29052010-1100-introduction à la cinétique.pdf

112
N. DARABIHA Samedi 29 Mai 2010, 11h00 – 12h30 Généralités sur la cinétique de combustion

Upload: sb-ali

Post on 18-Jul-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 29052010-1100-Introduction à la cinétique.pdf

N. DARABIHA

Samedi 29 Mai 2010, 11h00 – 12h30

Généralités sur la cinétique de combustion

Page 2: 29052010-1100-Introduction à la cinétique.pdf

1

Nasser DARABIHA

[email protected]

http://www.em2c.ecp.fr

Téléphone : +33 1 41 13 10 72

Télécopie : +33 1 47 02 80 35

Laboratoire d'Energétique Moléculaireet Macroscopique, Combustion

ECOLECENTRALEPARIS

Page 3: 29052010-1100-Introduction à la cinétique.pdf

2

ChemicalKinetics

Thermodynamics

FluidMechanics

Transport

Phenomena

Combustion

Multi-phase flo

w

Page 4: 29052010-1100-Introduction à la cinétique.pdf

3

• Production and destruction of pollutants• Ignition,• Extinction,• Flame Structure,• ……..

Why Chemical Kinetics?

Page 5: 29052010-1100-Introduction à la cinétique.pdf

4

Temperature Collisions Reaction

Reacting mixture

Page 6: 29052010-1100-Introduction à la cinétique.pdf

5

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 7: 29052010-1100-Introduction à la cinétique.pdf

6

Mixing of N species inside a volume ν

nk moles of species k , n = nkk=1

N

Σ

!

Xk=nk

nMole fraction

!

Yk=m

k

mMass fraction

1 mole = 6,02252*1023 molecules

mass : m = mk = nk Mkk=1

N

Σk=1

N

Σ

!

Yk= X

k

Mk

MMixture Molar mass M = Xk Mk

!

=m

nk=1

N

Σ

Page 8: 29052010-1100-Introduction à la cinétique.pdf

7

!

Yk=m

k

m="k

"Mass fraction

!

"k=m

k

VDensity

!

"k

=nkM

k

V= C

kM

k

!

" = "k

k=1

N

#

!

Ck=nk

VConcentration

!

Ck

k=1

N

" =n

V#1

Page 9: 29052010-1100-Introduction à la cinétique.pdf

8

mass stoichiometric coefficient

stoichiometric coefficient

F + S O + γ’N2 Products

νFF + νO O + γN2 Products

Stoichiometric reaction

Enough oxidant O to burn all fuel F

Page 10: 29052010-1100-Introduction à la cinétique.pdf

9

Stoichiometric reactions:

CnHm + (n+m/4) (O2 + γ N2) nCO2 +(m/2) H2O + (n+m/4) γ N2

CH4 + 2 (O2 + γ N2) CO2 +2 H2O + 2 γ N2

C3H8 + 5 (O2 + γ N2) 3CO2 +4 H2O + 5 γ N2

H2 + 1/2 (O2 + γ N2) H2O + 1/2 γ N2

Page 11: 29052010-1100-Introduction à la cinétique.pdf

10

Any reaction ... :

CH4 + S’( O2 + γ N2) Products

Stoichiometric reaction:

CH4 + S (O2 + γ N2) Products

XCH4

XO2

XCH4

XO2( )

Stoich

φ =Mixture

equivalence ratio

!

=

1

" S

1

S

=S

" S

Mixture equivalence ratio

Page 12: 29052010-1100-Introduction à la cinétique.pdf

11

Any reaction ... :

CH4 + S (O2 + γ N2) Products

!

S

" S

CH4 + S (O2 + γ N2) Productsφ

Φ > 1 Rich mixture

Φ < 1 Lean mixture

Φ = 1 Stoichiometric mixture

Page 13: 29052010-1100-Introduction à la cinétique.pdf

12

Any reaction ... :

CH4 + S’ (O2 + γ N2) Products

YCH4

YO2

YCH4

YO2( )

Stoich

φ =Mixture

equivalence ratio

!

