universitÉ du quÉbec À rimouski - uqar

188
UNIVERSITÉ DU QUÉBEC À RIMOUSKI MÉCANISMES DE SÉQUESTRATION ET CINÉTIQUE DE BIOACCUMULATION ET DE MÉTABOLISATION DES HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP) DANS LES SÉDIMENTS MARINS ET LACUSTRES THÈSE PRÉSENTÉ À L'UNIVERSITÉ DU QUÉBEC À RIMOUSKI Comme exigence partielle du programme de doctorat en océanographie PHILOSOPHIAE DOCTOR (OCÉANOGRAPHIE) PAR MICKAËL BARTHE Mai 2008

Upload: others

Post on 24-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

UNIVERSITÉ DU QUÉBEC À RIMOUSKI

MÉCANISMES DE SÉQUESTRATION ET CINÉTIQUE DE

BIOACCUMULATION ET DE MÉTABOLISATION DES HYDROCARBURES

AROMATIQUES POLYCYCLIQUES (HAP) DANS LES SÉDIMENTS MARINS ET

LACUSTRES

THÈSE

PRÉSENTÉ À

L'UNIVERSITÉ DU QUÉBEC À RIMOUSKI

Comme exigence partielle

du programme de doctorat en océanographie

PHILOSOPHIAE DOCTOR (OCÉANOGRAPHIE)

PAR

MICKAËL BARTHE

Mai 2008

Page 2: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

UNIVERSITÉ DU QUÉBEC À RIMOUSKI Service de la bibliothèque

Avertissement

La diffusion de ce mémoire ou de cette thèse se fait dans le respect des droits de son auteur, qui a signé le formulaire « Autorisation de reproduire et de diffuser un rapport, un mémoire ou une thèse ». En signant ce formulaire, l’auteur concède à l’Université du Québec à Rimouski une licence non exclusive d’utilisation et de publication de la totalité ou d’une partie importante de son travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, l’auteur autorise l’Université du Québec à Rimouski à reproduire, diffuser, prêter, distribuer ou vendre des copies de son travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l’Internet. Cette licence et cette autorisation n’entraînent pas une renonciation de la part de l’auteur à ses droits moraux ni à ses droits de propriété intellectuelle. Sauf entente contraire, l’auteur conserve la liberté de diffuser et de commercialiser ou non ce travail dont il possède un exemplaire.

Page 3: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

REMERCIEMENTS

De nombreuses personnes m'ont aidé et soutenu pendant ces années de doctorat.

l'aimerais remercier plus particulièrement:

Mon directeur de thèse, le docteur Émilien Pelletier, pour sa totale confiance, ses

encouragements stimulants, son accompagnement dans mon processus de réflexion, sa

compétence et son soutien financier.

Les Dr Gijs D. Breedveld et Gerard Cornelissen, chercheur au Norwegian

Geotechnical Institute pour m'avoir accueilli et aidé lors de mon séjour à Oslo.

Le Dr Claude Rouleau, chercheur à l'Institut Maurice Lamontagne, pour m ' avoir aidé

pour les cinétiques des métabolites.

Les alumineries Alcan Ltée pour avoir fournit les échantillons du Fjord de Kitimat et

de la Rivière Saint-Louis.

Un immense merci à ma chère et tendre Zazou pour son support, ses encouragements

et surtout pour sa patience.

Page 4: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Il

RÉSUMÉ

Traditionnellement, les concentrations en hydrocarbures aromatiques polycycliques

CHAP) dans les sols et les sédiments ont été déterminées après des extractions solide/liquide

vigoureuses utilisant des solvants organiques, tels que le dichlorométhane ou

l'hexane/acétone. Cependant, quand les contaminants organiques hydrophobes, tels que les

HAP, entrent dans les sols ou sédiments, ils subissent un certain nombre de processus de

perte ou de transport qui peuvent modifier leur comportement. De plus, les processus de

sorption peuvent permettre à ces composés chimiques de devenir plus résistants à

l'extraction par des solvants. Les résultats de ce processus d'altération avec le temps se

traduisent par une diminution de l'extractabilité des HAP et un déclin de leur disponibilité

pour l' ingestion par les organismes benthiques et leur biodégradabilité par les

microorganismes. Ce phénomène a été appelé "effet de vieillissement". Un effort important

en recherche a été récemment consacré au développement de méthodes chimiques fiables

afin de déterminer la partie biodisponible présente dans les sols et sédiments.

L'objectif de ce travail a donc été de déterminer une ou plusieurs méthodes chimiques

dites sélectives permettant de caractériser les concentrations en HAP biodisponibles dans

des sédiments dont le niveau de contamination et de propriétés géochimiques étaient

variables. De plus, nous avons travaillé à établir les patrons temporels d' accumulation des

HAP de ces échantillons dans deux espèces de vers en identifiant les paramètres

toxicocinétiques décrivant l'ingestion, l'élimination et les facteurs de bioaccumulation.

Page 5: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

111

Ainsi, trois séries d'expériences ont été effectuées. La première a permis de comparer

trois différentes méthodes d'extraction solide/liquide (n-butanol (BuOH), hydroxypropyl-~­

cyclodextrine (HPCD), et une solution du tensioactif Brij700 (B700)) et la seconde de

comparer l'efficacité de deux échantillonneurs passifs, des bandes de polyoxyméthylène

(POM) et des tubes en silicone de polydimethylsiloxane (PDMS). Les résultats de ces deux

études ont été comparés avec les résultats de tests de bioaccumulation sur 28 jours effectués

sur les mêmes sédiments avec Nereis virens pour les sédiments marins et Lumbriculus

variegatus pour les sédiments lacustres. De plus, les résultats de la seconde étude ont été

comparés avec ceux obtenus lors de la première étude avec la solution aqueuse de B700. La

troisième expérience a permis de déterminer les patrons temporels d'accumulation des

différents HAP par les vers (N. virens et L. variegatus) dans les différents sédiments étudiés

ainsi que l 'habileté des organismes à métaboliser le phénanthrène et le pyrène par la

détermination des hydroxy-HAP correspondants (9-hydroxyphénanthrène et 1-

hydroxypyrène ).

Les résultats obtenus lors des deux premières études montrent que des différences

importantes ont été observées aussi bien dans la quantité que dans les proportions des HAP

obtenues en utilisant différentes techniques pour déterminer la biodisponibilité des HAP

dans des sédiments. Notre première étude montre que le BuOH extrayait plus que ce que les

vers pouvaient bioaccumuler dans leurs tissus, et que le HPCD sousestimait la

biodisponibilité des HAP spécialement les HAP de faible poids moléculaire. D'autre part,

l' utilisation du tensioactif B700 a fourni une bonne prédiction pour les HAP dans les

sédiments fortement contaminés. Les résultats de la seconde étude montrent que le PDMS

Page 6: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

IV

surestime la disponibilité des HAP dans les sédiments étudiés (faiblement et fortement

contaminés), alors que le POM produit des résultats similaires à l'extraction au B700. En

effet, la biodisponibilité des HAP totaux a été prédite correctement par le POM et le B700

dans les sédiments fortement contaminés par des alumineries. Par contre, un examen plus

détaillé des résultats obtenus pour les HAP individuels indique que les deux techniques

surestiment la disponibilité des grosses molécules avec un log Kow >6 suggérant un

mécanisme biologique limitant l' incorporation des plus grosses molécules de HAP ce qui

semble être relié à la taille moléculaire des composés ou à leur encombrement stérique.

Les résultats de la troisième étude ont montré que Nereis virens et Lumbriculus

variegatus accumulaient rapidement les HAP associés au sédiment et atteignaient un état-

stable apparent en sept jours (168 h) pour tous les sédiments étudiés. De plus, les constantes

du taux d'ingestion des HAP sont plus faibles pour les sédiments fortement contaminés que

pour les faiblement contaminés (10-2_10-6 et 10-1_10-4 g sédiment sec g-I organisme humide

h- I, respectivement), alors que les constantes du taux d'élimination des HAP sont du même

ordre de grandeur pour les deux types de sédiments. De plus, celle-ci a montré que le log de

la constante du taux d ' ingestion du HAP par l' organisme (log ks) diminuée avec

l' augmentation de l'hydrophobicité des HAP, exprimée par le coefficient de partition

octanol-eau log Kow pour tous les sédiments étudiés. La relation négative entre log ks et log

Kow suggère que le taux de désorption du composé à partir du sédiment était un facteur

important dans l'accumulation par les vers. La détermination de la proportion relative des

métabolites de phase 1 par rapport au phénanthrène total et au pyrène total dans les tissus de

vers après une exposition de 28 jours indiquait la présence de 24% de 9-

Page 7: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

v

hydroxyphénanthrène et 17% de 1-hydroxypyrène chez N. virens , et 18% de 9-

hydroxyphénanthrène et 20% de 1-hydroxypyrène chez L. variegatus. D'après ces

importantes proportions en métabolites, nous présumons que les métabolites présents dans

les vers sont principalement dus à la métabolisation des HAP parents plutôt qu'à la

bioaccumulation à partir des sédiments où les métabolites étaient présents en faible

concentration.

La réalisation de ces travaux nous aura permis d'atteindre l' ensemble des objectifs

fixés. Nous avons pu mettre au point deux méthodes d' extraction sélective nous permettant

de déterminer les HAP totaux biodisponibles dans les sédiments fortement contaminés par

des alumineries et plus précisément les HAP avec un log Kow <5,8. De plus, l' étude de la

bioaccumulation nous a permis de montrer que la composition et le niveau de

contamination jouaient un rôle sur la biodisponibilité des HAP. On a pu voir que les vers

bioaccumulaient, en proportion, plus de HAP dans les sédiments faiblement contaminés

que dans les fortement contaminés. Cette étude nous a aussi permis de déterminer que les

différents paramètres toxicocinétiques (ingestion, élimination, facteurs de bioaccumulation)

variaient d'un sédiment à l'autre et d'un HAP à l'autre.

Page 8: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

VI

ABSTRACT

Traditionally, polycyclic aromatic hydrocarbon (PAH) concentrations In soil and

sediment have been determined after solid/liquid extractions using organic solvents, such as

dichloromethane or hexane/acetone. However, when hydrophobic organic contaminants

(HOCs), such as P AHs, enter soil or sediment, they undergo several loss or transport

processes which modify their behaviour. In addition, sorption-related pro cesses may cause

these chemicals to become increasingly solvent inextractable. The results of this weathering

process are a corresponding decrease in the extractability of P AHs and a decline of their

availability for benthic organisms and their biodegradability by microorganisms. This

phenomenon has been termed an ' aging effect'. A considerable research effort has been

recently devoted to develop reliable chemical methods for the determination of labile P AHs

in soils and sediments.

The aim of the present study was to establish one or more selective chemical methods

allowing the characterization of bioavailable P AH concentrations in sediments with

variable contamination levels and geochemical properties. Moreover, we also established

accumulation temporal pattern of P AHs in those sediments in two worm species to identify

toxicokinetic parameters describing uptake, elimination and bioaccumulation factors.

Thus, three series of experiments have been carried out. The first one permitted to

compare three different solid/liquid extraction techniques (n-butanol (BuOH),

hydroxypropyl-~-cyc1odextrin (HPCD), and a solution of surfactant Brij700 (B700)) and

Page 9: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

vu

the second study to compare the efficiency of two passive samplers, polyoxymethylene

(POM) strips and polydimethylsiloxane (PDMS) silicon tubing. Results of these two

studies were compared with 28-day uptake experiments by Nereis virens for marine

sediments and Lumbriculus variegates for freshwater sediments. In addition, results of the

second study were compared to the previously measured B700 liquid/solid extraction. The

third experiment determined the uptake temporal patterns of the different PARs by worms

(N. virens and L. variegatus) in the different studied sediments as weIl as the organism

ability to metabolize phenathrene and pyrene by the determination of corresponding

hydroxy-PARs (9-hydroxyphenanthrene and I-hydroxypyrene).

Results obtained during the two first studies show that strong differences were

observed in quantities and proportions of PARs obtained using different techniques for

assessing the bioavailability of PARs in sediments. Our first study shows that BuOR

extracted much more PARs than worms can bioaccumulate in their tissues, and where

RPCD underestimated the bioavailability of PARs especiaIly for low molecular weight

PARs. On the other hand, use of the surfactant B700 revealed a good prediction capability

for PARs in highly contaminated sediments. Results of the second study show that PDMS

overestimated the availability of PARs in ail studied sediments (low and highly

contaminated ones), whereas the POM method provided results quite similar to the

solid/liquid extraction using high molecular weight Brij®700. Indeed, bioavailability of

total PARs was correctly predicted by POM and B700 in highly contaminated aluminum

smelter sediments. Rowever, a closer examination of individual PAR results indicated that

both techniques overestimated the availability of large molecules with log Kow >6

Page 10: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Vlll

suggesting the presence of a biological mechanism limiting uptake of larger P AHs which

seem to be related to the molecular size of the compounds or to the steric congestion.

The results of the third study showed that Nereis virens and Lumbriculus variegatus

accumulated sediment-associated PAHs rapidly and achieved apparent steady-state within

seven days (168 h) for aIl studied sediment samples. In addition, the uptake clearance rate

constants of P AHs were lower for highly than for low contaminated sediments (10-2-10-6

and 10-1_10-4 g dry sediment g-I wet organism h- I, respectively), whereas the elimination

rate constants of P AHs remained in same order of magnitude for both type of sediments.

Moreover, this study showed that log of the uptake clearance rate constant (log ks)

decreased with increasing hydrophobicity of PAHs, expressed by the octanol-water

partition coefficient (log Kow) for aIl studied sediment samples. The negative relationship

between log ks and log Kow suggests that the desorption rate of the compounds from the

sediment was an important governing factor in the accumulation by the worms. The

determination of the relative proportion of phase l metabolites toward total phenanthrene

and pyrene in worm tissues after a 28-day exposure indicated the presence of 24% of 9-

hydroxyphenanthrene and 17% of I-hydroxypyrene in N. virens, and 18% of 9-

hydroxyphenanthrene and 20% of 1-hydroxypyrene in L. variegatus. According to these

high proportions of metabolites, we assumed that the metabolites present in worms are

mainly due to metabolization of the parent P AH instead of bioaccumulation from sediment

where metabolites were present in low concentrations.

AlI the fixed objectives have been achieved by the realisation of these experiments.

lndeed, we succeeded to develop two non-exhaustive extraction methods in order to

Page 11: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

IX

determine bioavailable P AHs in aluminium smelter highly contaminated sediments and

more precisely PAHs with log Kow <5,8. In addition, the bioaccumulation study showed

that composition and contamination level played a key role on PAH biopavailability. We

also showed that worms bioaccumulated, in proportion, more P AHs in low contaminated

sediments than in highly contaminated ones. This study allowed us to establish that the

toxicokinetic parameters (uptake, elimination, bioaccumulation factors) varied from a

sediment to an other and from a P AH to an other.

Page 12: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

x

TABLE DES MATIÈRES

REMERCIEMENTS

RÉSUMÉ Il

ABSTRACT VI

TABLE DES MATIÈRES x

LISTE DES TABLEAUX XIV

LISTE DES FIGURES XVll

INTRODUCTION GÉNÉRALE 1

1. LES HYDROCARBURES AROMATIQUES POLYCYCLIQUES (HAP) 2

1.1. STRUCTURE CHIMIQUE 2

1.2. LES VOIES D' ENTRÉE DES HA? DANS LES ENVIRONNEMENTS ESTUARIENS ET

MARINS

1.3. LES HA? DANS L' EAU

1.4. LES HA? DANS LES SÉDIMENTS

1.5. LES HA? DANS LE BIOTE

2. BIO DISPONIBILITÉ ET TOXICITÉ

4

5

5

6

6

3. SÉQUESTRATION DES CONT AMINANTS ORGANIQUES HYDROPHOBES

PAR DES GÉOSORBANTS

4. BIODISPONIBILITÉ ET BIOACCESSIBILITÉ

12

15

Page 13: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Xl

5. TRA V AUX EFFECTUÉS À L'ISMER 18

5.1. EXTRACTION SÉLECTIVE DES HAP 18

6. OBECTIFS 19

6.1. OBJECTIF GÉNÉRAL 19

6.2. OBJECTIFS SPÉCIFIQUES 19

CHAPITRE 1 21

ENVIRONMENT AL CONTEXT 22

RÉSUMÉ 23

ABSTRACT 25

INTRODUCTION 26

MA TERIALS AND METHODS 29

CHEM ICALS 29

SEDIMENT SAMPLES 31

DCM EXTRACTION 33

BuOH EXTRACTION 33

HPCD EXTRACTION 34

SURF ACTANT EXTRACTION 34

OPTIMIZA TI ON OF B700 EXTRACTION 35

BIOACCUMU LATION STUDIES 38

PAHs fN BIOLOGICAL TISSUES 41

PAHs ANALYSIS 41

DA T A TREA TMENT 42

RESULTS 43

DISCUSSION 57

Page 14: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

XIl

EXTRACTABLE PAHs AND SEDIMENT PROPERTIES 57

CHEMICALL y A V AILABILITY v. BIOACCUMULATION 61

CONCLUSION 64

ACKNOWLDGEMENTS 65

REFERENCES 65

CHAPITRE II 73

RÉSUMÉ 74

ABSTRACT 75

INTRODUCTION 76

MA TERIALS & METHODS 78

CHEMICALS 78

SEDIMENTS 78

BIOACCUMULATION STUDIES 81

ANAL YSIS OF WORM TISSUES 81

SEDIMENT CHARACTERIZATION 82

FREELY DISSOL VED CONCENTRATION/SEDIMENT SORPTION EXPERIMENTS 83

PAH EXTRACTION FROM PASSIVE SAMPLERS 83

RESULTS AND DISCUSSION 84

BSAF CALCULATION 84

CORRELATION BETWEEN BSAFs 89

CONCLUSION 95

ACKNOWLDGEMENTS 95

REFERENCES 96

CHAPITRE III 102

Page 15: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

RÉSUMÉ

ABSTRACT

INTRODUCTION

MATERIALS & METHODS

CHEMICALS

SEDIMENTS

UPTAKE EXPERJMENTS

ANL YSIS OF WORM TISSUES AND SEDIMENTS

QUANTIFICATION

DA TA TREATMENT

RESULTS

BIOCONCENTRATION OF PAHs IN WORMS

BIOTRANSFORMATION OF PAHs IN WORMS

DISCUSSION

BIOCONCENTRATION OF PAHs IN WORMS

BIOTRANSFORMATION OF PAHs lN WORMS

CONCLUSION

ACKNOWLDGEMENTS

REFERENCES

CONCLUSION GÉNÉRALE & PERSPECTIVES

CONCLUSIONS GÉNÉRALES

CONCLUSION

PERSPECTIVES

BIBLIOGRAPHIE

X 111

103

105

107

109

109

110

III

III

113

114

120

120

124

130

130

131

133

135

135

140

141

146

147

152

Page 16: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

LISTE DES TABLEAUX

INTRODUCTION GÉNÉRALE

CHAPITRE 1

Table 1. Sorne chemical and physical properties of the extractants

Table 2. Geochemical properties of the sediment samples

XIV

30

32

Table 3. Reproducibility of the B700 extraction repeated three times on the same marine

sediment

Table 4. Examples ofkinetic data for bioaccumulation of total PAHs (flg g-I)

36

40

Table 5. Results of extractions and bioaccumulation experiments with %XTRAC given in

parentheses. Extractant values followed by a star are significantly different from the

corresponding worm bioaccumulation value. This is an indication of the failure of the

extractant to match the value of total PAHs observed in worms (P>O.01) (mean ± std.

dev. , n = 3) 47

Table 6. Linear correlation parameters obtained when comparing LMW and HMW PAHs

extracted with BUOH, HPCD and B700 with P AHs bioaccumulated in worms for both

low and high contaminated sediments 54

Page 17: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

xv

CHAPITRE II

Table 1. Identification of samples for low and highly contaminated sediments. Total PAHs

in sediment (Csed) include: fluorene (FLU), phenanthrene (PHE), fluoranthene (FLT),

pyrene (PYR), benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene

(BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene

(DBA), and benzo[g,h,i]perylene (BPE). TOC = Total organic carbon 80

Table 2. Biota-sediment accumulation factors (BSAF) determined for aIl P AHs in aIl

sediment samples as weIl as ratios between theoretical and empiric BSAFs

(BSAFtheoretica/BSAFworms) and between BSAFs calculated on the basis of

concentrations extracted by the different methods and empirical ones

(BSAF est,POMIBSAF worms, BSAF est,silicOi/BSAF worms and BSAF est,B70o/BSAF worms) 87

CHAPITRE III

Table 1. Concentration of phenanthrene (PHE), 9-hydroxyphenanthrene (9-0H-PHE),

pyrene (PYR), and 1-hydroxypyrene (l-OH-PYR) in sediments and in worms (flg il

w.w.) and percentage ofmetabolite compared to parent PAH. 112

Table 2. Estimated wet weight-based uptake (ks) and elimination (ke) rate constants for the

kinetics of polycyclic aromatic hydrocarbons (P AHs) in polychaetes and oligochaetes.

115

Table 3. Bioaccumulation (BAF) and biota-sediment accumulation (BSAF) factors for the

selected polycyclic aromatic hydrocarbons. 117

Page 18: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

XVI

Table 4. Estimated wet weight-based uptake (k,), metabolization (k2) and elimination (k3)

rate constants for the kinetics of hydroxy polycyclic aromatic hydrocarbons (OH-PAHs)

in polychaetes and oligochaetes. 119

Page 19: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

XVll

LISTE DES FIGURES

INTRODUCTION GÉNÉRALE

Fig. 1. Structures et noms des 12 HAP étudiés: (1) Fluorène (2) Phénanthrène; (3)

Anthracène; (4) Fluoranthène; (5) Pyrène; (6) Benz[a]anthracène; (7) Chrysène; (8)

Benzo[b]f1uoranthène; (9) Benzo[k]f1uoranthène; (10) Benzo[a]pyrène; (11)

Dibenz[ a,h ] anthracène; (12) Benzo[g,h,i]pérylène. 3

Fig. 2. Modèle conceptuel du domaine du géosorbant. Les lettres encerclées se réfèrent aux

mécanismes de sorption décris précédemment. Le domaine du géosorbant inclus des

différentes formes de matière organique adsorbante (MOA), de carbone particulaire

provenant de résidus de combustion tel que les suies, et de carbone anthropique incluant

les phases liquides non-aqueuses (PLNA) (traduit de Luthy et al. , 1997). 14

Fig. 3. Diagramme conceptuel illustrant les fractions biodisponibles et bioaccessibles d'un

contaminant dans un sol ou sédiment selon sa localisation physique (traduit de Semple

et al. , 2004). (A: Composé sorbé (rapidement réversible) (biodisponible ou

bioaccessible: lié temporairement); B: Composé sorbé (lentement/très lentement

réversible) (bioaccessible: lié temporairement) ; C: Composé bioaccessible (lié

physiquement); D: Composé séquestré (non bioaccessible); E: Composé biodisponible)

(traduit de Semple et al. , 2004). 17

Page 20: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

XVlll

CHAPITRE 1

Fig. 1. Extraction efficiency of P AHs from marine sediment with a molarity gradient of

commercial surfactant B700. The optimum concentration has been determined at the

beginning of the plateau. 37

Fig. 2 . Distribution pattern of PAHs in four typical samples used to compare extraction

methods and bioaccumulation using worms. 45

Fig. 3. Comparison of extraction yields and worm bioaccumulation of PAH groups in

highly contaminated sediments. Amounts of P AHs are normalized to the sum of P AHs

extracted with each method. 49

Fig. 4. Comparison of extraction yields and worm bioaccumulation of PAH groups in low

contaminated sediments. Amounts of P AHs are normalized to the sum of P AHs

extracted with each method. 51

Fig. 5. Low (LMW) and high (HMW) molecular weight PAHs extracted by BuOH (a),

HPCD (b) and B700 (c) as a function of bioaccumulated P AHs in worms over 28 days.

The dotted lines represent a hypothetical 1: 1 correlation. 53

Fig. 6. Relationship between PAH octanol-water partitioning coefficient (Kow) and the

ability to predict PAH bioavailability using B700 availability methodology. 56

CHAPITRE II

Fig. 1. Mean of BSAFest,B7oo (A), BSAFest,poM (B), and BSAFest,silicon (C) as a function of

mean BSAFworms over 28 days for low and highly contaminated sediments (left panels).

Page 21: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

XIX

BSAF est,B700 (D), BSAF est,POM (E), and BSAF est,silicon (F) of individual P AH as a function

of BSAFworms over 28 days for low contaminated sediments (right panels). The dotted

lines represent a hypothetical 1: 1 correlation. Scrubber sample is identified with letter s.

91

Fig. 2. Relationship between PAH octanol-water partitioning coefficient (log Kow) and the

ability to predict PAH BSAF using B700 and POM methodology. The studied PAHs

are: fluorene (FLU), phenanthrene (PHE), fluoranthene (FL T), pyrene (PYR),

benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF),

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DBA),

and benzo[g,h,i]perylene (BPE). 94

CHAPITRE III

Fig. 1. U ptake kinetics of fluorene ( . ), phenanthrene (0), fluoranthene ( ... ), pyrene ( . ),

bz[a]anthracene + chrysene (v), benzo[bk]fluoranthene (. ), benzo[a]pyrene (0), and

benzo[g.h.i]perylene (. ) in worms during the exposure period in B Lagoon (A),

Scrubber (B), SLR Downstream (C), EGSL04-07 (D), SLR Upstream (E), and Hospital

Beach (F) sediments. The curve corresponds to the nonlinear fit of the data using the

model expressed in Eq. 1. Note different scales for PAH concentrations. 121

Fig. 2. (Top) Plot of the log of uptake clearance rate constants, log ks, versus the log of the

hydrophobicity expressed by the octanol/water partition coefficient, log Kow, for highly

(A) and low (B) contaminated sediments. (Bottom) Plot of the log of elimination rate

Page 22: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

xx

constants, log ke, versus the log of the hydrophobicity expressed by the octanol/water

partition coefficient, log Kow, for highly (C) and low (D) contaminated sediments. 123

Fig. 3. The ratio of 9-hydroxyphenanthrene to phenanthrene (. ) and bioaccumulation

kinetic of phenanthrene (0) during the exposure period in B Lagoon (A), Scrubber (B),

SLR Downstream (C), EGSL04-07 (D), SLR Upstream (E), and Hospital Beach (F)

sediments. Note different scales for phenanthrene concentration. 125

Fig. 4. The ratio of I-hydroxypyrene to pyrene (. ) and bioaccumulation kinetic of pyrene

(0) during the exposure period in B Lagoon (A), Scrubber (B), SLR Downstream (C),

EGSL04-07 CD), SLR Upstream CE), and Hospital Beach (F) sediments. Note different

scales for pyrene concentration. 127

Fig. 5. Plot of the elimination rate constants Ck3) versus the metabolization rate constants

(k2) for 9-hydroxyphenanthrene in ail (A), highly (B), and low contaminated sediments

CC) and for I-hydroxypyrene in ail (D), highly CE), and low contaminated sediments

CF) . 129

Page 23: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

INTRODUCTION GÉNÉRALE

Page 24: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

2

1. Les hydrocarbures aromatiques polycycliques (HAP)

Les hydrocarbures aromatiques polycycliques (HAP) sont les xénobiotiques

organiques les plus présents dans les environnements estuariens et marins. Ceux-ci sont

devenus extrêmement importants à cause de leurs effets cancérigènes, mutagènes et

tératogènes potentiels sur les organismes aquatiques et sur l'homme (Fetzer, 2000).

1.1. Structure chimique

Les hydrocarbures aromatiques polycycliques sont un groupe de composés constitués

d'atomes d'hydrogène et de carbone formant de deux à sept cycles benzéniques dans des

arrangements linéaires, angulaires ou en grappes avec des groupes insaturés possiblement

attachés à un ou plusieurs cycles (Fetzer, 2000). Ces composés vont du naphtalène (CIOHS,

deux cycles) au coronène (C24H I2 , sept cycles) (Fig. 1). En général, les HAP ont une faible

solubilité dans l'eau, un haut point de fusion et d'évaporation et une faible pression de

vapeur. Quand la solubilité diminue, les points de fusion et d'évaporation augmentent, et la

pression de vapeur diminue avec l'augmentation du volume moléculaire qui est directement

fonction du nombre de cycles (Fetzer, 2000).

Page 25: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

3

Fig. 1. Structures et noms des 12 HAP étudiés: (1) Fluorène (2) Phénanthrène; (3)

Anthracène; (4) Fluoranthène; (5) Pyrène; (6) Benz[a] anthracène; (7) Chrysène; (8)

Benzo[b]f1uoranthène; (9) Benzo[k]f1uoranthène; (10) Benzo[a]pyrène; (11)

Di benz [ a,h ] anthracène; (12) Benzo [g,h,i ]péry lène.

(1)

(4)

(7)

(10)

~

(2)

# #

(5)

(8)

(11)

(3)

~

~

(6)

(9)

(12)

Page 26: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

4

1.2. Les voies d'entrée des HAP dans les environnements estuariens et marins

Les routes principales d'entrée des HAP dans les environnements estuariens et marins

incluent les apports atmosphériques et hydriques provenant principalement d'activités

anthropiques (les effluents industriels et urbains, les déchets d'incinération, les accidents

pétroliers (le pétrole brut contient de 0,2 à 7 % de HAP)) (Lima et al. , 2005), la production

d'asphalte et la combustion des combustibles fossiles (Dabestani et Ivanov, 1999; Oros et

Ross, 2004; Yunker et al. , 2002), la diagenèse de la matière organique dans les sédiments

anoxiques (Lima et al. , 2005) ou encore de produits et de processus naturels tels que les

feux de forêts et les émissions volcaniques (Bowerman, 2004; Lu, 2003).

Presque tous les HAP provenant de l'atmosphère sont associés à la matière

particulaire aérienne et aux aérosols à cause de leurs coefficients de partage octanolleau

(Kow) relativement élevés, ce qui dénote un important potentiel d' adsorption sur les

matières particulaires en suspension dans l'air et dans l'eau (Law et al. , 2002). La pluie et

la neige représentent le principal processus atmosphérique responsable du flux de HAP

dans les océans mondiaux (Dickhut et al., 2000; Tsai et al. , 2002) pour trouver leur

destination finale dans les sédiments (Christensen et Bzdusek, 2005). Ainsi , le sédiment

devient un puits pour les HAP à cause de leur relative immobilité quand ils sont non-

perturbés, et de leur persistance (demi-vie de 0.3 à 58 ans pour le benzo[a]pyrène) (Ghosh

et al. , 2003; Gulnick, 2000).

Page 27: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

5

1.3. Les HAP dans l'eau

Les eaux de surface comme les rivières et les eaux côtières peuvent être fortement

polluées par les HAP en raison des industries et des ports. Les concentrations totales en

HAP dans les eaux de rivières traversant des régions fortement industrialisées peuvent

atteindre plus de 1 ° Ilg/L de HAP totaux. Les eaux de rivières non-polluées et l'eau de mer

contiennent moins de 0,1 Ilg/L de HAP totaux (World Health Organization, 1998).

Les concentrations des HAP sont plus faibles dans la colonne d'eau que dans le biote

et les sédiments, due en partie à la faible solubilité dans l'eau des HAP. La matière

organique dissoute ou colloïdale, telle les acides humiques et fulviques, dans l'eau de mer

peut agir comme un solvant pour les HAP. Plus le nombre de cycles aromatiques ou la

masse moléculaire des HAP augmente, plus la solubilité diminue. Par exemple, la solubilité

dans l'eau du naphtalène, un HAP à deux cycles, est d'environ 30 mg/L, alors que celle des

HAP à cinq cycles varie entre 0,5 et 5,0 Ilg/L (Mackay et al. , 1991).

1.4. Les HAP dans les sédiments

Les HAP sont facilement adsorbés à la surface des particules à cause de leur

hydrophobicité, leur faible solubilité dans l'eau, leur relativement faible pression de vapeur

et leur aromaticité (Pignatello et Xing, 1996). La rapidité à laquelle les HAP s'adsorbent sur

la matière particulaire en suspension entraîne une concentration plus importante de ces

contaminants dans les sédiments des fonds marins que dans la colonne d'eau (généralement

par un facteur 1000 ou plus) (Dungavell, 2005). Les sédiments estuariens et marins

Page 28: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

6

deviennent donc un réservoir majeur de HAP et une source continue de contamination pour

les communautés biotiques (Ghosh et al. , 2003; Gulnick, 2000).

