l'entropie existe et est utile !

9
Page 1 L’ENTROPIE EXISTE ET EST UTILE ! 1. Objectif de ce fichier : Démontrer qu’il existe une fonction d’état appelée « Entropie, notée S » telle que dS = dQ rév /T et en déduire quelques conséquences utiles en thermodynamique chimique. Les prérequis nécessaires sont une bonne compréhension des variations d’énergie interne d’un système, les lois de Joule relatives aux gaz parfaits et les propriétés des différentielles totales. 2. Les causes d’une variation de l’énergie interne d’un système : Si la valeur de l’énergie interne (U) d’un échantillon de matière reste hors de portée de toute évaluation, les variations (U) sont accessibles à l’expérience. La mécanique idéale (par exemple sans frottements) stipule que les variations d’énergie interne découlent d’un transfert d’énergie sous la forme d’un travail (variation de l’énergie potentielle de gravitation, transfert d’une charge selon une différence de potentiel, augmentation de la surface de l’échantillon, ...). Soit (W est le travail nécessaire pour porter le système de l’état initial vers l’état final) L’expérience quotidienne montre cependant qu’une forme d’énergie en transfert particulière, la chaleur (Q), intervient également dans les variations de U (un chauffage augmente U, un refroidissement diminue U) de sorte que l’expression de U doit être complétée : Cette expression est un énoncé possible du premier principe de la thermodynamique selon lequel tout transfert d’énergie sous forme de chaleur et/ou de travail affecte en conséquence l’énergie interne d’un système. 3. Les lois de Joule pour les gaz parfaits : Outre des termes inconnus, les contributions à l’énergie interne concernent : la vitesse de translation des particules (atomes ou molécules) la rotation des particules (molécules) les modes de vibration des particules (molécules) les interactions entre particules ... Les trois premiers termes sont directement liés à l’agitation thermique (proportionnelle à la température), donc aux transferts de chaleur (Q). Comme le modèle du gaz parfait stipule qu’il n’y a pas d’interactions entre les particules (excepté les chocs interparticulaires) qui dépendent de la

Upload: maurice-maeck

Post on 09-Feb-2017

284 views

Category:

Education


1 download

TRANSCRIPT

Page 1: L'entropie existe et est utile !

Page 1

L’ENTROPIE EXISTE ET EST UTILE ! 1. Objectif de ce fichier : Démontrer qu’il existe une fonction d’état appelée « Entropie, notée S » telle que dS = dQrév/T et en déduire quelques conséquences utiles en thermodynamique chimique. Les prérequis nécessaires sont une bonne compréhension des variations d’énergie interne d’un système, les lois de Joule relatives aux gaz parfaits et les propriétés des différentielles totales. 2. Les causes d’une variation de l’énergie interne d’un système : Si la valeur de l’énergie interne (U) d’un échantillon de matière reste hors de portée de toute

évaluation, les variations (U) sont accessibles à l’expérience.

La mécanique idéale (par exemple sans frottements) stipule que les variations d’énergie interne découlent d’un transfert d’énergie sous la forme d’un travail (variation de l’énergie potentielle de gravitation, transfert d’une charge selon une différence de potentiel, augmentation de la surface de l’échantillon, ...). Soit

(W est le travail nécessaire pour porter le système de l’état initial vers l’état final)

L’expérience quotidienne montre cependant qu’une forme d’énergie en transfert particulière, la chaleur (Q), intervient également dans les variations de U (un chauffage augmente U, un

refroidissement diminue U) de sorte que l’expression de U doit être complétée :

Cette expression est un énoncé possible du premier principe de la thermodynamique selon lequel tout transfert d’énergie sous forme de chaleur et/ou de travail affecte en conséquence l’énergie interne d’un système. 3. Les lois de Joule pour les gaz parfaits : Outre des termes inconnus, les contributions à l’énergie interne concernent :

la vitesse de translation des particules (atomes ou molécules)

la rotation des particules (molécules)

les modes de vibration des particules (molécules)

les interactions entre particules

...

Les trois premiers termes sont directement liés à l’agitation thermique (proportionnelle à la température), donc aux transferts de chaleur (Q). Comme le modèle du gaz parfait stipule qu’il n’y a pas d’interactions entre les particules (excepté les chocs interparticulaires) qui dépendent de la

Page 2: L'entropie existe et est utile !

Page 2

distance moyenne interparticulaire (donc de la pression et du volume du gaz), on en déduit que l’énergie interne d’un gaz parfait (pour ce qui concerne la contribution accessible à l’expérience) ne dépend ni de la pression ni du volume mais seulement de la température du gaz.