=

MCH 4

" S MO2

MCH 4

S MO2

=S

" S

φ CH4 + S (O2 + γ N2) Products

Page 14: 29052010-1100-Introduction à la cinétique.pdf

13

Air Factor

F = 1 / φ

Any reaction ... :

CH4 + S (O2 + γ N2) Productsφ

CH4 + F . S (O2 + γ N2) Products

Page 15: 29052010-1100-Introduction à la cinétique.pdf

14

Air volume (excess)

e < 0 Rich mixture

e > 0 Lean mixture

e = 0 Stoichiometric mixture

e = F - 1 = (1 −Φ)/Φ

CH4 + (1+ e ) . S (O2 + γ N2) Products

Page 16: 29052010-1100-Introduction à la cinétique.pdf

15

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 17: 29052010-1100-Introduction à la cinétique.pdf

16

ThermodynamicsFirst principle(no variation of kinetic and potential enery) :

dU = dQ + dWdW = -PdV

H=U + PV

dUdQ

dW

Constant volume reaction:dU = dQ

Constant pressure reaction:

dU = dQ -PdV

dH=dU + VdP + PdV= dQ + dW + PdV

dH = dQ

0

Page 18: 29052010-1100-Introduction à la cinétique.pdf

17

Thermodynamics

dUdQ

dWAdiabatic Constant volumereaction:

dU = 0

Adiabatic Constant pressurereaction:

dH = 0

0

Page 19: 29052010-1100-Introduction à la cinétique.pdf

18

Thermodynamics

Species enthalpy

Mixture enthalpy

chemical sensible

Page 20: 29052010-1100-Introduction à la cinétique.pdf

19

Thermodynamics

Mixture enthalpy :

chemical sensible

with

Page 21: 29052010-1100-Introduction à la cinétique.pdf

20

YCO2

T

initial state : 1

final state: 2

Initial state - final state

If time is infinite Final state = Equilibrium

P1T1Y1k

P2T2Y2k

Gibbs energy: G = H - TS

Equilibrium is reached when G is minimal (S is maximal)

Page 22: 29052010-1100-Introduction à la cinétique.pdf

21

At the equilibrium state, burnt gases are composed of:

Thermodynamic Equilibrium

CH4 + 2(O2 + 3,76 N2) Final equil. products

CO2 , H2O , N2 , CO, CH2 , CHi , H, H2 , OH , , O , O2 ,.,.,…. , NO , NO2 ,.,.,….

Mathematically, the equilibrium compositionis obtained by minimizing G

Page 23: 29052010-1100-Introduction à la cinétique.pdf

22

Equilibrium burnt gases temperatureadiabatic constant pressure

Adiabatic:

!

" # kAk

k=1

N

$ % " " # kAk

k=1

N

$

initial state : 1 final state: 2

The only unknown

!

Y1khk

k=1

N

" (T1,P) = Y

2khk

k=1

N

" (T2,P)

: H = cst

Page 24: 29052010-1100-Introduction à la cinétique.pdf

23

Equilibrium burnt gases temperatureadiabatic constant pressure

!

Y1k hk

k=1

N

" (T0,P) + Y

1k c pk

k=1

N

" ( # T ,P)T0

T1

$ d # T =

!

Y2k hk

k=1

N

" (T0,P) + Y

2k c pk

k=1

N

" ( # T ,P)T0

T2

$ d # T

!

cp2( " T )

Page 25: 29052010-1100-Introduction à la cinétique.pdf

24

Heat released by thecombustion

Burnt gases temperatureconstant pressure

Unknown

!

cp2( " T )T0

T2

# d " T $ cp1( " T )T0

T1

# d " T =

!

(Y1k"Y

2k) h

k

k=1

N

# (T0,P)

Page 26: 29052010-1100-Introduction à la cinétique.pdf

25

CO

CO2!

cp1(T,P) = Y1k c pk

k=1

N

" (T,P)

Page 27: 29052010-1100-Introduction à la cinétique.pdf

26

Assume all cpk = cst = cp and not temperature dependent

Burnt gases temperatureconstant pressure

UnknownHeat released by the combustion

!

cp (T2 "T1) = (Y1k "Y2k ) hk

k=1

N

# (T0)

Page 28: 29052010-1100-Introduction à la cinétique.pdf

27

Calorific value

Calorific value at constant pressure :

!