Étant donné la proximité des sources anthropiques et de la nature hydrophobe des

HAP, les dépôts marins côtiers ont des concentrations significativement élevées par rapport

aux autres régions marines, tels que les sédiments des marges ou des abysses. Les zones

recevant le drainage des centres industrialisés peuvent avoir des niveaux de HAP de 10 000

Ilg/g ou plus dans les sédiments. Dans les régions éloignées des activités anthropiques, les

valeurs des HAP totaux dans les sédiments sont souvent de l'ordre du Ilg/g (Gulnick, 2000).

1.5. Les HAP dans le biote

Les concentrations des HAP dans les orgamsmes aquatiques sont extrêmement

variables selon les sites et les espèces aquatiques. Les valeurs rapportées sont comprises

entre 0,01 et 5 000 Ilg/kg de poids sec (McElroy et al. , 1989). Les concentrations élevées

dans les organismes marins se présentent souvent dans les zones recevant des décharges

chroniques d'hydrocarbures (McElroy et al., 1989).

Les organismes déposivores peuvent ingérer les contaminants organiques à partir de

l' eau les entourant, de l'eau porale par respiration, filtration ou par adsorption directe, et

aussi à partir des particules sédimentaires ingérées par désorption et adsorption en présence

de fluides digestifs (Weston et al., 2000).

2. Biodisponibilité et toxicité

La biodisponibilité d'un composé chimique est une mesure de son accessibilité au

biote dans l'environnement. Elle est définie ici comme la fraction du contaminant qui est en

Page 29: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

7

fin de compte disponible pour l'ingestion, l 'accumulation ou l'assimilation par un

organisme. C'est un facteur important contrôlant l' ingestion de contaminants liés au

sédiment dans les organismes aquatiques, et le transfert des contaminants dans la chaîne

alimentaire. C'est aussi un facteur critique dans le succès des techniques biologiques de

remédiation. La biodisponibilité des contaminants hydrophobes tels les HAP est déterminée

par les interactions complexes de différents facteurs abiotiques et biotiques, tels que les

caractéristiques du composé, les caractéristiques du sédiment, et les caractéristiques

biologiques des organismes (Lu, 2003).

Les facteurs fondamentaux affectant la disponibilité des contaminants sont la matière

organique des sols et sédiments (Kukkonen et al. , 2003; Oleszcuk et Baran, 2004; Rust et

al. , 2004a; Shor et al., 2003 ; Thorsen et al. , 2004), le pH, la nanoporosité, le pourcentage en

argile (Nam et Alexander, 1998), l' hydrophobicité (Nam et Alexander, 1998), et la capacité

d 'échange en cations (Chung et Alexander, 2002). La matière organique inclue le matériel

de décomposition des plantes et animaux aussi bien que l'humine provenant de racines.

Étant donné l'affinité importante des composés organiques à la matière organique des sols

et sédiments, celle-ci réduit la disponibilité de ces composés dans les sols et sédiments. Des

études évaluant la biodisponibilité et la séquestration des HAP dans les sédiments ont

rapporté que les concentrations en contaminants (Chung et Alexander, 1999a), le taux

d'humidité (Kottler et Alexander, 2001), la remise en suspension (Talley et al., 2002; White

et al., 1999a), la présence d'autres HAP (White et al., 1999a; 1999b) et la durée de contact

entre le polluant et le sédiment (Macleod et Semple, 2000) sont d' autres facteurs

significatifs influençant la biodisponibilité du contaminant.

Page 30: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

8

Des études ont indiqué que les sols et sédiments avec un taux de matière organique

élevé influence la disponibilité. Le contenu en HAP extraits avec du n-butanol a été relié au

type de boue de traitement des eaux usées (Oleszczuk et Baran, 2004). Talley et al. (2002)

ont rapporté que la réduction en HAP dans la fraction argile/silt se corrélait bien avec la

dégradation des HAP et l'accumulation par des vers de terre. Nam et al. (1998) ont rapporté

que le phénanthrène extrait du sol avec du n-butanol était proportionnel au taux de carbone

organique dans le sol. La dissipation initiale des contaminants peut être attribuée au taux

d 'humidité du sol, à la température et à d'autres facteurs environnementaux.

Des études récentes supportent le phénomène de vieillissement, suggérant que les

composés organiques persistant dans les sols et sédiments deviennent moins disponibles à

l'ingestion par les organismes, deviennent moins toxiques, et sont moins disponibles pour

la biodégradation par les microorganismes. Ces observations indiquent que les molécules

des contaminants sont prisonnières dans des micro-sites qui ne sont pas faciles d'accès au

microorganismes. Chung et Alexander (1999b) ont montré qu'il y avait une relation entre le

carbone organique et des pores de diamètre 0,1-10 J-lm et entre le contenu en argile et des

pores <102 nm. Ainsi, la fraction biodisponible des contaminants peut ne pas être

déterminée précisément par des analyses chimiques déterminant les concentrations totales

en polluant (Alexander, 2000).

Les premières informations sur l'effet du vieillissement et sur la biodisponibilité

proviennent d'études sur les concentrations de pesticides (dichlorodiphényltrichloroéthane

(DDT), aldrine, dieldrine, heptachlore et chlordane) dans les sols en culture mesurées

pendant de longues périodes et de mesures de toxicité de ces pesticides pour les invertébrés

Page 31: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

9

et les plantes (Decker et al. , 1965; Gilbert et Lewis, 1982; Korschgen, 1971 ; Lichtenstein et

al. , 1960; Lichtenchtein et Schulz, 1965; Onsager et al. , 1970; Wingo, 1966). Bien que la

disparition initiale d'un pesticide soit partiellement le résultat de sa volatilisation ou de sa

dégradation abiotique aussi bien que de sa biodégradation par les microorganismes, le fait

que cette disparition faiblisse au fur et à mesure des années indique que ces insecticides

sont devenus faiblement disponibles aux microorganismes indigènes. Les premières études

toxicologiques ont aussi démontré une relation temporelle avec la diminution de la

biodisponibilité. Par exemple, des dosages biologiques de la toxicité aiguë sur la mouche

Drosophila melanogaster simultanément avec des déterminations chimiques ont donné des

résultats similaires peu de temps après l'application de lindane à un sol, mais une partie

importante de cet insecticide restant dans le sol après 22 mois n'affectait plus de façon

détectable les mouches (Edwards et al. , 1957).

Des études récentes ont montré que des composés organiques présents depuis de

nombreuses années dans des sols sont moins biodisponibles que ceux fraîchement ajoutés à

ces mêmes sols. Morrison et al. (2000) ont trouvé que du DDT, du

dichlorodiphényldichloroéthylène (DDE) et du dichlorodiphényldichlorométhane (DDD)

d ' un site de déchets (contaminé 30 ans auparavant) étaient approximativement

biodisponibles à 30% pour des vers. La diminution de disponibilité pour de la simazine, des

HAP et du 1,2-dibromethane vieillis a aussi été démontrée (Erickson et al. , 1993 ;

Weissenfels et al. , 1992).

Le vieillissement est toxicologiquement significatif parce que l' assimilation, la

toxicité aiguë et chronique des composés dangereux diminuent pendant qu ' ils persistent et

Page 32: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

10

deviennent de plus en plus séquestrés avec le temps (Alexander, 2000). La toxicité peut être

moindre que celle anticipée même quand elle est basée sur des extractions vigoureuses des

sols et sédiments (Erickson et al. , 1993; Meier et al., 1997; Peijnenburg et al., 2000). Bien

que le vieillissement réduit l'exposition et ainsi la toxicité et le risque, il ne les élimine pas.

Des composés tels que le TCDD, BPC et PBB qui ont persisté pendant de longues périodes

sont toujours biodisponibles pour les mammifères. Des sols traités au DDT et au chlordane

étaient toujours toxiques pour des vers même après une période de vieillissement

(Alexander, 2000). Du phénanthrène et du pyrène vieillis dans un sol montrèrent une

diminution de la biodisponibilité aux microbes ainsi qu 'une toxicité pour des vers avec le

temps (Chung et Alexander, 1999a). Il est important de noter que même si les composés

vieillissent, une fraction du composé reste biodisponible et il a été montré que cette fraction

s'accumule dans des insectes, plantes et bactéries.

Le gestionnaire de l'environnement est face à un dilemme majeur car l'importance de

la réduction de la biodisponibilité résultant du vieillissement est différente pour le même

composé dans différents sols, pour différents composés dans le même sol et pour des durées

différentes d'exposition du composé dans le sol. Comment peut-on évaluer le degré

d'exposition et prédire le risque d'un composé vieilli? Les biotests sont un moyen évident

de faire des estimations, mais la précision de ces méthodes biologiques est parfois

inadéquate pour les besoins de la réglementation. Certains prennent beaucoup de temps et

sont chers. Une alternative serait un test chimique ou physique dont les résultats seraient

clairement corrélés avec les résultats des biotests.

Page 33: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Il

Un effort considérable a été récemment déployé pour le développement de méthodes

d'extraction afin de déterminer les concentrations biodisponibles ou labiles des

contaminants dans les sols et sédiments. Afin d'évaluer la fraction biodisponible des

contaminants dans les sols et sédiments de nombreuses méthodes d'extraction ont été

élaborées. Des méthodes d'extraction utilisant des échantillonneurs passifs ("passive

sampler") tels que le Tenax, XAD, des membranes semiperméables, des disques de silice

octadecyle modifié, du polyoxyméthylène (POM), des tubes de silicone (Akkanen et al.,

2001; Cornelissen et al., 1998; Cornelissen et al. , in press; Cuypers et al., 2002; Krauss et

Wilcke, 2001; Richardson et al. , 2003; Rust et al., 2004b; Tang et al. , 2002; van der Wal et

al., 2004; Zimmerman et al. , 2004), des gaz hautement pressurisés (Hawthorne et

Grabanski, 2000; Librando et al., 2004; Loibner et al., 2000; Szolar et al., 2001; Szolar et

al., 2004), et l'oxydation au persulfate (Cuypers et al., 2000) ont été proposées.

Récemment, des solutions aqueuses de cyc10dextrines (Cuypers et al. , Reid et al. , 2000;

2002; Swindell et Reid, 2006) et de tensioactifs (Chang et al., 2000; Cuypers et al., 2002;

Fava et al., 2004; Tang et al., 2002) ont été testées sur des sols et sédiments contaminés

ainsi que des systèmes multi-colonnes (Zhao et Voice, 2000) et des extractants chimiques

sélectifs (Tang et al., 2002) tel que le n-butanol (Alexander et Alexander, 2000; Liste et

Alexander, 2002; Oleszczuk et Baran, 2004).

Les résultats des analyses par de telles procédures ont été corrélés avec la

biodisponibilité pour différents organismes vivants. Lors de l'analyse de telles méthodes

dites douces, les auteurs se sont aperçus que la diminution de la biodisponibilité en fonction

du temps était accompagnée d'une chute de la quantité extraite de polluants.

Page 34: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

12

Ces observations suggèrent que de telles méthodes d'extraction sélectives pourraient

servir de base pour un test de substitution afin de déterminer la biodisponibilité.

3. Séquestration des contaminants organiques hydrophobes par des géosorbants

Au cours des années 1990, le professeur Luthy et collaborateurs ont proposé un

modèle conceptuel pour décrire la séquestration des composés hydrophobes par les

géosorbants. Les mécanismes à la base de la séquestration des contaminants organiques

hydrophobes sont complexes et font appel à une succession d'étapes à partir d'une

adsorption à la surface des particules suivie d'une absorption en profondeur que l'on peut

schématiser ainsi (adapté de Luthy et al., 1997).

A. Absorption rapide dans la matière orgamque amorphe ou dans un liquide

organique inter-particulaire: mécanisme plus favorable aux molécules polaires,

molécules peu ou pas accessibles aux organismes, faiblement extraites.

B. Absorption lente dans la matière organique vieillie et dense: molécules peu ou

pas accessibles aux organismes, séquestration complète.

C. Adsorption rapide sur les surfaces organiques mouillées par l'eau interstitielle:

interactions des régions polaires entre molécules adsorbées et l'absorbant,

biodisponibles et faciles à extraire.

D. Adsorption rapide sur les surfaces minérales mouillées par l'eau interstitielle: les

molécules adsorbées sont disponibles à la biodégradation et faciles à extraire.

Page 35: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

13

E. Adsorption dans les mlcropores de la matrice minérale (argile): molécules

probablement peu accessibles à la biodégradation mais demeurent extractibles

avec des solvants organiques.

La Fig. 2 schématise les types de mécanisme appliqués aux divers géosorbants d'un sol.

Page 36: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

14

Fig. 2. Modèle conceptuel du domaine du géosorbant. Les lettres encerclées se réfèrent aux

mécanismes de sorption décrits précédemment. Le domaine du géosorbant inclus des

différentes formes de matière organique adsorbante (MOA), de carbone particulaire

provenant de résidus de combustion tel que les suies, et de carbone anthropique incluant les

phases liquides non-aqueuses (PLNA) (traduit de Luthy et al. , 1997).

lVIOA mnol11ltr rucallsult'

RESIDU DE COMBUSTION

Risidu d~ combusliou, ~x.: suirs

1 1

1

Micropores ----'lW/.

Mésopores --1--+11 ....

EAU OU GAZ DANS DES 1 MACROPORES 1

.......... "'-"'''''' ... .._--MOA

GEOSORBANT

MOA tltus~

l"lOA lImol]lh~

PLNA ,1rillirs \

Page 37: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

15

4. Biodiponibilité et bioaccessibilité

De nombreuses définitions de la biodisponibilité ont été données depuis les 2

dernières décennies (Alexander, 2000; Herrchen et al., 1997; Klaasen, 1986; Kramer et

Ryan, 2000; Ruby et al., 1996; Spacie et al., 1995; Van Leeuwen et Hermens, 1995). Avoir

autant de définitions différentes crée une confusion chez les scientifiques

environnementaux. Ainsi, Semple et al. (2004) ont proposé une définition pour la

biodisponibilité et la bioaccessibilité:

la biodisponibilité est ce qui est librement disponible pour traverser la membrane

cellulaire d'un organisme à partir du média où vit un organisme à un moment

donné (Fig. 3). Une fois que le transfert à travers la membrane a eu lieu, un

stockage, transformation, assimilation, ou dégradation peut se produire dans

l' organisme.

la bioaccessibilité est ce qui est disponible pour traverser la membrane cellulaire

d'un organisme à partir de l'environnement, si l'organisme a accès au

contaminant. Cependant, le contaminant peut être soit physiquement déplacé par

l'organisme, soit devenir biodisponible après une certaine période. Dans ce

contexte, physiquement déplacé peut référer à un contaminant qui est séquestré

dans la matière organique et ainsi est indisponible à un moment donné ou qui

occupe un espace de l'environnement différent de l'organisme (Fig. 3). Les

contaminants peuvent devenir disponible suivant une libération rapide à partir

d'un amalgame labile, ou l' organisme peut bouger et entrer en contact avec le

Page 38: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

16

contaminant. Alternativement, une libération peut intervenir bien après (années

ou décennies) et rendre le contaminant bioaccessible. En résumé, la

bioaccessibilité englobe ce qm est réellement biodisponible et ce qui est

potentiellement biodisponible.

Il est bien connu que la portion d'un contaminant qui est, soit biodisponible, soit

bioaccessible, dans un sol ou sédiment peut différer de façon importante selon les

organismes. Un avantage clair de ces définitions est leur multi-fonctionnalité, puisque ces

définitions peuvent s'appliquer aux contaminants étant disponibles ou accessibles aux

microorganismes, champignons, plantes, invertébrés, et animaux supérieurs par passage à

travers la membrane de l'organisme en question. Ceci pourra être la membrane cellulaire

d'une bactérie alors que chez les vers, par exemple, ceci englobe l'ingestion par la peau et

le tractus gastrointestinal.

La distinction entre biodisponibilité et bioaccessibilité force les praticiens à

considérer ce qu' ils mesurent réellement avec les méthodes biologiques et chimiques, qui

sont développées afin de déterminer la fraction biodisponible.

Page 39: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

17

Fig. 3. Diagramme conceptuel illustrant les fractions biodisponibles et bioaccessibles d'un

contaminant dans un sol ou sédiment selon sa localisation physique (traduit de Semple et

al. , 2004). (A: Composé sorbé (rapidement réversible) (biodisponible ou bioaccessible: lié

temporairement); B: Composé sorbé (lentement/très lentement réversible) (bioaccessible:

lié temporairement); C: Composé bioaccessible (lié physiquement); D : Composé séquestré

(non bioaccessible); E: Composé biodisponible) (traduit de Semple et al. , 2004).

A Racine

Vers

Page 40: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

18

5. Travaux effectués à l'ISMER

5.1. Extraction sélective des HAP

Des techniques d' extraction sélective ont été au centre des récentes recherches dans

l'espoir qu'elles puissent atteindre la fraction labile ou biodisponible. Comme on a pu le

voir précédemment, plusieurs auteurs ont déjà proposé des protocoles d'extraction sélective

des hydrocarbures aromatiques polycycliques (Cuypers et al. , 2000; Librando et al. , 2004;

Oleszczuk et Baran, 2004; Reid et al., 2000; Swindell et Reid, 2006; Szolar et al. , 2004).

Malheureusement, la plupart de ces techniques ne miment que faiblement les processus

inhérents à la biodisponibilité. De plus, celles-ci négligent le fait que les bactéries sont

capables de sécréter des exoenzymes et des biopolymères, ayant des propriétés

tensioactives, pour aider la dissolution partielle du matériel organique particulaire et aussi

permettre le passage à travers leur paroi cellulaire. Une méthode récemment développée

dans notre laboratoire (Barthe, 2002) utilise un tensioactif à haut poids moléculaire (Brij®

700) afin d'extraire la fraction biodisponible des molécules hydrophobes adsorbées sur la

matrice sédimentaire. L'utilisation de tensioactifs à des concentrations proches ou

supérieures à la concentration micellaire critique (CMC) permet de solubiliser des

composés non-ioniques ajoutés dans un mélange d'eau et de sol (Liu et al. , 1991). Notre

méthode repose sur l' hypothèse que l'utilisation du tensioactif mimerait l' action des

bactéries capables de sécréter des exoenzymes et des biopolymères possédant des

propriétés tensioactives qui permettent une dissolution du matériel organique ainsi que la

diffusion des molécules à travers leur membrane cellulaire (Barthe, 2002).

Page 41: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

19

6. Objectifs

Comme on a pu le voir précédemment, les études réalisées sur les mécanismes et la

cinétique de séquestration des HAP dans les sédiments ne l'ont été que sur quelques

échantillons à la fois. Notre étude permettra d'avoir une idée plus précise sur les liens qu'il

peut y avoir entre ceux-ci et les caractéristiques physico-chimiques des sédiments puisque

nous allons étudier de nombreux sédiments lacustres et marins de provenance, de

composition et de concentration totale en HAP différentes .

6.1. Objectif général

La présente étude a pour but de caractériser les mécanismes et la cinétique de

séquestration des HAP dans les sédiments lacustres et marins ayant des caractéristiques

géochimiques et environnementales très différentes ainsi que de déterminer la

bioaccumulation des HAP afin de la corréler avec les données de séquestration obtenues.

6.2. Objectifs spécifiques

Afin d'atteindre efficacement l'objectif général présenté, la présente étude a été

divisée en trois objectifs spécifiques. Les travaux d'échantillonnage, d' observation,

d ' analyse et d' interprétation seront ainsi répartis en fonction de chacun de ces objectifs:

1. Développer et intégrer les notions de séquestration des hydrocarbures aromatiques

polycycliques (HAP) dans les sédiments marins et lacustres. Pour ce faire , nous

allons étudier différentes méthodes d'extractions sélectives sur des sédiments de

provenance, de composition géochimique et de concentration totale en HAP

Page 42: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

20

totalement différentes afin de déterminer si la composition et la contamination de

ces sédiments peuvent jouer un rôle sur la séquestration des HAP.

2. Déterminer la bioaccumulation des HAP dans les sédiments marins et lacustres en

fonction de leur nature géochimique. Pour ce faire , des études de bioaccumulation

seront effectuées à l'aide de polychètes et d'oligochètes afin de déterminer si la

composition et le niveau de contamination des sédiments jouent un rôle sur la

biodisponibilité des HAP.

3. Déterminer les patrons temporels d' accumulation des HAP pour plusieurs

échantillons de niveau de contamination variable dans deux espèces de vers en

déterminant les paramètres toxicocinétiques décrivant l'ingestion, l'élimination et

les facteurs de bioaccumulation. De plus, l'habilité des organismes à métaboliser le

phénanthrène et le pyrène sera examinée par la détermination d'hydroxy-HAP

sélectionnés.

Page 43: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

CHAPITRE 1

COMP ARING BULK EXTRACTION METHODS FOR CHEMICALLY

A V AILABLE POLYCYCLIC AROMATIC HYDROCARBONS WITH

BIOACCUMULATION IN WORMS

M. Barthe and É. Pelletier

(Environmental Chemistry, 2007, 4: 271-283)

Page 44: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

22

Environmental context

Determining the bioavailability of organic contaminants in sediments is a critical step

ln assessing the ecological risks of contamination in aquatic ecosystems. Standardised

sediment bioaccumulation tests using benthic organisms are often performed to determine

the relative bioavailability of sediment contamination. Unfortunately biological methods

are time consuming, expensive and organisms are often difficult to maintain in good health

in a laboratory exposure system. Contradictory results have been reported in the last decade

and factors that affect the behaviour of extractants need to be examined for a large range of

sediments. A study was conducted to determine the bioavailability of polycyclic aromatic

hydrocarbons (P AHs) in sediment using worms and to compare the uptake by biological

samplers with mi Id solid/liquid extractions when exposed to unspiked low and highly

contaminated marine and freshwater sediments.

Page 45: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

23

Résumé

L'objet de cette étude est d'évaluer différentes techniques afin de déterminer la

disponibilité des hydrocarbures aromatiques polycycliques (HAP) dans les sédiments

contaminés. Ce but fut atteint en comparant les résultats d'études sur 28 jours de

bioaccumulation par Nereis virens et Lumbriculus variegatus avec les HAP extraits par

trois méthodes d'extraction non-exhaustives utilisant le n-Butanol (BuOH, 100%), une

solution aqueuse d'hydroxypropyl-~-cyclodextrine (HP CD) et une solution de tensioactif

de Brij700 (B700). Nos résultats montrent l'importance de considérer le niveau en HAP

dans les sédiments ainsi que la taille moléculaire des HAP quand vient le moment de

prédire leur bioaccumulation dans un échantillonneur biologique comme les vers en

utilisant une méthode d'extraction solide/liquide. La solution de tensioactif B700 a eu du

succès à prédire la bioaccumulation quand elle a été exposée à des sédiments fortement

contaminés (25-5700 j.lg g - 1). Quand des sédiments faiblement contaminés (0,06-1 ,1 j.lg

g - 1) ont été utilisés, le HPCD et le BuOH ont été des meilleurs agents d'extraction pour

estimer la bioaccumulation alors que le B700 apparaît être trop faible pour la majorité des

échantillons. Nos résultats illustrent l'intérêt et les difficultés à trouver un prédicteur

chimique adéquat pour la biodisponibilité des HAP, particulièrement parce que les

concentrations en HAP et les processus de séquestration jouent un rôle déterminant dans la

qualité des résultats. Comme le B700 est bon marché et que les solutions d'extraction sont

faciles à préparer, une procédure d'extraction utilisant ce tensioactif est proposée comme

un prédicteur fiable pour les sédiments fortement contaminés.

Page 46: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

24

Mots clés additionnels: biodisponibilité, Brij700, butanol, hydroxypropyl-~-cyclodextrine,

hydrocarbures aromatiques polycycliques (HAP)

Page 47: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

25

Abstract

The purpose of this study is to evaluate different techniques for assessmg the

availability of polycyclic aromatic hydrocarbons (P AHs) in contaminated sediments. This

goal was achieved by comparing results from 28-day uptake experiments by Nereis virens

and Lumbriculus variegatus with P AHs extracted by three non-exhaustive extraction

methods using: n-Butanol (BuOH, 100%), an aqueous solution of hydroxypropyl-~­

cyclodextrin (HP CD) and a surfactant solution of Brij700 (B700). Our results highlight the

importance of considering both the P AH level in sediments and the molecular size of P AHs

when attempting to predict their bioaccumulation in a biological sampler like worms using

a solidlliquid extraction method. The surfactant B700 solution was quite successful to

predict P AH bioaccumulation when exposed to unspiked highly contaminated sediments

(25-5700 f..lg g- I). When low contaminated sediments (0.06-1.1 f..lg g- I) were used, HPCD

and BuOH were better extractants for estimating bioaccumulation whereas B700 appeared

to be too mild as ex tractant for most samples. Our results illustrate the interest and

difficulties in finding an adequate chemical predictor for PAH bioavailabilty, particularly

because P AH concentrations and sequestration processes play a determining role in the

quality of results . Because B700 is not expansive and extraction solutions are easy to

prepare, an extraction procedure involving this surfactant is proposed as a reliable predictor

for aged highly contaminated sediments.

Additional keywords: bioavailability, Brij700, butanol, hydroxypropyl-~-cyclodextrin,

polycyclic aromatic hydrocarbons (P AHs).

Page 48: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

26

INTRODUCTION

Polycyclic aromatic hydrocarbons (P AHs) are pollutants of great environrnental

concern because of their mutagenic and carcinogenic properties. [1 ,2] Traditionally, PAH

concentrations in soil and sediment have been determined after solid/liquid extractions

using organic solvents, such as dichloromethane or hexane/acetone. However, when

hydrophobic organic contaminants (HOCs), such as PAHs, enter soil or sediment, they

undergo several loss or transport processes including volatilisation and leaching, as well as

chemical and biological degradation which modify their behaviour. In addition, sorption-

related processes may cause these chemicals to become increasingly solvent nonextractable

or irreversibly bound within the soil or sediment matrix. The result of this weathering

pro cess with time is a corresponding decrease in the extractability of P AHs. This

phenomenon has been termed an ' aging effect' and is related to a decline of their

availability for uptake by benthic orgamsms and their biodegradability by

microorganisms. [3-5] A considerable research effort has been recently devoted to develop

reliable chemical methods for the determination of labile P AHs. Laboratory methods based

on solid-phase extraction (SPE), [6, 7] persulfate oxidation, [8] solvent extraction[9, ID] and

supercritical fluid extraction[ll] have been proposed. Recently, aqueous solutions of

cyclodextrin[1 2. 13] and surfactants['2, 14] have been tested on contaminated soils and

sediments.

Page 49: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

27

In an attempt to compare different methods, Kelsey et al. (9) measured the

extractability of phenanthrene using different mild che mi cal extractants to assess its

bioavailability to earthworms and bacteria. Results suggested that n-butanol (BuOH), a

small linear and polar molecule, was the most appropriate solvent for predicting

bioavailability of phenanthrene to both organisms, but BuOH was unsuccessful to predict

the bioavailability of atrazine. Several other studies using freshly spiked soils came in

support to the BuOH-extraction procedure and showed high correlations between extraction

efficiency and bioavailability of P AHs for biodegradation or bioaccumulation by

worms.[IO, 15, 16]

Cyclodextrins, a family of cyclic oligosaccharides highly soluble in water, were also

considered as extractants because they have a hydrophobic organic cavity in the interior of

the toruS[1 7] that can contribute to the formation of a 1: 1 inclusion complex between the

cyclodextrin macromolecule and an organic moiety. [I 8) Aqueous solutions of cyclodextrin

have been used to dissolve a large range of contaminants of low aqueous solubility. It has

been shown that molecules too large to form l: 1 inclusion complexes with P-cyclodextrin

can forml:2 inclusion complexes, which consist of two macrocYcles and one guestJl 9] The

application of cyclodextrin extraction for the prediction of labile P AHs was first studied by

Reid et al. [1 2,20] So far, only few data with PAHs in field-aged samples have been reported .

Using three dissimilar spiked soils, Swindell and Reid[21] observed that cyclodextrin and

BuOH showed different efficiencies especially for soils with high clay and organic

contents.

Page 50: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

28

The application of surfactant extraction for the prediction of chemical lability was

first proposed by Volkering et al. [22] who showed that mineraI oil bioavailability could be

successfully predicted by an extraction with a non-ionic surfactant (Triton X-IOO). Triton

was also used to extract P AHs from two contaminated sediments with high organic matter

content (9.7 to 13.3%) and results compared with hydroxypropyl-~-cyclodextrin (HP CD)

extracts.[l4] Authors observed that Triton X-lOO extracted more high-molecular-weight

P AHs than cyclodextrin and tended to overestimate the bioavailability of P AHs. Among

other surfactants that can be used in a solid/liquid extraction process, our attention was

attracted by poly( oxyethylene)(1 OO)stearyl ether (Brij700), a water soluble non-ionic high-

molecular-weight surfactant, which forms micelles above its critical micelle concentration

(CMC). PAHs and other hydrophobic molecules can be incorporated into these micelles,

which lead to an increase of their aqueous solubility. In addition, a long poly(oxyethylene)

chain (n=lOO) might show sorne similarities with biosurfactants produced by bacteria and

currently found in oil contaminated soils. [23,24]

Most comparisons between extraction techniques mentioned above have been

conducted with spiked soils while paying attention to aging effects by storing treated

samples for weeks and months before running extraction and bioavailability

experiments.[1O,21] Little attention has been paid to freshwater and marine sediments with

low levels of P AHs or to sediments heavily loaded with high temperature combustion

residues.

In an attempt to compare the chemical lability of low and high-molecular-weight

P AHs more or less sequestrated in field sediments, samples from low contaminated St.

Page 51: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

29

Lawrence Estuary and from two highly contaminated industrial sites, were extracted with

three non-exhaustive extraction methods using: BuOH aloneYO] an aqueous solution of

HPCD[12,14] and a surfactant solution using high-molecular-weight Brij700 (B700).

Sediments were not spiked with labelled P AHs to avoid possible bias introduced by the

aging process recreated in the laboratory. Total extractable PAHs were determined by

dichloromethane (DCM) extraction. For comparison purposes, the same sediment samples

were used for bioaccumulation assessment using polychaete Nereis virens for marine

samples and oligochaete Lumbriculus variegatus for freshwater samples.

MATERIALS AND METHODS

Chemicals

Calibration solutions were prepared from P AH standards (method standards for

wastewater, 16 compounds 0.1 mg mL- 1) (Chromatographie Specialties Inc., Brockville,

Canada). B700, HPCD and BuOH (99.4+%) were purchased from Sigma-Aldrich

(Oakville, Canada). Acetonitrile (HPLC grade) and DCM for liquid chromatography

analysis were purchased from VWR Ltd (Mississauga, Canada). The main physical and

chemical properties of extractants are given in Table 1.

Page 52: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

30

Table 1. Sorne chemical and physical properties of the extractants

Formula MW Molecular Boiling Point

(g mor l) Volume (A3) (OC)

DCM CH2Ch 84.93 92 39.75

BuOH C4H90H 74.12 152 117.7

HPCD C!OSHI960S6 1460 262 Decompose

B700 ClsH37(OCH2CH2)nOH 4670 VariableA Decompose

(HLBB = 18.8) (n-100)

A Surfactants aggregate into supermolecular structure in water solution forming large size

micelles

B Hydrophilic-Lipophilic Balance

Page 53: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

31

Sediment samples

Low contaminated marine sediments (total PAHs < 21-lg g - 1) were collected in the St.

