'une relative stagnation. En utilisant une

option à moyenne trimestrielle, il espère pouvoir obtenir un « pay-off » proche

de celui d'une option standard, mais en payant une prime très inférieure : la hausse rapide anticipée devrait permettre d'éviter un lissage trop important des cours. Au moment de l'achat de l'option, l'indice cote 2500 points. Aux

quatre dates anniversaires utiles au calcul du « pay-off » de l'option, le cours du sous-jacent est respectivement de 2250, 3050, 3700 et 3000 points. La

valeur à l'échéance servant au calcul de l'option « plain vanilla » (ou option

classique) est de 3000, identique à celle servant au calcul de I'option asiatique :

() 30004/3000370030502250 =+++

Type d’option Maturité Strike Prime Pay-off Pay-

off/prime

Call 1 an 2500 10.3% 500 1.94

Plain Vanilla (257.5)

Call 1 an 2500 7.1% 500 2.82

Moyenne Trimestrielle (177.5)

Page 60: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

PARTIE 2 SIMULATION DES

OPTIONS EXOTIQUES

Page 61: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

1. INTRODUCTION A LA SIMULATION

1.1 Problématique

C'est en 1977 que Boyle a eu l'idée d'utiliser la méthode de simulation de

Monte Carlo pour évaluer le prix d'une option. La théorie financière moderne permet, en effet, d'exprimer la valeur de la plupart des actifs financiers sous

la forme de l'espérance d'une variable aléatoire. L'évaluation d'un actif financier peut se résumer alors a un calcul approché de la moyenne de cette variable dès lors que l'on sait la simuler.

À titre d'exemple, considérons l'évaluation d'une option écrite sur une action

dont le cours, S, est supposé suivre un mouvement brownien géométrique, tel que, dans l'univers risque neutre :

WddtrS

dS ˆ⋅+⋅= σ

où ^

W représente un brownien standard de valeur nulle à l'instant 0, r le taux d'intérêt sans risque et σ la volatilité de l'action.

L'utilisation du lemme d'Itô, suivie d'une intégration, permet d'exprimer la valeur de l'action, à une date future T , en fonction de sa valeur en t :

()() ()()() ( )⎥⎦

⎤⎢⎣

⎡−⋅+−⋅⎟

⎞⎜⎝

⎛⋅−⋅= tWTWtTrtSTS ˆˆ²

2

1exp σσ

Avec

( ) TTW ⋅= εˆ

Avec ^

W , où ε suit une loi normale centrée réduite.

En découpant le temps en périodes successives de durée égale, t∆ , et en

retenant au hasard, à chaque période, une réalisation de la variable aléatoire ε , il est possible, connaissant le cours de l'action au début d'une période, de

Page 62: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Il est alors possible de simuler plusieurs trajectoires comme le montre le graphique :

96

97

98

99

100

101

102

103

104

105

106

02/01/04 02/04/04 02/07/04 02/10/04 02/01/05 02/04/05 02/07/05 02/10/05

Caractéristiques du Sous-jacent taux sans risque (r) 2,0% par an

Volatilité (σ ) 30,0% par an

prix initial (V0) 100 € Duration (T) 2 année(s)

La simulation d'un plus grand nombre de trajectoires permettrait de

distinguer le « couloir » d'évolution de l'actif risqué.

Lorsqu'il s'agit d'évaluer une option européenne « path-independent », seule

la valeur de l'actif à l'échéance compte. Pour cette raison, il suffit, de simuler N valeurs selon une loi normale centrée réduite pour obtenir N valeurs du

« pay-off » final de l'option. La moyenne actualisée de ces N valeurs constitue

Page 63: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Série 1 Série 2 Série 3 Série 4 Série 5

18,747 19,19121,93221,49220,5061 000 valeurs 7,45% 5,26% -8,28%-6,10%-1,23%

20,425 20,82719,55420,65021,3965 000 valeurs -0,83% -2,82%3,47% -1,94%-5,63%

20,762 19,22120,27719,57019,36010 000 valeurs -2,50% 5,11% -0,11%3,39% 4,42%

20,417 20,44620,30620,11020,488100 000 valeurs -0,79% -0,94%-0,25%0,72% -1,15%

En ayant choisi les paramètres suivants :

taux sans risque (r) 4,0% par an

Volatilité (σ) 30,0% par an

prix initial (V0) 200 €

Strike (K) 260 €

Duration (T) 2 année(s)

Valeur exacte (B&S) 20,256 €

Les valeurs du call obtenues pour ces séries de simulations sont très différentes et, malgré un nombre a priori élevé de trajectoires (jusqu’à

100 000), l'écart avec celles données par la formule de Black et Scholes peut

être assez important, en dépit de paramètres d'entrée identiques.

Trois enseignements peuvent être tirés de cet exemple :

• le nombre de simulations doit être réellement conséquent pour que l'intervalle de confiance du prix simulé soit suffisamment faible.