(PC)p = (Y1k "Y2k ) hk

k=1

N

# (T0, p

0)

Calorific value at constant volume:

!

(PC)p = h1(T0, p

0) " h

2(T0, p

0)

!

(PC)v =U1(T0, p

0) "U

2(T0, p

0)

It is the quantity of heat that can theoretically be released per unit mass of fuel

Page 29: 29052010-1100-Introduction à la cinétique.pdf

28

Calorific value

Calorific value: The quantity of heat released by thecomplete combustion, per unit mass of a fuel, the vaporproduced by the combustion of the gas being assumedto remain as a vapour.

High calorific value: The amount of heat released bycomplete combustion, per unit mass of a fuel, the vaporproduced by the combustion of the gas being assumedto be completely condensed and its latent heat released.

Page 30: 29052010-1100-Introduction à la cinétique.pdf

29

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 31: 29052010-1100-Introduction à la cinétique.pdf

30

Temperature Collisions Reaction

Reacting mixture

Page 32: 29052010-1100-Introduction à la cinétique.pdf

31

Collision frequency

Motion molecular velocity

Volume through which the moleculesweeps in 1s

For one molecule (if all othermolecules are motionless)

Kuo, 2005

Page 33: 29052010-1100-Introduction à la cinétique.pdf

32

Collision frequency

Kuo, 2005

Page 34: 29052010-1100-Introduction à la cinétique.pdf

33

Collision frequency

But all collisions do not lead to reaction

A + A P

A + B P

2A + 3B P2 3

2 3

Page 35: 29052010-1100-Introduction à la cinétique.pdf

34

Arrhenius Law

Svante Arrhenius (1859-1927)

Only molecules with E > Ea will react ...Ea =Activation Energy

collision frequencysteric factor (depends on theorientation of the collidingmolecules)

Boltzmann factor

with RR!

dCB

dt= " fc P e

"Ea

RT

Page 36: 29052010-1100-Introduction à la cinétique.pdf

35

Order of reaction

Overall order of reaction :

!

" # kAk

k=1

N

$ % " " # kAk

k=1

N

$

!

m = " # k

k=1

N

$!

dCM k

dt= ( " " # k $ " # k ) k f (CM k

)" # k

k=1

N

%

Page 37: 29052010-1100-Introduction à la cinétique.pdf

36

First order reactions! Valid only forelementary reactions

Page 38: 29052010-1100-Introduction à la cinétique.pdf

37

Second order reactions

AB

Page 39: 29052010-1100-Introduction à la cinétique.pdf

38

Third order reactions

--> Becomes a 2nd orderreaction if CM is cst

Third order reactions

Page 40: 29052010-1100-Introduction à la cinétique.pdf

39

Consecutive reactions

k1

k2

Page 41: 29052010-1100-Introduction à la cinétique.pdf

40

Parallel reactions

Twin reactions

!

A + Bk1" # " C

!

A + Bk2" # " D

!

dCC

dt= k

1CACB

!

dCD

dt= k

2CACB

!

"CC

CD

=k1

k2

Page 42: 29052010-1100-Introduction à la cinétique.pdf

41

Parallel reactions

Competitive reactions

!

A + Bk1" # " C

!

A + Ek2" # " D

!

dCC

dt= k

1CACB

!

dCD

dt= k

2CACE

!

" lnCB0

CB0

#CC

=k1

k2

lnCE0

CE0

#CD

Page 43: 29052010-1100-Introduction à la cinétique.pdf

42

Opposing (or reverse) reactions

!

" # k Ak

k=1

N

$k f% & %

kb' % %

" " # k Ak

k=1

N

$

Page 44: 29052010-1100-Introduction à la cinétique.pdf

43

Opposing (or reverse) reactions

But complex mechanisms: N species, I reactions :

!