U(gaz parfait) = U(T)

Ceci est la première loi de Joule relative au gaz parfait. L’enthalpie d’un système étant définie comme son énergie interne augmentée du produit de sa pression par son volume (H = U + PV), il vient pour gaz parfait que H = U + nRT et donc que l’enthalpie également n’est fonction que de la température du gaz.

H(gaz parfait) = H(T)

Ceci est la deuxième loi de Joule relative au gaz parfait.

Ces deux lois ont été confirmées par d’astucieuses expériences sur les gaz réels. 4. Une propriété utile des différentielles totales d’une fonction : Exemple illustratif :

( ) ( )

( ) ( )

( )

( ) ( )

Au niveau des dérivées secondes croisées :

( )

( )

( )

( )

( )

( )

( )

Ceci implique que la variation de F(x,y) est la même selon que l’accroissement est réalisé d’abord selon dx puis dy ou selon d’abord dy puis dx

→ dF(x,y) ne dépend pas du chemin parcouru.

F(x,y) est une grandeur d’état du système.

F(x,y) = F(xfinal, yfinal) - F(xinitial, yinitial)

5. Transformations des gaz parfaits : Au départ du premier principe on peut exprimer successivement que le système est thermoélastique (dW = -pext.dV), en transformation réversible et qu’il respecte les lois de Joule. On vérifie ainsi que la chaleur n’est pas une grandeur d’état du système mais bien une grandeur en transfert lors des transformations.

Page 3: L'entropie existe et est utile !

Page 3

( )

Un système thermoélastique ...

... en transformation réversible ...

( )

... qui respecte la loi de Joule ...

Finalement :

Si Qrév est une grandeur d’état, (n.cv) et (- P) en seraient les dérivées premières par rapport à T et V respectivement et les dérivées secondes croisées doivent être égales. Or,

( )

( ⁄ )

La chaleur n’est pas une grandeur d’état. 6. L’entropie existe : A l’examen des deux dérivées précédentes on réalise que la seconde pourrait s’annuler également si la température (T) n’y apparaissait pas. Ceci suggère d’examiner la forme différentielle dQrév/T.

Page 4: L'entropie existe et est utile !

Page 4

Avec

( )

( )

( )

La forme différentielle dQrév/T correspond à une grandeur d’état (1/T est un facteur intégrant) appelée « entropie » et notée S.

Ceci est la définition officielle de l’entropie pour ses applications en thermodynamique chimique. 7. L’entropie est utile (1) : On examine la détente spontanée d’un gaz parfait dans le vide selon le schéma ci-dessous (pas de travail élastique car Pext = 0).

Etat initial Etat final

Cette transformation est évidemment brutale (irréversible) mais comme l’entropie est une grandeur d’état on peut calculer sa variation en supposant un chemin réversible entre les deux mêmes états. Comme le système est isolé, l’énergie interne du gaz n’a pas pu varier (dU = 0 = n.cv.dT) ce qui implique dT = 0 → la transformation est isotherme (Tf = Ti).

( )

Cette transformation spontanée d’un système isolé est associée à une augmentation de son entropie. La transformation opposée (possible selon le premier principe mais jamais observée spontanément) diminuerait l’entropie du système.

Pi , Vi , n , Ti

Pf , Vf , n , Tf

Vide

Paroi isolante indéformable

Paroi mobile sans frottement

Page 5: L'entropie existe et est utile !

Page 5

8. L’entropie est utile (2) : L’ajustement thermique spontané d’un gaz parfait est examiné.

Etat initial Etat final Comme le système est isolé, dU = 0 = Q + W = Q + 0 car les volumes restent constants (transformation isochore). Si Q1 est la chaleur mise en jeu par le compartiment (1) et Q2 celle de l’autre compartiment, il vient pour le système entier Q = Q1 + Q2 = 0 → Q1 = - Q2 (toute la chaleur cédée par un compartiment est intégralement récupérée par l’autre ; ceci illustre la conservation de l’énergie). Si, pour simplifier les relations, cv ≠ cv(T)

Q1 = n.cv.(Tf – Ti,1) = - n.cv.(Tf – Ti,1) = - Q2 → Tf = (Ti,1 + Ti,2)/2 = Ti,1 + T/2

A priori, T peut être positif, négatif ou nul. La relation établie ici est la seule contrainte imposée par le premier principe. Chaque compartiment connaît une transformation isochore pour laquelle :

( ⁄ )

( )

( )

Cette transformation spontanée d’un système isolé est associée à une augmentation de son entropie. La transformation opposée (possible selon le premier principe mais jamais observée spontanément) diminuerait l’entropie du système. 9. L’entropie est utile (3) : Ce troisième exemple concerne le mélange spontané de deux gaz parfaits même si les pressions et les températures initiales sont égales. Comme le système est isolé, dU = 0 → la transformation est globalement isotherme et chaque sous-système connaît l’équivalent d’une détente isotherme dans l’autre sous-système.