Lawrence Estuary and Saguenay Fjord (Eastern Canada) in July 2004 with a Van Veen

grab. Marine sediments were obtained at low tide in the Kitimat Fjord (Western Canada) in

September 2003 in the vicinity of an operating aluminum smelter. Freshwater sediments

were collected in the St. Louis River (SLR) (Que bec, Canada) (one low contaminated and

two highly contaminated sites) in October 2003 with a hand corer also in the vicinity of an

operating aluminum plant. In aIl cases, whole sediment samples were stored in clean and

tight buckets and frozen at -20°C until analysis. A small portion (100 g) of each sample

was freeze-dried for 48 h, finely ground and stored in glass desiccators . Samples were

classified following their low or high content in total P AHs (LP AHs) and their main

geochemical properties are detailed in Table 2. The organic carbon content (Corg) was

determined by a carbon analyzer (Costech, Elemental Combustion System, CHNS-O, ECS

4010) after acidification of the sample with HCI (10 %) and digestion at 80°C for 15 h to

eliminate carbonates.

Page 54: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 2. Geochemical properties of the sediment samples

Samples % Humidity % Clay % Silt

Minette Bay 22.4 0 0

EGSL04-01 56.9 3.4 51.0

SLR Upstream 45.3 12.0 87.3

Hospital Beach 18.0 0 0

EGSL04-07 54.1 4.3 73.6

EGSL04-13 40.3 5.8 73.5

SLR Downstream 38.0 23.4 76.5

SLR Outflow 36.6 20.9 77.8

Scow Grid 53.8 1.9 48.1

Scrubber 44.5 6.5 93.5

B Lagoon 53.8 5.2 89.9

% Sand % Corg

100 0.04

45.6 1.2

0.7 5.1

100 0.08

22.1 1.1

20.7 0.7

0.1 2.5

1.3 2.0

50.0 2.41

0 41

4.9 29.9

L12PAHs

(flg gol w.w.) --0.06

0.07

0.3

0.3

0.4

1.1

25.5

279

811

4442

5723

V-.l N

Page 55: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

33

DCM extraction

Each dry and powdered sediment sample (1.0 g) was extracted with 10 mL of DCM

by mechanical shaking for 16 h into a 35-mL Teflon tube. A surrogate solution (50 ~L) of

anthracene_d IO and fluoranthene_d IO at 0.4 ~g mL- I was added before shaking to determine

the recovery yield. The tube was centrifuged for 20 min at 3000 rpm and the supematant

transferred to a conical flask. The sample was concentrated under a nitrogen flow to 0.3-05

mL, diluted in pentane (2 mL), and concentrated again to 1.0 mL. The sample was eluted

through a clean-up minicolumn (Supelclean ENVI - 18 SPE 3 mL, Supelco) with 5 mL of

pentane:DCM (90: 10). The sample was concentrated in acetonitrile to 1.0 mL in an ice bath

to minimise loss of lighter P AHs. [25] Samples were then stored in a freezer at -6°C until

analysis. For comparison purposes, results were converted into wet weight (w. w.)

concentrations using the known percentage humidity of each sample.

BuOH extraction

Extractions were carried out in 35-mL Teflon tubes filled with 1.0 g of wet sediment,

10 mL of BuOH and 50 ~L of a surrogate solution of anthracene _ d IO and fluoranthene _ d IO

at 0.4 ~g mL - 1. The tubes were sealed and shaken overnight (16 h) at ambient temperature.

The tubes were then centrifuged for 20 min at 3000 rpm and the supernatant transferred to a

conical flask. The sample was concentrated under a nitrogen flow to 1.0 mL in an ice bath

to minimise loss of lighter PAHs. [15] The samples were then stored in a freezer at -6°C until

analysis.

Page 56: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

34

HPCD extraction

Extractions were carried out in 35-mL Teflon tubes filled with 1.25 g of wet

sediment, 25mL of HPCD (50 mM) aqueous solution and 50 ilL of a surrogate solution of

anthracene_d lo and fluoranthene_d lO at 0.4 Ilg mL- I. The tubes were sealed and shaken

overnight (16 h) at room temperature. The tubes were then centrifuged for 20 min at 3000

rpm. A 0.5 mL aliquot of the supernatant was then withdrawn and diluted with

methanol:water (50:50) solution in a 10-mL volumetrie flask . The role of the methanol was

to decompose cyclodextrin complexes before analysis.[12,261 The samples were then stored

in a freezer at -6°C until analysis.

Surfactant extraction

Surfactant solutions were prepared using deionised water to reach a concentration of

lOg L - 1. Triplicates of analysed wet sediment (l.0 g) were weighted accurately into 35-mL

Teflon tubes, a surfactant aqueous solution (10 mL) and 50 ilL of a surrogate solution of

anthracene_d lo and fluoranthene_d lO at 0.4 Ilg mL- 1 were th en added to each tube. The

tubes were sealed and placed on a mechanical shaker for 16 h at ambient temperature. The

tubes were then centrifuged at 3000 rpm for 20 min. Each supernatant solution was

transferred into a separatory funnel, and 10 mL of DCM was added to transfer the extracted

PAHs into the organic phase. Water-soluble surfactants were not quantitatively extracted by

DCM and did not interfere with subsequent liquid chromatography analysis. The organic

phase was removed and the extraction with DCM was repeated once more. Organic

Page 57: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

35

fractions were combined in a glass tube and the sample analysed as described above for the

DCM extraction. [27] The samples were then stored in a freezer at -6°C until analysis.

Optimization of B700 extraction

Preliminary work with surfactants indicated that their efficiency to extract P AHs from

sediments varied following their molecular structure and HLB (hydrophobic-lipophobic

balance). [27] Selection criteria for the choice of the best performing surfactant were based

on their efficiency to extract P AHs (results not shown) and the best reproducibility of the

extraction method. High-molecular-weight B700 turns out to be the most efficient

surfactant tested and the reproducibility of successive extractions of the same sample

reached 99.9 ± 1.5 % (Table 3).

The relationship between B700 concentrations in aqueous solution and the extraction

efficiency (Fig. 1) shows that the concentration of total P AHs extracted from contaminated

sediment increased with the increase of the surfactant concentration up to an optimum

value of ~5.25 x l0-3M and then reached a plateau. This phenomenon is known for

surfactant extraction and corresponds to the CMC, [28] the concentration above which

micelle formation becomes appreciable with a maximum hydrophobic effect and a

maximum retenti on capacity of neutral lipophilic molecules. [29,3 0] Based on these results, a

surfactant concentration that corresponded to 5.25 x l0-3 mol L- 1 was chosen for the B700

extraction.

Page 58: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

36

Table 3. Reproducibility of the B700 extraction repeated three times on the same marine

sediment

PAHs concentration (~g g-I w. w.) Mean± SD

Fluorene N/DA N/DA N/DA N/DA

Phenanthrene 0.047 0.051 0.052 0.050 ± 0.003

Anthracene N/DA N/DA N/DA N/DA

Fluoranthene 0.216 0.218 0.213 0.216 ± 0.003

Pyrene 0.333 0.334 0.329 0.332 ± 0.003

Bz( a )Anthracene 0.049 0.046 0.042 0.046 ± 0.004

Chrysene 0.082 0.082 0.079 0.081 ± 0.002

Bz(b )F1uoranthene 0.025 0.022 0.021 0.023 ± 0.002

Bz(k)Fluoranthene 0.021 0.022 0.018 0.020 ± 0.002

Benzo( a )Pyrene 0.015 0.014 0.013 0.014 ± 0.001

Dibz( a,h)Anthracene 0.001 0.001 0.001 0.001 ± 0.000

Bz(g,h,i)Perylene 0.019 0.018 0.019 0.019 ± 0.001

LPAHs 0.808 0.808 0.787 0.801 ± 0.012

A Below detection limit

Page 59: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

37

Fig. 1. Extraction efficiency of P AHs from marine sediment with a molarity gradient of

commercial surfactant B700. The optimum concentration has been determined at the

beginning of the plateau.

0.5

'01) 01) :::1. ~ 0.3 ~ o .-...... ro ~ 0.2 (]) u ~ o u ::r: 0.1 -< 0...

0.0 0.000

• 5.25 X 10-3 mol L- 1

• R2 = 0.98

0.002 0.004 0.006 0.008 Surfactant concentration (Brij ® 700) (mol L- 1)

Page 60: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

38

Bioaccumulation studies

Polychaetes Nereis virens (3 to 5 g w.w.) were collected at low tide in Parc National

du Bic, near Rimouski along the St. Lawrence Estuary (Canada) . Organisms were gently

screened from the sediment, transported to the laboratory, and acc1imated in a 15- 20-cm

layer of their native sediment overlaid with flow through marine water for 10 days. The

worms were fed three times during these 10 days with commercial goldfish food. To

estimate PAH bioavailability in marine sediments, polychaetes were placed in one-litre

beakers (one polychaete per beaker) that contained 300 mL of sediment to be tested and

700 mL of seawater. Beakers were placed in an aquarium with flow-through seawater and

constant aeration. At each sampling time, several worms were removed from sediment,

rinsed in deionised water and allowed to purge their gut contents by standing for 8 h in

circulating seawater. [3 1]

Freshwater oligochaetes Lumbriculus variegatus, ~2 cm in length, were obtained

from Aquatic Research Organisms (Hampton, NH). As soon as the worms were received,

they were added to the St. Louis River sediments to start the experiment without a

depuration period because these worms originated from a rearing farm and were not

previously exposed to contaminated soil. Exposures of worms were conducted in 500-mL

glass beakers that contained 200 mL of sediment to be tested and 300mL of dechlorinated

tap water in a flow-through aquarium with aeration. The number of organisms per beaker

was 60, which provided a total mass of 0.4 to 0.5 g w.w. For each sampling, animaIs were

gently sieved from the sediment, rinsed in deionised water and allowed to purge their gut

for 6 h in c1ean dechlorinated tap water.[32] Polychaetes and oligochaetes were not fed

Page 61: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

39

during the experiment. After the gut purging period, worms were put in scintillation vials,

freeze-dried at -20oe for 58 h, and dry residues crushed in a fine powder for chemical

extraction and analysis .

Worms (polychaetes and oligochaetes) were sampled seven times (at 0, 1, 3, 5, 7, 14

and 28 days) in triplicate (3 beakers). A total exposure period of 28 days was considered as

a sufficient time to ensure a steady state tissue concentration in both polychaetes and

0ligochaetesY3,34) As shown for four different samples (Table 4), the steady state plateau

was reached after 3 to 14 days. General conditions of the exposure system (pH, water

temperature, sali nit y for marine samples, dissolved oxygen and conductivity) were

monitored at each sampling day and found constant for the exposure period. Only results at

28 days are reported here.

Page 62: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

40

Table 4. Examples of kinetic data for bioaccumulation of total P AHs (Ilg g -1 )

mean ± s.d., n = 3

Time (day) Bioaccumulation of total PAHs (Ilg g- ')

Minette Bay SLR Upstream Scrubber B Lagoon

0 0.07 ± 0.002 0.39 ± 0.01 2.11 ± 1.01 0.83 ± 0.03

1 1.19±0.01 0.52 ± 0.02 104.7 ± 28.8 7.3 ± 0.3

3 1.30 ± 0.01 0.92 ± 0.04 153 .5 ± 20.3 15 .9 ± 0.3

5 1.32 ± 0.02 1. 19 ± 0.01 163 .7 ± 10.9 20.8 ± 1.1

7 1.32 ± 0.01 1.22 ± 0.01 167.1 ± 11.6 21.5 ± 0.9

14 1.32 ± 0.01 1.24 ± 0.01 167.3 ± 9.4 21.5 ± 1.4

28 1.33 ± 0.01 1.24 ± 0.02 168.7 ± 12.2 22.4 ± 0.09

Page 63: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

41

P AHs in biological tissues

Surrogate solution (50 ilL of anthracene_d lO and fluoranthene_d lO at 0.4 Ilg mL- 1)

was added to 200 mg of dried and ground worm tissue in a 35-mL Teflon tube and stored at

4°C for 16 h. Hexane:acetone (50:50, 5 mL) was then added to the mixture. The tube was

placed into an ultrasonic bath for 30 min. The tube was then mechanicalIy shaken for 3 h

and then returned again to the ultrasonic bath for 30 min. The tube was centrifuged for 15

min at 3000 rpm and the supernatant transferred to a conical flask. The extract was

concentrated under a nitrogen flow at ambient temperature to a volume of 0.5 mL. The

extract was eluted through a clean-up mini-column (Supelclean ENVI - 18 SPE 3 mL,

Supelco) with 5 mL of hexane:acetone (90: 10). The resulting clear solution was

concentrated to near dryness under nitrogen flow and re-dissolved in ~ ImL of acetonitrile

and evaporated again to 200 ilL in an ice bath to minimise loss of lighter P AHs. Analyses

were conducted on triplicate samples for each organism and sampling time.

P AHs analysis

AlI P AH analyses were carried out by liquid chromatography (LC) with fluorescence

detection. The apparatus consisted of a Rheodyne injector with a 20-IlL injection loop, a

Shimadzu LC-I0AD pump, a Supelcosil LC-PAH column (25 cmx 3 mm), and a Spectra

System FL3000 fluorescence detector. AlI analyses were done at a constant flow rate of 0.8

mL min - 1 with a mixture of nanopure water and acetonitrile as a mobile phase. The pump

program began at 75% acetonitrile and increased to 95% in 10 min and then to 100% in the

next 10 min, with a final plateau of 10 min. The cycle returned to 75% acetonitrile after a

Page 64: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

42

total run time of 35 min. The excitation wavelength of the fluorescence detector was settled

at 280 nm and the emission was detected at 340 nm during the first 5.5 min for lighter

P AHs and th en shifted to 410 nm until the end of the pro gram for heavier P AHs.

Quantification was based on peak areas using five calibration solutions (0.002-005

/lgmL - 1). For quality control, a 0.5 /lgL - 1 PAHs Mix Standard Solution (Supelco) was

analysed every 10 samples. Fluorene (FLU), phenanthrene (PHE), anthracene (ANT) ,

fluoranthene (FLT), pyrene (PYR), benzo(a)anthracene (BaA), chrysene (CHR),

benzo(b )fluoranthene (BbF), benzo(k)fluoranthene (BkF), benzo(a)pyrene (BaP),

dibenzo(a,h)anthracene (DBA) and benzo(g,h,i)perylene (BPE) were quantified. Five

successive injections of the same extract provided a variability of < 1 0% for each identified

and quantified peak.

Two deuterated PAHs (anthracene_d lO and fluoranthene_d lO at 0.4 /lg mL- 1) were

used as internaI standards and were spiked in sediments and worm tissues before extraction.

Recovery of the internaI standards ranged from 76.3 ± 9.5 % (mean ± standard

deviation) to 98.7 ± 2.5 % (extractions of worms), from 88.9 ± 2.1 % to 91.2 ± 2.1 %

(extraction by DCM), from 89.6 ± 6.9 % to 90.5 ± 3.1 % (extraction by BuOH), from 85.8

± 2.0 % to 94.9 ± 6.4 % (extraction by B700), and from 88 .9 ± 2.8 % to 94.3 ± 4.3 %

(extraction by HPCD).

Data treatment

The results obtained by mild solid/liquid extractions and from worms allocated the

calculation of the extraction efficiency (% XTRAC) for each sediment. % XTRAC is

defined as the following ratio:

Page 65: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

%XTRAC = Q worms xlOO Q DCM

43

where Qworms (Ilg g- l w.w.) and QDCM (Ilg g- l w.w.) stand for quantities extracted from

worms and by DCM, respectively.

RESULTS

St. Lawrence Estuary (EGSL04-01 and -07) and Saguenay Fjord (EGSL04-13)

sediments show quite similar grain-size distribution and percentage organic carbon (Table

2). Total PAHs in these deep-water marine sediments were aIl below 2 Ilg g- l (w.w.) with

dominance of 3-4-ring aromatics such as phenanthrene, fluoranthene, pyrene, chrysene and

benzo(b )fluoranthene (Fig. 2). Particulate organic matter present in these coastal sediments

is mainly derived from marine productivity and debris from terrestrial vascular plants. [35- 37]

Freshwater sediments from the St. Louis River (SLR samples) are also dominated by silt

with a relatively high proportion of clay. Sample SLR Outflow was collected near an

industrial outflow pipe from a nearby aluminum smelter and shows a relatively high level

of PAHs dominated by 4-5 rings such as pyrene, chrysene, bz(b)fluoranthene,

bz(k)fluoranthene and bz(a)pyrene (Fig. 2). Marine samples from Hospital Beach and

Minette Bay are clean sandy sediments taken at low tide and show very low P AH levels

and carbon content (Table 2). Two other samples were taken in the vicinity of an aluminum

plant (B Lagoon and Scow Grid) and contained high levels of aluminum smelter residues

mixed with natural muddy sediment and organic matter from a vegetated drainage basin.

Page 66: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

44

FinaIly, one more sample was taken from the aluminum scrubber room after neutralisation.

The P AH pattern of these last three industrial samples exhibits high levels of aIl analysed

P AHs (Fig. 2).

Page 67: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

45

Fig. 2. Distribution pattern of P AHs in four typical samples used to compare extraction

methods and bioaccumulation using worms.

1.00

1 0.80 0.60

,-.. 0.40 3 0.20 3

-;

: 0.16 20 c:

.~ 0.12 e c tU U c: o u

0.08

0.04

1000i 800 600

î 400

3 360 'Ol)

Ol)

20 c: o 'iii .... C tU U c: o u

320 280 240 200 160 120 80 40 o

/

EGSL04-13

l

Scrubber

l /

r1 n n

PAH

100

1 80 60 40

,-..

3 24 3

:.-

20

16

12

8

4

o

1200

1000 ,-..

3 3 800 -; Ol)

Ol) ~ '-" 600 c: .S: 'iii t: c: 400 tU U c: 0 u

200

0

SLR Outtlow

lin l ;,

,-,nn n B Lagoon

r-

n n

PAH

Page 68: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

46

Results of extraction and bioaccumulation experiments are glven In Table 5. %

XTRAC of total PAHs is the yield of the chemical extraction or the worm bioaccumulation

when compared with the DCM extraction, which is considered the method of extracting aU

P AHs present in sediment samples. In sorne low contaminated samples, it was often

possible to extract more P AHs with BuOH and HPCD than with DCM. Similarly, worms

bioaccumulated more PAHs than extracted with DCM. Only surfactant B700 was less

efficient for extracting available P AHs in these samples. The efficiency of extractants was

strongly reduced in highly contaminated sediments although BuOH remained quite strong

with a yield that ranged from 27 to 58%. However, when comparing extractant

performance with PAHs bioaccumulated in worms, it becomes clear that HPCD and B700

ex tracts provided a much more realistic level of P AHs than BuOH, which grossly

overestimated the amount of total P AHs available to the worms in aIl cases.

Page 69: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 5. Results of extractions and bioaccumulation experiments with %XTRAC given in parentheses . Extractant values

followed by a star are significantly different from the corresponding worm bioaccumulation value. This is an indication of the

failure of the ex tractant to match the value of total PAHs observed in worms (P>O.Ol) (mean ± std. dev., n = 3)

Sediments DCM extraction BuOH extraction HPCD extraction B700 extraction Bioaccumulation (28 days)

(~g g-l w.w.) (~g g-l w.w.) (~g g-l w.w.) (~g g-l w.w.) (flg g-l w.w.)

Minette Bay 0.06 ± 0.02* 2.5 ± 0.5* 0.4* 0.02 ± 0.001 * 1.3±0.1 (> 100%) (> 100%) (33%) (>100%)

EGSL04-01 0.07 ± 0.03* 0.06 ± 0.01 * 0.3* 0.007 ± 0.004* 0.8 ± 0.3 (80%) (> 100%) (10%) (>100%)

SLR Upstream 0.3 ± 0.1 * 1.2 ± 0.4 1.4 0.09 ± 0.007* 1.3 ± 0.06 (> 100%) (> 100%) (26%) (>100%)

Hospital Beach 0.3 ± 0.05* 0.07 ± 0.004* 1.0 0.03 ± 0.009* 1.0 ± 0.2 (23%) (>100%) (10%) (>100%)

EGSL04-07 0.4 ± 0.3* 0.2 ± 0.03* 0.4* 0.011 ± 0.002* 0.6 ± 0.1 (50%) (>100%) (3%) (>100%)

EGSL04-13 1.1 ± 0.2* 0.5 ± 0.2 0.3* 0.04 ± 0.01 * 0.9 ± 0.1 (45%) (27%) (4%) (86%)

SLR Downstream 25 .5 ± 2.5* 11.9 ± 0.5* 0.2* 0.7 ± 0.2 0.8 ± 0.04 (46%) (0.9%) (2.7%) (3.3%)

SLR Outflow 279 ± 28* 163 ± 13* 4.7* 8.9 ± 4.1 8.9 ± 0.2 (58%) (1.7%) (3.2%) (3.2%)

Scow Grid 811 ± 154* 186 ± 36* 2.5* 1.6 ± 0.3 1.5 ± 0.2 (23%) (0.3%) (0.2%) (0.2%)

Scrubber 4442 ± 538* 1653 ± 105 26.9* 86 ± 8 86 ± 9 (36%) (0.6%) (1.9%) (1.9%)

B Lagoon 5723 ± 190* 1536 ± 107* 5.4* 30.7 ± 4.5 21.3 ± 9.4 (27%) (0.1 %) (0.5%) (0.4%)

-+:>. -...l

Page 70: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

48

First, we examined the relative efficiency of chemical extractants to remove PARs

from sediment foUowing their molecular size, by classifying PARs by their number of

rings. For samples highly contaminated by aluminum smelter wastes it is remarkable to see

how BuOR and B700 work similarly to DCM for aU samples whereas the RPCD solution

seems to behave differently at least in the case of SLR Downstream and possibly with

Scow Grid samples (Fig. 3). Assuming DCM ex tracts nearly aU the PARs present in these

sediments, it becomes clear that non-exhaustive extractions with BuOR and B700 succeed

to mimic, in most cases, the exhaustive extraction when considering only a relative

proportion of ring numbers. The right column in each panel (Fig. 3) gives the relative

proportion of 3-, 4-, and 5- to 6-ring PARs found in worms after 28 days. In most cases the

proportion of 4-ring PARs is enhanced when compared with DCM and mild extractants,

and the proportion of 5- to 6-ring PARs is reduced. Again the RPCD solution does not

perform weil in the SLR Downstream and Scow Grid samples whereas B700 does very

weU except with ScowGrid. An early interpretation of these results would lead to the

conclusion that mild extractants provide a good means to predict bioaccumulation of PARs

by their molecular size in worms, but the extraction of low contaminated sediments tells us

another story.

Page 71: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

100%

40% -

13 rings 4 rings

MM 5-6 rings

J 3 rings 4 rings 5-6 rings

DCM 0700 eubil 1-IFC0 Worms

100%

M 8700 80011 HPCD Worms

100%

80%

7011, -

49

Fig. 3. Comparison of extraction yields and worm bioaccumulation of PAH groups in

highly contaminated sediments. Amounts of PAHs are normalized to the sum of PAHs

extracted with each method.

B Lagoon

SLR OuttIow

nr.in R700 AuesH HPCS1 Worms

Extraction techniques and Moaccumu lation

Scrubber

M'$4 n'Inn FSC1H HPr71 Akwm

atraction techniques and boaccumulation

SLR Downstream

Extraction techniques and bioaccumulation

Scow Gnd

Extraction techniques and bioaccumulation

_ _1 3 rings 4 rings 5-6 rings

DCLA 8700 8u0H HPCO Worms

Extraction techniques and bioaccumulation

49

Fig. 3. Comparison of extraction yields and worm bioaccumulation of P AH groups in

highly contaminated sediments. Amounts of P AHs are normalized to the sum of P AHs

extracted with each method.

8 Lagoon

'" ~ Q.

EXll aCllOTllechnlQues arld bloaccumulation

Scrubber

OCI,I 8 7110 BuOH HPço Worms

E;dr action techniqu os and bioElccumu latioo

&;aw Gnd

ExtIaction techniQu es and bioaccumulaticn

100%

W'K,

W i,

4.0',)(,

111'110

SL Outrlow

~ 3 rings c::::J ~ rings _ 5.6 rlog$

Extracllon techniques and booaccumu lallon

SLR Downst ream

OC , Ell 00 BlDH HI'CO W<rm'

::=J 3 rings c::::J 4 rings _ 5-6 rln9s

Extraction techniques and bioaccumu lation

:=:J 3 rings c::::J 4 rinlls _ 5-6(10 9 5

Page 72: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

50

We first observed that DCM extracted fairly constant proportions of 3, 4, 5 to 6 rings

In similar samples (EGSL04-01 , -07, and -13) and even in dissimilar samples from

freshwater (SLR Upstream) and west coast samples (Hospital Beach and Minette Bay)

where 3 rings account for from 20 to 40% and 5- 6 rings for from lOto 30%. HPCD and

B700 solutions provided inconsistent results when compared with DCM, whereas BuOH

was often quite close to DCM results except for Minette Bay (Fig. 4). Worms exposed to

low contaminated sediments showed a distribution pattern of bioaccumulated P AHs quite

the same in aH the studied stations (4 rings> 3 rings> 5-6 rings with proportions of 63- 87%,

11-34% and 2-7%, respectively). Very low amounts of 5-6 rings were accumulated in

worms although a large proportion of these heavy P AHs were consistently extracted by

solvents and extraction solutions. Neither DCM nor mi Id extractants correctly predicted the

proportion of 4-ring P AHs biaccumulated in both freshwater and seawater worms. AH

results showed a similar behaviour for both worm species and were pooled together for

further discussion.

Page 73: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

51

Fig. 4. Comparison of extraction yields and worm bioaccumulation of PAH groups in low

contaminated sediments. Amounts of P AHs are normalized to the sum of P AHs extracted

with each method.

EG L04.{)1

Exlrachon tecMlques arod bioaccumu lalion

EGSL04.{)7

OCM àroo !luCH HPaJ INOOl1S

Extraclion I" chroiques arod bioaccumu lalion

EGSL04-13

OCM BroO BuOH HPCO IN om,.

E.1raction techniques and bioaccumu lation

HOSPltat Beach

nr. .. , R?nn RI ()H HP<":O IfJ .. ", ..

[:::=J 3 ri " os c::J 4 rings _ S·Orlogs

ExtracllQ. tecMlqull!$ and bioaccuml,l lalloo

Mmette Bay

oc ., B100 BuOH HPCO Worm.

'--1 3 rings r:::::J 4 ringS _ 5·6 rings

Extra cCi on teclmiques ilnd biotl ccumu lation

SLR Upstream

[)CM B700 BUOH HPCO W",m .

c::J 3 rings 4 rings

_ 5-6 110 g$

Extractioo techniques and bioaccumu lation

Page 74: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

52

We also examined the relationship between individual P AHs bioaccumulated in

worms (both species) at a steady state and their bioavailablility as predicted by each

extractant for both groups of samples pooled together. Fig. 5 and Table 6 illustrate the

relationship between extracted and bioaccumulated low molecular-weight (LMW: fluorene,

phenanthrene, anthracene, fluoranthene, pyrene, benzo( a)anthracene, and chrysene) and

high-molecular-weight (HMW: benzo(b,k)fluoranthene, benzo( a )pyrene,

dibenzo( a,h)anthracene, and benzo(g,h,i) perylene) P AHs.

PAH lability as determined by BuOH (Fig. 5a) was not in good agreement with

worms data for both LMW and HMW P AH groups with high slopes and low correlation

coefficients (Table 6). In the opposite direction, P AH lability as determined by HPCD (Fig.

5b) was lower, particularly with LMW compounds, than bioavailability for worms although

discrepancy between both datasets is much lower than with BuOH. Finally, PAH lability, as

determined by B700 (Fig. 5c) was found in good agreement with worms data particularly

for LMW PAHs with a slope of 1.0 and R2=0.83. Data points for these compounds are

closely distributed around the dotted line, which represents al: 1 relationship. Predicted

PAH bioavailability was not in as good agreement for HMW PAHs (R2=0.74) (Table 6).

When LMW and HMW PAH data are included in linear regression analysis, the B700

method gave the best estimate of PAH bioavailability. Using zero-intercept fitting, linear

regression resulted in a slope of 1.01 and R2=0.82 for B700 compared with a too low slope

(0.23) for HPCD and a far too high si ope (18.46) for BuOH with poor R2 in both cases.

Page 75: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

53

Fig. 5. Low CLMW) and high CHMW) molecular weight PAHs extracted by BuOH Ca),

HPCD Cb) and B700 Cc) as a function ofbioaccumulated PAHs in worms over 28 days. The

dotted lines represent a hypothetical 1: 1 correlation.

Ca) LMNPAHs HMN PAHs

450 350 lL 025 L ' 400 . " • 05 .' 300 350

. ,., / / . o . • • 250 0

~ 300 0 0.5 1 ~ 0 025 ~ ~

-Dl 250 -Dl 200 Dl Dl .3 200 • .3 150 I • • I 0 150 0 :J :J 100 en 100 en

50 50 •

0 ~ .... - - --0 ---------

0 5 10 15 20 0 1 2 3 4 Worrrs (jJg g" w.w.) Worrrs (jJg g" W .w .)

Cb) LMN PAHs HMNPAHs

20 5

'b '~ • 0: /. / ~/ •• 4 0.5 h

15 /

~ ~ o ~ ~ 0 0.5 1 ~ 3

"Cl "Cl .3 10 / Dl .3

0 0 2 0

"," "'. 0 Cl.. Cl.. I 5 / • I

0 0 0 5 10 15 20 0 2 3 4

Worrrs (jJg g" w.w.) Worrrs (jJg g" W .w .)

CC) LMW PAHs HMWPAHs

25 10

05~ o~Lt • r· / / 20 8 . / / • /.

o .-.-.., 0 ~ ~ 0 0.5 ~ 15 0 0.5 1 ~ 6 bl

., • Dl

.3 10 .3 4 0 • 8 0 ,.... ,.... en en

5 2

• • 0 0 0 5 10 15 20 0 1 2 3 4

Worrrs (jJg g" w.w.) Worrrs (jJg g" w .w .)

Page 76: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 6. Linear correlation parameters obtained when comparing LMW and HMW P AHs extracted with BUOH, HPCD and

B700 with P AHs bioaccumulated in worms for both low and high contaminated sediments

The first line for each P AH group gives results for the intercept forced to zero and the second is for free intercept.

PAHs

LMW

HMW

AU PAHs

Bu OH extraction

Slope

16.98

16.16

93 .71

93.92

18.46

17.28

Intercept R2

0.0 0.48

8.98

0.0

-0.45

0.0

Il.90

0.49

0.95

0.95

0.42

0.44

HPCD extraction

Slope

0.22

0.21

0.91

0.87

0.23

0.22

Intercept R2

0.0 0.57

0.09

0.0

0.07

0.0

0.14

0.58

0.66

0.67

0.48

0.50

B700 extraction

Slope

1.00

1.01

1.65

1.65

1.01

1.01

Intercept R2

0.0 0.83

-0.06

0.0

0.006

0.0

0.02

0.83

0.74

0.74

0.82

0.82

VI +:>.

Page 77: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

55

To gam a better understanding on the capacity of the B700 method to predict

individual P AH bioaccumulation in worms, the ratio of P AH concentrations determined by

B700 extraction to PAH concentrations found in worms were plotted against the PAH

octanol-water partitioning coefficient (Kow) (Fig. 6). A ratio approaching 1 indicates the

ability to predict PAH bioavailability based on B700 extraction, whereas a ratio < 1

indicates a low chemical lability, and a ratio > 1 indicates an over-predicted PAH

bioavailability. Low contaminated sediments show too low ratios even for most high Kow

P AHs. However, highly contaminated sediments present a quite different picture as aIl high

log Kow (> 5.8) PAHs exhibit a ratio> 1 with high variability between replicates whereas

B700 extraction is a good predictor of PAH bioavailability for compounds with log Kow

values <5.8 (Fig. 6).

Page 78: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

56

Fig. 6. Relationship between PAR octanol-water partitioning coefficient (Kow) and the

ability to predict PAR bioavailability using B700 availability methodology.

4

3

2

... .. · -ANT-·

FLU

Low contaminated sediments

DBA

BPE

FLT BaA PYR o ~--+---~~----~--~~~~~~----~-+~--~~--+----------,

4

- 1

8

7

6

5

4 PHE

3

2

FLU

5 6 7

Highly contaminated sediments

CHR

BaA

BaP

DBA

BkF BbF

BPE

L ...... .