• lorsque l'on cherche, par exemple, à calculer les sensibilités de l'option

par rapport a ses divers paramètres, il est nécessaire, pour des

conditions d'évaluation identiques, d'obtenir toujours le même prix. Cette contrainte conduit soit a "contrôler le hasard", de manière à

obtenir la même valeur pour des paramètres d'entrées identiques et ainsi pouvoir calculer les dérivées du prix du call, soit à enregistrer les valeurs des browniens de manière à effectuer le calcul des sensibilités à

partir des mêmes tirages d'aléas.

Page 64: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• L’erreur quoi qu’apparemment faible, qui devrait tendre vers 0 lorsque l’on augmente N 2, n’est jamais complètement annulée :

20,237 20,24320,19020,32820,243 1 000 000 valeurs 0,09% 0,07% 0,33% -0,36%0,07%

20,278 10 000 000 valeurs -0,111%

Ceci nous incite donc à être très vigilant concernant le choix des générateurs de nombres aléatoires, et à s’intéresser au biais qui leur

est propre.

Si la méthode d'évaluation par simulation ne présente guère d'intérêt pour déterminer la valeur d'une option standard, elle s'avère, en revanche,

particulièrement intéressante pour évaluer un actif financier complexe pour lequel il n'existe pas de formule d'évaluation analytique ou de méthode efficace de résolution numérique régissant la valeur de l'actif.

1.2 Génération de Variables Normalement Distribuées

La théorie financière fait largement appel au mouvement brownien pour

représenter l'évolution des variables. L'une des propriétés remarquables de ce processus est qu'il est à accroissements indépendants, identiquement et

normalement distribués. C'est pourquoi il est important de pouvoir générer

des variables aléatoires indépendantes et distribuées selon la loi normale centrée réduite de densité :

() ²2

1

2

1 x

exf⋅−

⋅⋅

La simulation de variables distribuées selon cette loi exige d'abord la génération de variables uniformément distribuées.

Il faut donc s’intéresser dans un premier temps aux méthodes de génération de ces dernières, pour aborder ensuite les techniques de transformations de

variables uniformément distribuées en valeurs normalement distribuées.

Page 65: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Il existe plusieurs procédés de génération de variables uniformément distribuées, aucun d'entre eux n'étant purement aléatoire. Les premiers de

ces générateurs, qualifiés de pseudo-aléatoires et implémentés par défaut

dans les langages informatiques usuels (type C++ ou Pascal), sont des générateurs linéaires congruentiels. Comme tout générateur, ils produisent des valeurs déterministes et parfaitement prévisibles, mais dont les propriétés

statistiques sont satisfaisantes.

Ainsi, les tests d'indépendance de répartition d'échantillons obtenus par ces générateurs sont statistiquement validés. Un second type de générateurs,

qualifiés de quasi aléatoires, permet aussi de simuler des variables uniformément distribuées. La différence fondamentale entre ces deux procédés est que le premier conduit à des tirages différents tandis que le

second donne toujours exactement les mêmes valeurs.

• Les générateurs pseudo-aléatoires

Les techniques de générations actuellement implémentées dans les langages

de programmation (rnd, rand, random) permettent de générer des réalisations de variables aléatoires de loi uniforme sur l'intervalle [0,1] et indépendantes. Elles sont généralement issues de la méthode du générateur

congruentiel. Par essence, un programme informatique ne peut créer

l'imprévisible.

Les Générateurs Linéaires Congruentiels Ils sont de la forme :

Xn=(a Xn-1 + b) mod m

où X n est le ne terme de la suite et X n-1 le terme précédent. a, b, m sont des constantes,la valeur initiale X 0 est le germe.

Ce générateur a une période qui n’est pas plus grande que m : la période est

maximale si a, b, m sont choisis correctement.

Le choix de ces valeurs n'est pas un problème à négliger (bien que se résolvant facilement). En effet, voici pour quelques valeurs prises au hasard,

la mise en évidence des périodes obtenues:

Page 66: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Autre exemple:

Page 67: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Un contrôle d'abord visuel s'avère alors en premier lieu nécessaire, et doit être suivi de tests (détaillés page suivante).

Il est fortement recommandé lors du choix des constantes de vérifier les

hypothèses d'un théorème de Knuth [5] p.16:

La suite définie par X n=(a Xn-1 + b) mod m est de période maximale m si et

seulement si :

i) b est premier avec m

ii) quel que soit p premier divisant m, c=a-1 est un multiple de p

iii) si m est multiple de 4, alors b est multiple de 4

On peut notamment citer le générateur utilisant les constantes:

m = 1012 - 11 a = 427419669081

b = 0:

Il est en particulier utilisé dans le logiciel Maple.

Ce générateur ne vérifie pas les hypothèses du théorème précédent, il n'est

donc pas de période maximale; néanmoins Knuth aborde le cas particulier des générateurs pour lesquels b est nul: ceci permet l'économie d'une addition, et

on peut notamment faire en sorte lorsque m est premier (ce qui est ici le cas), d'atteindre un période de m-1.

Les Registres à Décalage à Rétroaction Linéaire Linear Feedback Shift Register (LFSR) en anglais.

On utilise un tableau à n bits dans lequel on effectue une opération, comme une addition, puis on effectue un décalage dans le tableau en ajoutant le

nouvel élément.