Paroi isolante indéformable

Contact thermique

indéformable

Pi,1

V , n Ti,1

Pi,2

V , n Ti,2

Pf,2

V , n Tf

Pf,1

V , n Tf

Page 6: L'entropie existe et est utile !

Page 6

système

A → B

iS

extérieur

C → D

eS

Etat initial Etat final

dS = dQrév/T = (P/T).dV = n.R.(dV/V) → S = n.R.ln(Vf/Vi)

A appliquer à chaque compartiment pour obtenir la variation totale d’entropie.

Cette transformation spontanée d’un système isolé est associée à une augmentation de son entropie. La transformation opposée (possible selon le premier principe mais jamais observée spontanément) diminuerait l’entropie du système. L’entropie de mélange établie ici est souvent généralisée par le biais des fractions molaires en remarquant que Vi,1/(Vi,1 + Vi,2) est la fraction molaire (x1) dans le mélange final. De même, Vi,2/(Vi,1 + Vi,2) est la fraction molaire (x2) dans le mélange final.

Une expression semblable de l’entropie de mélange justifie la forme des constantes d’équilibres en chimie qui fixent la composition des mélanges réactionnels à l’équilibre. 10. Généralisation :

Les systèmes isolés sont rares.

Le critère de spontanéité (S = Ssystème > 0) dégagé ci-dessus ne convient donc pas lorsque la paroi permet des échanges avec l’extérieur.

Pour se ramener à coup sûr à un système isolé il faut considérer le système et le milieu extérieur. L’ensemble n’ayant, par définition, pas de partenaire possible pour un échange quelconque.

La transformation de l’état A vers l’état B du système s’accompagne d’une variation d’entropie

n2 , Vi,2

P , T

Paroi amovible

Paroi isolante indéformable

P , T

n1 , Vi,1

P , T

nf = n1 + n2 Vf = Vi,1 + Vi,2

Page 7: L'entropie existe et est utile !

Page 7

(iS) interne au système et induit une transformation de l’état C à l’état D de l’extérieur associée à

une variation d’entropie eS.

C’est la somme de eS et iS qui devient le critère de spontanéité général.

Sisolé = Stotale = Ssystème + S extérieur = iS + eS

Une transformation sera donc

spontanée (naturelle) si eS + iS > 0

non spontanée (non naturelle) si eS + iS < 0

le système est à l’équilibre si eS + iS = 0

Dans le cas d’un système à paroi isolante en transformation, l’extérieur n’est pas affecté (eS = 0) et

on retrouve bien iS comme critère de spontanéité. Il devient également possible de comprendre qu’il soit possible d’observer pour un système des

transformations qui seraient impossibles en milieu isolé (iS < 0) ; dans ce cas, la perturbation

apportée au milieu extérieur induit une variation d’entropie (eS > 0) suffisante pour compenser iS

de sorte que la somme soit positive (Stotale = eS + iS > 0).

Le calcul de eS est généralement simple car, étant donné l’étendue de l’extérieur, on considère souvent que l’énergie reçue l’est à température constante selon un processus réversible (même imaginaire) et ainsi :

Où Q est la chaleur échangée avec le système. Attention au signe de Q

si le système connait une transformation exothermique, Q > 0 (chaleur reçue)

si le système connait une transformation endothermique, Q < 0 (chaleur cédée). Te = Ti si le système est en équilibre thermique avec l’extérieur. 11. L’entropie est utile (4): On considère un bloc de matière (n moles), en contact thermique avec l’extérieur à la température Te, dont la température passe de T1 à T2 à pression constante (cp = constante).

extérieur à la iS = n.cp.ln(T2/T1) n , cp température (chauffage isobare) Te

T1 → T2 eS = - n.cp.(T2 – T1)/Te (signe de Q !) contact thermique (chauffage isotherme)

Stotale = iS + eS = n.cp.[ln(T2/T1) - (T2 – T1)/Te]

Il faut se préoccuper du signe de ln(T2/T1) - (T2 – T1)/Te pour juger de la spontanéité d’une transformation du système.