8

o ~----~±+------~------~~--~------~~----~-------------, 4 5 6 7 8

- 1

Page 79: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

57

DISCUSSION

In this study three mild extraction methods were used with marine and freshwater

sediments in an attempt to estimate the bioavailability of P AHs for invertebrates in constant

contact with sediments. Our results highlight the importance of considering both the level

of P AHs in sediments and the molecular size of P AHs when attempting to predict

bioaccumulation in a biological sampler like worms using a solid/liquid extraction method.

A surfactant B700 solution was quite successful to predict the PAH content in worms when

exposed to highly contaminated sediments and smelter residues, whereas BuOH extracted

lOto 50 times too much P AHs being a far too efficient solvent for absorbed P AHs. When

low contaminated sediments are use d, HPCD and BuOH were revealed to be better for

estimating bioaccumulation in worms whereas B700 appeared to be a too mild extractant

with a very low yield for most samples.

Extractable P AHs and sediment properties

The over 100% yield (% XTRAC) often observed with low contaminated sediments

using BuOH and HPCD might be in part an artifact introduced by the extraction method

using DCM. As DCM is water insoluble and do es not work properly with wet sediments,

samples have been freeze-dried before extraction whereas wet samples were used with mild

extractants. The drying process may have modified the structure of the organic matter and

reduced the availability of small amounts of P AHs to DCM extraction. These anomalous

results might also sirnply reflect analytical variability because of inhornogeneity of sorne

Page 80: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

58

sub-samples for the same station. Extractant B700 did not give a yield of over 100% with

the lowest contaminated samples which possibly indicates its low ability to disaggregate

natural organic particles (pellets of invertebrates) usually present in natural sediments. Even

if Hospital Beach and Minette Bay have the same sand percentage (100%) and are both low

contaminated sediments, their % XTRAC by B700 was quite different (10 and 33%,

respectively). This difference might be related to the size of the sand particles and the

nature of the organic matter. Indeed, soils or sediments that are dominated by bigger

particles generally have a greater mineralisation of P AHs. [38] A closer examination of

particle size analysis (not shown) confirmed that Hospital Beach had finer sand particles

than the Minette Bay sample. BuOH also extracted much more P AHs from Minette Bay

than from Hospital Bay although DCM found less PAHs in Minette Bay.

The % XTRAC for two of the three St. Lawrence stations by B700 are quite similar

(3% and 4% for EGSL04-07 and EGSL04-13 , respectively) even though the third one is

higher (l 0%). These results imply a possible better sequestration for stations -07 and -13

than for EGSL04-01 , which has a higher sand percentage (45.6% compared with 22.1 and

20.7%) with a comparable level of organic carbon content. BuOH extraction shows the

same trend. Carmichael and Pfaender[38] showed that the silt and clay fractions of the soils

they studied were significantly linked to the P AH mineralised percentage. A quick

examination of Fig. 4 shows the disparity of results between chemical extractants when

looking at the molecular size of PAHs, particularly for St. Lawrence Estuary samples.

HPCD and B700 extracted relatively more 3- and 4-ring PAHs because of their better

solubility in water than 5-6-ring P AHs, which were better extracted by DCM and BuOH,

Page 81: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

59

both being organic solvents able to dissolve organic lipids and reach sequestrated P AHs.

Worms did not extract 5-6-ring PAHs and simply retained 3- and 4-ring PAHs.

With highly contaminated sediments, BuOH extractions never exceeded the DCM

extraction efficiency, although BuOH appeared very efficient when compared with HPCD

and B700. Attempts to relate % XTRAC to the geochemical properties of highly

contaminated sediments were unsuccessful. The presence of huge quantities of P AHs

mainly from aluminum smelter residues overwhelms other physical or chemical factors in

the extraction process. The frequent observation of non-linear sorption isotherms for

organic compounds introduced into soil suggests a saturation of sorption sites. [39] Such a

saturation would be reflected in a declining percentage of the chemical that is sequestered

as the concentration increases as shown by Chung and Alexander. [40] When examining the

pattern distribution of 3-, 4- and 5-6-ring PAHs for aIl chemical extractions in aIl heavily

contaminated sediments, it turns out that aU patterns are quite similar (except for

unexplained HP CD in the SLR Downstream sample),which confirms a similar behaviour of

these extractions where solubility of the adsorbed P AHs on inert particles becomes the

main factor that controls the efficiency of the extraction. As already observed for low

contaminated sediments, both worm species did not extract and bioaccumulate 5-6 rings

although a very large proportion of these heavy P AHs were present in these samples (Fig.

2).

In a recent paper, our laboratory examined the sorption and desorption properties of

some of the samples studied here using different chemical tools. [41] We observed that P AHs

in a highly contaminated B Lagoon sample were much less available to a desorption

Page 82: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

60

process that P AHs in freshly released scrubber residues, although both samples showed a

quite similar distribution of extractable P AHs. This reduced availability was attributed to a

weathering pro cess that resulted in a stronger sequestration of P AHs in the 20-year-old

lagoon sediment. [41] This finding is supported by present results (Table 5) where % XTRAC

is higher with scrubber than B Lagoon samples for all chemical soft extractions and also

with worms. Worms bioaccurnulated a higher proportion of 3- and 4-ring PAHs in the

scrubber than in the B Lagoon sample (Fig. 3), which is in agreement with the hypothesis

that LMW PAHs in the scrubber were more available than in the lagoon sediment.

Nam and Alexander[42] suggested that the bioavailability of hydrophobic compounds

(such as PAHs) can be extensively reduced by particles that bear nanopores with

hydrophobic surfaces. Hydrophobic compounds may become sequestered and less available

to living organisms if they penetrate such porous materials. [43,44] Mayer[45] proposed that

organic matter in marine sediments is protected by its location inside pores too small to

allow the entrance or function of hydrolytic enzymes. Indeed, pores with a diameter of less

than 100 nm have been observed in a variety of dissimilar soils. [46,47] A molecule that is

entrapped in a nanopore with a diameter smaller th an 100 nm is probably unavailable to

any living organism since the smallest bacteria have a larger diameter. [42] Similarly, large

HPCD molecules and B700 micelles most probably cannot reach these nanopores, which

reduce their capacity to capture small P AHs. On the other hand, DCM and BuOH are much

smaller molecules (Table 1) and can more easily access the smallest pores, which means a

better extraction capacity. The situation appears different for 5-6-ring PAHs with their

large volume (229A3 for BaP) which prevents them from penetrating nanopores and leaves

Page 83: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

61

only larger pores available for large HPCD and surfactant micelles to access. This might be

the reason why HPCD succeeded to predict the availability of high-molecular-weight P AHs

in worms (Fig. 5).

Chemically availability v. bioaccumulation

In this study soft extraction methods were used to estimate the bioavailable fraction

of P AHs from unspiked and untreated sediments. Several researchers have suggested that

mild BuOH extraction may be an appropriate means for predicting P AH

bioavailability. [9,10,48] However, our results indicate that BuOH-extractable PAHs do not

correlate with P AHs found in worms exposed to sediments for 28 days, as BuOH

overestimated by up to 540 times the P AH availability in highly contaminated samples. In a

recent study by Juhasz et al. using creosote contaminated SOil,[49l BuOH extraction

underestimated the 3-ring and overestimated the 4-, 5- and 6-ring PAHs compared with

biodegradation. Reid et al. and Macleod and Semple/ l3,50] using pyrene spiked soils, also

found an overestimation of pyrene bioavailability by BuOH extraction compared with

bacterial mineralisation. Conversely, Kelsey et al. and Liste and Alexander[9, 10] found good

relationships between P AH desorption using BuOH and P AH bioavailability (estimated by

microbial degradation and earthworm uptake assays) in laboratory spiked soil that

contained single P AH compounds. The above studies exemplify conflicting results present

in the literature on bioavailability research using spiked soils and low molecular- weight

primary alcohols. Spiking and aging soil or sediments under laboratory conditions for

weeks or months may not be long enough to truly reflect field conditions. In addition,

contaminant bioavailability may be influenced by the presence of other organic

Page 84: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

62

contaminants; a situation not taken into account in single P AH spiked soil studies. As a

result, spiked soil studies (determining contaminant availability and sequestration) often

fail to mimic conditions found in field contaminated soils.[51]

In the present study, the assessment of PAH bioavailability using HPCD extraction

resulted in a good prediction of total P AH bioavailability in low contaminated sediment

samples, but relative proportions of 3-, 4-, and 5-6-ring P AHs did not reflect the

proportions found in worms. HP CD underestimated total P AHs in most highly

contaminated samples. HPCD was developed as an extractant for assessing contaminant

bioavailability because HPCD has a high solubility, the prevalence of hydroxy functional

groups on the exterior of the torus, and a hydrophobie organic cavity, makes it possible to

form an inclusion complex with PAHs.[13] HPCD extraction was in good agreement with

bioavailability as determined by mineralisation in phenanthrene spiked soil.[13] Conversely,

Cuypers et al. and Juhasz et al. [14,49] used petroleum-contaminated harbour sediments and

creosote-contaminated soil and found HPCD extraction predicted correctly 3- and 4-ring

P AH biodegradability, whereas the biodegradability of 5- and 6-ring P AHs was

overestimated.

This study presents a first attempt to assess PAH bioavailability with surfactant B700.

When aIl PAH data are included in the same linear regression analysis, the B700 method

gave the best estimate of PAH bioavailability (R2=O.82 and slope=l.Ol) (Table 6).

However, B700 is less efficient with low contaminated sediments, most probably because

of its limited capacity to penetrate lipidic particles or tissues where P AHs have been

accumulated by micro- and macro-invertebrates. In both high and low contaminated

Page 85: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

63

sediments, worms showed a low proportion of 3-ring P AHs and a relatively high proportion

of 4-ring P AHs. This result seems to be linked to the high solubility and biodegradability of

3 rings, particularly phenanthrene. As worms were sampled after a continuous exposure of

28 days, light P AHs accumulated at the beginning of the exposure have been partly

metabolised and eliminated by worms whereas heavier 4-, 5- and 6-ring PAHs were much

less biodegraded. The result is an apparent low bioaccumulation of lower P AHs and an

apparent excess of higher P AHs when compared with P AHs in DCM extracts.

The contrast between low and highly contaminated samples is best illustrated ln

Fig. 6 where the ability of B700 to predict PAH bioavailablility is assessed following its

affinity for lipidic fractions (log Kow). Almost all PAHs exhibit a ratio < 1 in low

contaminated samples, which indicates that worms cannot only adsorb surficial P AHs but

also digest marine organic mater and extract P AHs already bioaccumulated by living and

dead organisms present in the sediment. In contrast, highly contaminated sediments showed

an interesting two-plateau pattern already observed by Juhasz et al. [49) when examining

predictor capability of HPCD for P AH availability in soil highly contaminated with

creosote- treated in biopile for 16 weeks. The fact that both HPCD and B700 still

overestimate the availability of P AHs with log Kow > 5.5 might be related to their molecular

size, which is smaller than enzymes and allows their accessibility to small interstices where

enzymes cannot enter.

Page 86: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

64

CONCLUSION

Strong differences were observed in quantities and proportions of P AHs obtained

using different techniques for assessing the bioavailability of P AHs in sediments. Although

several researchers have suggested that mild BuOH extractions may be an appropriate mean

for predicting PAH bioavailability, our results disagree with previous studies for both low

and highly contaminated sediments where BuOH was found to extract much more P AHs

than worms can bioaccumulate in their tissues, and where HPCD underestimates the

bioavailability of P AHs especially for LMW P AHs. On the other hand, use of the surfactant

B700 revealed a good prediction for PAHs in highly contaminated sediments. Laboratory

studies conducted with freshly spiked or slurried sediment may overestimate the

bioavailability of contaminants compared with field situations where longer equilibration

times between sediment and persistent contaminants reduce the bioavailability.[52,531

Moreover, most of these studies determined the bioavailability by measuring microbial

degradation in laboratory reactors, an approach that might not be comparable with P AHs

bioaccumulated by worms as worms are not passive samplers and can modify the P AH

profile in their tissues.

Since risk assessments from contaminated soils are currently being overestimated by

chemical analyses that rely on an initial vigorous solvent extraction, and because

remediation may be suitable when none or a less vigorous treatment is required, it is

essential to include bioavailability assessment in regulatory decisions. Using worm uptake

and biodegradation are still the best tools to estimate P AH bioavailability, but biological

Page 87: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

65

methods are time consuming and expensive. Our results illustrate difficulties in finding an

adequate chemical predictor of PAH bioavailabilty, particularly because PAH

concentrations and the sequestration process play a determining role in the quality of

results. Because B700 lS not expensive and solutions easy to prepare, an extraction

procedure involving this high-molecular-weight surfactant is revealed to be useful

particularly with sediments that show PAH levels > 21lg g- I and log Kow <5.8.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Canadian Research Chair in Molecular

Ecotoxicology (E.P.) and from the Natural Science and Engineering Research Council of

Canada (NSERC) - Collaborative Research Development Pro gram (CRD). Samples have

been provided by Alcan Ltée. This paper is a contribution of the Quebec-Ocean Network.

[1]

[2]

REFERENCES

1. V. Pothuluri, C. E. Cemiglia, in Bioremediation: Princip/es and Practice (Eds S.

K. Sikdar, R. L. Irvine) 1998, vol. 2, pp. 462-520 (Publishing Company: Lancaster)

M. H. Van Agteren, S. Keuning, D. B. Janssen, Handbook on Biodegradation and

Biological Treatment of Hazardous Organic Compounds 1998 (Kluwer Academie

Publishers: Dordrecht)

Page 88: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

66

J. J. Pignatello, in Reactions and Movement of Organie Chemieals in Soifs (Eds B. L.

Sawhney, K. Brown) 1989, pp. 271-304 (Soil Science Society of America, American

Society of Agronomy: Madison, WI)

P. B. Hatzinger, M. Alexander, Effect of ageing chemicals in soil upon their

biodegradability and extractability, Environ. Sei. Teehnol. 1995,29,537

B. J. Reid, K. C. Jones, K. T. Semple, Bioavailability of persistent organic pollutants

in soils and sediments - a perspective on mechanisms, consequences and assessment,

Environ. Pollut. 2000, 108, 103

J. D. MacRae, K. J. Hall, Comparison of methods used to determine the availability

of polycyclic aromatic hydrocarbons in marine sediments, Environ. Sei. Teehnol.

1998,32,3809

P. C. M. van Noort, G. Comelissen, T. E. M. ten Hulscher, B. A. Vrind, H. Rigterink,

A. Belfroid, Slow and very slow desorption of organic compounds from sediment:

influence of sorbate planarity, Water Researeh 2003, 37, 2317

C. Cuypers, T. Grotenhuis, J. Joziase, W. Rulkens, Rapid persulfate oxidation

predicts PAH bioavailability in soils and sediments, Environ Sei Teehnol, 2000, 34,

2057

J. W. Kelsey, B. D. Kottler, M. Alexander, Selective chemical extractants to predict

bioavailability of soil-aged organic chemicals, Environ Sei Teehnol, 1997, 31, 214

H. H. Liste, M. Alexander, Butanol extraction to predict bioavailability of P AHs in

soil, Chemosphere, 2002, 46, 1011

Page 89: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

67

[II] V. Librando, O. Hutzinger, G. Tringali, M. Aresta, Supercritical fluid extraction of

polycyclic aromatic hydrocarbons from marine sediments and soil samples,

Chemosphere, 2004, 54, 1189

[12] M.-C. Chang, C.-R. Huang, H.-Y. Shu, Effects of surfactants on extraction of

phenanthrene in spiked sand, Chemosphere, 2000, 41, 1295

[1 3] B. J. Reid, 1. D. Stokes, K. C. Jones, K. T. Semple, Nonexhaustive cyclodextrin-

based extraction technique for the evaluation of PAH bioavailability, Environ. Sei.

Teehnol. 2000, 34, 3174

[14] C. Cuypers, T. Pancras, T. Grotenhuis, W. Rulkens, The estimation of PAH

bioavailability in contaminated sediment using hydroxypropyl-~-cyclodextrin and

triton X-100 extraction techniques, Chemosphere, 2002, 46, 1235

[15] 1. Tang, M. Alexander, Mild extractability and bioavailability of polycyclic aromatic

hydrocarbons in soil, Environ. Toxieol. Chem. 1999, 18, 2711

[1 6] 1. Tang, H. H. Liste, M. Alexander, Chemical assays of availability to earthworms of

polycyclic aromatic hydrocarbons in soil, Chemosphere, 2002, 48, 35

[1 7] W. 1. Shieh, A. R. Hedges, Properties and applications of cyclodextrins, J

Maeromol. Sc. Pure Part A, 1996, 33, 673

[1 8] G. Shixiang, W. Liansheng, H. Quingguo, H. Sukui, Solubilization of polycyclic

aromatic hydrocarbons by ~-cyclodextrin and carboxymethyl-~-cyclodextrin,

Chemosphere , 1998,37,1299

[1 9] X. Wang, M. L. Brusseau, Cyclopentanol-enhanced solubilization of polycyclic

aromatic hydrocarbons by cyclodextrins, Environ. Sei. Teehnol. 1995,29, 2346

Page 90: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

68

[20) B. J. Reid, K. T. Semple, K. C. Jones, in Proc. Fifth International In Situ and On-Site

Bioremediation Symposium (Eds A. Leeson, B. C. Alleman) 1999, pp. 253-258

(Battelle Press: Columbus)

[21) A. L. Swindell, B. J. Reid, Comparison of selected non-exhaustive extraction

techniques to assess PAH availability in dissimilar soils, Chemosphere, 2006, 62,

1126

[22] F. Volkering, 1. 1. Quist, A. F. M. Van Velsen, P. H. G. Thomassen, M. Olijve, in

Contaminated Soil '98 1998, vol. 1, pp. 251-259 (Thomas Telford: London)

[23) 1. M. Banat, Biosurfactants production and possible uses in microbial enhanced oil

recovery and oil pollution remediation: a review, Bioresour. Technol. 1995, 5 J, 1

[24] F. Volkering, A. M. Breure, W. H. Rulkens, Microbiological aspects of surfactant use

for biological soil remediation, Biodegradation 1997, 8, 401

[25) D. Brion, E. Pelletier, Modelling PAHs adsorption and sequestration in freshwater

and marine sediments, Chemosphere, 2005,61,867

[26) X. Wang, M. L. Brusseau Solubilization of some low-polarity organic compounds by

hydroxypropyl-p-cyclodextrin, Environ. Sei. Technol. 1993, 27, 2821

[27] M. Barthe, Study of the Chemical Sequestration of Polycyclic Aromatic

Hydrocarbons (P AHs) by Selective Extraction of Freshwater and Marine Sediments

2002, M. Sc. Thesis (Université du Québec à Rimouski: Rimouski QC)

[28) S. Laha, Z. Liu, D. A. Edwards, R. G. Luthy, in Aquatic Chemistry: Interfacial and

Interspecies Pro cesses (Ed 1. 1. Morgan) 1995, pp. 339-361 (American Chemical

Society: Washington, DC)

Page 91: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

69

[29] D. H. Everett, Basic Principles of Colloid Science 1992 (Royal Society of Chemistry:

London)

[30] P. C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry 1997

(Marcel Dekker, Inc.: New York, NY)

[3 1] M. Christensen, O. Andersen, G. T. Banta, Metabolism of pyrene by the polychaetes

Nereis diversicolor and Arenicola marina, Aquat. Toxicol. 2002, 58, 15

[32] D. R. Mount, T. D. Dawson, L. P. Burkland, Implications of gut purging for tissue

residues determined in bioaccumulation testing of sediment with Lumbriculus

variegatus, Environ. Toxicol. Chem. 1999, 18, 1244

[33] H. Lee II, B. Boese, 1. Pelletier, M. Winsor, D. Specht, R. Randall, Guidance

Manual: Bedded Sediment Bioaccumulation Tests 1989, EPA/600/x-89/302 (U.S.

Environmental Protection Agency: Duluth, MN and Washington, De)

[34] U.S. Environmental Protection Agency, Methods for Measuring the Toxicity and

Bioaccumulation of Sediment-associated Contaminants with Freshwater

Invertebrates 2000, 2nd edition, EPA 600/R-99/064 (U.S. Environmental Protection

Agency: Duluth, MN and Washington, DC)

[35] 1.-C. Colombo, N. Silverberg, 1. N. Gearing, Biogeochemistry of organic matter in

the Laurentian Trough, I. Composition and vertical fluxes of rapidly settling

particles, Mar. Chem. 1996,51,277

[36] J.-c. Colombo, N. Silverberg, 1. N. Gearing, Biogeochemistry of organic matter in

the Laurentian Trough, II. Bulk composition of the sediments and relative reactivity

of major components during early diagenesis, Mar. Chem. 1996,51 , 295

Page 92: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

[37]

[38]

[39]

70

P. Louchouarn, M. Lucotte, N. Farella, Historical and geographical variations of

sources and transport of terrigenous orgamc matter within a large-scale coastal

environment, Org. Geoehem. 1999, 30, 675

L. M. Carmichael, F. K. Pfaender, Polynuc1ear aromatic hydrocarbon metabolism in

soils: relationship to soil characteristics and preexposure, Environ. Toxieol. Chem.

1997, 16, 666

M. B. McBride, Environmental Chemistry of Soils 1994 (Oxford University Press :

New York, NY)

[40] N. Chung, M. Alexander, Effect of concentration on sequestration and bioavailability

oftwo polycyclic aromatic hydrocarbons, Environ. Sei. Teehnol. 1999, 33,3605

[4 1]

[42]

[43]

[44]

[45]

G. Breedveld, E. Pelletier, R. St. Louis, G. Cornelissen, Effect of concentration on

sequestration and bioavailability of two polycyc1ic aromatic hydrocarbons, Environ.

Sei. Teehnol. 2007, 41 , 2542

K. Nam, M. Alexander, Role of nanoporosity and hydrophobicity in sequestration

and bioavailability: tests with model solids, Environ. Sei. Teehnol. 1998, 32, 71

W. P. BaU, P. V. Roberts, Long-term sorption of halogenated organic chemicals by

aquifer materials: 2. Intrapartic1e diffusion, Environ. Sei. Teehnol. 1991, 25, 1237

S. L. Scribner, T. R. Benzing, S. Sun, S. A. Boyd, Desorption and bioavailability of

aged simazine residues in soil from a continuous corn field, J Environ. Qual. 1992,

21 , 115

L. M. Mayer, Surface area control of organic carbon accumulation in continental

shelfsediments, Geoehim. Cosmoehim. Acta 1994, 58, 1271

Page 93: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

[46)

[47)

[48)

[49)

[50)

[51)

[52)

71

1. D. Sills, L. A. G. Aylmor, 1. P. Quirk, Relationship between pore distributions and

physical properties of clay soils, Aust. J Soil Res. 1974, 12, 107

J. Hassink, L. A. Bouwman, K. B. Zwart, L. Burssaard, Relationship between

habitable pore space, soil biota and mineralization rates in grassland soils, Soil Biol.

Biochem. 1993, 25,47

G. D. Breedveld, D. A. Karlsen, Estimating the availability of polycYclic aromatic

hydrocarbons for bioremediation of creosote contaminated soils, Appl. Microbiol.

Biotechnol. 2000, 54, 255

A. L. Juhasz, N. Waller, R. Stewart, Predicting the efficiency of polycyclic aromatic

hydrocarbon bioremediation in creosote-contaminated soil using bioavailability

assays, Bioremed. J 200S, 9, 99

C. J. A. Macleod, K. T. Semple, Sequential extraction of low concentrations of

pyrene and formation of non-extractable residues in sterile and non-sterile soil, Soil

Biol. Biochem. 2003,35, 1443

S. B. Hawthorn, D. G. Poppendieck, C. B. Grabanski, R. C. Loehr, Comparing PAH

bioavailability from manufactured gas plant soils and sediments with chemical and

biological tests. 1. P AH release during water desorption and super critical carbon

dioxide extraction, Environ. Sei. Technol. 2002,36, 4795

A. U. Comad, A. D. Comber, K. Simkiss, Pyrene bioavailability; effect of sediment-

chemical contact time on routes of uptake in an oligochaete worm, Chemosphere,

2002,49, 447

Page 94: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

[53 ]

72

M. T. Leppanen, J. V. K. Kukkonen, Effect of sediment-chemical contact time on

availability of sediment-associated pyrene and benzo[a]pyrene to oligochaete worms

and semi-permeable membrane devices, Aquat. Toxicol. 2000, 49, 227

Page 95: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

CHAPITRE II

PASSIVE SAMPLERS VERSUS SURFACTANT EXTRACTION FOR

THE EVALUATION OF P AH A V AILABILITY IN SEDIMENTS WITH

VARIABLE LEVELS OF CONTAMINATION

M. Barthe, É. Pelletier, G.D. Breedveld, G. Cornelissen

(Chemosphere, 2008, 71: 1486-1493)

Page 96: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

74

Résumé

L'objet de cette étude était de tester l'efficacité des échantillonneurs solides passifs,

des bandes de polyoxyméthylène (POM) et des tubes de silicone polydiméthylsiloxane

(PDMS), à prédire le biodisponibilité des HAP présents dans les sédiments contaminés. Les

résultats ont été comparés aux données de bioaccumulation et d' une extraction

solide/liquide utilisant le tensioactif Brij® 700 (B700). Les deux échantillonneurs passifs

ont été trouvés à agir différemment. Le PDMS surestime la disponibilité des HAP dans tous

les sédiments étudiés. La méthode avec le POM produit des résultats en accord avec ceux

obtenus avec l' extraction au B700. Quoi qu' il en soit, le POM et le B700 sousestiment la

disponibilité des HAP dans les sédiments faiblement contaminés où les facteurs biologiques

(matière organique digestible) deviennent importants. La biodisponibilité des HAP totaux a

été prédite correctement par le POM et le B700 dans les sédiments contaminés par des

alumineries. Un examen plus précis des résultats des HAP individuels indiquait que les

deux techniques surestimaient la disponibilité des grosses molécules avec un log Kow >6

suggérant un mécanisme biologique limitant l' incorporation des plus gros HAP ce qui

semble être relié à la taille moléculaire des composés.

Mots clés: Échantillonneur passif, Extraction avec un tensioactif, Biodisponibilité,

Bioaccumulation par des vers, HAP, Sédiment.

Page 97: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

75

Abstract

The purpose of this study was to test the efficiency of passive solid samplers,

polyoxymethylene (POM) strips and polydimethylsiloxane (PDMS) silicon tubing, to

predict the bioavailability of native P AHs in contaminated sediments. Results were

compared with worm bioaccumulation data and solid/liquid extraction using the surfactant

Brij® 700 (B700). The two passive samplers were found to act differently. The PDMS

sampler overestimated the availability of P AHs in aIl studied sediments. The POM method

provided results in accordance with those obtained with the B700 extraction. However,

POM and B700 methods underestimated PAH availability in low contaminated sediments

where biological factors (digestible organic matter) become important. Bioavailability of

total PAHs was correctly predicted by POM and B700 in highly contaminated aluminum

smelter sediments. A closer examination of individual P AH results indicated that both

techniques overestimated the availability of large molecules with log Kow >6 suggesting a

biological mechanism limiting uptake of larger P AHs which seems to be related to the

molecular size of compounds.

Keywords: Passive sampler; Surfactant extraction; Bioavailability; Worm

bioaccumulation; P AH; Sediment.

Page 98: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

76

INTRODUCTION

Hydrophobie organic chemicals such as polycyclic aromatic hydrocarbons (P AHs)

are common contaminants in industrial soils and marine sediments (Kennish, 1997). Risk

assessment procedures of hydrophobie chemicals in soils and sediments are usually based

on total soil/sediment concentrations or pore water concentrations estimated from field

concentrations and generic organic carbon normalized partition coefficients (Doucette,

2003). These coefficients are generally based on experiments with freshly spiked standard

soils and sediments and rarely consider the strong sorption to carbonaceous geosorbents

(e.g. , soot, coal, kerogen) that may result in increases of sorption coefficients by 1-2 orders

of magnitude (Luthy et al., 1997; Cornelissen and Gustafsson, 2004).

Various chemical techniques have been developed to study bioavailability in soil and

sediment. Sorne approaches focussed on the extraction of the weakly bound fraction. Solid

sorbents such as Tenax (Yeom et al., 1996; Cornelissen et al. , 1997) or XAD-2 (Carroll et

al., 1994), solvents (Kelsey et al. , 1997), aqueous solutions with cyclodextrin (Cuypers et

al. , 2002; Swindell and Reid, 2006), surfactants (Chang et al., 2000; Cuypers et al. , 2002;

Barthe and Pelletier, 2007), butanol (Liste and Alexander, 2002; Swindell and Reid, 2006),

and highly pressurized gas (supercritical fluid extraction, (Librando et al. , 2004)) have been

used for this purpose. Other approaches focussed on the freely dissolved concentrations in

the pore water. Freely dissolved aqueous concentrations can be determined by equilibrium

dialysis (McCarthy and Jimenez, 1985), gas purging (Resendes et al. , 1992), non-

Page 99: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

77

equilibrium passive samplers such as semipermeable membrane devices (SPMD) (Sproule

et al. , 1991; Booij et al., 1998), and equilibrium passive samplers such as

poly(oxymethylene) (POM) (lonker and Koelmans, 2001), polymer-coated glass sheets or

fibers (Mayer et al. , 2000; Heringa and Hermens, 2003), and low-density polyethylene

(LDPE) (Booij et al. , 2003; Adams et al. , 2007). Equilibriurn passive sarnplers are left in

contact with contaminated soil or sediment slurry, and freely dissolved aqueous

concentrations can be calculated with compound-specifie passive sampler-water partition

coefficients.

In a previous study on chemical availability of P AHs in low and highly contarninated

sediments, we compared solid/liquid bulk extraction methods with bioaccumulation in

worms (Barthe and Pelletier, 2007). Results indicated strong differences in distributions of

P AHs obtained using different extraction techniques. Butanol (BuOH) was found to extract

mu ch more PAHs than worms (Nereis virens and Lumbriculus variegatus) can

bioaccumulate in their tissues at steady-state, and hydroxypropyl-~-cyclodextrin (HP CD)

underestimated the bioavailability of P AHs, especially for low molecular weight P AHs. On

the other hand, the high molecular weight surfactant Brij® 700 (B700) proved to be a good

predictor for P AHs in aged highly contaminated sediments (Barthe and Pelletier, 2007).

In the present study we extended our investigation by studying the efficiency of

passive solid samplers polyoxymethylene (POM) strips (lonker and Koelmans, 2001) and

polydimethylsiloxane (PDMS) silicon tubing using sediment samples already described in

our previous work (Barthe and Pelletier, 2007). Results are compared with the previously

measured B700 liquid/solid extraction and worm bioaccumulation. Moreover,

Page 100: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

78

bioaccumulation was estimated us mg the biota-sediment accumulation factor (BSAF)

(Boese et al. , 1996) as an instantaneous measurement of normalized tissue/sediment P AH

concentrations.

MATERIALS & METHODS

Chemicals

Hexanes (liquid chromatography quality) and acetone (high resolution gas

chromatography) were purchased from VWR Ltd (Mississaga, Canada). n-Heptane was

purchased from Merck (Darmstadt, Germany). InternaI PAH standard dio-phenanthrene

(d 10-PHE) was obtained from Cambridge Laboratories (Sweden). Additive-free polymer

materials were used, including medical-grade PDMS silicon tubing (core diameter 750 Ilm,

thickness 200 Ilm) from A-M systems, Inc (Carlsborg W A, USA) and polyoxymethylene

(POM) of 55 Ilm thickness from Astrup AS, Oslo, Norway (POM-55 , obtained in ~ l kg

cylinder-shaped blocks and sliced on a lathe equipped with a high-precision razor blade).

POM-55 consisted of C-POM, which is a copolymer of (CH20)n produced from trioxane

and other monomers.

Sediments

Marine sediments were collected during years 2003 and 2004 in Kitimat Fjord (BC,

Canada), in the St-Lawrence River and Estuary and in the Saguenay Fjord (QC, Canada).

Page 101: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

79

Freshwater sediments came from the St-Louis River near Montreal (Qc, Canada). Samples

were stored in a freezer at -20 oC until analysis.