Exemple avec 4 bits:

Page 68: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Le registre est successivement à la valeur 0111, 0011, 0001, 1000, 0100...

Pour un LFSR à n bits, on peut faire en sorte d’obtenir une période maximale de 2n–1.

Exemple de générateur: Les entiers étant codés sur 32 bits, on fait

fonctionner dans un tableau de 55 entiers, un LFSR effectuant une addition modulo 230-1 sur le 1er et 25ème entier.

g) Transformation d'une variable aléatoire uniformément distribuée en variable aléatoire normalement

distribuée

• La technique de la somme

Cette méthode qui pouvait présenter un intérêt à l'époque du calcul manuel apparaît aujourd'hui largement dépassée.

Soit 12;;1, K∈iYi , douze tirages de variables aléatoires de loi uniforme à

valeur dans l'intervalle [0,1] et indépendantes. Alors la variable aléatoire Y

suivante

Page 69: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Cette méthode, des plus simples à mettre en oeuvre, est toutefois assez peu efficace par rapport aux autres méthodes que nous présenterons par la suite.

Elle est, en effet, assez coûteuse en temps de calcul à cause des douze tirages

de valeurs aléatoires qu'elle exige. De plus, on est relativement éloigné des conditions d'approximation du théorème central limite, 12 termes seulement étant retenus.

Signalons, en outre, que les valeurs prises par Y appartiennent à l'intervalle [[ 6;6− et non à . Bien que cela limite l'ensemble des valeurs possibles, la

probabilité qu'une variable aléatoire distribuée selon une loi normale centrée réduite soit en dehors de cet intervalle est négligeable dans la grande majorité des cas.

• Inversion de la fonction de répartition de la loi

normale centrée réduite

1−N désigne la fonction inverse de la fonction de répartition de la loi normale

centrée réduite. Cette technique s'appuit sur le fait que si X est une variable aléatoire uniformément distribuée, à valeur dans l’intervalle []1;0 , la variable

aléatoire ()xNY 1−= est distribuée selon une normale centrée réduite.

• Inversion de Moro

La technique de Moro (1995) s'avère être d'une très grande précision. L'approximation est faite en deux parties en fonction de la valeur de ()xN .

Soit () 5.0−= xNy

Si 42.0≤y , alors l'approximation proposée est égale à :

=

=

⋅=4

0

2

3

0

2

j

ii

i

ii

yb

ya

yx

Page 70: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Où ε est le signe de y et ⎥⎦

⎤⎢⎣

⎡−⎟⎟

⎞⎜⎜⎝

⎛⎟⎠

⎞⎜⎝

⎛−−⋅⋅=

212

1lnln2 kykt

Le tableau suivant donne la valeur des coefficients iiii ketcba ,,,

i a i b i c i k i

0 2,50662823884 1 7,71088707054878 0,417988642492643

1 -18,61500625290 -8,4735109309 2,77720135336851 4,2454686881376500

2 41,39119773534 23,08336743743 0,3614964129261000

3 -25,44106049637 -21,06224101826 0,0373418233434554

4 3,13082909833 2,82971430369670E-03

5 1,625716917922E-04

6 8,0173304740E-06

7 3,8409198650E-07

8 1,29707170E-08

Enfin, la fonction () ()20

8

0

ctTctf

iii

−⎥⎦

⎤⎢⎣

⎡⋅= ∑

=

peut être approchée par l’algorithme

suivant :

Soit 10d et 9d deux réels nuls.

Soit id , les réels déterminées par : ijiii dcddtd ⋅+−⋅⋅=++ 212 pour 1,,7,8 K=i

alors :

()20

21

cddttf +−⋅=

Page 71: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

1.3 Performances des méthodes de génération de valeurs normalement distribuées

a) Performances temporelles

Pour 500 000 valeurs générées, voici les temps de calculs nécessaires pour 4 méthodes :

Mesure du Temps de génération Nb Valeurs : 500 000

Moro Excel 2003 TCL rejet polaire

debut 05/03/2004 14:49:55 05/03/2004 14:49:58 05/03/2004 14:56:39 05/03/2004 14:56:40

fn 05/03/2004 14:49:58 05/03/2004 14:56:39 05/03/2004 14:56:40 05/03/2004 14:56:42

delta(min:sec) 00:03 06:41 00:01 00:0 2

La méthode qu’emploie Excel est présente ici à titre de comparaison, car elle n’est malheureusement pas assez rapide, malgré des performances très

intéressantes (comme le montre le prochain tableau) : Elle recherche une valeur x de sorte que LOI.NORMALE.STANDARD(x) = probabilité. Elle utilise une technique de recherche grâce à 100 itérations.

