homeostasie des cofacteurs metalliques de la …

187

Upload: others

Post on 24-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …
Page 2: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA NITROGENASE

(MOLYBDÈNE ET VANADIUM) CHEZ AZOTOBACTER VINELANDII EN

PRÉSENCE DE MATIÈRES ORGANIQUE ET MINÉRALE

par

Christelle Jouogo Noumsi

thèse présentée au Département de biologie en vue

de l'obtention du grade de docteur ès sciences (Ph.D.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, Décembre 2016

Page 3: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

Le 09 Décembre 2016

le jury a accepté la thèse de madame Christelle Jouogo Noumsi

dans sa version finale

Membres du jury

Professeur Jean-Philippe Bellenger

Directeur de recherche

Département de chimie, Université de Sherbrooke

Professeur Vincent Burrus

Co-directeur de recherche

Département de biologie, Université de Sherbrooke

Professeur Marc Amyot

Évaluateur externe

Département de sciences biologiques, Université de Montréal

Professeur Pascale Beauregard

Évaluateur interne

Département de biologie, Université de Sherbrooke

Professeur Sébastien Rodrigue

Président-rapporteur

Département de biologie, Université de Sherbrooke

Page 4: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

iv

SOMMAIRE

La fixation biologique du diazote (N2) constitue une étape importante du cycle

biogéochimique de l’azote (N). Cette réaction permet la réduction du N2 atmosphérique,

non biodisponible, en ammonium (NH3) bioassimilable par tous les organismes vivants.

Cette réaction est limitée par différents facteurs, menant à une limitation de la production

primaire dans de nombreux écosystèmes, particulièrement nordiques. En effet, la fixation

biologique d’azote dans tous les écosystèmes dépend d’un nombre réduit de procaryotes

appelés diazotrophes qui sont capables de rompre la triple liaison N-N pour former

l’ammoniac. Cette réaction qui est catalysée pas une métalloenzyme, la nitrogénase,

requiert beaucoup d’énergie sous forme d’ATP, compte tenue de l’énergie de liaison liant

les atomes d’azote. La nitrogénase existe sous trois isoformes, que l’on différencie

principalement par la nature du métal cofacteur du site actif : les nitrogénases au

molybdène (Mo), au vanadium (V) et au fer (Fe). La répartition des isoformes de la

nitrogénase n’est pas homogène chez les diazotrophes. Alors que tous possèdent la

nitrogénase au Mo, seulement quelques-uns ont en supplément la nitrogénase au V et/ou

celle au Fe. De plus, les isoformes de la nitrogénase ne sont pas équivalentes en termes

d’efficacité de réduction de N2. La Mo-nitrogénase est la plus efficace à température

ambiante car elle utilise le moins d’ATP pour réduire une mole de diazote. Elle est suivie

de l’isoforme au V, et enfin celle au Fe. Chez les diazotrophes possédant plus d’une

nitrogénase (ex. Azotobacter vinelandii), l’utilisation de celles-ci suit une hiérarchie

reflétant ces efficacités relatives; la Mo-nitrogénase est exprimée par défaut, la V-

nitrogénase est exprimée en absence de Mo et celle au Fer en absence de Mo et de V. Du

fait de leur moindre efficacité, de leur présence chez seulement certains diazotrophes, en

supplément de la Mo-nitrogénase, et de leur régulation sous contrôle du Mo, la fixation

d’azote est considérée comme dépendant principalement du Mo. Pourtant depuis

quelques années, plusieurs évidences remettent en cause cette prédominance de la Mo-

nitrogénase: (i) la conservation des nitrogénases alternatives au fil de l’évolution suggère

qu’elles ont un rôle important; (ii) la limitation de la fixation par le Mo de nombreux

écosystèmes; (iii) l’omniprésence des gènes des nitrogénases alternatives dans de

Page 5: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

v

nombreux écosystèmes, limités en Mo ou non. Malgré leur importance potentielle, notre

compréhension de la contribution des nitrogénases alternatives à la fixation biologique de

diazote en milieu naturel reste très limitée.

Plusieurs facteurs peuvent influencer l’utilisation des nitrogénases, tels que la

température et l’accès aux métaux essentiels. L’acquisition des métaux cofacteurs

constitue un paramètre d’intérêt majeur, car l’activation des gènes des nitrogénases est

fortement dépendante de la disponibilité en métaux cofacteurs. Dans les sols le

molybdène et le vanadium, présents essentiellement sous forme de molybdate (MoO42-

) et

vanadate (VO43-

), sont fortement complexés à la matrice (matière organique et oxydes) ce

qui peut limiter leur disponibilité pour les fixateurs d’azote. Chez certains diazotrophes

(ex. Azotobacter vinelandii) il a été démontré que l’acquisition des métaux cofacteurs

(Fe, Mo et V) est assurée par des métallophores, petits ligands organiques produits par les

êtres vivants pour chélater les métaux. Leur grande affinité pour les métaux permet aux

diazotrophes de pouvoir acquérir sélectivement les métaux pour la fixation biologique

d’azote. En milieu naturel les interactions entre complexes naturels (matière organique,

oxydes) et métallophores jouent sans doute un rôle important dans la biodisponibilité des

métaux cofacteurs de la nitrogénase et donc leur utilisation. Cependant, les études sur

l’acquisition des métaux et leur utilisation pour la fixation d’azote restent souvent

limitées à des conditions de laboratoire peu représentatives de la réalité (métaux

cofacteurs non complexés).

L’hypothèse de ce projet doctoral était que la présence d’agents naturels complexant les

métaux cofacteurs de la nitrogénase (Mo et V) pouvait influencer significativement la

stratégie d’acquisition et d’utilisation de ceux-ci, menant à une contribution accrue des

nitrogénases alternatives. Cette hypothèse a été testée en conditions de laboratoire en

utilisant Azotobacter vinelandii comme bactérie modèle ainsi que l’acide tannique et des

oxydes de fer comme agents complexants naturels modèles.