Page 102: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

80

Table 1. Identification of samples for low and highly contaminated sediments. Total PAHs

in sediment (Csed) inc1ude: fluorene (FLU), phenanthrene (PHE), fluoranthene (FLT),

pyrene (PYR), benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF),

benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DBA), and

benzo[g,h,i]perylene (BPE). TOC = Total organic carbon

Samples analyzed Csed (Ilg g-I w.w.) TOC (%)

Minette Bay (Kitimat, BC)a 0.06 ± 0.02 0.04

-a SLR upstream (St-Louis River)b 0.3 ± 0.1 5.1 v ..... ro .5 CIl ..... E s::::: Hospital Beach (Kitimat, BC)a 0.3 ± 0.1 0.08 v ro E ..... s:::::

~ 0 () v

EGSL04-07 (St. Lawrence Estuary)a 0.4 ± 0.1 1.1 ~ CIl

0 ~

EGSL04-13 (St. Lawrence Estuary)a 1.1 ± 0.2 0.7

SLR downstream (St-Louis River)b 25 .5 ± 2.6 2.5

-a SLR outflow (St-Louis River)b v 279 ± 29 2.0 ..... ro

s:::::

E CIl ..... s::::: Scow Grid (Kitimat, BC)a ro Q) 811 ± 155 2.4 .....

s::::: .5 0 () -a >-. Q)

Scrubber (Kitimat, BC)a CIl 4442 ± 538 41.0 ::a O!l

tE B Lagoon (Kitimat, BCt 5723 ± 190 29.9

a Marine sediments tested with Nereis virens;

b Freshwater sediments tested with Lumbriculus variegatus .

Page 103: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

81

Bioaccumulation studies

Bioaccumulation tests used Nereis virens for manne sediments and Lumbriculus

variegatus for freshwater sediments as previously described (Barthe and Pelletier, 2007).

Tests were conducted in triplicate for 28 d, which is a sufficient time to ensure a steady-

state tissue concentration in both species, at temperature ranging between 4 and 6 oc. One

adult polychaete N. virens (3-5 g) was placed in each of the triplicate 1 L glass beaker with

300 mL of sediment to be tested and 700 mL of flow-through seawater with aeration. Sixt Y

(0.4 to 0.5 g) adult oligochaetes L. variegatus (approximately 2 cm in length) were placed

in each of the triplicate 500 mL glass beaker with 200 mL of freshwater sediment to be

tested and 300 mL of flow-through dechlorinated tap water with aeration. Worms

(polychaetes and oligochaetes) were sampled at seven times (0, 1, 3, 5, 7, 14, and 28 day)

during the exposure period of 28 days, (Barthe and Pelletier, 2007). A careful examination

of the results indicated no differences in uptake and elimination behavior for both worm

species and bioaccumulation results were discussed together.

Analysis of worm tissues

Total lipids were determined gravimetrically following the method described by

Folch et al. (1957). Nereis virens and Lumbriculus variegatus showed an average lipid

content of 8.33% and 10.45%, respectively. PAH analysis in worms followed the technique

previously described (Barthe and Pelletier, 2007). Briefly, samples (200 mg d.w.) were

extracted with 5 ml ofhexane:acetone (50:50 v/v) using an ultrasonic bath for 30 min. Each

sample was then shaken for 3 h and returned to the ultrasonic bath for 30 min. The

Page 104: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

82

extraction volume was reduced to 0.5 mL, solvent exchanged to acetonitrile and reduced to

0.2 mL. The extracts were analyzed by liquid chromatography (LC) with fluorescence

detection.

Sediment characterization

Total PAHs, chemically available PAHs and total organic carbon (TOC) content were

determined in triplicate for the sediment samples using the same procedure as previously

reported (Barthe and Pelletier, 2007). Briefly, samples (1.0 g d.w.) were extracted with 10

mL of DCM. Each sample was then shaken for 16 h. The extraction volume was reduced to

0.5 mL, solvent exchanged to acetonitrile and volume reduced to 1 mL. The chemically

available PAHs (CB700) were extracted by B700 solution. Briefly, samples (1.0 g w.w.)

were extracted with 10 mL of B700 solution. Each sample was then shaken for 16 h and

then solvent exchanged to DCM. The extraction volume was reduced to 0.5 mL, solvent

exchanged to acetonitrile and volume reduced to 1 mL. The extracts were analyzed on a

Shimadzu LC-IOAD® pump fitted with a SupelcosiJTM LC-PAH column (25 cm x 3 mm)

and Spectra SYSTEM FL3000 fluorescence detector (HPLC-Fl). These two methods have

been shown to give good recovery (85-97%) ofPAHs. TOC contents were determined by a

carbon analyzer (Costech, Elemental Combustion System, CHNS-O, ECS 4010) after

acidification of the dry and ground sample with HCI (10 %) and a digestion at 80 oC for 15

h to eliminate carbonates (Barthe and Pelletier, 2007). Ali the chemical evaluation was

performed prior to the exposure of the organisms to the sediment.

Sediment characteristics for low and highly contaminated samples are given in Table

1. Low contaminated samples show PAH concentrations below 1 Jlg g-l (wet weight)

Page 105: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

83

whereas highly contaminated samples contained PAHs ranging between 15.9 and 3605 /lg

gol (wet weight). TOC is usuaIly higher in highly contaminated samples except for St-Louis

River upstream (SLR upstream) sample located in a pristine area without industrial PAH

sources.

Freely dissolved concentrations/sediment sorption experiments

AU sorption studies were carried out in triplicate in 50 mL aIl glass flasks . Dry

sediment (3-10 g), passive sampler (100-300 mg), 100 mg NaN3 (biocide), NaCI for the

marine sediments (1.25 g, i.e., 2.5%, providing a constant ionic strength comparable to the

in situ conditions at the sampling sites), and Millipore water (alpha-Q, 50 mL) were shaken

end-over-end (6 rpm; 21 d). It was recently shown that 10 d equilibration time suffices for

PAHs in a sediment-water system with POM or silicon (G. Cornelissen, personnal

communication). After equilibrium time, the passive samplers were removed from the

system and cleaned with wet tissues.

P AH extraction from passive samplers

The clean passive sampler strips and tubing were extracted by horizontal shaking

(150 rpm; 72 h) with 15 mL of heptane in the presence of an internaI standard (400 ng and

40 ng dlO-PHE for highly and low contaminated sediments, respectively) (Cornelissen and

Gustafsson, 2004). The samples were eluted through a silica micro-column with 15 mL of

heptane. The extracts were analyzed by gas chromatography and mass spectrometry

(GC/MS) equipped with an 30 m x 0.25 mm DB-5 fused silica column (film thickness 0.25

/lm), and a ThermoFinnigan Polaris Q mass spectrometer in electron impact mode (Er, 70

Page 106: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

84

eV). Quality control work showed recovery data ranging from 89.5 ± 5.6% (mean ±

standard deviation) to 98.7 ± 2.5%. Variability of analytical results was estimated to ± 15%

(n = 5) and the limit of detection was estimated at 0.001 ng /lL- l.

RESUL TS AND DISCUSSION

BSAF calculation

BSAFs (Biota-Sediment Accumulation Factors) were calculated in worms for each

analyzed PAH from the experimental data using Equation (1):

BSAF = C/iPid worms C

TOC

(1)

where Clip id is the lipid-normalized concentration of PAHs in the organisms (/lg g-l W.W.

lipid) and Croc is the TOC-normalized concentration in the sediment (/lg g-l W.W. organic

carbon). Median BSAFworms values ranged from 0.0008 to 0.22 in nine out often sediments

(Table 2), with the exception of SLR Upstream where the median reached 2.53. This higher

BSAFworms value might be attributed to the use of L. variegatus for this freshwater sediment

sample, but the tendency of higher bioaccumulation with L. variegatus was not confirmed

with SLR Downstream and SLR Outflow samples. Values of BSAFs in highly

contaminated samples were often two to four orders of magnitude lower than the theoretical

value of 1 (DiToro et al. , 1991). In low contaminated samples, ratios between measured and

theoretical BSAFs (Table 2) were as high as 15, whereas in highly contaminated samples,

which have been collected in the vicinity of aluminum smelters, the ratios reached 1466.

Page 107: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

85

In order to include the effect of strong sorption to CGC (carbonaceous geosorbent

carbon) on bioaccumulation, BSAFs can also be estimated on the basis of freely dissolved

aqueous concentrations C wJree, determined using the POM and silicon tubing passive

sampler methods (Comelissen et al. , 2006) (Eq. 2).

C C exlracl 1 - x-w,free - K

ms s (2)

where Cextract is the amount in the extract (ng), ms is the mass of the sampler (kg) and Ks is

the sampler-water partition coefficient (log K; L kg-l) as determined.

In this approach, the overall TOC sorption, not only amorphous orgamc carbon

(AOC) but also CGC, is taken into account. BSAFest,free values (reported as BSAFest,POM and

BSAFest,silicon) were estimated on the basis of measured chemical parameters according to

the Equation (3):

KI· ·dC fi BSAF. = 'P' w, ree free C

TOC

(3)

where K lipid is the lipid-water partition coefficient (mL g-l) and can be approximated as

being equal to the octanol-water partition coefficient [KowJ (Mackay et al. , 1991) for the

specific PAHs and CwJree is the freely dissolved aqueous concentration (Ilg mL-1)

determined by the POM or the silicon tubing method. Chemically estimated BSAFest,free

values were compared with BSAFworms values by calculating BSAFest,free/BSAFworms ratios

(reported as BSAFest,POM/BSAFworms and BSAFest,silicon/BSAFworms) (Table 2). Most low

contaminated sediments provided relatively low ratios (aH below 0.7) for POM whereas

highly contaminated sediments produced ratios around 1 in most cases. Consistently,

Page 108: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

86

silicon delivered lower ratios with low contaminated sediments and higher ones with

sediments loaded with PAHs. However, POM (0.3-1.4) and silicon (1.4-20) predicted

values are much closer to measured values than theoretical ones (0.4-1500). According to

Table 2, Cw estimates by the POM are a factor of 4-20 lower than those measured by silicon

tubing (data not shown). The differences between Cw estimated by the POM and the silicon

could be explained by the fact that the silicon tubing-water coefficient partition (Ksil) for aIl

the studied PAHs were greater than the POM-water coefficient partition (KpOM). PAHs

could be more attracted by PDMS than POM. The difference between the sampler material

is weIl illustrated by Rusina et al. (2007), who demonstrated that the diffusion coefficient

(D) of silicon tubing was greater than POM one (log Dsil ranged between - 9.95 and - 11.35

whereas log DpOM were below -16).

Using previously reported data (Barthe and Pelletier, 2007) for surfactant B700,

BSAFest,B700 were estimated according to Equation (4):

BSAF. - K /iPidC

B700 8 700 - C

TOC

(4)

where CS700 is the concentration of PAHs (Ilg mL- 1) deterrnined by the B700 method. The

BSAFest,B700 values were compared to BSAFworms by calculating BSAFest,B700/BSAFworms

ratios (Table 2). Again, ratios with low contaminated sediments were consistently lower

than those obtained with highly contaminated sediments with an average value of 1.17

(Table 2) .

Page 109: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 2. Biota-sediment accumulation factors (BSAF) deterrnined for ail PAHs in aU sediment samples as weil as ratios

between theoretical and empmc BSAFs (BSAFtheoreticaI/BSAFwonns) and between BSAFs calculated on the basis of

concentrations extracted by the different methods and empirical ones (BSAFest,POMIBSAFwonns, BSAFcst,s iliconlBSAFwonns and

BSAFest,B70oIBSAFwonns)

BSAFwonns BSAFtheoreticalal BSAFpOMI BSAFsiliconl BSAFB700i

BSAFwonns BSAFwonns BSAFwonns BSAFwonns

Minette Bay 0.16 (0.07-0.19)6 6.19 (5.23-30.9) 0.33 (0 .15-0.62) 3.38 (l.49-34.6) 0.18 (0.l6-0.28)

SLR Upstream 2.53 (1.43-4.43) 0.39 (0.24-0.69) 0.27 (0 .17-3 .85) 1.40 (0.79-22.9) 0.09 (0.06-0.22)

Hospital Beach 0.02 (0.02-0.06) 41.9 (17.9-54.7) 0.46 (0.34-0.71) 6.63 (4.72-21.4) 0.47 (0.19-0.60)

EGSL04-07 0.22 (0.11-0.37) 5.62 (2 .75-12.7) 0.33 (0.24-2.08) 2.4 7 (1.43-6.28) 0.14 (0.09-0.34)

EGSL04-13 0.06 (0.03-0.19) 15.0 (5 .36-35.9) 0.68 (0.49-8.38) 2.36 (l.88-25 .3) 0.49 (0.36-0.52)

SLR Downstream 0.02 (0.01 -0.03) 40.9 (30.0-348.2) 0.95 (0.46-2.43) 9.73 (5 .02-23.4) l.18 (0.40-1.47)

SLR Outflow <0.01 111 (76-347) 1.01 (0.61-1.16) 20.2 (7.5-73 .7) 0.99 (0 .39-1.12)

Scow Grid <0.01 1466 (1053-7005) 0.95 (0.28-2.13) 4.46 (2.02-6.05) 0.94 (0 .39-1.15)

Scrubber 0.l2 (0.08-0.15) 8.34 (6.59-12.04) 1.04 (0.29-2.09) 5.95 (1.79-9.92) l.26 (0.49-1.32)

B Lagoon 0.01 (0.01-0.02) 100 (44-207) l.37 (0.93-2.03) 7.72 (3.74-9.32) 1.50 (0.62-l.74)

a BSAFtheoretical value = 1 (DiToro et al. , 1991); 6 Median (interquartile ranges)

00 -.J

Page 110: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

88

The low freely dissolved PAH concentrations deterrnined by POM and silicon and the

low concentrations extracted by the B700 method in these sediments could be explained by

strong sorption to GCG (Comelissen et al. , 2006), which imply the low BSAFs observed

for these sediments.

From a theoretical point of view, BSAF should approach unity for conserved organic

contaminants. Bioaccumulation of hydrophobic contaminants with BSAF of approximately

one has been frequently observed. For example, Ankley et al. (1992) demonstrated BSAFs

of approximately one for both laboratory and field populations of oligochaetes exposed to a

wide variety of polychlorinated biphenyl congeners in Fox River/Green Bay (WI, USA)

sediments. Biota-sediment accumulation factors of less than unit y, which appears to be the

case for most sediments, and particularly those with a high P AH levels, may therefore

represent direct indication of limited bioavailability (or altematively be a function of

elimination or breakdown of contaminants after uptake). So, it IS possible that

biodegradation of P AHs has influenced our results to a certain extent (Leppanen and

Kukkonen, 2000; J0rgensen et al., 2005). Lu et al. (2003) demonstrated that differences

between BSAF of desorption-resistant phenanthrene (0.59) and BSAF of reversibly sorbed

(labile) phenanthrene (1.2) were not due to differences in contaminant elimination and

metabolism nor in desorption kinetics nor in health of the worms but were due to a

reduction in the bioavailability of the contaminants in the sediment. Recently, Kreitinger et

al. (2007) used supercritical carbon dioxide extraction as a predictor of polycyclic aromatic

hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site

soils and also concluded that low BSAFs were related to low availability of contaminants.

Page 111: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

89

In our case, we believe the low values of BSAFworms in highly contaminated samples can

mainly be attributed to strong sorption to aluminum smelter residues weIl characterized by

Breedveld et al (2007).

Earlier observations by Kraaij et al. (2003) suggested that freely dissolved pore-water

concentrations (CwJree) could be obtained from direct measurements using solid phase

microextraction (SPME) even at low concentrations of HOCs in the pg L-1 range.

Cornelissen et al. (2006) found that CwJree measured by the POM method was a good

predictor for BSAFs of native PAHs in three contaminated sediments (9 to 161 mg kg- I)

and for two organisms (Nereis diversicolor and Hinia reticulata) which is in agreement

with our results. These results are in agreement with our previous paper (Barthe and

Pelletier, 2007) where it was observed that low and highly contaminated sediments

presented differences in the extraction of the bioavailable P AHs by different che mi cal

techniques. Passive samplers also illustrated a difference between low and highly

contaminated sediments.

Correlation between BSAFs

In a second step, we examined the relationship between mean BSAFworms (for aIl

determined P AHs) at steady-state and the mean BSAF est,POM, BSAF est,s ili con or BSAF est,B700

as predicted by each method for both groups of samples pooled together (Fig. l , left

panels). The mean BSAFworms are reasonably weIl correlated with mean BSAFest,B700 (R2 =

0.93), BSAFest,POM (R2 = 0.71) and BSAFest,s ilicon (R2

= 0.88) wh en sample SLR upstream is

excluded for aIl three samplers and when the Scrubber sample is excluded for POM and

Silicon passive samplers. As already observed in Table 2, the BSAFworms of SLR upstream

Page 112: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

90

is out of range compared with other samples because this pristine freshwater sample

combines a high percentage of TOC (5.1 %) (Table 1) with a very low PAH content (0.2 Ilg

g-l) which lowers the value of Croc in equation 1 and increases BSAFworms' The scrubber

sample is a very particular case because this sample is mainly composed of aluminum

smelter residues without natural sediment as described by Breedveld et al (2007). Only

surfactant extraction B700 provided a consistent result for that highly contaminated sample.

The second relationship to be examined was between individual BSAFworms (for each

analyzed P AH and both worm species) at steady-state and their predicted BSAF est,POM,

BSAFest,silicon or BSAFest,B700 only for low contaminated samples (Fig. 1, right panels).

These graphies illustrate the po or relationship existing between BSAF determined by

chemical methods and by worms for ail analyzed P AHs. Although mean BSAFs can be

consistently predicted by ail three samplers (left panels), individual BSAFs are not

adequately predicted, particularly for low contaminated samples.

Page 113: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

91

Fig. 1. Mean of BSAFest,8700 (A), BSAFest,roM (B), and BSAFest,sili con (C) as a function of

mean BSAFworms over 28 days for low and highly contaminated sediments (left panels).

BSAF est,8700 (D), BSAF est,rOM (E), and BSAF est,silicon (F) of individual P AH as a function of

BSAFworms over 28 days for low contaminated sediments (right panels). The dotted lines

represent a hypothetical 1: 1 correlation. Scrubber sample is identified with letter s.

Page 114: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

0.5

0.4

g ':!t'à; 0.3 en (]J

~ 0.2 <Il

::2:

0.1

A

s

0.0 41'----,---,---,---,___-___,

0.5

0.4

3 LLO. 0.3 ëJj (]J

c m 0.2 ::2:

0.1

0.0 0.1

B

0.2 0.3 ~an BSAFworms

• R2 = 0.7107

/

/

0.4 0.5

o~-_,--_,--._--,___-___,

0.0 0.1

2 c

0.2 0.3 ~an BSA F worms

R2 = 0.8798 •

0.4

s •

0.5

o·~~-,---,_-_,--_,--~

0.0 0.1 0.2 0.3 0.4 0.5 ~an BSA F worms

R CD

LL o:! en (]J

3 0.

LL ëJj (]J

2

2

2

D

E

• •

F •

• •

BSAF worms

BSAFworms

/ /

•• 2

2

o~~-----__,_------__,

o 2

Page 115: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

92

To gain a better understanding on the capacity of B700 and POM methods to predict

individual PAR bioaccumulation In worms, the ratio of individual PARs

BSAFest,B7oo/BSAFworms and BSAFest,POM/BSAFworms were plotted against PAR octanol-

water partitioning coefficients (log Kow) for low contaminated (Fig. 2 top panels) and

highly contaminated sediments (Fig. 2, bottom panels). The ratio of individual PARs

BSAFest,s iliconlBSAFworms plotted against log Kow was not presented here because it has been

previously shown that silicon tubing was not a good predictor of the PAR bioavailability. A

ratio approaching 1 indicates the ability to predict PAR bioavailability based on B700 or

POM extractions, whereas a ratio <1 indicates an underestimation by B700 or POM

extraction of the biota-to-sediment accumulation factor and a ratio > 1 indicates an over-

prediction of the biota-to-sediment accumulation factor by the B700 or POM method. For

surfactant B700, low contaminated sediments show low ratios for low log Kow «5.8) but

high ratios (3.9 to 45) for high log Kow (>5.8). Righly contaminated sediments presented a

relatively similar picture as PARs with log Kow <5 exhibit a ratio <1, those with log Kow

between 5 and 5.8 exhibit a ratio almost equal to 1, and high ratios (6 to 29) are observed

for PARs with log Kow >5.8 (Fig. 2).

For POM sampler, low contaminated sediments presented a pattern similar to B700

except for fluorene (FLU) which has a ratio >5 (Fig. 2). Rowever, highly contaminated

sediments show a quite different pattern from B700 with three PARs with ratios close to

one (FLU, pyrene (PYR), and chrysene (CRR)), four PARs with ratios slightly above one

(phenanthrene (PRE), fluoranthene (FL T), bz[ a ]pyrene (BaP), and bz[b ]fluoranthene +

Page 116: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

93

bz[k]fluoranthene (BbkF)), one PAH with ratios under one (bz[a]anthracene (BaA)) and

one PAH with a very high ratio (bz[ghi]perylene (BPE)) (Fig. 2).

Fig. 2 illustrates contrasts and similarities between low and highly contaminated

sediments for both B700 and POM methods. Almost aIl the low molecular-weight (LMW)

PAHs (log Kow <5.8) exhibit a ratio <1 in low contaminated samples indicating that worms

bioaccumulated more LMW P AHs in their tissues than normally expected from samplers.

As worms can digest marine organic matter, they can extract LMW P AHs already

bioaccumulated by living and dead organisms present in sediment which means a better

access to sm aIl P AH molecules particularly in low contaminated sediments were it is

assumed that most P AHs are directly associated with organic matter freshly derived from

biological activity. In contrast, both techniques are overestimating the availability of high

molecular-weight (HMW) PAHs (log Kow >5.8) for aIl sediments tested. It may indicate

that both techniques do not take in account biological factors limiting bioaccumulation of

HMW P AHs that seems to be related not only to log Kow but also to the molecular size of

the compounds. As an example, the molecular volume (A3) of fluorene is about 1.5 times

smaller than the one of dibenzoanthracene.

Page 117: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Fig. 2. Relationship between PAR octanol-water partitioning coefficient (log Kow) and the ability to predict PAH BSAF using

B700 and POM methodology. The studied PARs are: fluorene (FLU), phenanthrene (PRE), fluoranthene (FLT) , pyrene

(PYR), benzo[a]anthracene (BaA), chrysene (CRR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF),

benzo[a]pyrene (BaP), dibenzo[a,h]anthracene (DBA), and benzo[g,h,i]perylene (BPE).

Low contaminated sedim e n ts Low contaminated sed iments

1000 1000

100 J l 100

~ 10

l ! "6 ( 10 ~ f 1 :!:

....... ...... ... ..... .. ..

l î r î ~

~1 ..

0 . 1 ! ~! 0.1 ~ î

0 .0 1

0 .0 0 1 0 .01

4 5 6 7 8 4 5 6 7 8

Log K o w Log Kow

H ig hly contaminated sed im e nts Hig hly contaminated sedim e nts

10 00 1000

100 100 J l • ~ ! l ~ ; l l ( 10

~ 10 l 4 Y:!J:l . . . . . . . . . . . . . . . . . . . J

I1il ·· 1 !:ï '1 ~t 0. 1 ~ ~i

l 0 . 1

0 .0 1

0 .0 0 1 0.01 I..D 4 5 6 7 8 4 5 6 7 8 ~

Log Ko .. Log Ko ..

Page 118: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

95

CONCLUSION

The two passlve samplers were found to act differently. The silicon sampler

overestimated the availability of P AHs in all studied sediments whereas the POM method

provided results quite similar to the solid/liquid extraction using high molecular weight

Brij®700. However, both methods poorly predicted availability in low contaminated

sediments where biological factors (digestible organic matter) become important.

Bioavailability of total PAHs was correctly predicted by POM and B700 in highly

contaminated aluminum smelter sediments. A closer examination of individual P AH results

indicated that both techniques overestimated the availability of large molecules with log

Kow >6 suggesting the presence in worms of a biological mechanism limiting uptake of

larger P AHs.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Canadian Research Chair in Molecular

Ecotoxicology (E.P.) and from the Natural Science and Engineering Research Council of

Canada (NSERC) - Collaborative Research Development Pro gram (CRD). Samples have

been provided by Alcan Ltée. This paper is a contribution of the Quebec-Ocean Network.

The Research Council of Norway contributed to MB 's stay in Norway through a Strategie

Institute Pro gram (SIP).

Page 119: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

96

REFERENCES

Adams, RG. , Lohmann, R. , Fernandez, L.A., MacFarlane, J.K. , Gshwend, P.M. 2007.

Polyethylene devices: passive samplers for measuring dissolved hydrophobic orgamc

compounds in aquatic environments. Environ. Sci. Technol. 41 , 1317-1323.

Ankley, G.T. , Cook, P.M., Carlson, A.R.; CalI, DJ., Swenson, lA., Corcoran, H.F. ,

Hoke, RA. , 1992. Bioaccumulation of PCBs from sediments by oligochaetes and fishes:

comparison of laboratory and field studies. Cano J. Fish. Aquat. Sci. 49, 2080-2085.

Barthe, M. , Pelletier, E. , 2007. Comparing bulk extraction methods for chemically

available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ.

Chem. 4, 271-283.

Boese, B.L. , Lee, H. , Specht, D.T., Pelletier, l, Randall, R 1996. Evaluation ofPCB and

hexachlorobenzene biota-sediment accumulation factors based on ingested sediment in a

deposit-feeding clam. Environ. Toxicol. Chem. 15, 1584-1589.

Booij , K. , Shiu, W.Y. , Mackay, D. , 1998. Calibrating the uptake kinetics of

semipermeable membrane devices using exposure standards. Environ. Toxicol. Chem. 17,

1236-1345.

Booij , K. , Hofmans, H.E., Fischer, C.V. , Van Weerlee, E.M., 2003. Temperature-

dependent uptake rates of nonpolar organic compounds by semipermeable membrane

devices and low-density polyethylene membranes. Environ. Sci. Technol. 37, 361-366.

Page 120: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

97

Breedveld, G.D. , Pelletier E., St. Louis R. , Cornelissen G., 2007. Sorption characteristics

of polycyclic aromatic hydrocarbons in aluminum smelter residues. Environ. Sci. Technol.

41 , 2542-2547.

Carroll, K.M., Harkness, M.R. , Bracco, A.A. Balcarcel, R.R. , 1994. Application of a

pemeantlpolymer diffusional model to the desorption of polychlorinated biphenyls from

Hudson River sediments. Environ. Sci. Technol. 28, 253-258.

Chang, M.-C. , Huang, C.-R. , Shu, H.-Y. , 2000. Effects of surfactants on extraction of

phenanthrene in spiked sand. Chemosphere 41 , 1295-1300.

Cornelissen, G. , van Noort, P.C.M. , Govers, H.AJ. , 1997. Desorption kinetics of

chlorobenzenes, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls:

sediment extraction with Tenax® and effects of contact time and solute hydrophobicity.

Environ. Toxicol. Chem. 16, 1351-1357.

Cornelissen, G. , Gustafsson, O., 2004. Sorption of phenanthrene to environmental black

carbon in sediment with and without organic matter and native sorbates. Environ. Sci.

Technol. 38, 148-155.

Cornelissen, G. , Breedveld, G.D., Naes, K. , Oen, A.M.P., Ruus, A. , 2006.

Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a

polychaetes and a gastropod: freely dissolved concentrations and activated carbon

amendment. Environ. Toxicol. Chem. 25,2349-2355.

Cuypers, C. , Pancras, T. , Grotenhuis, T. , Rulkens, W. , 2002 . The estimation of PAH

bioavailability in contaminated sediments using hydroxypropyl-~-cyclodextrin and Triton

X-IOO extraction techniques. Chemosphere 46, 1235-1245.

Page 121: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

98

DiToro, D.M., Zabra, C.S., Hansen, DJ., Berry, W.J., Swartz, R.C. , Cowan, C.E. ,

Pavlou, S.P. , Allen, H.E., Thomas, N.A. , Paquin, P.R. , 1991. Technical basis for

establishing sediment quality criteria for nonionic organic chemicals using equilibrium

partitioning. Environ. Toxicol. Chem. 10, 1541-1583.

Doucette, W.J., 2003 . Quantitative structure-activity relationships for predicting soil-

sediment sorption coefficients for organic chemicals. Environ. Toxicol. Chem. 22, 1771-

1788.

Folch, J. , Lees, M. , Stanley, G. , 1957. A simple method for the isolation and purification

oftotallipids from animal tissues. J. Biol. Chem. 226, 497-509.

Heringa, M.B. , Hermens, J.L.M., 2003 . Measurement of free concentrations usmg

negligible depletion-solid-phase microextraction (nd-SPME). TrAC, Trends Anal. Chem.

22, 575-587.

Jonker, M.T.O. , Koelmans, A. A. , 2001. Polymethylene solid-phase extraction as a

partitioning method for hydrophobie organic chemicals in sediment and soot. Environ. Sei.

Technol. 35 , 3742-3749.

J0rgensen, A. , Giessing, A.M.B. , Rasmussen, LJ., Andersen, O. , 2005 .

Biotransformation of the polycyclic aromatic hydrocarbon pyrene in the marine polychaetes

Nereis virens. Environ. Toxicol. Chem. 24, 2796-2805.

Kelsey, J.W. , Kottler, B.D., Alexander, M. , 1997. Selective chemical extractants to

predict bioavailability of soil-aged organic chemical. Environ. Sei. Technol. 31 , 214-217.

Page 122: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

99

Kennish, M.J. , 1997. Polycyclic aromatic hydrocarbons. In: Kennish, M.J. (Eds,).

Practical Handbook of Estuarine and Marine Pollution. CRC Press, Boca Raton, FL, USA,

pp. 141-175.

Kraaij , H. , Mayer, P. , Busser, F. , Van het Boischer, M. , Seinen, W. , ToUs, J. , Belfroid,

A.C. , 2003. Measured pore-water concentrations make equilibrium partitioning work - a

data analysis. Environ. Sei. Technol. 37, 268-274.

Kreitinger, lP. , Quifiones-Rivera, A., Neuhauser, E.F., Alexander, M. , Hawthorne, S.B.,

2007. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic

hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site

soils. Environ. Toxicol. Chem. 26, 1809-1817.

Lee II, H. , Boese, B. , Pelletier, l , Winsor, M. , Specht, D. , Randall , R. , 1989. Guidance

Manual: Bedded Sediment Bioaccumulation Tests. EPA/600/x-89/302. U.S. Environrnental

Protection Agency. Duluth, MN and Washington, DC, USA.

Leppanen, M.T., Kukkonen, lV.K. , 2000. Fate of sediment-associated pyrene and

benzo[a]pyrene in the freshwater oligochaetes Lumbriculus variegatus (Müller). Aquat.

Toxicol. 49, 199-212.

Librando, V. , Hutzinger, O., Tringali , G., Aresta, M. , 2004. Supercritical fluid extraction

of polycyclic aromatic hydrocarbons from marine sediments and soil samples.

Chemosphere 54, 1189-1197.

Liste, H.H. , Alexander, M., 2002. Butanol extraction to predict bioavailability of PAHs

in soil. Chemosphere 46, 1011-1017.

Page 123: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

100

Lu, X., Reible, D.D., Fleeger, lW., Chai, Y. , 2003. Bioavailability of desorption-

resistant phenanthrene to the oligochaete llyodrilus templetoni. Environ. Toxicol. Chem.

22, 153-160.

Luthy, R.G. , Aiken, G.R. , Brusseau, M.L. , Cunningham, S.D., Gschwend, P.M. ,

Pignatello, J.1. , Reinhard, M. , Traina, S.1. , Weber, W.1. , Westall, lC. , 1997. Sequestration

of hydrophobic organic contaminants by geosorbents. Environ. Sci. Technol. 31 , 3341-

3347.

Mackay, D. , Shiu, W.Y., Ma, K.C. , 1991. Illustrated Handbook of Physical-chemical

Properties and Environmental Fate of Organic Chemicals, Vol. 1. Lewis Publishers, Boca

Raton, FL, USA.

Mayer, P. , Vaes, W.H.1. , Wijnker, F. , Legierse, K.C.H.M., Kraaij , H. , ToUs, l , Hermens,

J.L.M., 2000. Sensing dissolved sediment porewater concentrations of persistent and

bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ.