Page 72: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

b) Performances pures : Qualité du résultat fourni

Inversion de la fonction de répartition de la loi normale centrée réduite, et vérifcation

Excel Moro

u inversion vérifcation erreur inversion vérifcation erreur

0,1000000000000000000000 -1,281551566 0,1000000000000000000000 2,77556E-16 -1,2815516 0,1000000003979540000000 -3,97954E-09

0,0100000000000000000000 -2,326347874 0,0099999999999999000000 1,02349E-14 -2,3263479 0,0100000000025551000000 -2,55508E-10

0,0010000000000000000000 -3,090232306 0,0009999999999998900000 1,10155E-13 -3,0902323 0,0009999999994620980000 5,37902E-10

0,0001000000000000000000 -3,719016485 0,0000999999999975465000 2,45351E-11 -3,7190165 0,0001000000000497270000 -4,9727E-10

0,0000100000000000000000 -4,264890794 0,0000100000000076150000 -7,61503E-10 -4,2648908 0,0000100000000118339000 -1,18339E-09

0,0000010000000000000000 -4,753424341 0,0000010000000216781000 -2,16781E-08 -4,7534243 0,0000010000000730814300 -7,30814E-08

0,0000001000000000000000 -5,199337618 0,0000000999999999999995 4,76456E-15 -5,1993376 0,0000001000000191524930 -1,91525E-07

0,0000000100000000000000 -5,612001259 0,0000000100000000000001 -5,9557E-15 -5,6120012 0,0000000100000008726393 -8,72639E-08

0,0000020000000000000000 -4,611382362 0,0000019999999987252400 6,37378E-10 -4,6113824 0,0000020000001010878100 -5,05439E-08

0,0000005000000000000000 -4,89163848 0,0000005000000034005580 -6,80112E-09 -4,8916385 0,0000005000000409260960 -8,18522E-08

0,0000001250000000000000 -5,157701351 0,0000001250000000000000 0 -5,1577013 0,0000001250000260015900 -2,08013E-07

0,0000000312500000000000 -5,411497142 0,0000000312500000000001 -4,23516E-15 -5,4114971 0,0000000312500039641678 -1,26853E-07

0,0000000078125000000000 -5,654555629 0,0000000078125000000000 -1,05879E-15 -5,6545556 0,0000000078125006310775 -8,07779E-08

0,0000000019531250000000 -5,888115127 0,0000000019531250000000 -4,02341E-15 -5,8881151 0,0000000019531251047816 -5,36482E-08

0,0000000004882812500000 -6,113194466 0,0000000004882812500000 4,87044E-15 -6,1131945 0,0000000004882812680394 -3,69446E-08

0,0000000001220703125000 -6,330643639 0,0000000001220703125000 -5,0822E-15 -6,3306436 0,0000000001220703156692 -2,59623E-08

0,0000000000305175781250 -6,541180393 0,0000000000305175781250 6,98802E-15 -6,5411804 0,0000000000305175786790 -1,81537E-08

0,0000000000076293945313 -6,745417243 0,0000000000076293945313 -4,65868E-15 -6,7454172 0,0000000000076293946259 -1,24087E-08

Vale

urs

ex

trêm

es

(cri

tiq

ue

s)

0,0000000000019073486328 -6,943881797 0,0000000000019073486328 7,19978E-15 -6,9438818 0,0000000000019073486495 -8,75875E-09

0,2000000000000000000000 -0,841621234 0,2000000000000000000000 2,77556E-16 -0,8416212 0,1999999996290280000000 1,85486E-09

0,3000000000000000000000 -0,524400513 0,3000000000000000000000 0 -0,5244005 0,3000000002786370000000 -9,28789E-10

0,4000000000000000000000 -0,253347103 0,4000000000000000000000 2,77556E-16 -0,2533471 0,3999999999282780000000 1,79305E-10

0,5000000000000000000000 -1,39214E-16 0,5000000000000000000000 2,22045E-16 0 0,5000000000000000000000 0

0,6000000000000000000000 0,253347103 0,6000000000000000000000 0 0,2533471 0,6000000000717220000000 -1,19537E-10

0,7000000000000000000000 0,524400513 0,7000000000000000000000 1,58603E-16 0,52440051 0,6999999997213630000000 3,98053E-10

0,8000000000000000000000 0,841621234 0,8000000000000000000000 0 0,84162123 0,8000000003709720000000 -4,63715E-10

va

leu

rs m

éd

ian

es

0,9000000000000000000000 1,281551566 0,9000000000000000000000 1,23358E-16 1,28155156 0,8999999996020460000000 4,42171E-10

0,0240623693117081000000 -1,97626529 0,0240623693117081000000 0 -1,9762653 0,0240623693133439000000 -6,79818E-11

0,4178365483934810000000 -0,207431228 0,4178365483934810000000 0 -0,2074312 0,4178365485795010000000 -4,45197E-10

0,0894225690141415000000 -1,344319359 0,0894225690141413000000 2,48309E-15 -1,3443194 0,0894225689584911000000 6,2233E-10

0,9189512374928240000000 1,398051758 0,9189512374928240000000 0 1,39805176 0,9189512374776290000000 1,65355E-11

0,4714335577295720000000 -0,071666753 0,4714335577295720000000 2,35499E-16 -0,0716668 0,4714335580813780000000 -7,46248E-10