Ces travaux ont montré que la présence d’agents complexants (acide tannique et oxydes

de fer) entraîne des changements majeurs dans la gestion des métaux cofacteurs (Mo et

Page 6: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

vi

V) chez A. vinelandii. Les stratégies d’acquisition des métaux cofacteurs sont fortement

modifiées en présence de complexants naturels avec (i) un changement important de la

quantité des metallophores produits ainsi que (ii) une acquisition simultanée de Mo et V

dans des conditions traditionnellement considérée comme non limitantes en Mo. Ceci se

traduit par un changement important dans l’utilisation des nitrogénases; les niveaux de

transcrits élevés des gènes nifD et vnfD, spécifiques des nitrogénases au Mo et au V

respectivement, suggèrent une utilisation simultanée de ces isoenzymes pour assurer la

fixation d’azote. Ce projet a permis de mettre en évidence que face à un stress

métallique, l’utilisation des isoformes de la nitrogénase par A. vinelandii est un processus

plus versatile que précédemment décrit et que le coût d’acquisition des métaux dans ces

conditions serait un facteur important de la régulation de l’activité des nitrogénases. Ces

travaux démontrent que la hiérarchie des nitrogénases établie sur la base d’expériences de

laboratoire ne s’applique sans doute pas aux milieux naturels. Ceci suggère que les

nitrogénases alternatives pourraient contribuer à la fixation d’azote de manière plus

importante que présentement admis.

Mots clés : fixation biologique d’azote, nitrogénase, métaux essentiels, métallophores,

homéostasie, dynamique d’acquisition et d’utilisation, Azotobacter vinelandii

Page 7: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

vii

REMERCIEMENTS

J’aimerais tout d’abord remercier grandement Jean-Philippe et Vincent pour avoir permis

que tout ce travail soit possible. Grâce à eux j’ai beaucoup appris durant ces quatre

années, et j’ai aussi appris à apprendre. Ce fût un véritable challenge et j’ai eu un

accompagnement des plus formidables. Rigueur, persévérance, autonomie, éthique, sont

les maîtres mots qui décrivent le mieux l’encadrement qu’ils m’ont apporté. Je ne pouvais

espérer mieux.

Je remercie toutes les sources de financement ayant permis ce doctorat (les chaires de

recherche du Canada détenues par JPB et VB et le soutien facultaire au recrutement aux

études supérieures).

Les membres de mon comité de conseillers Ryszard, Pascale et Sébastien, je vous

remercie pour l’encadrement administratif et pour les conseils que vous m’avez donné

durant mon doctorat.

Mes partenaires de laboratoire, présents et passés. J’ai eu la chance de faire partie de

deux équipes aussi différentes que formidables. Ce fût tellement agréable de travailler

avec vous, j’ai beaucoup appris grâce à votre aide. J’ai en plus eu la chance de trouver en

vous de fantastiques amis avec qui la vie continuait hors laboratoire. Nicolas, Dominic,

Geneviève, Éric, (Mireille), Nina, Romain Da., Marion, Lorène, Jefferson, Augustin,

Romain Du., Fanny, je n’ai pas assez de place ici pour vous exprimer toute ma gratitude,

mais vous le savez, je n’en pense pas moins.

À mes amis (formidablement géniaux), Suzy, Nil, Sarah (choupinette), Liliane, Thomas,

Hugo, Svilena, Hervé, Loïc, pour ne citer qu’eux, un énorme merci pour le soutien

quotidien.

Ma famille, loin des yeux, près du cœur. Vous m’accompagnez depuis le début, merci

pour le soutien, merci pour l’amour dont vous m’abreuvez. À ma maman. À ma sœur

Mireille. À mon frère Guy Alain...

Page 8: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

viii

TABLE DES MATIÈRES

SOMMAIRE ............................................................................................................................ iv

REMERCIEMENTS ............................................................................................................... vii

LISTE DES ABRÉVIATIONS ................................................................................................ xi

LISTE DES TABLEAUX ......................................................................................................xiii

LISTE DES FIGURES ........................................................................................................... xiv

CHAPITRE 1 .......................................................................................................................... 16

INTRODUCTION GÉNÉRALE ............................................................................................ 16

1.1. Cycles biogéochimiques des éléments ........................................................................... 16

1.2. Cycle de l’azote ............................................................................................................. 17

1.3. La fixation biologique d’azote ...................................................................................... 19

1.4. Les acteurs de la fixation .............................................................................................. 20

1.5. La nitrogénase : structure et fonctionnement .............................................................. 21

1.5.1. La nitrogénase au molybdène ................................................................................... 22

1.5.2. Les nitrogénases alternatives .................................................................................... 23

1.6. Les gènes impliqués dans la fixation biologique d’azote.............................................. 25

1.6.1. Gènes structurels ...................................................................................................... 26

1.6.2. Les autres gènes des clusters nif, vnf et anf ............................................................... 26

1.7. Importance des micronutriments pour la fixation biologique d’azote ........................ 27

1.7.1. Les métaux essentiels des isoformes des nitrogénases ............................................... 28

1.7.2. Spéciation et stratégies d’acquisition des métaux cofacteurs de la nitrogénase .......... 29

1.8. Organisme d’étude : Azotobacter vinelandii ................................................................. 31

1.9. Hypothèse générale et objectifs .................................................................................... 34

CHAPITRE 2 .......................................................................................................................... 36

RÉSULTATS........................................................................................................................... 36

2.1. Effet de la matière organique sur l’homéostasie des métaux cofacteurs de la

nitrogénase pour la fixation d’azote chez A. vinelandii ...................................................... 36

2.1.1. Présentation de l’article ............................................................................................ 36

2.1.2 Contribution à l’article .............................................................................................. 37

2.1.3. Page titre.................................................................................................................. 39

2.1.4. Summary ................................................................................................................. 40

Page 9: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

ix

2.1.5. Introduction ............................................................................................................. 40

2.1.6. Result and Discussion .............................................................................................. 42

2.1.7. Conclusion ............................................................................................................... 51

2.1.8. Experimental procedures .......................................................................................... 52

2.1.8.1. Bacterial strain, Culture medium and growth conditions .................................... 52

2.1.8.2. Growth curves and growth rates ........................................................................ 52

2.1.8.3. Metallophores quantification ............................................................................. 53

2.1.8.4. RNA isolation, cDNA synthesis and quantitative PCR assays ............................ 53

2.1.8.5. Statistics and curve fitting ................................................................................. 54

2.1.9. Acknowledgments ................................................................................................... 54

2.1.10. References ............................................................................................................. 55

2.1.11. Supporting information .......................................................................................... 71