Sci. Technol. 34, 5177-5183.

McCarthy, lF. , Jimenez, B.D., 1985. Interactions between polycyclic aromatic

hydrocarbons and dissolved humic material: binding and dissociation. Environ. Sci.

Technol. 19, 1072-1076.

Resendes, l , Shiu, W.Y. , Mackay, D. , 1992. Sensing the fugacity of hydrophobic

organic chemicals in aqueous systems. Environ. Sci. Technol. 26, 2381-2387.

Rusina, T.P. , Smedes, F., Klanova, l , Booij , K. , Holoubek, L, 2007. Polymer selection

for passive sampling: a comparison of critical properties. Chemosphere 68, 1344-1351.

Page 124: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

101

Sproule, J.W. , Shiu, W.Y. , Mackay, D. , Schroeder, W.H. , Russell , R.W., Gobas, F.A.P. ,

1991. Direct in situ sensing of the fugacity of hydrophobie chemicals in natural waters.

Environ. Toxicol. Chem. 10, 9-20.

Swindell, A.L. , Reid, B.l. , 2006. Comparison of selected non-exhaustive extraction

techniques to assess PAH availability in dissimilar soils . Chemosphere 62, 1126-1134.

U.S. Environmental Protection Agency. 2000. Methods for Measuring the Toxicity and

Bioaccumulation of Sediment-associated Contaminants with Freshwater Invertebrates. 2nd

edition. EPA 600/R-99/064, Duluth, MN and Washington, DC, USA.

Yeom, L.-T. , Ghosh, M.M., Cox, C.D. , Ahn, K.-H., 1996. Dissolution of polycyclic

aromatic hydrocarbons from weathered contaminated soil. Water Sei. Technol. 34, 335-

342.

Page 125: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

CHAPITRE III

BIOACCUMULATION AND BIOTRANSFORMATION KINETICS OF

POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) IN

SEDIMENTS WITH VARIABLE LEVELS OF CONTAMINATION

M. Barthe and É. Pelletier

Page 126: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

103

Résumé

Dans cette étude, Lumbriculus variegatus et Nereis virens ont été exposés à des

sédiments de composition et de concentrations variables en hydrocarbures aromatiques

polycycliques (HAP). La capacité de biotransformation de L. variegatus et N. virens a été

déterminée sur 28 jours en suivant la concentration des métabolites de phase l du

phénanthrène et du pyrène: le 9-hydroxyphénanthrène (9-0H-PHE) et 1-hydroxypyrène (1-

OH-PYR). Nous avons déterminé les coefficients de toxicocinétique, les facteurs de

bioaccumulation (BAF), et les facteurs d'accumulation biote-sédiment (BSAF) qui sont les

BAF normalisés par rapport au contenu lipidique de l'organisme et au contenu en carbone

organique du sédiment. Les paramètres cinétiques (la constante du taux d'ingestion (ks) et

la constante du taux d'élimination (ke)) des HAP ont été comparés avec l'hydrophobicité de

ces HAP, exprimée par le coefficient de partition octanol-eau (log Kow). Les résultats

montrent que le log ks diminue avec l' augmentation de log Kow pour tous les sédiments

étudiés. La relation négative entre log ks et log Kow suggère que le taux de désorption du

composé à partir du sédiment était un facteur important dans l'accumulation par les vers.

La détermination de la proportion relative des métabolites par rapport au phénanthrène total

et au pyrène total dans les tissus de vers après une exposition de 28 jours indiquait la

présence de 24% de 9-hydroxyphénanthrène et 17% de 1-hydroxypyrène chez N. virens, et

de 18% de 9-hydroxyphénanthrène et 20% de 1-hydroxypyrène chez L. variegatus. D'après

ces importantes proportions en métabolites, nous présumons que les métabolites présents

dans les vers sont principalement dus à la métabolisation des HAP parents plutôt qu'à la

Page 127: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

104

bioaccumulation à partir des sédiments où les métabolites étaient présents en faible

concentration.

Mots clés: HAP, sédiments marin et lacustres, bioaccumulation, métabolites, cinétiques de

biotransformation, hydroxy-phénanthrène, hydroxy-pyrène.

Page 128: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

105

Abstract

In the present study, Lumbriculus variegatus and Nereis virens were exposed to field-

collected sediments of varying composition and concentration of polycyclic aromatic

hydrocarbons (P AHs). The biotransformation capability of L. variegatus and N. virens was

assessed over 28 days by following the concentration of 9-hydroxyphenanthrene (9-0H-

PHE) and 1-hydroxypyrene (l-OH-PYR), the phase l metabolites of phenanthrene and

pyrene, respectively. Toxicokinetic coefficients, bioaccumulation factors (BAF), and biota-

sediment accumulation factors ([BSAF] , BAF normalized to the organism lipid content and

sediment organic carbon content) were determined. The kinetic parameters (the uptake

clearance rate constant (ks) and the elimination rate constant (ke)) of PAHs were compared

to molecular hydrophobicity of these PAHs, expressed by the octanol-water partition

coefficient (log Kow). The results showed that log ks decreased with increasing log Kow for

aU studied sediment samples. The negative relationship between log ks and log Kow

suggests that the desorption rate of the compound from the sediment was an important

governing factor in the accumulation by the worms. The determination of the relative

proportion of metabolites toward total phenanthrene and pyrene in worm tissues after a 28-

day exposure indicated the presence of 24% of 9-hydroxyphenanthrene and 17% of 1-

hydroxypyrene in N. virens, and 18% of 9-hydroxyphenanthrene and 20% of 1-

hydroxypyrene in L. variegatus. According to these high proportions of metabolites, we

assumed that metabolites present in worms are mainly due to metabolization of the parent

P AH instead of bioaccumulation from sediment where metabolites were present in low

concentrations.

Page 129: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

106

Keywords: P AH, manne and lacustrine sediments, bioaccumulation, metabolites,

biotransformation kinetics, hydroxy-phenanthrene, hydroxy-pyrene.

Page 130: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

107

INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are common contaminants In manne

environments (Kennish, 1997) that accumulate and persist in sediments and can therefore

be taken up by sediment dwelling organisms (Landrum, 1989; Leppanen and Kukkonen,

1998; Loonen et al. , 1997; Weston, 1990). Thus, understanding the bioavailability of these

sediment-sorbed contaminants is important to determine their potential environmental risk.

In a general manner, the bioavailability of sediment-sorbed contaminants decreases with the

increase of the contact time (Landrum, 1989; McElroy and Means, 1988), where the contact

time corresponds to the elapsed time from the introduction of the contaminant in the

sediment. The contact time is also named aging time. The reduction of the bioavailable

fraction can be either due to the strong binding with the sedimentary organic carbon or to

the rapid metabolization of these compounds by the organisms (Pignatello, 1990).

Inversely, numerous studies using spiked sediments have indicated that sorne chemicals,

such as PAHs, did not show decrease of the bioavailability through time (Landrum, 1989;

Landrum et al., 1 992a). However, when comparing spiked and field polluted sediments, a

lower accumulation has been shown in the polluted sediments compared to the spiked ones

(Landrum et al. , 1992a; Varanasi et al. , 1985). These studies suggested that sorne

compounds need more contact time (more than one year) to reach equilibrium with

sediments. Due to the toxicity and the persistence of these compounds, it is important to

further study their bioaccumulation potential.

Page 131: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

108

Bioaccumulation studies have been widely used to evaluate the bioavailability and the

ecological risk of bedded-sediments. These studies often incorporated a bioaccumulation

factor (BAF), which is defined as the ratio of the contaminant in the organism at steady-

state and the contaminant concentration in the environmental media (water, sediment,

etc ... ). The disadvantage of these studies is the important time needed for the organisms to

reach the steady-state for sorne compounds. Due to this drawback, toxicokinetic models, in

particular two-compartment models using first-order kinetics are commonly used to

de scribe accumulation and predict levels at steady-state under non-equilibrium conditions

(Landrum et al., 1992b; Lydy et al., 2000; Schuler and Lydy, 2001).

The present work was undertaken as part of a larger study exammmg the

sequestration mechanisms of P AHs in manne and lacustrine sediments with different

geochemical and environmental characteristics, and to study the bioaccumulation of P AHs

in order to correlate it with obtained sequestration data. The goal of the first part of this

study was to evaluate three different non-exhaustive solidlliquid extraction methods (n-

butanol , hydroxypropyl-p-cyclodextrin, and a surfactant solution of Brij700) for assessing

the availability of P AHs in contaminated sediments. This goal was achieved by comparing

results from 28-day uptake experiments by Nereis virens and Lumbriculus variegatus with

PAHs extracted by these three methods. Our results showed that an extraction procedure

involving the Brij700 was revealed to be useful particularly with sediments that show PAH

levels > 2 Jlg g-t and log Kow< 5.8 (Barthe and Pelletier 2007). The purpose of the second

part of the study was to test the efficiency of passive solid samplers, polyoxymethylene

(POM) strips and polydimethylsiloxane silicon tubing, to predict the bioavailability of

Page 132: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

109

native PAHs in contaminated sediments. Results were compared to those of the first study.

The silicon sampler overestimated the availability of P AHs in aIl studied sediments

whereas the POM method provided results quite similar to the solid/liquid extraction using

high molecular weight Brij700. However, both methods poorly predicted availability in low

eontaminated sediments. A closer examination of individual P AH results indicated that the

POM technique overestimated the availability of large molecules with log Kow >6 (Barthe

et al., 2008).

The principal aim of the present study was to investigate the temporal patterns of

P AH accumulation for eleven sediments with variable levels of contamination in two

species of aquatic invertebrates (Lumbriculus variegatus and Nereis virens). Our specifie

objectives were to determine the toxicokinetic parameters describing the uptake,

elimination and BAF of the eight P AHs studied in sediments exhibiting large differences in

their chemical properties. Moreover, the ability of the organisms to metabolize

phenanthrene and pyrene was examined by the determination of selected hydroxy P AHs (9-

hydroxyphenanthrene and 1-hydroxypyrene).

MATERIALS & METHODS

Chemicals

Polycyclic aromatic hydrocarbons standards (method standards for waste water, 16

compounds 0.1 mg mL-') were purchased from Chromatographic Specialties Inc.

(BrockviIle, Canada). 9-hydroxyphenanthrene (9-0H-PHE) (teehnical grade) and 1-

Page 133: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

110

hydroxypyrene (l-OH-PYR) (98% purity) were purchased from Sigma-Aldrich (Oakville,

Canada). Anthracene-d lO and fluoranthene-d lO were from Cambridge Isotope Laboratories

(Andover, MA, USA) at 98% purity. Acetonitrile (HPLC grade) and dichloromethane

(DCM) (Liquid Chromatography Analysis) were purchased from VWR (Mississauga,

Canada).

Sediments

Marine sediments were collected in the St-Lawrence River and Estuary and in the

Saguenay Fjord (QC, Canada) in July 2004 with a Van Veen grab and in the Kitimat Fjord

(BC, Canada) in September 2003 at low tide with shovel. The whole sediment was placed

into c1ean buckets and frozen at -20°C until analysis. Lacustrine sediments were collected

in the Saint-Louis River (SLR) (QC, Canada) in October 2003 with a hand corer. The

whole sediment was placed into c1ean buckets and frozen at -20°C until analysis. Total

P AHs, and total organic carbon (TOC) content were determined in triplicate for the

sediment samples using the same procedure as previously reported (Barthe and Pelletier,

2007). The sediment properties were reported in Barthe and Pelletier (2007). Low

contaminated samples (EGSL04-01; -07; 13; SLR Upstream; Minette Bay; Hospital Beach)

show PAH concentrations between 0.06 and 1.1 flg g-l (wet weight) whereas highly

contaminated samples (B Lagoon; Scrubber; Scow Grid; SLR Outflow; SLR DOwrIstream)

contained PAHs ranging between 25.5 and 5723 flg g-l (wet weight). TOC ranged between

2.0 and 41% and 0.04 and 5.1% inhighly and in low contaminated samples respectively.

Page 134: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

111

Uptake experiments

Bioaccumulation tests used Nereis virens and Lumbriculus variegatus as previously

described (Barthe and Pelletier, 2007). Tests were conducted in triplicate for 28 d at

temperature ranging between 4 and 6°C.

Analysis of worm tissues and sediments

The PAR analysis in organisms and sediments followed the technique previously

described (Barthe and Pelletier, 2007). Metabolites in biological tissues and in sediments

were extracted with the same protocol used for the extraction of PARs in organisms.

Briefly, samples (200 mg d.w.) were extracted with 5 ml of hexane:acetone (50:50 v/v)

using an ultrasonic bath for 30 min. Each sample was then shaken for 3 h and returned to

the ultrasonic bath for 30 min. The extraction volume was reduced to 0.5 mL, solvent

exchanged to acetonitrile and reduced to 0.2 mL. Concentrations of phenanthrene, 9-

hydroxyphenanthrene, pyrene and 1-hydroxypyrene in sediments and in worms are

presented in Table l.

Page 135: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table l. Concentration of phenanthrene (PHE), 9-hydroxyphenanthrene (9-0H-PHE), pyrene (PYR), and 1-hydroxypyrene

(l-OH-PYR) in sediments and in worms ().tg g-I w.w.) and percentage ofmetabolite compared to parent PAH.

PHEsed 9-0H-PHEsed PHEwomls 9-0H-PHEwonns %a PYRsed l-OH-PYRsed PYRwonns l-OH-PYRwonns %a

B Lagoon 213 11.8 0.55 0.15 22 660 0.02 4.1 l. 6 28

Scrubber 227 3.1 7.3 3.05 29 770 l.9 18.8 0.52 2.7

Scow Grid 48 0.56 0.13 0.05 28 95 0.003 0.46 0.19 29

SLR Outflow l.6 0.58 0.71 0.13 15 46 0.002 2.77 0.69 20

SLR Downstream 0.36 0.06 0.06 0.03 32 l.9 l.0 x 10-4 0.26 0.09 27

EGSL04-1 3 0.07 0.02 0.21 0.04 18 0.08 3.0 x 10-4 0.32 0.007 2.2

EGSL04-07 0.05 0.02 0.15 0.04 24 0.06 l.0 x 10-4 0.19 0.04 16

Hospital Beach 0.06 0.01 0.10 0.05 32 0.05 3.0 x 10-4 0.26 0.09 27

SLR Upstream 0.06 0.05 0.42 0.02 5.3 0.06 0.004 0.62 0.08 12

EGSL04-01 0.01 0.02 0.20 0.03 I l 0.02 l.0 x 10-4 0.31 0.03 9.6

Minette Bay 0.03 0.01 0.06 0.025 29 0.014 4.0 x 10-4 0.36 0.11 23

a % = (OH-PAHwonns*100)/(PAHwonns + OH-PAHwonns)

.......

....... N

Page 136: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

113

Quantification

Metabolite analyses were carried out by liquid chromatography (LC) with

fluorescence detection. The apparatus consisted of a Rheodyne® in je ct or with a 20 ilL

injection loop, a Shimadzu LC-1 OAD® pump, a Supelcosil™ LC-PAH column (25 cm x 3

mm), and Spectra SYSTEM FL3000 fluorescence detector. AIl analyses were done at a

constant flow rate of 0.8 mL min- I with a mixture of nanopure water and acetonitrile as

mobile phase. The pump pro gram began at 75% acetonitri1e and increased to 95% in 10

min and then to 100% in the next 10 min, with a final plateau of 10 min. The cycle returned

to 75% acetonitrile after a total run time of 35 min. The excitation wavelength of the

fluorescence detector was settled at 244 nm during the first 3.4 min and then shifted to 344

mu until the end of the pro gram and the emission was detected at 370 nm during the first

3.4 min and then shifted to 394 nm until the end of the program. For quality control , a 0.5

Ilg mL- 1 9-0H-PHE and 1-0H-PYR mix was analyzed every 10 samples.

Fluorene (FLU), phenanthrene (PHE), fluoranthene (FL T), pyrene (PYR),

bz[a]anthracene + chrysene (BaA+CHR), benzo[bk]fluoranthene (BbkF), bz[a]pyrene

(BaP), bz[g.h.i]perylene (BPE), 9-0H-PHE and 1-0H-PYR were quantified.

Quality control work showed recovery data ranging from 89.5 ± 5.6% (mean ±

standard deviation) to 98.7 ± 2.5%. Variability of analytical results was estimated to ± 15%

(n = 5) and the limit of detection was estimated at 0.01 ng g-I (d.w. sediment).

Page 137: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

114

Data treatment

Contaminant accumulation data were fitted to a first-order toxicokinetic, two-

compartment accumulation model to estimate both uptake and elimination for evaluation of

bioavailability (Kukkonen et al. , 2004; Spacie and Hamelink, 1983 ; Spacie et al. , 1995):

C = ksC, (1- - k,t ) worm s k e

e

(1 )

where Cworms is the concentration of the compound in the organism (Ilg g-I w.w.), Cs is the

concentration of the compound in the sediment (Ilg g-I d.w.) , ks is the uptake clearance rate

constant of the compound from sediment (g dry sediment g-I wet organism h-I), ke is the

elimination rate constant of the compound (h- I) in sediment, and t is time Ch). The model

assumes that the concentration in the sediment remains constant and there is no

biotransformation of the compound. The best-fit adjustable parameter values were found

using the sol ver function in Microsoft Excel® 7.0 (Table 2).

Page 138: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 2. Estimated wet weight-based uptake (ks) and elimination (ke) rate constants for the kinetics of polycyc1ic aromatic

hydrocarbons (P AHs) in polychaetes and oligochaetes.

Log B Lagoon Scrubber Scow SLR SLR EGSL04- EGSL04- Hospital SLR EGSL04-

K awa Grid Outflow Downstream 13 07 Beach Upstream 01

FLU 4.18 ks 3.0 x 10.4 0.0 1 1.6 x 10-4 5.0 x 10-3 2.0 x 10-3 0.21 0.20 0.46 0.13 0.97

kc 0.02 0.01 0.02 0.02 0.01 0.08 0.01 0.01 0.03 0.01

PHEN 4.52 ks 3.8 x 10-3 5.0 X 10-4 8.34e-5 3.0 x 10-3 2.0 X 10-3 0.33 0.08 0.04 0.07 0.78

ke 0.15 0.01 0.03 0.01 0.0 1 0.11 0.03 0.03 0.0 1 0.04

FLT 5.33 ks 1.0 x 10-4 5.0 X 10-4 8.41 e-5 5.0 X 10-4 1.0 X 10-3 0.07 0.07 0.88 0.56 0.53

ke 0.02 0.02 0.02 0.0 1 0.01 0.04 0.0 1 0.15 0.02 0.03

PYR 5. 18 ks 8.6 x 10-5 7.0x 10-4 4.0 X 10-4 5.0 X 10-4 2.0 X 10-3 0.2 1 0.05 0.50 0.14 0.82

kc 0.0 1 0.03 0.09 0.0 1 0.01 0.06 0.0 1 0.10 0.0 1 0.05

BaA+CHR 5.76b ks 2.1 X 10-5 2.0 X 10-4 2.69c-5 1.0 X 10-4 1.0 X 10-4 2.0 X 10-3 0.02 0.04 0.04 0.42

kc 0.01 0.01 0.05 0.01 0.01 0.0 1 0.02 0.02 0.01 0.02

BbkF 6.71 c ks 2.5 x 10-5 3.8 X 10-5 7.01 c-6 1.0 X 10-4 2.0 X 10-4 0.0 1 0.01 0.02 0.03 0.04

kc 0.01 0.02 0.0 1 0.0 1 0.01 0.0 1 0.01 0.0 1 0.0 1 0.02

BaP 6.31 ks 1.4 x 10-5 6.7 X 10-5 4.7x 10-6 1.0 x 10-4 8.4 X 10-5 3.0 X 10-3 0.01 1.0 x 10-3 0.54 0.01

kc 0.02 0.03 0.03 0.02 0.01 0.01 0.01 0.0 1 0.04 0.01

BPE 7.23 ks 2.3 x 10-5 4.0 X 10-5 4.5 X 10-6 1.0 X 10-4 8.5 X 10-5 6.0x 10-4 4.0 X 10-4 0.0 1 7.0 x 10-3 2.0 X 10-3

kc 0.02 0.01 0.0 1 0.01 0.0 1 0.01 0.02 0.0 1 0.01 0.0 1

a From Mackay et al. (1991); b mean of BaA and CHR Log Kow; C mean of BbF and BkF Log Kow

Minette

Bay

0.99

0.02

OAO

0.19

0.89

0.02

0.86

0.03

0.78

0.02

0.07

0.0 1

0.05

0.01

0.04

0.02

>-' >-' Vl

Page 139: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

116

Bioaccumulation factors were determined either from the measured values at the end

of the exposures (BAFme) as the concentration in the organisms (Ilg g-I w. w.) divided by

the concentration in the sediment (Ilg g-I w. w.) or as calculated values from the

toxicokinetics (BAFca) as the ratio ofkslke to give the expected steady state BAF (Table 3).

The biota-sediment accumulation factor was calculated by normalizing BAFca by the

lipid content of the organisms and the organic carbon content of the sediments (Table 3).

The average lipid values for Lumbriculus variegatus and for Nere is virens were 10.45%

and 8.33%, respectively. The sediment organic carbon contents were reported previously

(Barthe and Pelletier, 2007).

Metabolite accumulation data were fitted to a first-order toxicokinetic, three-

compartment accumulation model to estimate uptake, metabolization and elimination rate

constants:

where CMO is the concentration of the metabolite compound in the organism (Ilmol g-I

w.w.), Cps is the concentration of the parent compound in the sediment (Ilmol il d.w.),

C pO is the concentration of the parent compound in the organism at to (Ilmol g-l ()

w.w.), C MOo is the concentration of the metabolite compound in the organism at to (Ilmol g-l

w.w.), k l is the uptake clearance rate constant of the parent compound from sediment (Ilmol

dry sediment il wet organism h- l), k2 is the metabolization rate constant of the parent

compound (h- l), k3 is the elimination rate constant of the metabolite compound (h- l) and t is

time (h). The best-fit adjustable parameter values were found using Lab Fit 7.2® (Table 4) .

Page 140: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 3. Bioaccumulation (BAF) and biota-sediment accumulation (BSAF) factors for the selected polycyclic aromatic

hydrocarbons.

B Scrubber Scow SLR SLR EGSL04- EGSL04- Hospital SLR EGSL04- Minette

Lagoon Grid Outflow Downstream 13 07 Beach Upstream 0 1 Bay

FLUa BAFmc 0.006 l.06 0.003 0.079 0.14 0.792 l.70 12.8 3 .03 4.87 33.6

BAFca 0.016 l.00 0.008 0.33 0 .14 2.62 14.3 38 .3 4 .81 88.2 45 .0

BSAF 0.06 4.92 0.002 0.06 0 .034 0.22 1.88 0.37 2.35 13.2 0 .22

PHEN BAFmc 0.003 0.03 0.003 0.45 0.17 2.80 3.00 l.70 6.90 19.9 2 .10

BAFca 0.03 0.03 0.003 0.43 0 .14 3.00 2.80 l.60 7.40 19.0 2. 10

BSAF 0.09 0.16 0.0007 0.08 0 .034 0.25 0.37 0.015 3.63 2.74 0.01

FLT BAFmc 0.007 0.03 0.004 0.045 0 .1 0 1.80 2.50 6.60 0.67 20.4 44.6

BAFca 0.006 0.03 0.005 0.05 0. 11 1.80 2.80 5.90 28 .0 20.4 52.3

BSAF 0.02 0.15 0.001 0.009 0 .025 0.15 0.64 0.056 13 .66 2.93 0.26

PYR BAFme 0.006 0.02 0.0048 0.061 0.14 4.10 3.40 5.20 1l.3 16.9 25 .1

BAFca 0.006 0.02 0.0046 0.062 0 .17 3.70 3.40 5.05 1l.7 16.7 26.1

BSAF 0.02 0.12 0.001 0.011 0 .039 0.31 0.45 0.048 5.69 2 .31 0. 12

BaA+CHR BAFme 0.002 0.02 0.0005 0.013 0.0 11 0.15 0.88 2.35 3.55 1.98 44.2

BAFca 0.002 0.02 0.0005 0.01 0 .011 0.25 1.35 2.43 3.90 20.0 45 .9

BSAF 0.008 0.08 0.0001 0.002 0 .002 0.02 0.18 0.023 1.91 2.88 0 .22

....... -..J

Page 141: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

B Scrubber Scow SLR SLR EGSL04- EGSL04- Hospital SLR EGSL04- Minette

Lagoon Grid Outflow Downstream 13 07 Beach Upstream 01 Bay

BaP BAFme 0.001 0.002 0.0001 0.009 0.007 0.26 0.59 0.15 15.1 7.20 3.90

BAFca 0.001 0.002 0.0001 0.0066 0.007 0.25 0.61 0.11 13 .5 1.30 4.00

BSAF 0.003 0.012 5.0 x 10-5 0.001 0.002 0.02 0.08 0.001 6.58 0.19 0.02

BPE BAFme 0.001 0.005 0.0004 0.011 0.008 0.06 0.016 1.54 0.51 0.17 2.64

BAFca 0.001 0.005 0.0004 0.009 0.009 0.07 0.022 1.62 0.58 0.15 2.75

BSAF 0.004 0.024 0.0001 0.002 0.002 0.006 0.003 0.016 0.28 0.022 0.01

Median BAFme 0.002 0.02 0.002 0.03 0.06 1.01 1.29 2.08 3.29 6.05 15.6

BAFca 0.004 0.02 0.002 0.03 0.06 1.58 2.08 2.18 6.13 17.9 16.3

BSAF 0.015 0.10 0.0005 0.006 0.016 0.13 0.27 0.021 2.99 2.52 0.08

a FLU = fluorene, PHE = phenanthrene, FLT = fluoranthene, PYR = pyrene, BaA+CHR = bz[a]anthracene + chrysene , BbkF

= benzo[bk]fluoranthene, BaP = bz[a]pyrene, BPE = bz[g.h.i]perylene.

...... 00

Page 142: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

Table 4. Estimated wet weight-based uptake (k l ) , metabolization (k2) and elimination (k3) rate constants for the kinetics of

hydroxy polycyclic aromatic hydrocarbons (OH-PAHs) in polychaetes and oligochaetes.

B Lagoon Scrubber Scow SLR SLR EGSL04- EGSL04- Hospital SLR EGSL04-

Grid Outflow Downstream 13 07 Beach Upstream 01

9-0H- k] 3.0 x 10-4 4.0 X 10-4 3.3 X 10-4 0.002 0.002 0.07 0.03 0.06 0.003 0.37

PHEN k2 0.35 0.07 0.02 0.02 0.02 0.03 0.08 0.02 0.007 0.02

k3 0.43 0.03 0.31 0.02 0.04 0.11 0.031 0.09 0.008 0.14

1-0H- k] 1.1 x 10-4 3.1 X 10-4 3.8 X 10-4 3.3 X 10-4 5.7 X 10-4 0 .004 0.01 0.28 0.003 0.02

PYR k2 0.04 0.04 0.08 0.03 0.01 0.002 0.02 0.14 0.02 0.03

k3 0.04 0.05 0.19 0.02 0.01 0.05 0.02 0.15 0.02 0.02

Minette

Bay

0.07

0.04

0.08

0.77

0.04

0.10

....... ....... \0

Page 143: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

120

RESULTS

Bioconcentration of PAH in worms

A rapid uptake of P AHs by worms was indicated by the maximum tissue levels

measured within 7 days (168 h) of exposure for aU target compounds in aU sediment

samples and both worm speCles. Six sediments with different characteristics and

contamination levels were selected to iUustrate this point (Fig. 1). For most PAHs,

bioaccumulation showed a regular pattern although concentrations ranged from <0.05 ~g g-

1 in low contaminated sediments to as much as 20 ~g g-I in the highly contaminated

scrubber sample. Phenanthrene revealed peak levels within 72 h and 120 h in one highly

contaminated sediment (B Lagoon) (Fig. lA) and two low contaminated sediments

(EGSL04-07 and Hospital Beach), respectively (Fig. 1 D and F). Pyrene also revealed peak

levels within 72 h in one highly contaminated sediment (Scrubber) and in one low

contaminated sediment (Hospital Beach) (Fig. IF) . Fluoranthene also showed a particular

behavior in one low contaminated sediment (Hospital Beach) (Fig. 1 F).

Page 144: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

121

Fig. 1. Uptake kinetics of fluorene ( . ), phenanthrene (0), fluoranthene (T ), pyrene ( ~ ) ,

bz[a]anthracene + chrysene (v), benzo[bk]fluoranthene (. ), benzo[a]pyrene (0), and

benzo[g.h.i]perylene (. ) in worms during the exposure period in B Lagoon (A), Scrubber

(B), SLR Downstream (C), EGSL04-07 (D), SLR Upstream (E), and Hospital Beach (F)

sediments. The curve corresponds to the nonlinear fit of the data using the model expressed

in Eq. 1. Note different scales for P AH concentrations.

A 1)

0.30

~ 5 ~ 0.25 ~ ~

~ el) 4 ~

el) 0.20 el) el)

2; 2; § .2 0. 15

g :. 2 l:: 0. 10

" " " " <) <)

" " 8 1 8 0.05

0.00 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time(h) Ti me(h)

B E

30 3.0

~ 25 ~ 2.5 ~ ~

~ el) 20 el) 2.0 el) el)

1/ 2; 2;

" 15 " 1.5 .12 0

g 10 g

1.0 " " " " <) <)

" " 0 5 0 0.5 ~ U U

0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time(h) Time (h)

C F

0.30 0.30

,..,. ,..,. ~ 0.25 ~ 0.25 ~ ~

~ el) 0.20 el) 0.20 el) el)

2; 2;

" 0. 15 " 0. 15 .12 .12 g 0. 10 g 0. 10 " " " " <) <)

" cS 0 0.05 0.05 U

0.00 0.00 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time(hl Time (hl

Page 145: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

122

Uptake rate constants (ks) were calculated for individual PAHs using Eq. 1 (Table 2).

The relationship between uptake clearance rate constants and the molecular lipophilicity

expressed by log Kow is illustrated in Figure 2 (Top panel). The plots show that log ks

decreased with increasing log Kow for all studied sediment samples (R2 = 0.54 and 0.48 for

highly and low contaminated sediments, respectively).

Elimination rate constants (ke) were calculated for individual P AHs also using Eq.

(Table 2). The relationship between elimination rate constants and log Kow has been plotted

(Fig. 2 Bottom panel). The plots show that the elimination rate constant for the studied

worms also tends to decrease with increasing log Kow for both categories of sediment, but

with low correlation coefficients (R2 = 0.08 and 0.24 for highly and low contaminated

sediments, respectively).

The bioaccumulation factors (BAFs) were estimated from BAFca = ks /ke, and also

directly (BAFme) from P AH concentrations in worm tissues and sediment samples, (Table

3). A decrease of BAFca was observed with increasing log Kow for the low and highly

contaminated sediments (data not shown). Median BSAF values ranged from 0.0005 to

0.27 in ni ne out of eleven sediments (Table 3), with the exception of SLR Upstream and

EGSL04-01 where the medians reached 2.99 and 2.52, respectively. Values of BSAFs in

highly contaminated samples were often two to four orders of magnitude lower than the

theoretical value of 1 (DiToro et al., 1991).

Page 146: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

123

Fig. 2. (Top) Plot of the log of uptake clearance rate constants, log ks, versus the log of the

hydrophobicity expressed by the octanol/water partition coefficient, log Kow, for highly (A)

and low (B) contaminated sediments. (Bottom) Plot of the log of elimination rate constants,

log ke, versus the log of the hydrophobicity expressed by the octanol/water partition

coefficient, log Kow, for highly (C) and low (D) contaminated sediments.