0,8336624565344900000000 0,968739685 0,8336624565344900000000 0 0,96873968 0,8336624561540650000000 4,5633E-10

0,0243061641042443000000 -1,971976159 0,0243061641042444000000 -2,28383E-15 -1,9719762 0,0243061641057782000000 -6,31091E-11

0,4647065915413670000000 -0,088583171 0,4647065915413670000000 0 -0,0885832 0,4647065919417720000000 -8,6163E-10

0,9669499979111570000000 1,837744901 0,9669499979111570000000 0 1,8377449 0,9669499979135720000000 -2,4975E-12

0,6385367504681540000000 0,354550321 0,6385367504681540000000 1,7387E-16 0,35455032 0,6385367509034210000000 -6,81663E-10

0,2260305436843460000000 -0,751983324 0,2260305436843460000000 0 -0,7519833 0,2260305433798500000000 1,34715E-09

0,6434438712542060000000 0,367679461 0,6434438712542060000000 1,72544E-16 0,36767946 0,6434438716873350000000 -6,73141E-10

0,4760397285329480000000 -0,060095647 0,4760397285329480000000 0 -0,0600956 0,4760397288415760000000 -6,48324E-10

0,5927481059257260000000 0,234619867 0,5927481059257260000000 1,87301E-16 0,23461987 0,5927481058899670000000 6,03278E-11

0,1491770870192150000000 -1,039969278 0,1491770870192150000000 0 -1,0399693 0,1491770873515220000000 -2,2276E-09

Vale

urs

alé

ato

ires

Page 73: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

On observe un très grande précision des valeurs fournies par les deux méthodes, avec néanmoins un avantage pour excel, qui globalement ne pêche

que par la lenteur de sa méthode.

c) Application au pricing d’une option standard

Comparaison de 3 méthodes différentes pour pricer une option sur un sous-jacent de caractéristiques suivantes:

Option Européenne Classique

CALL PUT

Nombre de Simulations : 90 000

Valeur exacte (Black&Scholes) 9,740 € Valeur exacte (Black&Scholes) 13,334 €

Résulat approché 9,735 € Résulat approché 13,350 €

erreur 0,049% erreur -

0,124%

Moro

Résulat approché 9,825 € Résulat approché 13,431 €

erreur-

0,873% erreur -

0,729%

TCL

Résulat approché 9,811 € Résulat approché 13,395 €

erreur-

0,727% erreur -

0,456%

rejet polaire

Les résultats précédents incitent donc à choisir la méthode de Moro pour les pricings à venir. Néanmoins, elle n’arrive pas systématiquement en tête de la

comparaison, même si ceci est fréquent.

taux sans risque (r) 3,0% par an

Volatilité (σ) 20,0% par an

prix initial (V0) 100 €

Strike (K) 110 €

Duration (T) 2 année(s)

Page 74: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

1.4 Cas des Options Path Dependent

Comme déjà dit precedemment, lorsqu'il s'agit d'évaluer une option européenne « path-independent », seule la valeur de l'actif à l'échéance

compte. Pour cette raison, il suffit, de simuler N valeurs selon une loi normale centrée réduite pour obtenir N valeurs du « pay-off » final de l'option. La

moyenne actualisée de ces N valeurs constitue une estimation du prix de l'option.

L’exercice est bien plus complexe dans le cas des options path dependent, car

la valeur finale ne donne pas d’indications sur le comportement passé de l’actif, comme le montre cet exemple :

98

98,5

99

99,5

100

100,5

101

101,5

102

102,5

02/01/200402/04/200402/07/200402/10/200402/01/200502/04/200502/07/200502/10/2005

Page 75: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

L’approche naïve consiste a discrétiser la simulation, et à vérifier si les règles d’existence ne sont pas contredites, dans le cas d’une barrière par exemple,

ou pour déterminer le pay-off, dans le cas d’une « lookback » ou d’une

asiatique. Néanmoins, ceci présente deux inconvénients majeurs : La période d’étude doit être fractionnée en suffisamment de périodes pour minimiser le risque de rater une forte variation de cours, et le temps de calcul est

considérablement augmenté par le nombre de périodes considérées. Dans la pratique, cette technique réduit considérablement le nombre de simulations

pour un temps donné, et donne donc des résultats peu satisfaisants.

D’autres méthodes sont donc préférables, et passent notamment par l’utilisation de ponts browniens pour calculer empiriquement la probabilité d’atteindre une barrière enter deux valeurs de l’actif.

a) Ponts Browniens : Correction de la probabilité d’atteindre la barrière

Nous présentons ici le principe de correction de la probabilité d’atteinte proposé par Andersen et Brotherton-Ratcliffe (1996) [6] dans le cas d’une

option de type down & out, et up & out :

La probabilité ξ d’atteinte de la barrière est donnée par:

Down & Out Up & Out

() tT

B

S

S

B T

t

e−

⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

−= 2

lnln2

1σξ

() tT

B

S

S

B T

t

e−

⎟⎠

⎞⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

= 2

lnln2

σξ

Avec tS la valeur initiale du prix de l’actif (à la date t ) et

TS sa valeur finale

(après une période de durée tT − ). On suppose que les deux valeurs sont

inférieures à la valeur B de la barrière.