" # k,i Ak

k=1

N

$k f% & %

kb' % %

" " # k,i Ak

k=1

N

$ for i =1,.....,I

Each reaction i is characterized by a rate of progress qi

Page 45: 29052010-1100-Introduction à la cinétique.pdf

44

Reaction rate of species k in the ith reaction is:

Reaction rate of species k for the overall mechanism is:

General expression of reaction rates

.

.

Page 46: 29052010-1100-Introduction à la cinétique.pdf

45

as

Molar reaction rate:

General expression of reaction rates

Mass reaction rate

!

dCk

dt=

"k

mole

m3s

#

$ %

&

' (

!

dCkMk

dt= Mk

"kkgm3s

#

$ %

&

' (

!

CkM

k= "

k= " Y

k

!

d"Yk

dt= M

k

#k

Page 47: 29052010-1100-Introduction à la cinétique.pdf

46

Then:

General expression of reaction rates

!

Mk

"k

= 0k=1

N

#

!

d"Yk

dt= M

k

#k

!

d"Yk

dtk=1

N

# =k=1

N

# Mk

$k

Conservationof mass

Page 48: 29052010-1100-Introduction à la cinétique.pdf

47

CHEMKINKinetics Scheme

CHEMKINInterpreter

LINK file

ThermodynamicsData Base

Set of CHEMKINRoutines :

CKXTYCKYTXCKXTCCKCPYCKWXPCKWYP

.

.

User’s program (x. : equil, ….)

Page 49: 29052010-1100-Introduction à la cinétique.pdf

48

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 50: 29052010-1100-Introduction à la cinétique.pdf

49

DETAILED CHEMISTRY

CH4 + 2O2 CO2 +2 H2O

H2 + 1/2 O2 H2O

Even at the equilibrium state, burnt gases are composed of:

CH4 + 2 O2 Products

CO2 , H2O , CO, CH2 , CHi , H, H2 , OH , , O , O2 ,.,.,….,.,.,….

Page 51: 29052010-1100-Introduction à la cinétique.pdf

50

Chain reactions• Series of competitives, consecutives and opposing reactions• Apparition of intermediate species• Importance of free radicals

Radicals: highly reactive molecules or atoms

Chain-initiation reaction (A2 has alower Ea than B2)

!

A2

+ M" 2A + M

Chain-carrying reactions:

radical -> radical (fast propagation)

!

A + B2" AB + B

!

B + A2" AB + A

!

A + AB" A2

+ B

!

B + AB" B2

+ A

Chain terminating reaction

!

2A + M" A2

+ M

!

2B + M" B2

+ M

Page 52: 29052010-1100-Introduction à la cinétique.pdf

51

H2 / O2 combustion

Page 53: 29052010-1100-Introduction à la cinétique.pdf

52

DETAILED CHEMISTRY(H2 - O2 combustion)

INITIATION : free - radical production

Temperature Collisions

O2 + M 2 O + M

H2 + M 2 H + M

M denotes all other species as third body (O2, H2O, …)Delivering its energy to O2 and H2 helping them to dissociate

Chain-Initiatingreactions

Page 54: 29052010-1100-Introduction à la cinétique.pdf

53

Chain-branching reaction : Radicals are more produced thanconsumed

O + H2 H + OH

H + O2 O + OH

DETAILED CHEMISTRY

Very fast reactions

Page 55: 29052010-1100-Introduction à la cinétique.pdf

54

Example :

A 1 cm3 container with n =1019 moleculesand fc = 108 collisions / s

1 free radical per cm3

★ Chain-carrying: time for all molecules to react = 1019/108 = 30,000 years

Page 56: 29052010-1100-Introduction à la cinétique.pdf

55

Chain reactions

Time to react = 64 / 108 ≈ 1 µs

★ Chain-branching:

➡ 1 + 2 + 22 + … + 2L= (2L+1-1)/(2-1) = 1019 molecules after L=64 generations

Extremely fast reaction ....