2.2. Les oxydes de fer modulent l’acquisition et l’utilisation des métaux essentiels pour la

croissance diazotrophe d’Azotobacter vinelandii................................................................. 84

2.2.1. Présentation de l’article ............................................................................................ 84

2.2.2 Contribution à l’article .............................................................................................. 86

2.2.3. Page titre.................................................................................................................. 87

2.2.4. Summary ................................................................................................................. 88

2.2.5. Introduction ............................................................................................................. 88

2.2.6. Result and Discussion .............................................................................................. 91

2.2.7. Conclusion ............................................................................................................. 101

2.2.8. Experimental procedure ......................................................................................... 102

2.2.8.1. Bacterial strain, Culture medium and growth conditions .................................. 102

2.2.8.2. Growth curves and growth rates ...................................................................... 102

2.2.8.3. Cellular metal quotas ....................................................................................... 103

2.2.8.4. Quantification of metallophores ....................................................................... 103

2.2.8.5. RNA isolation and cDNA synthesis ................................................................. 104

2.2.8.6. Quantitative PCR assays .................................................................................. 104

2.2.8.7. Statistics and curve fitting ............................................................................... 105

2.2.9. Acknowledgments ................................................................................................. 105

2.2.10. References ........................................................................................................... 106

2.2.11. Supporting information ........................................................................................ 122

Page 10: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

x

CHAPITRE 3 ........................................................................................................................ 127

DISCUSSION GÉNÉRALE ET CONCLUSION ................................................................. 127

3.1. Perspectives d’amélioration du projet de recherche : présence et activité des

nitrogénases ....................................................................................................................... 128

3.2. La nitrogénase au vanadium : véritable avantage? ................................................... 129

3.3. La hiérarchie des nitrogénases : un concept révolu? ................................................. 129

3.4. Les métallophores : clef de voute de la régulation de l’utilisation des nitrogénases en

milieu naturel?................................................................................................................... 131

3.4.1. Les métallophores, système d’acquisition versatile de contrôle du stress métallique 131

3.4.2. Le coût d’acquisition des métaux ........................................................................... 133

3.5. La régulation des nitrogénases : un consortium multifactoriel ................................. 135

3.6. Répartition des isoformes des nitrogénases chez les diazotrophes ............................ 136

ANNEXE ............................................................................................................................... 138

BIBLIOGRAPHIE ................................................................................................................ 171

Page 11: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

xi

LISTE DES ABRÉVIATIONS

ADN : acide désoxyribonucléique

ADP : adénosine diphosphate

ARN : acide ribonucléique

ATP: adénosine triphosphate

C: carbone

cDNA : complementary DNA

Da: daltons

DNase: deoxyribonuclease

FBA: fixation biologique d’azote

Fe: fer/iron

HLB:hydrophilic lipophilic balanced

ICP-MS : inductively coupled plasma mass spectrometry

ISARA: isotopic acetylene reduction assay

LC: liquid chromatography

MeOH: methanol

Mg : magnésium

Mo: molybdène/molybdenum

mRNA : messenger RNA

MS: mass spectrometry

N: azote

Page 12: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

xii

N2 : diazote/dinitrogen

Nase: nitrogénase/nitrogenase

NH3 : ammoniac

OD: optical density

qRT-PCR: quantitative reverse transcriptase polymerase chain reaction

UHPLC: ultra-high performance liquid chromatography

V: vanadium

Page 13: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

xiii

LISTE DES TABLEAUX

Chapitre 1

Tableau 1. Concentrations clés en métaux essentiels molybdène, vanadium et fer lors de la

croissance diazotrophe d’Azotobacter vinelandii. ....................................................................... 31

Chapitre 2

1er

article

Table S1: Statistics analysesa of cellular metal quotas ratio Mo:V = 1:1 .................................... 78

Table S2: Statistics analysesa of cellular metal quotas ratio Mo:V = 1:4 .................................... 78

Table S3: primers used in quantitative PCR (5’-3’) ................................................................... 81

2ème

article

Table 1 Molybdenum and vanadium remaining in solution after addition of 55 µM and 505 µM

FeCl3. ........................................................................................................................................ 92

Table S1. Statistical analysesa of cellular metal quotas ............................................................ 126

Page 14: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

xiv

LISTE DES FIGURES

Chapitre 1

Figure 1. Représentation schématique des cycles biogéochimiques des éléments. ...................... 17

Figure 2. Cycle de l’azote. ........................................................................................................ 18

Figure 3. Évolution des apports anthropiques en azote dans les écosystèmes terrestres. ............. 20

Figure 4. Structure cristallographique de la nitrogénase au molybdène ...................................... 23

Figure 5. Organisation des clusters nif, vnf et anf de la fixation biologique d’azote chez A.

vinelandii .................................................................................................................................. 25

Figure 6. Groupements fonctionnels des métallophores ............................................................. 30

Figure 7. Structure chimique des métallophores produits par A. vinelandii ................................ 32

Chapitre 2

1er

article

Figure 1: Growth curves of Azotobacter vinelandii. .................................................................. 43

Figure 2: Metallophores production by Azotobacter vinelandii along the growth. ...................... 44

Figure 3: Evolution of cellular metal to phosphorus quotas in A. vinelandii............................... 46

Figure 4: Relative expression of nifD, vnfD and anfD during the exponential growth phase. ..... 48

Figure 5: Summary of the effects of the presence of tannic acids on nitrogenase metal cofactors

management by A. vinelandii. .................................................................................................... 50

Figure S1: Growth curves of Azotobacter vinelandii. ................................................................ 73

Figure S2: Metallophores production by Azotobacter vinelandii along the growth..................... 74

Figure S3: Evolution of cellular metal to phosphorus quotas in Azotobacter vinelandii. ............ 75

Figure S4: Relative expression of nifD, vnfD and anfD during the exponential growth phase. ... 76

Figure S5: A. Tannic acid-molybdenum complexation spectra, B. Tannic acid-vanadium

complexation spectra. ................................................................................................................ 77

Figure S6: Vanadium uptake rates between sampling times. ..................................................... 79

Figure S7: ARA (left axis) and instantaneous growth rates (right axis) along the exponential

phase ......................................................................................................................................... 80

2ème

article

Figure 1. Growth curves of A. vinelandii................................................................................... 93

Figure 2. Evolution of cellular metal to phosphorus quotas in A. vinelandii. .............................. 95