Page 8: L'entropie existe et est utile !

Page 8

cas T1 T2 Te iS eS Stotale Spontané ?

1 100 200 300 0,6932 -0,3333 0,3599 OUI

2 100 200 200 0,6932 -0.5000 0,1932 OUI

3 100 200 100 0,6932 -1,000 -0.3068 NON

4 200 100 300 -0,6932 0,3333 -0.3599 NON

5 200 100 50 -0,6932 2,0000 1,3068 OUI

(1) il est possible de réchauffer le système de 100 à 200 avec une source à 300 (2) il est possible de réchauffer le système de 100 à 200 avec une source à 200 (3) il n’est pas possible de réchauffer le système de 100 à 200 avec une source à 100 (4) il n’est pas possible de refroidir le système de 200 à 100 avec une source à 300 (5) il est possible de refroidir le système de 200 à 100 avec une source à 50.

Ces cinq conclusions sont conformes au sens commun. Il y a un sens privilégié de transfert de la chaleur : de la source chaude vers la source froide uniquement. Ceci est un énoncé possible du deuxième principe de la thermodynamique.

12. Union des deux premiers principes:

Le critère basé sur Stotale demande deux calculs séparés (un pour le système et un autre pour l’extérieur). Il serait plus commode de disposer d’un critère qui ne met en jeu que les paramètres du système. L’union des deux premiers principes permet, sous conditions, de rencontrer ce souhait.

a) Transformations réversibles, à T et V constants, des systèmes thermoélastiques :

dU = dQ + dW = dQ - P.dV = dQ (dQ = chaleur mise en jeu par le système) dStotale = deS + diS = dQ’/Te + diS (dQ’ = chaleur mise en jeu par l’extérieur) dQ = - dQ’ (la chaleur cédée par l’un est récupérée par l’autre) dStotale = - dQ/Te + diS dStotale = - dQ/T + diS (isotherme = équilibre thermique système ↔ extérieur) dStotale = - dQ/T + dS (diS est la variation d’entropie du système, notée dS) dStotale = - dU/T + dS (transformation isochore)

-T.dStotale = dU - T.dS (pour obtenir un critère de minimum) dF = dU - T.dS (introduction d’un potentiel thermodynamique F = U – TS)

Un système évolue à température et volume constants de manière à minimiser son énergie libre (F).

b) Transformations réversibles, à T et P constants, des systèmes thermoélastiques

dH = dQ + dW = dQ + V.dP = dQ (dQ = chaleur mise en jeu par le système) dStotale = deS + diS = dQ’/Te + diS (dQ’ = chaleur mise en jeu par l’extérieur) dQ = - dQ’ (la chaleur cédée par l’un est récupérée par l’autre) dStotale = - dQ/Te + diS dStotale = - dQ/T + diS (isotherme = équilibre thermique système ↔ extérieur) dStotale = - dQ/T + dS (diS est la variation d’entropie du système, notée dS)

Page 9: L'entropie existe et est utile !

Page 9

dStotale = - dH/T + dS (transformation isochore) -T.dStotale = dH - T.dS (pour obtenir un critère de minimum) dG = dH - T.dS (introduction d’un potentiel thermodynamique G = H – TS)

Un système évolue à température et pression constantes de manière à minimiser son enthalpie libre (G).

13. Application à la thermodynamique chimique : Les transformations étudiées sont majoritairement isothermes et isobares. C’est l’enthalpie libre (G) qui est le choix judicieux avec

On voit que, d’une manière générale, le terme entropique (S) domine aux hautes températures

tandis que la contribution énergétique (H) s’exprime le mieux aux basses températures. Quatre cas peuvent se présenter

H < 0 et S > 0 les deux termes collaborent ; la transformation sera spontanée à toute température

H < 0 et S < 0 les deux termes s’opposent ; la transformation est probablement spontanée aux basses températures et s’inverse aux hautes températures

H > 0 et S > 0 les deux termes s’opposent ; la transformation est probablement non spontanée aux basses températures et spontanée aux hautes températures

H > 0 et S < 0 les deux termes collaborent pour désigner la transformation (réaction) inverse comme spontanée à toute température.

Remarque : Au vu de la forme de l’enthalpie libre il est tentant d’interpréter ce critère comme un compromis entre le critère d’évolution purement mécanique (énergie minimale) et le critère d’évolution thermique (entropie maximale). Cette interprétation n’est évi- demment pas correcte car dG = - T.dStotale, qui est un critère purement entropique.