★ If 1% of the reactions are chain-branching:➡ t ≈ 40 µs

Assume chain-branching reactions

1 radical --> 2 radicals

Page 57: 29052010-1100-Introduction à la cinétique.pdf

56

Chain-carrying : Radicals and final products

OH + H2 H2O + H

O + H2O 2 OH

DETAILED CHEMISTRY

Page 58: 29052010-1100-Introduction à la cinétique.pdf

57

Chain-terminating steps : recombination mechanism

H + H + M H2 + M

O + O + M O2 + M

H + O + M OH + M

H + OH + M H2O + M

DETAILED CHEMISTRY

Page 59: 29052010-1100-Introduction à la cinétique.pdf

58

H2 + O2 2 OHH2 + OH H2O + HO + OH H + O2O + H2 OH + HH + O2 +M HO2 + MOH + HO2 H2O + O2H + HO2 2 OHO + HO2 O2 + OHOH + OH O + H2OH + H + M H2 + MH + H + H2 H2 + H2H + H + H2O H2 + H2OH + OH + M H2O + M….….

COMBUSTION of H2 / O2

>10 species>40 reactions

Page 60: 29052010-1100-Introduction à la cinétique.pdf

59

C2H4

C2H5

C2H6

CH4

CH3

CH2O

HCO

CO

C2H3

C2H2

CH2

CH

CO, CO2

C3...

C3...

COMBUSTION of CH4 / O2

Page 61: 29052010-1100-Introduction à la cinétique.pdf

60

OXYDATION of CO

CO + OH CO2 + H

CO + O2 CO2 + O

O + H2O 2 OH

H + O2 OH + O

CO + HO2 CO2 + OH

Chain-terminating steps:

Main OH production reactions:

At the flame front:

Page 62: 29052010-1100-Introduction à la cinétique.pdf

61

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 63: 29052010-1100-Introduction à la cinétique.pdf

62

Application of spontaneous combustion

• Hypersonic combustion (SCRAMJET)• Diesel engines

To be avoided in :

• Safety characteristic length of fuel tanks Semenov theory

• Spark ignition engines (avoid pinking)

Page 64: 29052010-1100-Introduction à la cinétique.pdf

63

Adiabatic, constant pressure

Spontaneous combustion

Page 65: 29052010-1100-Introduction à la cinétique.pdf

64

Initial conditions :

Auto-ignition of a reactive mixture Adiabatic, constant pressure

Page 66: 29052010-1100-Introduction à la cinétique.pdf

65

Auto-ignition of a reactive mixture

T0 > Ti

τi

Auto-ignitingdelay time

Page 67: 29052010-1100-Introduction à la cinétique.pdf

66

Auto-ignition delay time

τi decreases exponentially with T0

τi changes as P01-n

Influence of equivalence ratio and dilutant (YN2)

H2

C2H2

COKerosene

CH4

T °C1100 1000 900 800 700 600

τi ms

40

10

1

0.5

Page 68: 29052010-1100-Introduction à la cinétique.pdf

67

Spontaneous combustion

• T = ambient: metastable state, reaction rate isalmost null

• When T increases:• If T > Ti Beginning of exothermic oxidationreaction:

production of enough radicals to ignite

• If T < Ti Heat released is not sufficient toincrease the temperature, because endothermicreactions absorb the heat to crack the fuel:

not enough radicals are produced to ignite

Page 69: 29052010-1100-Introduction à la cinétique.pdf

68

Container with constant volume withisothermal wall (Tw) and a wall surface S

Spontaneous combustion

V T

YF YO

STw

Container balance energy equation ….

Heat losses Q

Page 70: 29052010-1100-Introduction à la cinétique.pdf

69

!

d"VYk

dt=V M

k#

k

!

d"VU

dt= # K S (T #T

w)

!

U =k=1

N

" YkU

k

!

(" VYk

dUk

dt+U

k" V

dYk

dt)

k=1

N

# = $ K S (T $Tw)

!

(" VYk

dUk

dt+U

kVM

k#

k

)k=1

N

$ = % K S (T %Tw)

Spontaneous combustion

Page 71: 29052010-1100-Introduction à la cinétique.pdf

70

!