Figure 3. Metallophore production by A. vinelandii during growth. ........................................... 97

Figure 4. Relative expression of nifD and vnfD in control conditions during the exponential

growth phase. ............................................................................................................................ 99

Page 15: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

xv

Figure 5. Relative expression of nifD and vnfD during the exponential growth phase. ............. 100

Figure S1. Growth curves of A. vinelandii at two pH values. ................................................... 123

Figure S2. Vanadium uptake rates between sampling times..................................................... 124

Figure S3. Relative expression of anfD during the exponential growth phase. ......................... 125

Page 16: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

16

CHAPITRE 1

INTRODUCTION GÉNÉRALE

1.1. Cycles biogéochimiques des éléments

A l’échelle de la planète Terre, le cycle biogéochimique d’un élément représente les

différentes voies et différents moyens menant à la transformation et aux transferts de cet

élément au travers des principaux réservoirs; atmosphère, hydrosphère, lithosphère et

biosphère. Ces procédés sont des réactions d’ordre physique (ex. transport, convection),

chimique (ex. hydrolyse, oxydo-réduction) et biologique (ex. photosynthèse, respiration).

Le fonctionnement et le devenir des écosystèmes est directement dépendant des

interactions complexes au sein et entre les cycles biogéochimiques des éléments. Il est

donc particulièrement pertinent, notamment dans les circonstances actuelles de

changements climatiques, d’approfondir nos connaissances sur ces cycles, afin de mieux

prédire le devenir de notre environnement. Un intérêt particulier est porté à l’étude des

cycles des éléments indispensables à la vie, car la biosphère constitue un point commun à

tous les grands réservoirs. La biosphère est souvent représentée au centre des réservoirs

pour illustrer son implication dans tous les cycles biogéochimiques (figure 1). Les cycles

des éléments majeurs carbone, hydrogène, azote, oxygène, phosphore et souffre

(CHNOPS) ont donc fait l’objet d’intenses travaux au fil des années (Mackenzie et al.,

2013). Les flux de ces éléments (sous diverses formes) à travers les réservoirs sont assez

bien connus à ce jour, et les procédés permettant ces flux peu à peu élucidés.

Page 17: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

17

Figure 1. Représentation schématique des cycles biogéochimiques des éléments.

Les flèches indiquent les flux des éléments au travers des grands réservoirs.

La complexité du cycle d’un élément peut provenir de diverses sources : (i) les formes et

les propriétés que peuvent adopter cet élément vont influencer sa présence et son

abondance dans les grands réservoirs, (ii) l’impact de facteurs biotiques et abiotiques sur

sa transformation et sa circulation à travers ces réservoirs et, (iii) l’interaction avec

d’autres cycles biogéochimiques.

1.2. Cycle de l’azote

L’azote est un élément indispensable à la vie, qui entre dans la composition des acides

aminés, des bases azotées des acides nucléiques. De nombreux travaux ont montré que le

taux de productivité primaire nette dans divers écosystèmes terrestres et aquatiques est

Page 18: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

18

limité par l’azote (Vitousek and Howarth, 1991; Hooper and Johnson, 1999; LeBauer and

Treseder, 2008). Le taux de productivité primaire étant la quantité de matière organique

produite par unité de temps à partir de matière minérale et d’énergie. L’azote semble donc

conditionner l’expansion de la vie dans de nombreux écosystèmes. Le cycle de l’azote est

subdivisé en cinq étapes principales que sont la fixation d’azote, l’assimilation, la

minéralisation (ou ammonification), la nitrification et la dénitrification ; et tous les

niveaux trophiques y participent (figure 2).

Figure 2. Cycle de l’azote. Transformations et flux des composés azotés par les voies

naturelles (flèches vertes) et anthropiques (flèches mauves).

Page 19: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

19

1.3. La fixation biologique d’azote

L’atmosphère est le principal réservoir naturel de l’azote, dont il représente environ 78%

de la composition. Le diazote de l’air étant une forme peu utilisable par la biosphère, la

fixation d’azote (N2 NH3) est considérée comme une étape clé du cycle de cet élément.

Cette étape constitue d’ailleurs la principale source d’azote biodisponible dans les

écosystèmes ne subissant pas ou peu d’influence anthropique. La fixation biologique

d’azote (FBA) est évaluée à 175×106 tonnes d’azote fixé par an (Cech, 2010; Burns and

Hardy, 2012). La réaction de réduction de N2, catalysée par l’enzyme nitrogénase, est

particulièrement couteuse en énergie (équation 1.1) (Rees et al., 2005). En effet, l’énergie

(ΔG) de la triple liaison N-N est d’environ 226 kcal/mole, comparé par exemple à une

liaison N-H de 96 kcal/mole (Schlesinger and Bernhardt, 2013).

N2 + (6+2n)H+ + (6+2n)e

- + p(6+2n)ATP → 2NH3+ nH2 + p(6+2n)ADP + p(6+2n)Pi

(equation 1.1)

Si la FBA subit des contraintes affectant la production de NH3, toute la biosphère qui en

dépend peut être limitée en azote. La limitation en azote attribuable à un déficit de la FBA

est d’ailleurs une problématique retrouvée dans de nombreux écosystèmes naturels

(Vitousek and Howarth, 1991).

Avec la révolution industrielle et l’accroissement des besoins agricoles, l’apport en

composés azotés par l’Homme sur la planète n’a cessé de croitre depuis un siècle pour

atteindre 192 × 106 tonnes d’azote fixé par an en 2008 (Gu et al., 2013) (Figure 3). Ceci

fait de l’Homme la première source d’azote réduit de la planète. Les sources d’azote

réduit d’origine anthropiques sont multiples (Figure 3).

Page 20: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

20

Figure 3. Évolution des apports anthropiques en azote dans les écosystèmes

terrestres. Sources et teneurs d’azote fixé par l’activité humaine : agriculture, carburants

fossiles, production industrielle, fertilisants. En comparaison à la fixation naturelle (zone entre les

traits interrompus). Tiré de Gu et al 2013.

Malgré cet apport anthropique considérable d’azote fixé, la FBA demeure la principale

voie d’entrée de cet élément dans les écosystèmes terrestres et aquatiques ne subissant pas

ou peu de perturbations anthropiques (ex. écosystèmes boréaux et subarctiques). Élucider

les mécanismes contrôlant la FBA reste donc d’un intérêt majeur pour mieux comprendre

le fonctionnement et l’évolution de nos écosystèmes.