Page 76: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

1.5 Génération de vecteurs aléatoires Gaussiens : Décomposition de Choleski

Un vecteur aléatoire ( )nXXXX ,,, 21 L= a une distribution multi-normale non

dégénérée s’il admet une densité de la forme :

()() ()

()() ⎥⎦

⎤⎢⎣

⎡−⋅∑⋅−⋅−⋅

∑⋅⋅

= − µµπ

xxxfT

nX1

2

1

22

1exp

det2

1

où ()n

µµµµ ,,, 21 K= est le vecteur des espérances des lois marginales et ∑

la matrice des variances-covariances, ( )∑det son déterminant et 1−∑ son

inverse.

On note ∑ :

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=∑

nnnn

n

n

σσσ

σσσ

σσσ

L

LLLL

L

L

21

22221

11211

Où iiσ représente la variance du rendement logarithmique de l’actif i et ij

σ la

covariance des rendements des actifs i et j .

Puisque ∑ est symétrique, défini positive, il existe, selon la décomposition de

Cholesky, une unique matrice triangulaire inférieure C telle que :

TCC ⋅=∑

On note C :

⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜

=

nnnn ccc

cc

c

C

L

LLLL

L

L

21

2221

11

0

00

On démontre que, si Z est un vecteur i.i.d. de loi commune []1,0N , le vecteur :

Page 77: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Chaque composante du vecteur X peut d’écrire à l’aide d’une relation linéaire en Z . Il vient :

11111µ+⋅= ZcX

Puisque () ,112111

σ== cXVar on a 2

1

1111σ=c

22221212µ+⋅+⋅= ZcZcX

Or : ()22

222

2212

σ=+= ccXVar

Et () ( )[ ]2221211111221 , ZcZcZcEXXCov ⋅+⋅⋅⋅== σ

11

1221

cc

σ= et

2

1

11

212

2222 ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

σ

σσc

On montre que d’une manière générale :

2

11

1

2

1

1

⎟⎟⎠

⎞⎜⎜⎝

⎛−

⋅−

=

=

=

j

kjkjj

j

kjkikij

ij

c

cc

c

σ

σ

Pour simuler un vecteur X d’une loi normale multivariée centrée en 0, il suffit donc de générer un vecteur Z i.i.d. et de le multiplier par la matrice tridiagonale C . Cette méthode s’avère utile pour la simulation de l’évolution

de produits dérivés dépendants de plusieurs actifs risqués.

Page 78: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

2. VOLATILITE

La volatilité est la variable déterminante de l’évaluation des options.

On distingue deux concepts de volatilité :

• la volatilité historique : qui n’est que la constatation ex post des

fluctuations passées des cours.

• la volatilité implicite : qui est une prévision de marché par nature

tournée vers l’avenir.

2.1 Volatilité historique ou non conditionnelle

La volatilité historique est calculée à partir des cours passés de l’actif sous-

jacent. Les étapes de calcul de cette dernière passent avant tout par la division des cours passés en périodes élémentaires.

Deux mesures de volatilité historique, simple et pondérée, peuvent être utilisées.

• La volatilité historique simple

Elle est évaluée au moyen d’un écart type annualisé des fluctuations

quotidiennes des taux de change passés, sur une fenêtre de 20 jours :

∑=

+−⋅⋅=

20

1

21 250

20

1

iitt RVh

où ⎟⎟⎠

⎞⎜⎜⎝

⎛=

−1

lnt

tt

S

SR est le rendement de l’actif.

Cette mesure reflète la volatilité inconditionnelle des cours, c’est-à-dire qu’elle ne permet pas d’isoler la partie de la volatilité passée anticipée sur la base de

l’information disponible. La volatilité historique est donc une mesure ex post

Page 79: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

t jours précédents reste la même pour les t prochains jours peut apparaître restrictive.

• La volatilité historique pondérée

Cette seconde mesure assigne un poids plus élevé aux observations passées les plus récentes. Les poids décroissent de façon exponentielle avec le temps. L’idée sous-jacente de ce schéma de pondération est que le marché accorde

moins d’importance aux évolutions des cours les plus éloignées dans le temps. Cette volatilité, sur une fenêtre d’un mois, est définie comme suit :

∑=

+−⋅′⋅=

20

1

21 250

20

1

iitt RVhp où 2

jj RwR ⋅=′

La valeur du facteur de pondération est donnée par :

201

120

1 ⋅−

−⋅= −

λ

λλi

jw Avec 94.0=λ à l’échéance d’un mois (La valeur est tirée

de JP Morgan’s Riskmetrics.)