" V cv

dT

dt= # (V M

kU

k$

k

)k=1

N

% # K S (T #Tw)

Spontaneous combustion

!

" V cvdT

dt=V #F

Qv0 $ K S (T $Tw )

Production Heat loss

Fuel consumption rate modeling:

Page 72: 29052010-1100-Introduction à la cinétique.pdf

71

Auto-ignition conditions

Semenov theory

Production > Heat loss

!

"F

Qv0

# KS

V(T $T

w)

!

y1T( )

!

y2T( )

Page 73: 29052010-1100-Introduction à la cinétique.pdf

72

y(T)

T

Y1(T)

Production(chemical)

!

"F

Qv0

Page 74: 29052010-1100-Introduction à la cinétique.pdf

73

T

Heat loss

Tw

Y2 (T)Y (T)

!

KS

V(T "T

w)

Page 75: 29052010-1100-Introduction à la cinétique.pdf

74

y

T

y1 y2

Tw

Case 1: T0 high,

Auto-ignition

Page 76: 29052010-1100-Introduction à la cinétique.pdf

75

y

T

y1 y2

Tw

If T < Tc, The temperature increases up to T=Tc

Tc

Case 2: two curves are tangent

If T > Tc, Auto-ignition

dT/dt =0 (unstable)T = Tc + ε , Ignition

c

Page 77: 29052010-1100-Introduction à la cinétique.pdf

76

y

T

y1

y2

TwIf T < Ta , the temperature increases up to Ta and remains stable

a

b

Case 3:

If Ta < T < Tb , the temperature decreases to Ta and remains stable

If T > Tb, Auto-ignition

Page 78: 29052010-1100-Introduction à la cinétique.pdf

77

Varying K or (S/V)

The critical temperatureTc is not an intrinsicmixture property.

y

TTw

K(S/V)

Indeed, it is functionof K and (S/V)

S / V = 1 / LIf L goes up, S/V decreases and it Increasesthe risk of auto-ignition

If the system is well insulated, K decreases,and it increases the risk of auto-ignition

Page 79: 29052010-1100-Introduction à la cinétique.pdf

78

Varying P

There exists a critical pressure Pc above whichthere is always mixture auto-ignition.

w

Page 80: 29052010-1100-Introduction à la cinétique.pdf

79

Determination of ignition limits (Pi, Ti)y

T

y1 y2

Tw Ti

C

At the critical point C:

!

Y1

="F

Qv0

!

Y2

= KS

V(T "T

w)

Page 81: 29052010-1100-Introduction à la cinétique.pdf

80

One shows that:

Page 82: 29052010-1100-Introduction à la cinétique.pdf

81

Equivalence ratio

Equivalence ratio

Determination of ignition limits (Pi, Ti)

Ignition

Ignition

Lean limit Rich limit

Lean limit Rich limit

no combustion

no combustion

Page 83: 29052010-1100-Introduction à la cinétique.pdf

82

no combustion

Determination of ignition limits (Pi, Ti)

Ignition

Page 84: 29052010-1100-Introduction à la cinétique.pdf

83

Hydrocarbons ignition limits

Page 85: 29052010-1100-Introduction à la cinétique.pdf

84

Influence of T0 on ignition (C7H16-air)

P0 =30 bars, Φ=0.5

Time (s)

Tem

pera

ture

(K)

Page 86: 29052010-1100-Introduction à la cinétique.pdf

85

Influence of T0 on ignition (C7H16-air)

P0 =30 bars, Φ=0.5

Igni

tion

dela

y (s

)

Cold flamePrincipal ignition

Initial temperature (K)

Page 87: 29052010-1100-Introduction à la cinétique.pdf

86

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 88: 29052010-1100-Introduction à la cinétique.pdf

Perfectly stirred reactor (PSR)

Feed at the inlet at the state: X0

Homogeneous combustion

Burnt gases at the outlet

INLET OUTLET

, Yk0 , hk0, T0

Volume V

Yk , hk, T

Yk , hk, T

!

m

τ = Residence time

Page 89: 29052010-1100-Introduction à la cinétique.pdf

88

!