1.4. Les acteurs de la fixation

Les fixateurs d’azote ou diazotrophes sont exclusivement des procaryotes, que l’on

retrouve dispersés au sein des bactéries, cyanobactéries et archées. Cette capacité à

réduire le N2 n’est pas spécifique à des branches particulières du vivant, il arrive donc

Page 21: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

21

qu’au sein d’un même genre, seulement quelques espèces soient en mesure d’effectuer la

réaction. Les bactéries et les cyanobactéries peuvent former des associations avec des

eucaryotes, au sein desquelles l’un de leur rôle est de fournir de l’azote biodisponible

pour tous les partenaires impliqués. Dans ces cas, la fixation d’azote se fait dans des

structures spécialisées que sont les nodules racinaires (symbiose bactéries / plantes

supérieures) ou les saccules (symbiose lichénique). Ces structures permettent de maintenir

des conditions microaérophiles requises pour la réaction de FBA. Les diazotrophes libres

quant à eux, autotrophes ou hétérotrophes, peuvent être anaérobies, microaérophiles ou

aérobies. Les diazotrophes couvrent donc une très grande diversité de métabolismes de

vie et d’environnements.

1.5. La nitrogénase : structure et fonctionnement

L’enzyme catalysant la FBA est la nitrogénase (Nase). Il s’agit d’une métalloprotéine,

dont la nature du métal co-facteur situé au niveau du site actif diffère selon l’isoforme de

l’enzyme. Trois isoformes sont connus à ce jour, la Mo, la V- et la Fe-Nases (Bishop et

al., 1980, 1982; Hales et al., 1986; Robson et al., 1986; Chisnell et al., 1988; Joerger,

Jacobson, Premakumar, et al., 1989). L’isoforme au Mo est la plus étudiée et sera

présentée en détail. Seules les spécificités des deux autres formes seront détaillées

ensuite. Etant donné qu’il existe des petites différences de structure entre les mêmes

isoformes de différents diazotrophes, seulement les caractéristiques des Nases de

l’organisme étudié au cours de ce doctorat (Azotobacter vinelandii) seront présentées ici.

Page 22: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

22

1.5.1. La nitrogénase au molybdène

La Nase au Mo est en quelque sorte l’isoforme universelle car elle est présente chez tous

les diazotrophes connus à ce jour. En théorie, elle est aussi la plus efficace, car c’est celle

qui nécessite le moins d’énergie pour réduire 1 mole de N2 (équation 1.2).

N2 + 8H+ + 8e

- + 16ATP → 2NH3 + H2 + 16ADP + 16Pi (équation 1.2)

Elle se présente sous forme d’un assemblage de trois sous-unités réparties en deux

principaux ensembles, la dinitrogénase réductase et la dinitrogénase, fonctionnant en

tandem.

La dinitrogénase réductase ou Fe-protéine, est un homodimère d’environ 64 kDaltons de

la sous-unité γ (figure 4). Elle sert d’accepteur d’électrons, de la ferrédoxine ou de la

flavodoxine, qu’elle transfère à la deuxième composante de la Nase. Un cluster fer-soufre

[4Fe-4S] relie les sous-unités γ entre elles. C’est ce cluster qui assure le transfert

d’électrons. Chaque sous-unité γ lie une molécule de Mg-ATP, qui fournit l’énergie

nécessaire au transfert d’électrons (Howard and Rees, 2006; Seefeldt et al., 2009).

La dinitrogénase ou MoFe-protéine est un tétramère des sous-unités α et β avec la

stœchiométrie α2β2, d’environ 230 kDaltons (figure 4). Elle contient deux types de

métallo-clusters : un P-cluster et un FeMo-cofacteur (Kirn and Rees, 1992). Le P-cluster,

situé à l’interface de chaque paire de sous-unités α et β, comporte deux clusters fer-soufre

([4Fe-4S] et [4Fe-3S]). Le P-cluster reçoit les électrons provenant de la Fe-protéine et les

transfère au cluster FeMo-cofacteur (Peters et al., 1995). Ce deuxième métallo-cluster est

formé de 7Fe-9S-Mo-homocitrate et d’un atome central X (C, N ou O) (Seefeldt et al.,

2009; Lancaster et al., 2011; Einsle, 2014). Le FeMo-cofacteur est situé au sein de chaque

sous-unité α et constitue le site catalytique de l’enzyme. Lors de l’assemblage de tous les

composants de la Nase, l’incorporation du FeMo-cofacteur constitue l’étape finale, la

Page 23: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

23

maturation de l’enzyme qui l’amène à sa forme active. À ce site peuvent se fixer

différents substrats tels que le diazote (N2), des protons (H+), ou encore de l’acétylène

(C2H2) pour la réaction de réduction.

Figure 4. Structure cristallographique de la nitrogénase au molybdène . (Gauche)

Les sous-unités γ de la dinitrogénase réductase (Fe-protéine) sont représentées en gris. Les sous-

unités α et β de la dinitrogénase (MoFe-protéine) sont représentées en violet et rouge

respectivement. (Droite) Positions du MgADP et des métalloclusters impliqués dans le transfert

d’électrons pour la réduction de N2. Tiré de Hu and Ribbe, 2011.

1.5.2. Les nitrogénases alternatives

Les isoformes de la Nase au V et au Fe sont parfois retrouvées en plus de la Mo-Nase, et

ce, chez certains diazotrophes seulement. C’est l’une des raisons qui leur a valu le

qualificatif d’alternatives. En plus d’être des formes supplémentaires, elles sont

Page 24: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

24

théoriquement moins efficaces dans l’activité de réduction de N2, parce qu’elles

nécessitent plus d’énergie pour réduire 1 mole de N2 (équations 1.3 et 1.4) (Masepohl et

al., 2002; Bothe et al., 2010).