2.2 Volatilité conditionnelle ou Garch

La volatilité historique ou inconditionnelle est la somme de deux composantes,

l’une anticipée l’autre non. Or, ce qui importe pour la prise de décision

financière des opérateurs est le niveau de la volatilité anticipée, qui constitue une évaluation du risque ex ante. La mesure de la volatilité conditionnelle

issue des modèles économétriques de type Garch permet d’extraire cette volatilité anticipée en ignorant la volatilité due à des événements de type « news » ou chocs aléatoires. Cette mesure de volatilité permet donc

d’appréhender la volatilité, telle qu’elle est anticipée par le marché ex ante sur la base de l’information disponible, liée à l’évolution passée de la volatilité. A ce titre, elle peut être comparée à la volatilité implicite des options. De plus,

elle permet de mesurer l’effet de persistance propre aux séries financières : à des périodes troublées, où de fortes variations des cours, positives ou

négatives sont susceptibles d’être suivies par des fluctuations de même

Page 80: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

ttR εµ+= où ( )tt hD ,0≈ε

µreprésente la pente d’une tendance temporelle déterministe du prix de

l’actif. Les erreurs sont non-auto corrélées sur la base de l’hypothèse de bruit blanc, mais elles ne sont pas indépendantes, puisque liées par leur moment

du second ordre. Ce modèle fait dépendre la variance conditionnelle d’une combinaison linéaire du carré des erreurs de prévision et de la variance conditionnelle de la période précédente.

112

110 −−⋅+⋅+=

ttt hh βεαα

Cette équation modélise la variance conditionnelle des erreurs comme une variable aléatoire. 0

α est une constante, 1α est un coefficient liant la valeur

passée du carré des résidus au niveau courant de la variance ; 1

β est un

coefficient qui lie la variance courante à celle de la période précédente. Plus

11βα+ est proche de 1, plus la persistance est élevée. Pour garantir la

positivité de la variance, les paramètres sont tels que 00>α et 0, 11

≥βα . La

condition 111<+βα assure que la variance non conditionnelle des t

ε est finie

(Bollerslev, 1986) ; dans ce cas la variance non conditionnelle est égale à

11

0

1 βα

α

−−

Selon cette spécification, l’impact des chocs sur la variance conditionnelle est symétrique ; ils sont supposés avoir un même effet, qu’ils soient positifs ou

négatifs. De plus, l’effet d’un choc sur la volatilité courante se réduit de manière géométrique dans le temps. Deux caractéristiques indésirables des

modèles Garch peuvent apparaître : une variance conditionnelle intégrée et des résidus standardisés non normaux (Hsieh, 1989). Puisque les modèles Garch(1,1) appliqués aux taux de change connaissent une persistance

particulièrement forte dans la variance conditionnelle, le modèle Igarch(1,1)

de Engle et Bollerslev (1986) est testé également à des fins prédictives (Lopez, 1995). Dans ce modèle intégré en variance ( 111

=+βα ), l’importance

des variances passées et des erreurs de prévision ne décroît pas avec le temps ; un choc sur la variance conditionnelle actuelle se répercute sur toutes

les valeurs futures prévues. Il ne peut donc pas y avoir de phénomène de

Page 81: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

variance conditionnelle de type Garch asymétrique peut être envisagée (Nelson, 1991 ; Higgins et Bera, 1992 ; Glosten, Jagannathan et Runkle, 1993

; Ding, Granger and Engle, 1993). L’impact asymétrique des chocs sur la

variance conditionnelle a été mis en évidence par Black (1976) et confirmé par French, Schwert et Staumbaugh (1987). Hsieh (1989) montre que le garch exponentiel s’ajuste bien mieux au séries de taux de change que le

simple Garch(1,1), tandis que Engle et Ng (1993), comparant l’asymétrie des réponses aux news de différentes spécifications de la variance conditionnelle,

montrent que la variabilité de la variance conditionnelle issue du modèle

Egarch est trop élevée. Parmi les modèles Garch asymétriques, le modèle Garch exponentiel de Nelson a souvent été utilisé pour tester l’efficience

informationnelle du marché des options. Les prévisions issues d’une

spécification Egarch(1,0) sont ainsi comparées à la volatilité implicite dans le prix des options de change de Philadelphie (Xu et Taylor, 1995). Day et Lewis (1992) confrontent le pouvoir prédictif de la volatilité implicite sur l’indice S&P

100 avec les prévisions issues d’un Egarch(1,1). Le problème soulevé par cette étude est que l’horizon de prévision hebdomadaire du modèle diffère de

l’échéance des options, ce qui biaise les résultats de leurs tests. Les tests

conduits à partir d’un modèle Egarch (1,0) et Egarch(1,1) dans cet article évitent cette incohérence des horizons de prévision. Le modèle Garch exponentiel fait dépendre le logarithme de la variance conditionnelle de celui

de la période précédente, des chocs standardisés en (t-1) et de l’écart entre la valeur absolue des chocs standardisés et leur espérance en (t-1).

2.3 Volatilité implicite

La volatilité historique intègre l’information passée sur le cours de l’action sous-jacente mais elle est souvent instable et elle n’est pas la meilleure

estimation de la volatilité anticipée. C’est la raison pour laquelle les traders

préfèrent utiliser les volatilités implicites qui sont disponibles sur les réseaux Reuter ou Telerate etc.…

Page 82: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

CONCLUSION

Page 83: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

De nos jours, la volatilité des marchés financiers est devenue une norme. Dans un contexte de mondialisation des échanges de capitaux, cet

environnement économique instable oblige les entreprises à gérer leurs

risques de façon plus dynamique.