" VdY

k

dt= m

Yk0# m

Yk

+$kM

kV k =1,...,N

.

IN OUT PRODUCTION.

Species mass balance equation :

.

Page 90: 29052010-1100-Introduction à la cinétique.pdf

89

with

!

" Vdh

dt= m

Yk0hk0k=1

N

# $ m•

Ykhkk=1

N

# $Qh

!

h = Yk

k=1

N

" hk

!

dh

dt= Y

k

dhk

dt

"

# $

%

& '

k=1

N

( + hk

dYk

dt

"

# $

%

& '

k=1

N

(

!

Cp = Ykk=1

N

" Cpk

!

dhk

dt= Cpk

dT

dt

!

dh

dt= Cp

dT

dt+ hk

k=1

N

"dYk

dt

Enthalpy balance:

Page 91: 29052010-1100-Introduction à la cinétique.pdf

90

!

" V Cp

dT

dt= m

Yk0hk0k=1

N

# $ m•

Ykhkk=1

N

# $Qh

$ hkk=1

N

# " VdYk

dt

%

& '

(

) *

!

" VdY

k

dt= m

Yk0# m

Yk

+$k

MkV

!

" V Cp

dT

dt= m

Yk0hk0k=1

N

# $m•

Ykhkk=1

N

# $Qh

$ m•

Yk0hkk=1

N

# + m•

Ykhkk=1

N

# + $ V hkk=1

N

# %•

k Mk

&

' (

)

* +

Enthalpy balance:

Page 92: 29052010-1100-Introduction à la cinétique.pdf

91

Balance Equations

!

" VdY

k

dt= m

Yk0# m

Yk

+$k

MkV k =1,...,N

!

" V Cp

dT

dt= m

Yk0hk0k=1

N

# $ m•

Yk0hkk=1

N

# $Qh +V $ hkk=1

N

# %•

k Mk

&

' (

)

* +

Heat release rate

!

h

Page 93: 29052010-1100-Introduction à la cinétique.pdf

92

ATTENTION

!

" V Cp

dT

dt= m

Yk0hk0k=1

N

# $ m•

Ykhkk=1

N

# $Qh + h•

!

" Vdh

dt= m

Yk0hk0k=1

N

# $ m•

Ykhkk=1

N

# $Qh

!

" V Cp

dT

dt= m

Yk0hk0k=1

N

# $ m•

Yk0hkk=1

N

# $Qh + h•

Page 94: 29052010-1100-Introduction à la cinétique.pdf

93

Application example

at t=0 , Yk(0)=Yk0 , T(0) = Ti

!

dYk

dt=1

"(Y

k0#Y

k) +

$k

Mk

%k =1,...,N

!

Cp

dT

dt=1

"Yk0hk0

k=1

N

# $1

"Yk0hk

k=1

N

# $Qh

%V+h•

%

T0 = 300 KH2/Air mixture

Inlet Volume V

Outlet

Pressure= 1 atm

Yk (t), hk (t), T(t)

Page 95: 29052010-1100-Introduction à la cinétique.pdf

94

Ti = 4000K

τ =0,01 s

Stoic. H2/AirT0 = 300 KPressure= 1 atm

Page 96: 29052010-1100-Introduction à la cinétique.pdf

95

Influence of τTi = 4000K

Time (s)

Page 97: 29052010-1100-Introduction à la cinétique.pdf

96

Influence of τTi = 4000K

Time (s)

Page 98: 29052010-1100-Introduction à la cinétique.pdf

97

Influence of τTi = 4000K

Residence time (s)

Page 99: 29052010-1100-Introduction à la cinétique.pdf

98

Influence of Tiτ =0,01 s

Time (s)

Page 100: 29052010-1100-Introduction à la cinétique.pdf

99

Influence of Tiτ =0,01 s

Time (s)

Page 101: 29052010-1100-Introduction à la cinétique.pdf

100

CONTENTS

- Some Definitions- Thermodynamics - Chemical kinetics Arrhenius Law Reaction rate Chemkin- Reaction mechanism H2/O2 combustion

- 0-D formulation Auto-ignition PSR

- Pollutants in atmosphere

Page 102: 29052010-1100-Introduction à la cinétique.pdf

101

• CO2, H2O • CO

• CH4• CHx• Soot

• NOx

• COV (combustion)• SOx• Cl…• Br….• …..• …..