V-Nase: N2 + 12H+ + 12e

- + 24ATP → 2NH3 + 3H2 + 24ADP + 24Pi (équation 1.3)

Fe-Nase: N2 + 21H+ + 21e

− + 42ATP → 2NH3 + 7.5H2 + 42ADP + 42Pi (équation 1.4)

En termes de structure, les Nases alternatives sont très semblables entre elles, et diffèrent

légèrement de l’isoforme au Mo. La Fe-protéine possède les mêmes structure et fonction

pour les trois types de Nase (Howard and Rees, 1996). C’est au niveau de la composante

dinitrogénase que l’on observe des différences majeures entre la Mo-Nase et les Nases

alternatives. Nous avons bien évidemment le changement du métal cofacteur Mo par V ou

Fe ; mais surtout, une sous-unité δ supplémentaire est présente en plus des sous-unités α

et β. Celle-ci semble impliquée dans la maturation de l’enzyme (insertion des FeV- et

FeFe-cofacteurs dans la dinitrogénase immature), et reste associée à la Nase

fonctionnelle. La stœchiométrie de ces sous-unités est variable selon les fixateurs, et

même au sein d’un même organisme, conduisant à des assemblages différents : αβ2,

α2β2δ2 ou α2β2δ4. Chez A. vinelandii la stœchiométrie menant à une V-Nase au meilleur

de son activité est une dinitrogénase en hétérooctamère des sous-unités α2β2δ4 faisant

environ 270 kDa (Lee et al., 2009). La FeFe-protéine quant à elle semble être constituée

d’un mélange des formes trimériques, tétramériques et hexamériques αβ2, α2β2 et α2β2δ2

(Masepohl et al., 2002). La Fe-Nase reste toujours l’isoforme pour laquelle il y a moins

d’études permettant de cerner la structure et le fonctionnement spécifiques (Hinnemann

and Nørskov, 2004).

Malgré ces différences de structure, les trois isoenzymes ont le même fonctionnement

global (même cheminement des électrons via les clusters), réduisent les mêmes substrats

mais avec une efficacité de réduction du N2 décroissante, allant de la Mo-Nase à la V-

Nase puis la Fe-Nase (Masepohl et al., 2002; Lee et al., 2009; Bothe et al., 2010).

Page 25: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

25

1.6. Les gènes impliqués dans la fixation biologique d’azote

Une nomenclature a été mise en place pour distinguer les gènes des 3 types de Nases : (i)

nif (« nitrogen fixation ») pour les gènes de la Mo-Nase, (ii) vnf (« vanadium nitrogen

fixation ») pour les gènes de la V-Nase et (iii) anf (« alternative nitrogen fixation ») pour

ceux de la Fe-Nase (Joerger et al., 1989). De façon générale, les gènes impliqués dans la

fixation d’azote sont organisés en 7-8 opérons, organisés de manière assez semblable pour

les trois isoformes de la Nase (figure 5). Bien que certains gènes des clusters nif, vnf et

anf restent sans fonction connue ni prédite, la fonction de la plupart d’entre eux a été

caractérisée, surtout pour l’isoforme au Mo. Les détails sur les fonctions des gènes

présentés ici sont spécifiques à A. vinelandii, mais sont généralement similaires chez

d’autres fixateurs.

Figure 5. Organisation des clusters nif, vnf et anf de la fixation biologique

d’azote chez A. vinelandii. Les gènes structurels sont représentés en gris clair, ceux

impliqués dans l’assemblage des clusters [Fe-S] en gris foncé, ceux impliqués dans la régulation

en vert (activateurs) et rouge (répresseur), et les autres gènes en blanc. Adapté de (Dos Santos and

Dean, 2014).

Page 26: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

26

1.6.1. Gènes structurels

Cette catégorie regroupe les gènes qui codent les protéines constitutives des Nases, les

protéines du squelette. Les sous-unités γ formant la composante dinitrogénase réductase

sont codées par les gènes nifH, vnfH et anfH pour les isoformes Mo-, V- et Fe-Nases

respectivement. Pour ce qui est de la composante dinitrogénase, les sous-unités α sont

codées par les gènes nifD, vnfD et anfD, tandis que les sous-unités β sont codées par les

gènes nifK, vnfK et anfK (Brigle et al., 1985). Les sous-unités δ spécifiques des Nases

alternatives sont codées par les gènes vnfG et anfG (Joerger et al., 1989; Joerger et al.,

1990). Les gènes H, D, K et G (lorsque présent) sont regroupés dans le même opéron,

sauf pour la V-Nase dont le gène H est situé dans un autre opéron avec le gène Fd (codant

un potentiel donneur d’électron ferrédoxine pour la Nase) (figure 5). De par cet

arrangement, les gènes structurels des Nases font donc quasiment tous partie du même

transcrit.

1.6.2. Les autres gènes des clusters nif, vnf et anf

De nombreux gènes des clusters nif, vnf et anf ont des rôles dits accessoires, bien que ces

gènes soient indispensables à la fixation d’azote. Ils sont impliqués dans les mécanismes

de conformation, de maturation et d’activation menant à des Nases actives capables de

lier et réduire leurs substrats (figure 5). D’autres gènes sont spécifiquement dédiés à la

régulation de la fixation d’azote. Les gènes nifA et nifL codent l’activateur et le répresseur

du cluster nif, respectivement. Les homologues de nifA ont été retrouvés dans les clusters

vnf et anf (vnfA et anfA) et assurent l’activation de l’expression des gènes vnf et anf

(Bennett et al., 1988; Joerger et al., 1989; Walmsley et al., 1994). Pour les Nases

alternatives, aucun homologue de nifL n’a été retrouvé (Joerger et al., 1989), suggérant

Page 27: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

27

l’action de NifL dans la répression des Nases alternatives ou encore un mécanisme de

répression différent.

La formation, l’activité et la régulation d’une isoforme requiert donc la contribution d’un

grand nombre de gènes. La Mo-Nase nécessite la contribution des gènes du cluster nif,

tandis que les Nases alternatives requièrent à la fois les clusters vnf ou anf, ainsi que

certains gènes du cluster nif (Kennedy and Dean, 1992; Drummond et al., 1996).

1.7. Importance des micronutriments pour la fixation biologique d’azote

Malgré leur caractère essentiel à plusieurs activités biologiques, la dynamique des

micronutriments (métaux) a reçu moins d’attention que celle des macronutriments.

Pourtant cette dynamique influence les flux de macronutriments dans les grands

réservoirs en conditionnant fortement les activités biologiques (Stevenson and Cole,

1999; Hänsch and Mendel, 2009). L’intérêt pour les cycles biogéochimiques des

micronutriments a augmenté ces dernières années et il est certain qu’élucider ces cycles

nous permettra de mieux comprendre nos écosystèmes.