A B

log K"", log Kow

4 5 6 7 8 4 5 6 7 8 0 0

-1

-2 • -2

• t .:2 • R2 = 0.54 .:2 • • • Cl -3 Cl -3 • .2 .2 * -4 • • -4

• R2 = 0.48 -5 • -5

• • -6 -6

C D

log K"", log Kow

4 5 6 7 8 4 5 6 7 8 0 0

-1 • • •• • -1 • • • !i • • • : • • -2 • • S. • • 1 • -2 1 • • • • •

" " "" "" Cl -3 Cl -3 .2 .2

-4 -4

-5 R2 = 0.08 -5 R2 = 0.24

-6 -6

Page 147: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

124

Biotransformation of P AHs in worms

Two hydroxy-PAHs, 9-hydroxyphenanthrene (9-0H-PHE) and I-hydroxypyrene (1-

OH-PYR), were used as proxies to quantify the presence of hydroxy-metabolites in worm

tissues and estimate metabolic activity of both worm species. After a 28-d exposure to

sediments, between 5.3 and 32%, with a median value of 24%, of total phenanthrene in

worm tissues was constituted by 9-0H-PHE and between 2.2 and 29%, with a median value

of 20%, of total pyrene in worm tissues was constituted by 1-0H-PYR (Table 1). Results

for three typical highly contaminated sediments and three low contaminated ones are

illustrated in Fig. 3 and 4 for phenanthrene and pyrene, respectively. The ratio 9-0H-

PHE/PHE was plotted alone with the PHE bioaccumulation curve for each sediment sample

(Fig. 3). Highly contaminated B Lagoon (Fig. 3A) provides a straightforward example

where ratio 9-0H-PHE/PHE increased quickly to a plateau as PHE was bioaccumulated in

the worm tissues within 24h. No significant differences (p > 0.05) were seen in the

foliowing days and weeks. In most other cases, the 9-0H-PHE/PHE ratios increased rapidly

in the first 24 to 72h, and then decreased and reached a plateau in the following days

(Fig.3B, C, and D). At steady state, the 9-0H-PHE/PHE ratio ranged for about 0.3 to 0.5

with the exception of SLR Upstream (Fig.3E) where the ratio never exceeded 0.1 even with

a quite high level of PHE in this low contamination sample. We found no evidence of a

relationship between 9-0H-PHE/PHE and PHE concentrations in aU samples studied.

Page 148: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

125

Fig. 3. The ratio of 9-hydroxyphenanthrene to phenanthrene (e) and bioaccumulation

kinetic of phenanthrene (0) during the exposure period in B Lagoon (A), Scrubber (B),

SLR Downstream (C), EGSL04-07 (D), SLR Upstream (E), and Hospital Beach (F)

sediments. Note different scales for phenanthrene concentration.

A D

1.0 1.0 1.0 0.5

0.8 0.8 0.8 0.4 ~ '""" Li! :i Li! :;:

:t :i

:t :i c- 0.6 {'o. 0.6 c- 0.6 0.3 W .,- W .,-

:t Oll :t Oll C- Oll c- Oll

::i:. 0.4 0.4 2; ::i:. 0.4 0.2 2:: 0 Li! 0 r; Li! d- :r: d- :t

( c- c-0.2 0.2 0.2 0. 1

0.0 0.0 0.0 0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

B E

1.0 10 1. 0 0.5

0.8 0.8 0.4

'""" '""" Li! :;: Li! :;: :t

:i :t

:i e:: 0.6 6 e:: 0.6 0.3 Li! .,- Li! .,-:t Oll :t Oll c- Oll c- Oll

::i:. 0.4 2; ::i:. 0.4 0.2 2; 0 Li! 0 Li! d- :t d- :t c- c-

0.2 0.2 0. 1

0.0 0 0.0 0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

C F

1.0 0.10 1.0 0.5

0.8 0.08 0.8 0.4 Li! '"""Li! :i :t :;: :t

0.3 .,-:i ili 0.6 0.06 :;: e:: 0.6 .,- UJ

f\..... :t Oll;t Oll c- 0ll C- Oll

::i:. 0.4 0.04 ::1. ' ~:r: 0.4 0.2 -3

0 UJO UJ d- :r: ' :t c-o" c-

0.2 0.02 0.2 V 0. 1

0.0 0.00 0.0 0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

Page 149: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

126

Pyrene and 1-hydroxypyrene showed a similar behavior to phenanthrene and its

metabolite with a stable 1-0H-PYRIPYR ratio reaching a plateau after a few days (Fig.4).

A peak is often observed early in the process (Fig. 4A and C), but seems not related to the

concentration of pyrene in worms. 1-0H-PYRIPYR ratios ranged from 0.2 to 0.4 at steady

state with the exception of SLR Upstream (Fig. 4E) where the ratio stabilized around 0.1 as

previously observed for 9-0H-PHE/PHE.

Uptake rate constants (kt), metabolization rate constant (k2) and elimination rate

constant (k3) were calculated for individual OH-PAHs using Eq. 2 (Table 4). As previously

observed in Table 2 for uptake rate (ks) of the parent compound calculated with Eq.1 , the

uptake clearance rate constants (kt) of phenanthrene and pyrene calculated with Eq. 2 are

much lower in highly contaminated samples (averaged 9.3 x 10-4 for PHE and 3.4 x 10-4 for

PYR) than in low contaminated ones (averaged 0.10 for PHE and 0.18 for PYR).

Metabolization rate constants (k2) for phenanthrene ranged from 0.007 to 0.079 with

an exceptional high value of 0.35 for B Lagoon sediment. Rate k2 for pyrene ranged from

0.001 in EGSL04-13 to 0.14 in Hospital Beach.

The elimination rate (k3) of the phenanthrene metabolite ranged from 0.43 (in B

Lagoon where k2 is also high) to 0.0076 (in SLR Upstream where k2 was particularly low).

Rate k3 for pyrene ranged from 0.01 in SLR Downstream to 0.19 in Scow Grid.

Page 150: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

127

Fig. 4. The ratio of I-hydroxypyrene to pyrene (. ) and bioaccumulation kinetic of pyrene

(0) during the exposure period in B Lagoon (A), Scrubber (B), SLR Downstream (C),

EGSL04-07 (D), SLR Upstream (E), and Hospital Beach (F) sediments. Note different

scales for pyrene concentration.

A D

1.0 1.0 0.5

0.8 0 .8 0.4 ~

~ :i ~ :i

~ 0.6 :i ~ 0.6 0 .3 :i

"7 "7 on >- on "- on "- on :i: 0.4 2 3 :i: 0.4 0.2 3 C? ~ C? / ~

>-"- "-0.2 0.2

~ 0. 1

0.0 0 0.0 0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

B E

1.0 25 1.0 1.0

0.8 20 0.8 0.8 ~

~ ~ :i :i

~ 0.6 15 :i ~ 0.6 0.6 :i

"7 on "7 >- on c,- on "- on :I: 0.4 10 3 :i: 0.4 0.4 3 C? ~ C? ~

"- "-0.2 0.2 0.2

0.0 0.0 0 .0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

C F

1.0 0.5 1.0 0.5

0.8 0.4 0.8 0.4

~ ~

~ ~

:i :i

~ 0.6 0.3 :i ~ 0.6 0.3 :i

"7 on "7 on "- on "- on :i: 0.4 0.2 3 :i: 0.4 ~ 0 .2 3 C? ~ C? ~

"- "-0.2 0. 1 0.2 0 . 1

0.0 0.0 0.0 0.0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Time (h) Time (h)

Page 151: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

128

The relationship between the elimination rate constants (k3) and the metabolization

rate constants (k2) is iUustrated in Figure 5. The plots show that k3 increased with increasing

k2 for both metabolites in aU studied sediment samples with good correlation coefficients

(values of R2 between 0.52 and 0.95) with the exception of 9-0H-PHEN in low

contaminated sediments (R2 = 0.05). The best correlation coefficient is obtained for 1-0H-

PYR in highly contaminated sediments (R2 = 0.95).

Page 152: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

129

Fig. 5. Plot of the elimination rate constants (k3) versus the metabolization rate constants

(k2) for 9-hydroxyphenanthrene in aIl (A), highly (B), and low contaminated sediments (C)

and for 1-hydroxypyrene in aIl CD), highly CE), and low contaminated sediments CF).

0.5

0.4

0.3 +

0.1

A

+

0.0 ~----"'-------,------,

~

:S

0.5

0.4

.::J:.M 0.2

0.1

o 0.4

B

0.0 ~--'-----r-------'

0.5

0.4

- 0.3 :S ~M 0.2

0.0 0 .2 0.4

c

+ R2 =0.05 .+ •

E. :2

0.5

0.4

0.3

0.00

0.5

0.4

- 0.3 :S ~M 0.2

0.1

o

0.05 0.10 0.15

E

R2 = 0.95

0 +-4.....".,-,-----,.-----,

0.00

0.5

0.4

0.05

F

0.10 0.15

. 0.3 :S ..>J:.M 0.2 R2 = 0.74

0.1~ o~,

o 0.05 0.1 0.15

Page 153: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

130

DISCUSSION

Bioconcentration of P AH in worms

The accumulation of organic compounds by N. virens and L. variegatus is complex

and depends on the characteristics of the compound, its aging process in sediment, and the

organism toxicokinetic characteristics. When these complex interactions are sorted out, the

physicochemical properties of the compound are found to govern the accumulation of

P AHs. From the relationships with log Kow, we can say that the ks values of compounds

with log Kow greater than 7 will be extremely small. The relationship between log ks and

log Kow suggests that the desorption rate of the compound from the sediment is probably

important in governing its accumulation by the organism. The change in the kinetics with

increasing molecular lipophilicity expressed by log Kow has been previously observed for

Pontoporeia hoyi accumulation of P AHs from sediments (Landrum, 1989). Although the

slopes were similar (-0.62 and -0.64 for highly and low contaminated sediments

respectively), the displacement of the intercepts of the two lines (-0.29 and 2.4 for highly

and low contaminated sediments respectively) (Fig. 2 Top panel) is thought to reflect the

difference in bioavailability driven in part by differences in the total P AH content of the

sediment.

Previous studies have shown that fastest elimination rate is generally for compounds

with lower lipophilicity (Lotufo and Landrum, 2002). Our results are in contradiction with

these results. Indeed, the present study shows now significant differences (p > 0.05)

Page 154: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

131

between compounds with low and high lipophilicity. The difference between these two

studies can mainly be due to the difference of studied species. Lotufo and Landrum (2002)

studied a freshwater amphipod (Diporeia spp), whereas we studied a freshwater oligochaete

(L. variegatus) and a marine polychaete (N. virens).

The propensity of individual P AHs to accumulate in worms can be estimated from

their bioaccumulation factor. In the present study, BAFs estimated from ks and ke values

were essentially similar to those estimated from P AH concentrations found in worm tissue

and sediment samples (Table 3). At both exposure levels (highly and low contaminated

sediments), BAFs decreased with increasing log Kow values for different PAHs (Table 3).

As explained in Barthe et al. (2008), the low BSAF observed in highly contaminated

samples can mainly be attributed to strong sorption to aluminum smelter residues weIl

characterized by Breedveld et al. (2007).

Biotransformation of P AHs in worms

The studies of PAH metabolization capabilities of L. variegatus are contradictory.

Indeed, sorne researchers (Harkey et al., 1994; Verragia Guerrero et al. , 2002) found no

PAH metabolites with L. variegatus whereas Leppanen and Kukkonen (2000), Lyytikainen

et al. (2007) and Schuler et al. (2003) found pyrene and benzo[a]pyrene metabolites in

organism tissues. The differences between these two groups of studies was explained by

Lyytikainen et al. (2007) who attributed these differences in results to differences in

experimental protocols. lndeed, the study by Harkey et al. (1994) was conducted at IOoe

and the one by Verrengia Guerrero et al. (2002) was performed during 48 h only under an

acute dosage regime, whereas studies by Leppanen and Kukkonen (2000), Lyytikainen et

Page 155: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

132

al. (2007) and Schuler et al. (2003) were performed at 20°C during lOto 28 days. In the

present study, the bioaccumulation tests were performed at 4-6°C for 28 days and P AH

metabolites were observed in L. variegatus and in N virens for aIl sediments tested The

difference in temperature between the tests seems not to be the key factor to explain these

differences between results. Even time scale seems not to be a proper explanation as we

observed metabolites within 2-3 days after the beginning of the experiment. A part of the

explanation may reside in metabolite detection methods used by different research teams.

We observed that total pyrene in N virens tissues after a 28-day exposure was

constituted by 17% 1-hydroxypyrene and 83% pyrene which is in accordance with the

study of J0rgensen et al. (2005) who found 4% of I-hydroxypyrene and 17% of pyrene

toward total pyrene in N. virens gut tissue, which represents 23.5% of I-hydroxypyrene

compared to pyrene parent compound. According to this observation, we assumed that

metabolites present in worm were mainly due to metabolization of the parent P AH instead

of bioaccumulation from metabolites already present in low quantity in most sediment

samples. Moreover, as worms are able to biotransform I-hydroxypyrene and 9-

hydroxyphenanthrene (phase l metabolites) to phase II metabolites (Giessing and Lund,

2002; Giessing et al. , 2003; J0rgensen et al., 2005), we assume that the bioaccumulated

phase l metabolites would be biotransformed to phase II metabolite quickly and would not

be taken into account in the concentration measurements. The presence of 9-

hydroxyphenanthrene and I-hydroxypyrene, the phase I metabolites of phenanthrene and

pyrene, respectively, in the present study supports the capability of N. virens and L.

variegatus to metabolize 3- and 4-ring PAHs. This finding is in agreement with recent

Page 156: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

133

Lyytikainen et al. (2007) study in which 1-hydroxypyrene was found In L. variegatus

tissues in sediment exposures with pyrene.

In the present study, the relative concentration of 9-hydroxyphenanthrene and 1-

hydroxypyrene compared to the concentration of phenanthrene and pyrene, respectively,

increased to a maximum, then decreased slightly in most case, and then reached the steady-

state level after 24 to 216 h. These results are in contrast with the recent results of

Lyytikainen et al. (2007) who found that the ratio of 1-hydroxypyrene/pyrene increased

linearly during the test and reached a value of ~ 1 after 15 days. Moreover, Lyytikainen et

al. (2007) observed that the concentration of I-hydroxypyrene was the highest at the

beginning of the test and decreased rapidly, whereas we found that the concentration of 9-

hydroxyphenanthrene and I-hydroxypyrene were the lowest at the beginning of the test and

increased rapidly to reach a steady-state level (data not shown). Reaching a steady-state

level means that elimination of the parent compound would be as efficient as

biotransformation in worm tissues. This observation is confirmed by the high correlation

coefficients obtained between the elimination rate constants (k3) and the metabolization rate

constants (k2) (Fig. 5).

CONCLUSION

The results of the present study showed that N. virens and L. variegatus accumulated

sediment-associated PAHs rapidly and achieved apparent steady-state within 7 days (168 h)

for aH studied sediment samples. In addition, the uptake clearance rate constant of P AHs

Page 157: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

134

were lower for highly than for low contaminated sediments (10-2_10-6 and 10-1_10-4 g dry

sediment g-I wet organism h- I, respectively), whereas the elimination rate constant of PAHs

remained in same order of magnitude for both type of sediments. The relationship between

log ks and log Kow suggests that the desorption rate of the compound from the sediment is

probably important in governing the accumulation by the worms.

To our knowledge, the present study is the first one to report toxicokinetic data of

P AH biotransformation in metabolites. lndeed, other researchers have studied the

occurrence of phase 1 and phase II P AH metabolites in organisms during bioaccumulation

and toxicokinetic studies in polychaetes and oligochaetes (Christensen et al. , 2002;

J0fgensen et al. , 2005 ; Leppanen and Kukkonen, 2000; Lyytikainen et al. , 2007), but none

of them has studied accumulation, or metabolization, or elimination kinetics of these

metabolites. Our work opens a window in the study of the fate of P AH metabolites which

deserves more scientific attention from reseachers. Additional experiments are needed to

determine the possible input of microorganism-originating metabolites in worms versus the

metabolic formation rate of PAH metabolites by worms. lndeed, we assumed that the PAH

metabolites present in worms came mainly from the internaI biotransformation of

corresponding parent P AH in such a proportion that the bioaccumulated metabolites were

negligible, but it would be interesting to know this proportion in order to study their

bioaccumulation, biotransformation into phase II metabolites, and elimination kinetics.

Page 158: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

135

ACKNOWLEDGEMENTS

This study was supported by a grant from the Canadian Research Chair in Molecular

Ecotoxicology (E.P.) and from the Natural Science and Engineering Research Council of

Canada (NSERC) - Collaborative Research Development Pro gram (CRD). Samples have

been provided by Alcan Ltée. This paper is a contribution of the Quebec-Ocean Network.

REFERENCES

Barthe M, Pelletier É. 2007. Comparing bulk extraction methods for chemically available

polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ Chem 4: 271-

283.

Barthe M, Pelletier É, Breedveld GD, Cornelissen G. 2008. Passive samplers versus

surfactant extraction for the evaluation of PAH availability in sediments with variable

levels of contamination. Chemosphere. 71: 1486-1493.

Breedveld GD, Pelletier É, St. Louis R, Cornelissen G. 2007. Sorption characteristics of

polycyclic aromatic hydrocarbons in aluminum smelter residues. Environ Sei Teehnol 41:

2542-2547.

Christensen M, Andersen 0 , Banta GT. 2002. Metabolism of pyrene by the polychaetes

Nereis diversieolor and Arenieola marina. Aquat Toxieol 58: 15-25.

DiToro D.M. , Zab ra CS, Hansen Dl, Berry Wl, Swartz RC, Cowan CE, Pavlou SP,

Allen HE, Thomas NA, Paquin PR, 1991. Technical basis for establishing sediment quality

Page 159: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

136

criteria for nonionic orgamc chemicals using equilibrium partitioning. Environ Toxico.

Chem 10: 1541-1583.

Giessing AMB, Lund T. 2002 . Identification of 1-hydroxypyrene glucuronide in tissue

of marine polychaete Nereis diversicolor by liquid chromatography/ion trap multiple mass

spectrometry. Rapid Commun Mass Spectrom 16: 1521-1525.

Giessing AMB, Mayer LM, Forbes TL. 2003. 1-hydroxypyrene glucuronide as the major

aqueous pyrene metabolite in tissue and gut fluid from the marine deposit-feeding

polychaete Nereis diversicolor. Environ Toxicol Chem 22: 1107-1114.

Harkey GA, Landrum PF, Klaine Sl 1994. Comparison of who le-sediment, elutriate and

pore-water exposures for use in assessing sediment-associated organic contaminants in

bioassays. Environ Toxicol Chem 13: 1315-1329.

l0rgensen A, Giessing AB Rasmussen Ll, Andersen 0 , 2005 . Biotransformation of the

polycyclic aromatic hydrocarbon pyrene in the marine polychaetes Nereis virens. Environ

Toxicol Chem 24: 2796-2805 .

Kennish Ml 1997. Polycyclic aromatic hydrocarbons. In: Kennish, Ml (Eds.). Practical

Handbook of Estuarine and Marine Pollution. CRC Press, Boca Raton, FL, USA, pp. 141-

175.

Kukkonen lVK, Landrum PF, Mitra S, Gossiaux DC, Gunnarsson l , Weston D. 2004.

The role of desorption for describing the bioavailability of select polycyclic aromatic

hydrocarbon and polychlorinated biphenyl congeners for seven laboratory-spiked

sediments. Environ Toxicol Chem 23: 1842-1851.

Page 160: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

137

Landrum PF. 1989. Bioavailability and toxicokinetics of polycyclic aromatic

hydrocarbons sorbed to sediments for the Amphipod Pontoporeia hoyi. Environ Sei

Technol23: 588-595.

Landrum PF, Eadie BJ, Faust WR. 1992a. Variation in the bioavailability of polycyclic

aromatic hydrocarbons to the amphipod Diporeia (spp.) with sediment aging. Environ

Toxicol Chem Il: 1197- 1208.

Landrum PF, Lee II H, Lydy Ml 1992b. Toxicokinetics in aquatic systems: Model

comparisons and use in hazard assessment. Environ Toxicol Chem Il: 1709- 1725.

Leppanen MT, Kukkonen JVK. 1998. Relative importance of ingested sediment and pore

water as bioaccumulation routes for pyrene to oligochaete (Lumbriculus variegatus,

Müller) . Environ Sei Technol32: 1503- 1508 .

Leppanen MT, Kukkonen JVK. 2000. Fate of sediment-associated pyrene and

benzo[a]pyrene in the freshwater oligochaetes Lumbriculus variegatus (Müller). Aquat

Toxicol49: 199-212.

Loonen H, Muir DCG, Parsons JR, Govers Al 1997. Bioaccumulation of

polychlorinated dibenzo-p-dioxins in sediment by oligochaetes: Influence of exposure

pathway and contact time. Environ Toxicol Chem 16: 1518- 1525.

Lotufo GR, Landrum PF. 2002. The influence of sediment and feeding on the elimination

of polycyclic aromatic hydrocarbons in the freshwater amphipod, Diporeia spp. Aquat

Toxicol58: 137-149.

Lydy MJ, Lasater JL, Landrum PF. 2000. Toxicokinetics of DDE and 2-chlorobiphenyl

in Chironomus tentans. Arch Environ Contam Toxicol38 : 163-168.

Page 161: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

138

Lyytikainen M, Pehkonen S, Akkanen J, Leppanen MT, Kukkonen JVK. 2007.

Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during

sediment tests with oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 26:

2660-2666.

Mackay D, Shiu WY, Ma KC, 1991. Illustrated Handbook of Physical-chemical

Properties and Environmental Fate of Organic Chemicals, Vol. 1. Lewis Publishers, Boca

Raton, FL, USA.

McElroy AE, Means JC. 1988. Factors affecting the bioavailability of

hexachlorobiphenyls to benthic organisms. In Adams WJ, Champman GA, Landis WG

(Eds.). Aquatic Toxicology and Hazard Assessment, Vol 10. STP 971. American Society

for Testing and Materials, Philadelphia, PA, USA, pp 149-158.

Pignatello Jl. 1990. Slowly reversible sorption of aliphatic hydrocarbons in soils. 1.

Formation ofresidual fractions. Environ Toxicol Chem 9: 1107- 1115.

Schuler LJ, Lydy Ml. 2001. Chemical and biological availability of sediment-sorbed

benzo[a]pyrene and hexachlorobiphenyl. Environ Toxicol Chem 20: 2014-2020.

Schuler LJ, Wheeler M, Bailer AJ, Lydy Ml. 2003. Toxicokinetics of sediment-sorbed

benzo[a]pyrene and hexachlorobiphenyl using the freshwater invertebrates Hyalella azteca,

Chironomus tentans, and Lumbriculus variegatus. Environ Toxicol Chem 22: 439-449.

Spacie A, Hamelink JL. 1983 Alternative models for describing the bioconcentration of

organics in fish. Environ Toxicol Chem 1: 309-320.

Spacie A, McCarty LS, Rang GM. 1995. Bioaccumulation and bioavailability in

multiphase systems. In Rand GM (Ed.). Fundamentals of Aquatic Toxicology: Effects,

Page 162: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

139

Environmental Fate, and Risk Assessment. 2nd edition. Taylor & Francis, London, UK, pp.

493-521.

Varanasi U, Reichert WL, Stein JE, Brown DW, Sanborn HR. 1985. Bioavailability and

biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment

from an urban estuary. Environ Sei Teehnol19: 836-841.

Verrengia Guerrero NR, Taylor MG, Davies NA, Lawrence MAM, Edwards PA,

Simkiss K, Wider EA. 2002. Evidence of differences in the biotransformation of organic

contaminants in three species offreshwater invertebrates. Environ Pollut 117: 523-530.

Weston DP. 1990. Hydrocarbon bioaccumulation from contaminated sediment by

Abarenieola paeifiea, a deposit-feeding polychaete. Mar Biol 1 07: 159-169.

Page 163: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

CONCLUSION GÉNÉRALE & PERSPECTIVES

Page 164: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

141

Conclusions générales

Traditionnellement, les concentrations en hydrocarbures aromatiques polycycliques

(HAP) dans les sols et les sédiments ont été déterminées après des extractions solide/liquide

vigoureuses utilisant des solvants organiques, tels que le dichlorométhane ou

l ' hexane/acétone. Cependant, quand les contaminants organiques hydrophobes, tels que les

HAP, entrent dans les sols ou sédiments, ils subissent un certain nombre de processus de

perte ou de transport incluant la volatilisation et le lessivage, aussi bien que de la

dégradation chimique et biologique qui peuvent modifier leur comportement. De plus, les

processus de sorption peuvent permettre à ces composés chimiques de devenir plus

résistants à l 'extraction par des solvants ou d'être irréversiblement liés à la matrice interne

des sols ou sédiments. Le résultat de ce processus d' altération avec le temps est une

diminution de l' extractabilité des HAP. Ce phénomène a été appelé "effet de

vieillissement" et est relié à un déclin de leur disponibilité pour l' absorption par les

organismes benthiques et leur biodégradabilité par les microorganismes. Un effort

important en recherche a été récemment consacré au développement de méthodes

chimiques fiables afin de déterminer la partie biodisponible présente dans les sols et

sédiments.

Les travaux de cette thèse ont donc cherché à déterminer une ou plusieurs méthodes

chimiques dites douces ou sélectives permettant de caractériser les concentrations en HAP

biodisponibles dans des sédiments de niveaux de contamination et de propriétés

géochimiques variables mais également à établir les patrons temporels d 'accumulation des

Page 165: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

142

HAP dans ces échantillons dans deux espèces de vers en identifiant les paramètres

toxicocinétiques décrivant l' ingestion, l'élimination et les facteurs de bioaccumulation.

Ainsi, trois séries d' expériences ont été effectuées. La première a permis de comparer

trois différentes méthodes d 'extraction solide/liquide (n-butanol (BuOH), hydroxypropyl-~­

cyclodextrine (HPCD), et une solution de tensioactif de Brij700 (B700)) et la seconde a

comparé l' efficacité de deux échantillonneurs passifs, des bandes de polyoxyméthylène

(POM) et des tubes de polydimethylsiloxane (PDMS). Les résultats de ces deux études ont

été comparés avec les résultats de tests de bioaccumulation sur 28 jours effectués sur les

mêmes sédiments avec Nereis virens pour les sédiments marins et Lumbriculus variegatus

pour les sédiments lacustres. De plus, les résultats de la seconde étude ont été comparés

avec ceux obtenus lors de la première étude avec la solution aqueuse de B700. La troisième

expérience a permis de déterminer les patrons temporels d' accumulation des différents

HAP par les vers (N. virens et L. variegatus) dans les différents sédiments étudiés ainsi que

l' habilité des organismes à métaboliser le phénanthrène et le pyrène par la détermination

des hydroxy-HAP correspondants (9-hydroxyphénanthrène et 1-hydroxypyrène).

Les résultats obtenus lors de cette première étude montrent que des différences

importantes ont été observées aussi bien dans la quantité que dans les proportions des HAP

obtenues en utilisant différentes techniques pour déterminer la biodisponibilité des HAP

dans des sédiments. Bien que plusieurs recherches ont suggéré qu'une extraction dite douce

utilisant du BuOH pouvait être un moyen approprié pour la détermination des HAP

biodisponibles, nos résultats sont en désaccord avec les études précédentes aussi bien pour

les sédiments faiblement que fortement contaminés. Nos travaux montrent que le BuOH

Page 166: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

143

extrayait plus que ce que les vers pouvaient bioaccumuler dans leurs tissus, et que le HPCD

sous-estimait la biodisponibilité des HAP spécialement les HAP de faible poids

moléculaire. D'autre part, l'utilisation du tensioactif B700 a montré une bonne capacité

prédictive pour les HAP dans les sédiments fortement contaminés. Les études en

laboratoire conduites avec du sédiment fraîchement additionné de HAP marqué peuvent

surestimer la biodisponibilité des contaminants comparée aux situations de terrain où des

temps d'équilibrage entre le sédiment et les contaminants persistants plus grands réduisent

cette biodisponibilité (Conrad et al., 2002; Leppanen et Kukkonen 2000a). De plus, la

plupart de ces études déterminaient la biodisponibilité en mesurant la dégradation

microbienne, une approche qui peut ne pas être comparable avec la bioaccumulation des

HAP par des vers puisque les vers ne sont pas des échantillonneurs passifs et peuvent

modifier le profil du HAP dans leurs tissus.

Puisque l' évaluation du risque des sols contaminés est actuellement surestimée par

l'utilisation d'analyses chimiques qui s'en remettent à une extraction vigoureuse initiale, il

est essentiel d'inclure la détermination de la bioaccumulation dans les décisions de

réglementation. L'utilisation de l'ingestion par les vers et la biodégradation sont encore les

meilleurs outils pour estimer la biodisponibilité des HAP, mais les méthodes biologiques

sont longues et coûteuses. Nos résultats illustrent la difficulté à trouver une méthode

chimique adéquate pour prédire la biodisponibilité des HAP, particulièrement parce que les

concentrations en HAP et le processus de séquestration jouent un rôle déterminant dans la

qualité des résultats et ceci en fonction de paramètres environnementaux et historiques le

plus souvent inconnus de l'utilisateur. Puisque le B700 est peu coûteux et que les solutions

Page 167: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

144

sont simples à préparer, une procédure d'extraction utilisant ce tensioactif de haut poids

moléculaire se révèle être une méthode utile particulièrement pour les sédiments présentant

des niveaux en HAP >2 Ilg g- I et avec des log Kow <5,8.

Les résultats de notre seconde étude montrent que les deux échantillonneurs passifs

agissent de manière différente par rapport aux mêmes échantillons de sédiment. En effet, le

PDMS surestime la disponibilité des HAP dans les sédiments étudiés (faiblement et

fortement contaminés), alors que le POM produit des résultats similaires à l'extraction au

B700. Quoi qu'il en soit, le POM et le B700 prédisent mal la disponibilité des HAP dans

les sédiments faiblement contaminés où les facteurs biologiques (matière organique

digestible) deviennent importants. Par contre, la biodisponibilité des HAP totaux a été

prédite correctement par le POM et le B700 dans les sédiments fortement contaminés par

des alumineries. Un examen plus détaillé des résultats obtenus pour les HAP individuels

indique que les deux techniques surestiment la disponibilité des grosses molécules avec un

log Kow >6 suggérant un mécanisme biologique limitant l'incorporation des plus grosses

molécules de HAP ce qui semble être relié à la taille moléculaire des composés ou à leur

encombrement stérique; un mécanisme non directement relié à la liposolubilité de la

molécule.

Les résultats de la troisième étude ont montré que Nereis virens et Lumbriculus

variegatus accumulaient rapidement les HAP associés au sédiment et atteignaient un état-

stable apparent en 7 jours (168 h) pour tous les sédiments étudiés. De plus, les constantes

du taux d'ingestion des HAP sont plus faibles pour les sédiments fortement contaminés que

pour les faiblement contaminés (10-2_10-6 et 10-1_10-4 g sédiment sec g-I organisme humide

Page 168: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

145

h- l, respectivement), alors que la constante du taux d'élimination des HAP sont du même

ordre de grandeur pour les deux types de sédiments. La relation négative entre log ks et log

Kow suggère que le taux de désorption du composé à partir du sédiment est probablement

important pour gouverner l'accumulation par les vers.

A notre connaissance, l'étude présente est la première à rapporter des données de

toxicocinétiques de biotransformation de HAP en métabolite. En effet, les autres chercheurs

ont étudiés l' apparition des métabolites de phase 1 et II dans les organismes pendant les

études de bioaccumulation et de toxicocinétiques chez les polychètes et oligochètes

(Christensen et al. , 2002; J0rgensen et al. , 2005; Leppanen et Kukkonen, 2000b;

Lyytikainen et al. , 2007), mais aucun de ces chercheurs n' avaient étudié les cinétiques

d ' accumulation, ou de métabolisation ou d'élimination de ces métabolites. Nos travaux

ouvrent une porte dans l' étude du devenir des métabolites de HAP qui nécessite une

attention scientifique plus importante de la part des chercheurs. Des expériences

additiOlmelles sont nécessaires afin de déterminer l' apport possible de métabolites

provenant de microorganismes dans les vers par rapport au taux de transformation des HAP

par les vers eux-mêmes. En effet, nous avons présumé que les métabolites présents dans les

vers provenaient principalement d'une biotransformation interne des HAP parents

correspondants dans une telle proportion que les concentrations de métabolites

bioaccumulés étaient négligeables, mais il serait intéressant de connaître cette proportion

afin d 'étudier leurs cinétiques de bioaccumulation, de biotransformation en métabolites de

phase II, et d' élimination.