(vegetations, combustion)

(Rice, Ruminants…., combustion)

(Lightning, combustion)

Page 103: 29052010-1100-Introduction à la cinétique.pdf

102

Impact of Pollutantson the atmosphere

Page 104: 29052010-1100-Introduction à la cinétique.pdf

Troposphere : Altitude < 10-15 km,T 220K

k2 very fast

k1 (hν)day

night! NO2 NO + O

O2 + O +M O3 + M

k1

k2

Production of O3 If steady state for NO:

!

O3

C =k1 NO

2C

k3 NOC

=> Fragile equilibrium

>

k3NO + O3 NO2 + O2

If NO decreases and NO2 increases : Increase of O3

Page 105: 29052010-1100-Introduction à la cinétique.pdf

104

Effect of CO

CO + OH CO2 + H

H + O2 + M OH2 + M

•Importance of OH :Initiation of theprocess

Page 106: 29052010-1100-Introduction à la cinétique.pdf

105

• If [O3] / [NO] < 5000

HO2 + NO NO2 + OH

Formation of O3

• If [O3] / [NO] > 5000

HO2 + O3 OH + 2 O2

Destruction of O3

Effect of CO

NO2 + hν NO + O (λ > 420 nm)O2+O+M O3 +M

Balance :CO + O3 CO2 + O2

Balance : CO +2 O2 CO2 + O3

Page 107: 29052010-1100-Introduction à la cinétique.pdf

106

Effect of CH4

CH4 + OH CH3 + H2O

CH3 + O2 + M CH3O2 + M

2 HO2 + 2 NO 2 NO2 + 2 OH

CH3O2 + NO CH3O + NO2

CH3O + O2 CH2O + HO2

CH2O + O2 HCO + HO2

HCO + OH CO + H2O3NO2 + hν 3NO + 3O (λ > 420 nm)3O2+3O+3M 3O3 +3MBalance :

CH4+ 6 O2 CO + 2 H2O + 3 O320% - 50% of COin atmosphere

Page 108: 29052010-1100-Introduction à la cinétique.pdf

107

NO - NO2 Photochemical Cycle

λ < 420nm

NO2NO O

O3

O2O2

• Day time– Solar radiation allows

formation of O– Formation of O3 (O + O2)– Produced NO reacts with O3

and forms O2 et NO2

– Establishment of equilibrium• Night

– no production of O– Consumption of O3 by NO

emitted by cars (unless thewind has moved O3 away)

Page 109: 29052010-1100-Introduction à la cinétique.pdf

108

NO - NO2 Photochemical Cyclein polluted atmosphere

λ < 420nm

NO2NO O

O3

O2O2

RO2+RH

• Day time– New mechanism of NO2 /

RH formation– No consumption of O3

– Continuous increase of O3

• Night– no production of O– Consumption of O3 by NO

emitted by cars (unless thewind has moved O3 away)

Page 110: 29052010-1100-Introduction à la cinétique.pdf

NO2 + OH HNO3

acid rain

Troposphere : < 10-15 km, T 220K

Page 111: 29052010-1100-Introduction à la cinétique.pdf

Stratosphere : > 10-15 km, T 270K

Destruction of O3 by X : NO, OH, Cl, Br, .....

X + O3 XO + O2

XO + O X + O2

O3 + O 2 O2

k1 (hν)O2 2 O

O + O2 O3

k1Ozone layer :

Page 112: 29052010-1100-Introduction à la cinétique.pdf

111

Direct Effects of NOx onatmospheric equilibrium

• NOx participate in the formation of ozonein the troposphere : Smog

• NOx participate in the destruction of theozone layer in the stratosphere