La FBA est un bon exemple de réaction faisant intervenir le cycle des micronutriments

dans celui d’un élément majeur. L’enzyme responsable de la FBA est une métalloenzyme,

donc complètement dépendante des métaux cofacteurs requis. La FBA est donc

étroitement liée aux cycles des éléments Mo, V et Fe. L’importance de ces métaux pour la

FBA a par exemple été mise en évidence dans des études portant sur le Mo dans les sols

de la forêt tropicale du Panama, ceux de l’Est Canadien (Barron et al., 2009; Jean et al.,

2013) ou encore en milieux aquatiques (Glass et al., 2012). Dans ces écosystèmes, la FBA

est limitée par la disponibilité du Mo (associée à une limitation par le P dans l’Est

Canadien).

Page 28: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

28

1.7.1. Les métaux essentiels des isoformes des nitrogénases

L’ubiquité de la Mo-Nase ainsi que son efficacité supérieure à réduire le diazote suggère

une forte dépendance de la FBA à ce métal. La présence aléatoire des Nases alternatives

ainsi que leur plus faible efficacité à réduire le diazote suggèrent que celles-ci seraient

principalement utilisées dans des conditions limitantes quantitativement en Mo. Des

cultures pures de diazotrophes montrent effectivement une utilisation des Nases

alternatives seulement en absence ou en limitation en Mo (Schneider et al., 1991; Jacobitz

and Bishop, 1992; Thiel and Pratte, 2013), de même que des échantillons de terrain de la

symbiose diazotrophe Peltigera aphtosa (Darnajoux et al., 2016). Cependant de

nombreux travaux en laboratoire sont effectués dans des conditions peu réalistes où les

métaux cofacteurs sont fournis sous forme biodisponible (non complexée). Les

diazotrophes investissent alors préférentiellement dans l’acquisition du Mo qui a un

rendement de fixation d’azote plus avantageux. L’acquisition et l’utilisation de V

commence seulement lorsque le Mo devient limitant (quantitativement), établissant ainsi

une hiérarchie. La régulation de l’expression de la Nase au V par Mo, et de la Nase au Fe

par Mo et V (Jacobson et al., 1986; Walmsley and Kennedy, 1991; Premakumar et al.,

1998), semble supporter l’existence d’une hiérarchie dans l’activation des isoformes de la

Nase reflétant l’efficacité relative des isoformes et le contrôle par la disponibilité des

métaux cofacteurs.

Cependant, la mise en évidence de la limitation de la FBA par le Mo dans de nombreux

écosystèmes ainsi que l’omniprésence des gènes des Nases alternatives suggèrent que les

Nases alternatives pourraient être mises à contribution de manière récurrente en milieu

naturel afin de pallier à un manque de disponibilité du Mo (Silvester, 1989; Loveless et

al., 1999; Betancourt et al., 2008; Barron et al., 2009; Jean et al., 2013; Darnajoux et al.,

2014). Outre le facteur abondance qui influence la disponibilité du Mo et conduit à la

limitation en termes de quantité, il est important de prendre en compte le facteur

biodisponibilité du Mo et des autres métaux cofacteurs afin de mieux comprendre leur

utilisation.

Page 29: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

29

La biodisponibilité des métaux constitue donc un paramètre important de notre

compréhension de la contribution des isoformes de la Nase à la FBA. Ce paramètre

dépend non seulement de la spéciation des métaux (selon les conditions physico-

chimiques), mais aussi des stratégies mises en œuvre par les diazotrophes pour les

acquérir.

1.7.2. Spéciation et stratégies d’acquisition des métaux cofacteurs de la nitrogénase

Le Mo est l’un des métaux d’intérêt biologique le moins abondant de l’écorce terrestre et

des sols puisqu’il est présent à environ 1 ppm (53ème

position). Le V est en moyenne 50 à

200 fois plus abondant, en moyenne 98 ppm (20ème

position) (Wedepohl, 1995). Ils sont

majoritairement présents dans les sols sous formes d’oxoanions, molybdate (MoO42-

(Mo(VI)) et vanadate (VO43-

(V)), très solubles donc théoriquement très biodisponibles et

mobiles (Alloway, 2013). Cependant, ces oxoanions sont complexés à la matrice du sol

par la matière organique et minérale (Branca et al., 1990; Peacock and Sherman, 2004;

Xu et al., 2006; Wichard et al., 2009b; Alloway, 2013; Marks et al., 2015). Cette

complexation permet de limiter le lessivage de ces composés ce qui peut être bénéfique

aux fixateurs d’azote, mais peut à l’inverse induire des problèmes de disponibilité pour

les organismes vivants.

Divers diazotrophes, comme d’autres organismes, ont développé des stratégies

d’acquisition de métaux leur permettant d’accéder à ces sources de métaux cofacteurs.

Ces stratégies reposent sur la production de ligands de haute affinité pour Fe, Mo et V, les

métallophores. Les métallophores sont des ligands de faible poids moléculaire (200 –

2000 Da) répartis en trois grandes familles selon les groupements fonctionnels permettant

de chélater les métaux : les hydroxamates, les catécholates et les carboxylates (Bellenger

et al., 2007; Ahmed and Holmström, 2014; Kraemer et al., 2015) (figure 6). Ces

groupements leur confèrent la capacité de complexer divers métaux avec plus ou moins

d’affinité.

Page 30: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

30

Figure 6. Groupements fonctionnels des métallophores . A) groupement hydroxamate.

B) groupement catéchol. C) groupement carboxylate.

Diverses études ont démontré l’importance des métallophores, notamment catécholates,

dans l’homéostasie des métaux essentiels (Fe, Mo et V) pour la FBA chez le diazotrophe

modèle A. vinelandii (Duhme et al., 1996, 1997, 1998; Bellenger et al., 2007; J. P.

Bellenger et al., 2008; Kraepiel et al., 2009).

En milieu naturel, l’utilisation des divers isoformes de la Nase est sans doute fortement

dépendante de la capacité de l’organisme fixateur d’azote à acquérir les métaux essentiels.