Page 169: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

146

Conclusion

La réalisation de ces travaux nous aura permis d'atteindre l'ensemble des objectifs

fixés. Nous avons pu mettre au point deux méthodes d ' extraction sélective permettant de

déterminer les HAP totaux biodisponibles dans les sédiments fortement contaminés par des

alumineries et plus précisément les HAP avec un log Kow <5,8. De plus, l 'étude de la

bioaccumulation nous a montré que la composition et le niveau de contamination jouaient

un rôle sur la biodisponibilité des HAP. On a pu voir que les vers bioaccumulaient, en

proportion, plus de HAP dans les sédiments faiblement contaminés que dans les fortement

contaminés. Cette étude nous a aussi permis de déterminer que les divers paramètres

toxicocinétiques étudiés (ingestion, élimination, facteurs de bioaccumulation) variaient

d 'un sédiment à l' autre et d'un HAP à l'autre.

Tout au long de ce travail, nous avons parlé de biodisponibilité en général sans

prendre en compte les définitions établies par Semple et al. (2004) sur la biodisponibilité et

la bioaccessibilité car le but de ce travail n'était pas d'entrer dans le débat à propos des

définitions pratiques de ces deux termes. Nous allons maintenant tenter de faire un lien

entre ces définitions et nos travaux. Récemment ter Laak et al. (2006) ont scindé en deux

les différentes méthodes d' extraction selon les critères de bioaccessibilité et de

biodisponibilité. Premièrement, les méthodes qui extraient la fraction faiblement liée, dont

fait partie le B700, et qui est selon ter Laak et al. (2006) la fraction bioaccessible, et

deuxièmement les méthodes qui extraient les concentrations dissoutes libres présentes dans

les eaux porales, ce qui inclus les échantillonneurs passifs tels que le POM et le PDMS, et

Page 170: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

147

qui est appelée la fraction biodisponible. Selon les définitions de Semple et al. (2004), la

partie bioaccessible est en théorie plus importante que la partie biodisponible puisque, selon

ces mêmes auteurs, la bioaccessibilité englobe ce qui est réellement biodisponible et ce qui

est potentiellement biodisponible. Théoriquement, si on se fie à ces définitions, les

concentrations extraites par le B700 devraient être plus importantes que celles extraites par

le POM ou les vers puisque ces deux dernières méthodes déterminent la partie

biodisponible d'un contaminant. Or nos résultats montrent que ce n'est pas le cas. En effet,

comme on a pu le voir dans le chapitre 2, les résultats obtenus avec le B700 sont similaires

à ceux du POM c'est à dire une bonne estimation de la biodisponibilité des HAP de log Kow

<6 dans des sédiments fortement contaminés par des rejets d'alumineries . Ceci peut

s'expliquer par le fait que l' extraction des concentrations biodisponibles dans les différents

sédiments ne se fait pas instantanément. En effet, celle-ci dure 16 h pour le B700 et 21

jours pour le POM. En fait, les deux méthodes chimiques, ainsi que la méthode biologique

(bioaccumulation par les vers), extraient la partie bioaccessible du contaminant car, selon la

définition de Semple et al. (2004), la fraction biodisponible est la fraction librement

disponible à un moment donné et la fraction bioaccessible est la fraction qui est disponible

à ce moment donné et celle qui sera disponible plus tard.

Perspectives

De nombreux points demandent encore à être explorés et concernent en premier lieu

l'aspect purement chimique. En effet, au cours de ces travaux, on a pu voir que les

méthodes que nous avons proposées comme étant des méthodes adéquates pour prédire les

concentrations biodisponibilites des HAP (B700 et POM) avaient des comportements

Page 171: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

148

différents par rapport aux sédiments faiblement et fortement contaminés. Donc, le premier

point qui pourrait être à développer est la détermination de la "limite de détection" de ces

méthodes afin de définir la concentration en HAP totaux à partir de laquelle les

concentrations extraites avec les méthodes chimiques deviennent en accord avec celles

biodisponibles pour les organismes. Lors de nos travaux, le sédiment avec la concentration

la plus élevée parmi les échantillons faiblement contaminés était la station EGSL04-07 avec

une concentration totale en HAP de 1, 1 ~g g-l et celui avec la concentration la moins élevée

parmi les échantillons fortement contaminés était la station SLR Downstream avec une

concentration totale en HAP de 25,5 ~g g-l. On peut voir qu ' il y a un facteur 23 entre les

deux sédiments. Le but de cette étude serait donc de combler le trou entre ces deux

échantillons en trouvant des échantillons naturels avec des concentrations en HAP totaux

comprises entre 1,1 et 25,5 ~g g-l.

Deuxièmement, afin d' étendre la connaissance et les applications du POM et du B700

pour des composés organiques autres que les HAP, d 'autres expériences pourraient être

effectuées afin d 'explorer leur performance à mesurer la fraction disponible de composés

organiques tels que les BPC. Le POM a une structure rigide et une excellente résistance

mécanique, ce qui fait de lui un échantillonneur potentiel pour des mesures in situ de la

concentration dans l'eau porale. Quoi qu'il en soit, il y a encore quelques considérations à

aborder par rapport au déploiement sur le terrain. Premièrement, il est difficile de contrôler

la température sur le terrain et les variations de la température peuvent affecter l' état

d 'équilibre et les taux d' extraction des HAP par le POM. Ainsi il est essentiel de déterminer

la déviation des performances du POM par rapport au calibrage fait en laboratoire causée

Page 172: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

149

par les fluctuations de température sur le terrain. Ceci peut être accompli en effectuant des

études sur les isothermes de sorption et sur la cinétique d'extraction en laboratoire à

différentes températures contrôlées. Deuxièmement, la complexité de l' hydrodynamisme

rencontré sur le terrain peut aussi influencer les taux d'échantillonnage du POM par rapport

aux composés cibles; ainsi plusieurs tests sont suggérés afin d' examiner les effets de

différents débits d'eau. De plus, d'autres paramètres importants tels que l'épaisseur de la

membrane, l'aire de la surface de contact doivent aussi être évalués soigneusement afin

d'optimiser les performances du POM dans ses applications sur le terrain.

Certains aspects biologiques peuvent aussi être explorés. En premIer lieu,

Lumbriculus variegatus n'est généralement pas testé à des températures aussi faibles (4 à

6°C) mais à une température d'environ 20°C. Deux possibilités s'offrent à nous, la

première étant de recommencer les expériences de bioaccumulation des sédiments

dulcicoles à une température de 20°C et la deuxième étant de trouver un autre organisme

qui peut être utilisé à une température proche de celle que nous avons étudiée. Lors de nos

tests de bioaccumulation, nous avions choisi d' avoir le moins de différence possible entre

nos tests avec les sédiments marins et les sédiments lacustres. C'est pour cela que les tests

avec les sédiments lacustres ont eu lieu à 4-6°C. Afin de continuer dans ce processus, il

serait préférable d'utiliser des organismes qui peuvent être testés à ces faibles températures.

Deux espèces d'oligochaetes d'eau douce peuvent être utilisées, Limnodrilus hoffmeisteri et

Tubifex tubifex ainsi qu' une espèce d'amphipode, Diporeia spp .. De plus, une étude a déjà

utilisé L variegatus à une température de 10°C (Kraaij et al., 2002).

Page 173: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

150

De plus, lors des études de bioaccumulation seule une espèce marine (Nereis virens)

et une espèce dulcicole (Lumbriculus variegatus) ont été utilisées. Bien que ces deux

espèces soient recommandées par l'Agence de Protection de l'Environnement Américaine

(US EPA) pour les tests de bioaccumulation dans les sédiments, d'autres espèces peuvent et

sont utilisées pour ces tests. En effet, de nombreux chercheurs utilisent d' autres polychaetes

(Nereis diversicolor, Arenicola marina) (Cornelissen et al. , 2006; Kaag et al. , 1997), des

bivalves (Mytilus edulis , Macoma balthica) (Kaag et al., 1997), des gastéropodes (Hinia

reticulata) (Cornelissen et al., 2006), des amphipodes (Diporeia spp.) (Landrum et al. ,

2007) ou bien la biodégradation par des bactéries (Liste et Alexander, 2002) pour

déterminer la biodisponibilité des contaminants étudiés. Comme ces organismes ont déjà

été utilisés, il nous serait possible d'effectuer des tests de bioaccumulation avec ces

différents organismes afin de déterminer si les deux méthodes chimiques peuvent prédire la

biodisponibilité des HAP seulement pour les deux sortes de vers ou alors pour d'autres

sortes d' espèces.

Finalement, nous avons étudié seulement deux métabolites de HAP, le 9-

hydroxyphénanthrène et le I-hydroxypyrène. Une autre perspective serait de déterminer des

métabolites d' autres HAP tels que le benzo[a]pyrène, le chrysène ou le naphtalène ou

encore de déterminer d'autres métabolites du phénanthrène et du pyrène. De plus, il serait

aussi bon de déterminer avec précision si les courbes de cinétique de métabolisation

obtenues lors de l' étude de bioaccumulation représentent bien la métabolisation ou si elles

sont des courbes de bioaccumulation de métabolites ou encore si elles représentent un

mélange de bioaccumulation des métabolites et de métabolisation. Pour ce faire,

Page 174: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

151

l'utilisation de métabolites marqués au C-13 serait un bon moyen pour déterminer quelle

hypothèse est la bonne et si c'est la troisième, cela permettrait de déterminer en quelle

proportion.

Page 175: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

BIBLIOGRAPHIE

Page 176: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

153

Akkanen, 1.; Penttinen, S.; Haitzer, M.; Kukkonen, J.V.K. 2001. Bioavailability of

atrazine, pyrene and benzo[a]pyrene in European river waters. Chemosphere. 45: 453-

462.

Alexander, M. 2000. Aging, bioavailability, and overestimation of risk from

environmental pollutants. Environ. Sei. Technol. 34: 4259-4265.

Alexander, R.R.; Alexander, M. 2000. Bioavailability of genotoxic compounds in soils.

Environ. Sci. Technol. 34: 1589-1593.

Barthe, M. 2002. Étude de la Séquestration Chimique des Hydrocarbures Aromatiques

Polycycliques (HAP) par Extraction Sélective de Sédiments Lacustres et Marins. M. Sc.

Océanographie, Université du Québec à Rimouski. Mémoire de maîtrise. 200 pp.

Bowerman, M.E. 2004. Long-term Survival of Early Stage Fish Exposed to Polycyclic

Aromatic Hydrocarbon-Contaminated Sediment. M. Sc. in Biology, Queen ' s

University. Mémoire de maîtrise. 131 pp.

Chang, M.-C.; Huang, C.-R.; Shu, H.-Y. 2000. Effects of surfactants on extraction of

phenanthrene in spiked sand. Chemosphere. 41: 1295-1300.

Christensen M, Andersen 0, Banta GT. 2002. Metabolism of pyrene by the polychaetes

Nereis diversicolor and Arenicola marina. Aquat Toxicol 58: 15-25.

Christensen, E.R.; Bzdusek, P.A. 2005 . PAHs in sediments of the Black River and the

Ashtabula River, Ohio: source apportionment by factor analysis. Water Res. 39: 511 -

524.

Page 177: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

154

Chung, N.; Alexander, M. 1999a. Effect of concentration on sequestration and

bioavailability of two polycyclic aromatic hydrocarbons. Environ. Sei. Teehnol. 33:

3605-3608 .

Chung, N.; Alexander, M. 1999b. Relationship between nanoporosity and other

properties ofsoil. Soil Science. 164: 726-730.

Chung, N.; Alexander, M. 2002. Effect of soil properties on bioavailability and

extractability of phenanthrene and atrazine sequestered in soil. Chemosphere. 48: 109-

115.

Conrad, A.U.; Comber, A.D.; Simkiss, K. 2002. Pyrene bioavailability; effect of

sediment-chemical contact time on routes of uptake in an oligochaete worm,

Chemosphere, 49: 447-454.

Cornelissen, G.; Ri gterink, H.; Ferdinandy, M.M.A.; van Noort, P.C.M. 1998. Rapidly

desorbing fractions of P AHs in contaminated sediments as a predictor of the extent of

bioremediation. Environ. Sci. Teehnol. 32: 966-970.

Cornelissen, G.; Breedveld, G.D.; Naes, K.; Oen, A.M.P.; Ruus, A. 2006.

Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a

polychaetes and a gastropod: freely dissolved concentrations and activated carbon

amendment. Environ. Toxieol. Chem. 25: 2349-2355.

Cornelissen, G.; Pettersen, A.; Broman, D.; Mayer, P. ; Breedveld, G.D. in press. Field

testing of equilibrium passive sampi ers to determine free ly dissolved native polycyclic

aromatic hydrocarbon concentrations. Environ. Toxieol. Chem.

Page 178: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

155

Cuypers, c.; Grotenhuis, T ; Joziase, l ; Rulkens, W. 2000. Rapid persulfate oxidation

predicts PAH bioavailability in soils and sediments. Environ. Sei. Technol. 34: 2057-

2063.

Cuypers, c.; Pancras, T; Grotenhuis, T; Rulkens, W. 2002. The estimation of PAH

bioavailability in contaminated sediment using hydroxypropyl-~-cyclodextrin and triton

X-100 extraction techniques. Chemosphere. 46: 1235-1245.

Dabestani, R. ; Ivanov, 1. 1999. A compilation of physical spectroscopic and

photophysical properties of polycyclic aromatic hydrocarbons. Photochemistry and

Photobiology. 70: 10-34.

Decker, G.C.; Bruce, W.N.; Bigger, lH. 1965. The accumulation and dissipation of

residues resulting from the use ofaldrin in soils. J Econ. Entomol. 58: 266-271.

Dickhut, R.M. ; Canuel, E.A.; Gustafson, K.E.; Liu, K.; Arzayus, K.M.; Walker, S.E. ;

Edgecombe, G.; Gaylor, M.O.; MacDonald, E.H. 2000. Automotive sources of

carcinogenic polycyclic aromatic hydrocarbons associated with particulate matter in the

Chesapeake Bay region. Environ. Sei. Technol. 34: 4635-4640.

Dungavell, J.A. 2005. The EfJects of Temperature on Po!ycyclic Aromatic Hydrocarbon

(PAH) Exposure and Metabolism by Fish. M. Sc. in Biology, Queen's University.

Mémoire de maîtrise. 108 pp.

Edwards, c.A., Beck, S.D.; Lichtenstein, E.P. 1957. Bioassay of aldrin and lindane in

soil. J Econ. Entomo!. 50: 622-626.

Erickson, D.C. ; Loehr, R.C.; Neuhauser, E.F. 1993. PAH loss during bioremediation of

manufactured gas plant site soils. Water Res. 27: 911-919.

Page 179: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

156

Fava, F. ; Berselli, S.; Conte, P. ; Piccolo, A.; Marchetti, L. 2004. Effects of humic

substances and soya lecithin on the aerobic bioremediation of a soil historically

contaminated by polycyclic aromatic hydrocarbons (PAHs). Bioteehnol. Bioeng. 88 :

214-233.

Fetzer, J.e. 2000. The Chemistry and Analysis of the Large Polyeyclie Aromatie

Hydroearbons. Wiley, New York. 304 pp.

Ghosh, o.; Zimmerman, J.R.; Luthy, R.G. 2003. PCB and PAH speciation among

particle types in contaminated harbor sediments and effects on PAH bioavailability.

Environ. Sei. Teehnol. 37: 2209-2217.

Gilbert, W.S. ; Lewis, C.E. 1982. Residues in soil, pasture and grazing dairy cattle after

the incorporation of dieldrin and heptach10r into soil before sowing. Austr. J Exp.

Agrie. Anim. Husb. 22: 106-115.

Gulnick, J.D. 2000. Factors Injlueneing the Mierobial Mineralization of Polyeyclie

Aromatie Hydroearbons in Coastal Marine Sediments. PhD in Coastal Oceanography.

State University of New York at Stony Brook. Thèse de doctorat. 188 pp.

Hawthorne, S.B. ; Grabanski, C.B. 2000. Correlating selctive supercritical fluid

extraction with bioremediation behavior of P AHs in a field treatment plot. Environ. Sei.

Teehnol. 34: 4103-4110.

Herrchen, M. ; Debus, R.; Pramanik-Strehlow, R. 1997. Bioavailability as a Key

Property in Terrestrial Eeotoxieity Assessment and Evaluation, Fraunhofer IRB Verlag,

Stuttgart, Germany.

Page 180: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

157

J0rgensen, A; Giessing, AM.B.; Rasmussen, L.J.; Andersen, O. 2005 .

Biotransformation of the polycyclic aromatic hydrocarbon pyrene ln the manne

polychaetes Nereis virens. Environ. Toxicol. Chem. 24: 2796-2805.

Kaag, N.H.B.M.; Foekema, E.M.; Scholten, M.C.Th.; van Straalen, N.M. 1997.

Comparison of contaminant accumulation in three species of marine invertebrates with

different feeding habits. Environ. Toxicol. Chem. 16: 837-842.

Klaasen, C.D. 1986. Distribution, excretion, and absorption of toxicants. Dans Casarett

and Doull's Toxicology: The basic Science of Poisons, 3rd Edition, Klaasen, C.D. ;

Amdur, M.O. ; Doull, J. (Eds), Macmillan, New York, 33-63.

Korschgen, L.1. 1971. Disappearance and persistence of aldrin after five annual

applications. J Wildlife Manage. 35: 494-500.

Kottler, B.D.; Alexander, M. 200l. Relationship of properties of polycyclic aromatic

hydrocarbons to sequestration in soil. Environ. Pollut. 113: 293-298.

Kraaij , R. ; Seinen, W.; ToUs, 1.; Cornelissen, G.; Belfroid, AC. 2002. Direct evidence

of sequestration in sediments affecting the bioavailability of hydrophobic orgamc

chemicals to benthic deposit-feeders. Environ. Sci. Technol. 36: 3525-3529.

Kramer, B.K.; Ryan, P.B. 2000. Soxhlet and microwave extraction in determining the

bioaccessibility of pesticides from soil and model solids. Proceedings of the 2000

Conference on Hazardous Waste Research: Environmental Challenges and Solutions 10

Resource Development, Production, and Use. 196-210.

Page 181: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

158

Krauss, M.; Wilcke, W. 2001. Biomimetic extraction ofPAHs and PCBs from soil with

octadecyl-modified silica disks to predict their availability to earthworms. Environ. Sei.

Teehnol. 35: 3931 -3935.

Kukkonen, lV.K.; Landrum, P.F.; Mitra, S. ; Gossiaux, D.C. ; Gunnarsson, l ; Weston,

D. 2003. Sediment characteristics affecting desorption kinetics of select PAH and PCB

congeners for seven laboratory spiked sediments. Environ. Sei. Teehnol. 37: 4656-4663 .

Landrum, P.F. ; Robinson, S.D. ; Gossiaux, D.C.; You, l; Lydy, M.J. ; Mitra, S. ; Ten

Huslscher, T.E.M. 2007. Predicting bioavailability of sediment-associated organic

contaminants for Diporeia spp. and oligochaetes. Environ. Sei. Teehnol. 41: 6442-6447.

Law, R. J. ; Kelly, C. A. ; Baker, K. L.; Langford, K. H. ; Bartlett, T. 2002. Polycyclic

aromatic hydrocarbons in sediments, mussels and crustace a around a former gasworks

site in Shoreham-by-Sea, UK. Mar. Pollut. Bull. 44: 903-911.

Leppanen, M.T.; KUkkonen, J.V.K. 2000a. Effect of sediment-chemical contact time on

availability of sediment-associated pyrene and benzo[a]pyrene to oligochaete worms

and semi-permeable membrane devices. Aquat. Toxieol. 49: 227-241.

Leppanen, M.T. ; Kukkonen, J.V.K. 2000b. Fate of sediment-associated pyrene and

benzo[a]pyrene in the freshwater oligochaetes Lumbrieulus variegatus (Müller). Aquat.

Toxieol. 49 : 199-212.

Librando, V.; Hutzinger, O. ; Tringali, G.; Aresta, M. 2004. Supercritical tluid

extraction or polycyclic aromatic hydrocarbons from marine sediments and soils

samples. Chemosphere. 54: 1189-1197.

Page 182: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

159

Lichtenstein, E.P. ; De Pew, L.1.; Eshbaugh, E.L.; Sleesman, lP. 1960. Persistence of

DDT, aldrin and lindane in sorne Midwestern soils. J Econ. Entomol. 53: 136-142.

Lichtenstein, E.P.; Schulz, K.R. 1965. Residues of aldrin and heptachlor in soils and

their translocation into various crops. J Agric. Food Chem. 13: 57-63.

Lima, A.L. ; Farrington, J.W.; Reddy, C.M. 2005 . Combustion-derived polycyclic

aromatic hydrocarbons in the environrnent - a review. Environ. Forensics. 6: 109-131.

Liste, H.H.; Alexander M. 2002. Butanol extraction to predict bioavailability of PAHs

in soil. Chemosphere. 46: 1011-1017.

Liu, Z. ; Laha, S.; Luthy, R.G. 1991. Surfactant solubilization of polycyclic aromatic

hydrocarbon compounds in soil-water suspensions. Water Sei. Teehnol. 23: 475-485.

Loibner, A.P.; Holzer, M.; Gartner, M.; Szolar, O.H.1.; Braun, R .. 2000. The use of

sequential supercritical fluid extraction for bioavailability investigations of P AH in soil.

Bodenkultur. 51: 279-287.

Lu, X. 2003 . Bioavailability and Bioaccumulation of Sediment-Associated, Desorption-

Resistant Fraction of Polyeyclie Aromatie Hydroearbon Contaminants. PhD in

Chemical Engineering. Louisiana State University and Agricultural & Mechanical

College. Thèse de doctorat. 162 pp.

Luthy, R.G.; Aiken, G.R.; Brusseau, M.L.; Cunningham, S.D.; Gschwend, P.M.;

Pignatello, J.1.; Reinhard, M.; Traine, S.1.; Weber, W.1. , Jr.; Westall, le. 1997.

Sequestration of hydrophobie organic contaminants by geosorbents. Environ. Sei.

Technol. 31: 3341-3347.

Page 183: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

160

Lyytikainen M, Pehkonen S, Akkanen J, Leppanen MT, Kukkonen JVK. 2007.

Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during

sediment tests with oligochaetes (Lumbrieulus variegatus). Environ Toxieol Chem 26:

2660-2666.

Mackay, D.; Shiu, W.Y.; Ma, K.C. 1991. Illustrated Handbook of Physieal-ehemieal

Properties and Environmental Fate of Organie Chemieals, Vol. 1. Lewis Publishers,

Boca Raton, FL, USA

Macleod, C.J.A; Semple, K.T. 2000. Influence of contact time on extractability and

degradation of pyrene in soils. Environ. Sei. Teehnol. 34: 4952-4957.

McElroy, AE.; Farrington, J. W.; Teal, J.M. 1989. Bioavailability of polycyclic

aromatic hydrocarbons in the aquatic environment. Dans Metabolism of Polyeyclie

Aromatie Hydroearbons in the Aquatie Environment, Varanasi, U. (Ed.), CRC Press,

Boca Raton, FL, 1-39.

Meier, J.R.; Chang, L.W.; Jacobs, S. ; Torsella, J.; Meckes, M.C.; Smith, M.K. 1997.

Use of plant and earthworm bioassays to evaluate remediation of soil from a site

contaminated with polychlorinated biphenyls. Environ. Toxieol. Chem. 16: 928-938.

Morrison, D.E. ; Robertson, B.K. ; Alexander, M. 2000. Bioavailability to earthworms of

aged DDT, DDE, DDD and dieldrin in soil. Environ. Sei. Teehnol. 34: 709-713.

Nam, K. ; Alexander, M. 1998. Role of nanoporosity and hydrophobicity In

sequestration and bioavailability: tests with model solids. Environ. Sei. Teehnol. 32: 71-

74.

Page 184: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

161

Nam, K. ; Chung, N.; Alexander, M. 1998. Relationship between organic matter content

ofsoil and the sequestration of phenanthrene. Environ. Sei. Teehnol. 32: 3785-3788.

Oleszczuk, P.; Baran, S. 2004. The concentration of mild-extracted polycyclic aromatic

hydrocarbons in sewage sludges. J Environ. Sei. Health Part A Toxie-Hazard. 39:

2799-2815.

Onsager, J.A. ; Rusk, H. W.; Butler, L.I. 1970. Residues of aldrin, dieldrin, chlordane

and DDT in soil and sugar beets. J Eeon. Entomo!. 63: 1143-1146.

Oros, D.R. ; Ross, J.R.M. 2004. PolycYclic aromatic hydrocarbons in San Francisco

Estuary sediments. Mar. Chem. 86: 169-184.

Peijnenburg, W. ; Baerselman, R.; de Groot, A.; Jager, T.; Leenders, J.D. ; Posthuma, L.;

Van Veen, R.P.M. 2000. Quantification of metal bioavailability for lettuce (Laetuea

sativa L.) in field soils. Areh. Environ. Contam. Toxieo!. 39: 420-430.

Pignatello, J.1.; Xing, B. 1996. Mechanisms of slow sorption of organic chemicals to

natural particles. Environ. Sei. Teehnol. 30: 1-11.

Reid, B.1. ; Stokes, J.D.; Jones, K.C.; Semple, K.T. 2000. Nonexhaustive cYclodextrin-

based extraction technique for the evaluation of P AH bioavailability. Environ. Sei.

Teehnol. 34: 3174-3179.

Richardson, B.1.; Zheng, G.1.; Tse, E.S.C.; De Luca-Abbott, S.B.; Siu, S.Y.M. ; Lam,

P.K.S. 2003. A comparison of polycyclic aromatic hydrocarbon and petroleum

hydrocarbon uptake by mussels (Perna viridis) and semi-permeable membrane devices

(SPMDs) in Hong Kong coastal waters. Environ. Pollut. 122: 223-2227 .

Page 185: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

162

Ruby, M.V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C.M. 1996. Estimation oflead

and arsenic bioavailability using a physiologically based extraction test. Environ. Sei.

Teehnol. 30: 422-430.

Rust, A.l; Burgess, R.M.; McElroy, A.E.; Cantwell , M.G. ; Brownawell, BJ. 2004a.

Influence of soot carbon on the bioaccumulation of sediment-bound polycyclic aromatic

hydrocarbons by marine benthic invertebrates: an interspecies comparison. Environ.

Toxieol. Chem. 23: 2594-2603.

Rust, A.l ; Burgess, R.M.; McElroy, A.E.; Cantwell , M.G. ; Brownawell, B.l. 2004b.

Role of source matrix in the bioavailability of polycyclic aromatic hydrocarbons to

deposit-feeding benthic invertebrates. Environ. Toxieol. Chem. 23: 2604-2610.

Semple, K.T. ; Doick, KJ. ; Jones, K.C.; Burauel, P.; Craven, A.; Harms, H. 2004.

Defining bioavailability and bioaccessibility of contaminated soil and sediment is

complicated. Environ. Sei. Teehnol. A-Pages, 38: 228A-231A.

Shor, L.M.; Rockne, KJ.; Taghon, G.L.; Young, L.Y. ; Kosson, D.S. 2003 . Desorption

kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environ. Sei.

Teehnol. 37: 1535-1544.

Spacie, A. ; McCarty, L.S.; Rand, G.M. 1995. Bioaccumulation and bioavailability in

multiphase systems. Dans Fundamentals of Aquatic Toxieology: Effeets, Environmental

Fate and Risk Assessment, 2nd Edition, Rand, G.M. (Ed), Tyler & Francis, London,

493-522.

Swindell, A.L. ; Reid, BJ. 2006. Comparison of selected non-exhaustive extraction

techniques to assess PAH availability in dissimilar soils. Chemosphere . 62: 1126-1134.

Page 186: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

163

Szolar, O.H.J.; Rost, H.; Braun, R.; Loibner, A.P. 2001. Assessment of (bio)availability

of PAHs in soil using sequential supercritical fluid extraction (SSFE). Dans

Kalogerakis, N. (Ed.), Proeeedings of the First European Bioremediation Conference .

Technical University, Chania, Crete, Grèce, 63-66.

Szolar, O.H.J.; Rost, H.; Hirmann, D.; Hasinger, M.; Braun, R. ; Loibner, A.P. 2004.

Sequential supercritical fluid extraction (SSFE) for estimating the availability of high

molecular weight polycyclic aromatic hydrocarbons in historically polluted soils. J

Environ. QuaI. 33: 80-88.

Talley, J.W. ; Ghosh, U; Tucker, S.G.; Furey, lS.; Luthy, R.G. 2002. Particle-scale

understanding of the bioavailability of PAH in sediment. Environ. Sei. Teehnol. 36:

477-483.

Tang, l; Liste, H.H.; Alexander, M. 2002. Chemical assays of availability to

earthworms of polycyclic aromatic hydrocarbons in soi l. Chemosphere. 48: 35-42.

ter Laak, T.L. ; Barendregt, A.; Hermens, lL.P. 2006. Freely dissolved pore water

concentrations and sorption coefficients of P AHs in spiked, aged, and field-

contaminated soils. Environ. Sei. Teehnol. 40: 2184-2190.

Thorsen, W.A.; Cope, W.G.; Shea, D. 2004. Bioavailability of PAHs: effects of soot

carbon and PAH source. Environ. Sei. Teehnol. 38: 2029-2037.

Tsai, P. ; Hoenicke, R. ; Yee, D.; Bamford, H.A.; Baker, lE. 2002 . Atmospheric

concentrations and fluxes of organic compounds in the northern San Francisco Estuary.

Environ. Sei. Teehnol. 36: 4741-4747.

Page 187: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

164

van der Wal , L.; van Gestel, C.A.M.; Hermens, lL.M. 2004. Solid phase

microextraction as a tool to predict internaI concentrations of soil contaminants in

terrestrial organisms after exposure to a laboratory standard soil. Chemosphere. 54:

561-568.

Van Leeuwen, c.J. ; Hermens, lL.M. 1995. Ecotoxicological effects. Dans Risk

Assessment ofChemicals: An Introduction, Van Leeuwen, c.J. ; Hermens, lL.M. (Eds),

Kluwer Academic Publishers, Dordrecht, The Netherlands, 175-238.

Weissenfels, W.D.; Klewer, H.-l; Langhoff, l 1992. Adsorption of polycyclic aromatic

hydrocarbons (PAHs) by soi l particles: influence on biodegradability and biotoxicity.

Appl. Microbiol. Biotechnol. 36: 689-696.

Weston, D.P. ; Penry, D.L. ; Gulman, L.K. 2000. The role of ingestion as a route of

contaminant bioaccumulation in a deposit-feeding polychaete. Arch. Environ. Con/am.

Toxicol. 38: 446-454.

White, lC.; Alexander, M.; Pignatello, J.J. 1999a. Enhancing the bioavailability of

organic compounds sequestrated in soil and aquifer solids. Environ. Toxicol. Chem. 18:

182-187.

White, J.C.; Hunter, M. ; Pignatello, ll; Alexander, M. 1999b. Increase in

bioavailability of aged phenanthrene in soils by competitive displacement with pyrene.

Environ. Toxicol. Chem. 18: 1728-1732.

Wingo, C. W. 1966. Persistence and degradation of dieldrin and heptachlor in soil and

effects on plants. Agric. Exp. Sta. , Res. Bull. 914, 27 pp.

Page 188: UNIVERSITÉ DU QUÉBEC À RIMOUSKI - UQAR

165

World Health Organization. 1998. Seleeted Nonheteroeyclie Polyeyclie Aromatie

Hydroearbons , Environrnental Health Criteria, No 202, 883 pp.

Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D. ; Sylvestre,

S. 2002. PAHs in Fraser River Basin: a critical appraisal of PAH ratios as indicators of

PAH source and composition. Org. Geoehem. 32: 489-515.

Zhao, x.; Voice, T.C. 2000. Assessment ofbioavailability using a multicolumn system.

Environ. Sei. Teehnol. 34: 1506-1512.

Zimmerman, J.R.; Ghosh, u.; Millward, R.N.; Bridges, T.S.; Luthy, R.G. 2004.

Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine

sediments: physicochemical tests. Environ. Sei. Teehnol. 38: 5458-5464.