Le développement des produits dérivés a d'abord été une réponse aux demandes des investisseurs en matière de gestion du risque et de protection

contre les fluctuations du marché. La croissance et le succès du marché des

options reposent principalement sur deux raisons. D'une part, les techniques de gestion traditionnelle de couverture du risque apparaissent trop

contraignantes et d'autre part, la grande souplesse d'utilisation des options permettent une multitude de stratégies de couverture, de spéculation et d'arbitrage - critère indispensable à tout succès d'un nouveau marché -,

appliquées à tout actif sous-jacent, pour répondre exactement à la demande de chaque investisseur.

De plus, l’une des spécificités majeure des options (de première génération)

et des options exotiques (de seconde génération) est la possibilité de réaliser des opérations importantes en engageant des capitaux limités. L'effet de

levier de ces options est tel que les résultats sont étonnement important par rapport aux fonds engagés.

Nous avons présenté dans ce mémoire, plusieurs facettes des options exotiques. Notre examen des options exotiques, réparties en deux grandes

parties (non path dependent et path dependent) offre un récapitulatif précis notamment sur les éléments de « pricing » de ces options. Nous avons par la

suite réalisé une simulation des principales options afin d’apporter un œil

critique sur ces dernières.

Il ne fait aucun doute que les options constituent une boîte à outils

incontournable pour tous les professionnels des marchés, dans un contexte de

sophistication croissante des placements financiers. Les investisseurs devraient rapidement prendre conscience du choix sans limite de ces

instruments sur mesure, leur permettant de gérer très précisément leurs

anticipations en terme de risque et de rentabilité espérée.

Bénéficiant de la créativité des bureaux de recherche des établissements

Page 84: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

travers de nos recherches et lectures, découvrir l’univers des options de la finance de marché, options qui de plus en plus utilisées par les principaux

acteurs de ces marchés. De plus, nous intéressant aux options comme les

warrants pour notre gestion personnel de portefeuille, nous avons pu mieux assimiler les mécanismes d'évaluation et d'utilisation.

Page 85: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

REFERENCES

Page 86: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

• [1] MUSIELA & RUTKOWSKI « Martingale Methods in Financial Modelling », Application of Mathematics 36, Spriner-Verlag 1998

• [2] Alain RUTTIENS « Manuel des produits dérives », Edition ESKA,

• [3] Florin AFTALION « Marché des changes et des produits dérivés », Gestion PUF,

• [4] Robert Sedgewick « Algorithms Addison Wesley »

• [5] Donald E. Knuth « The Art of Computer Programming Vol. 2 »

• [6] Andersen L., Brotherton-Ratcliffe R., (1996) « Exact Exotics. Risk 9, 85-89 ».

• [7] Karatzas, I., and S. E. Shreve. 1991. « Brownian Motion and Stochastic Calculus. 2nd ed ». New York: Springer- Verlag.

• [8] Steve A.K. Metwally and Amir F. Atiya. 2002. « Using Brownian

Bridge for Fast Simulation of Jump-Diffusion processes and barrier options ». http://www.alumni.caltech.edu/~amir/barrier.pdf

• [9] KEMNA AGZ et VORST ACF, «A pricing method for options based on

average asset values», Journal of Banking and Finance, mars 1990.

• [10] RUBINSTEIIN M. et REINER E., «Exotic options», Documents de

recherche, 1992.

• [11] GEMAN H. et YOR M., «Bessel Processes, asian options, and perpetuities», Mathematical Finance, octobre 1993.

Page 87: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

GLOSSAIRE

Page 88: 532831 Eca 491 d

PFE – Les Options Exotiques Emmanuel BIOUX, Matthieu FOURNIL-MOUSSE, Loïc TONNELIER

Le 01/04/2004

Premium

C’est la prime d’une option. Elle correspond au prix auquel une option

s'achète ou se vend.

Effet de levier

L'effet de levier explique le taux de rentabilité comptable des capitaux

propres en fonction du taux de rentabilité après impôt de l'actif économique (rentabilité économique) et du coût de la dette. Par définition,

il est égal à la différence entre la rentabilité des capitaux propres et la

rentabilité économique. Lorsqu'il est positif, le recours à l'endettement a permis d'augmenter la rentabilité des capitaux propres de l'entreprise. En revanche, lorsque la rentabilité économique est inférieure au coût de

l'endettement, l'effet de levier joue négativement ! De plus, celui-ci reste (en principe) une tautologie comptable qui ne doit pas faire oublier que le

recours à l'endettement augmente le risque lié aux capitaux propres, et ne

crée pas au total de valeur.

Dans la monnaie

On dit qu'une option d'achat (respectivement de vente) est dans la

monnaie lorsque le cours de l'actif sous-jacent est supérieur (respectivement inférieur) au prix d'exercice. (Valeur intrinsèque positive).

En dehors de la monnaie

On dit qu'une option d'achat (respectivement de vente) est en dehors de la monnaie lorsque le cours de l'actif sous-jacent est inférieur

(respectivement supérieur) au prix d'exercice. (Valeur intrinsèque nulle).