Cette biodisponibilité est le résultat d’interactions complexes entre le milieu (spéciation)

et les systèmes d’acquisition des diazotrophes (métallophores). Ces interactions jouent

sans doute un rôle d’autant plus important que la disponibilité abiotique de Fe, Mo et V

est très faible. Cependant, la majorité de nos connaissances sur l’acquisition des métaux et

leur utilisation pour la FBA repose sur des expériences de laboratoire dans lesquelles les

métaux sont généralement fournis sous forme facilement biodisponible (Fe-EDTA,

Molybdate et vanadate non complexés). Ces conditions, très peu stressantes du point de

vue de l’acquisition des métaux, sont peu représentatives des conditions naturelles. Il est

ainsi pertinent de s’interroger sur la validité de nos conceptions actuelles de l’utilisation et

la relation des Nases (hiérarchie et activation en cascade).

Page 31: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

31

1.8. Organisme d’étude : Azotobacter vinelandii

Azotobacter vinelandii est une Gammaprotéobactérie à Gram négatif, aérobie stricte,

possédant les 3 isoformes de la Nase (Bishop et al., 1980, 1982; Hales et al., 1986;

Chisnell et al., 1988; Joerger et al., 1989). C’est une bactérie ubiquiste se retrouvant dans

des horizons organiques (litière) et minéraux (rhizosphère). Elle réside dans les sols où

elle est exposée à un mélange de matières organique et minérale. Le génome d’A.

vinelandii OP utilisé pour les projets de ce doctorat a été entièrement séquencé en 2013

(Noar and Bruno-Bárcena, 2013). Cet organisme a fait l’objet de nombreuses études sur la

diazotrophie. L’homéostasie des métaux essentiels Fe, Mo et V en conditions

diazotrophes a été bien caractérisée dans des expériences de laboratoire ou les métaux ont

été fournis sous forme biodisponible (Fe-EDTA, molyddate et vanadate) (Bellenger et al.,

2011) (Tableau 1).

Tableau 1. Concentrations clés en métaux essentiels molybdène, vanadium et fer lors

de la croissance diazotrophe d’Azotobacter vinelandii.

Concentration

extracellulaire

(M)

Concentration

limitante

(M)

Quota cellulaire

limitant

(molmétal/molP)

Concentration

toxique (M)

Mo 1 × 10-7

­ 1 × 10-6

≤ 3 × 10-8

2,6 × 10-4

≥ 1 × 10-5

V 5 × 10-7

­ 1 × 10-6

≤ 10-7

N.D. ≥ 10-5

Fe 5 × 10-6

≤ 10-6

~ 8 × 10-3

˃ 5 × 10-5

N.D. : donnée Non Disponible

Le processus d’acquisition de ces métaux a également été bien élucidé. Le chélome (les

métallophores et leurs voies de synthèse) d’A. vinelandii a récemment été publié par

Baars et al., (2016). Six métallophores servent à assurer l’acquisition des métaux, des

catécholamides: acide 2,3-dihydroxybenzoique (monocatéchol), aminochéline

Page 32: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

32

(monocatéchol), azotochéline (bis-catéchol), protochéline (tris-catéchol), un carboxylate :

vibrioferrine, et une pyoverdine : azotobactine (Cornish and Page, 1995; Duhme et al.,

1996; Baars et al., 2016) (figure 7).

Figure 7. Structure chimique des métallophores produits par A. vinelandii . (Haut)

DHBA : acide 2,3-dihydroxybenzoique, protochéline et vibrioferrine. (Bas) Aminochéline,

azotochéline et azotobactine.

La nature et l’abondance des ligands secrétés par la bactérie sont principalement fonction

du niveau de fer biodisponible, mais aussi d’autres métaux tels que Mo, V et tungstène

(W). Ceci est particulièrement vrai pour le DHBA et l’azotobactine, qui sont produits

abondamment dans des conditions de carence élevée en fer (Page and von Tigerstrom,

1982; Tindale et al., 2000). La production des autres espèces de métallophores est aussi

fer-dépendante, mais il a été démontré que d’autres métaux tels que le Mo, le tungstène

(W) et le V pouvaient moduler la production de certains ligands (Cornish and Page, 1995;

Duhme et al., 1996, 1998; Bellenger et al., 2007; Bellenger et al., 2008a; Bellenger et al.,

Page 33: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

33

2008b; Wichard et al., 2009a; Duhme-Klair, 2009; Kraepiel et al., 2009; Wichard et al.,

2009b; Deicke et al., 2014).

Les métaux sont internalisés par A. vinelandii via des systèmes de transport de haute

affinité de type ABC pour Fe et Mo, tandis que celui pour le V reste à identifier (Page and

Huyer, 1984; Luque et al., 1993; Mouncey et al., 1995; Imperial et al., 1998; Stintzi et al.,

2000; Self et al., 2001). Par analogie avec les transporteurs ABC de haute affinité pour le

V identifiés chez Anabaena variabilis (Pratte and Thiel, 2006), le transport du V chez A.

vinelandii pourrait également dépendre d’un système de type ABC. L’utilisation des

isoformes des Nases par A. vinelandii pour la fixation d’azote en conditions de

laboratoires optimales (température > 15˚C, métaux essentiels sous forme biodisponibles)

suit une hiérarchie qui rappelle celle de l’efficacité théorique des isoformes : Mo-Nase,

V-Nase et enfin Fe-Nase (Masepohl et al., 2002; Bellenger et al., 2011). A. vinelandii

constitue donc un modèle idéal pour l’étude de l’acquisition et l’utilisation des métaux

cofacteurs à la diazotrophie.

Page 34: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

34

1.9. Hypothèse générale et objectifs

L’hypothèse générale du projet de doctorat est que la présence d’agents complexants va

influencer la stratégie d’acquisition et d’utilisation des métaux essentiels à la diazotrophie

chez A. vinelandii et que les Nases alternatives, notamment au V, contribueront de

manière accrue à la FBA en conditions stressantes d’acquisition des métaux cofacteurs

(Mo et V).

Cette hypothèse a été testée en utilisant des agents complexants représentatifs des habitats

naturels de ce diazotrophe. L’acide tannique est représentatif de la matière organique

dissoute du sol, composée majoritairement de tannins dans la litière (Hättenschwiler and

Vitousek, 2000; Slabbert, 2012). Quant aux oxydes de Fe, ils constituent une composante

importante de la matière minérale des couches plus profondes du sol (Cornell and

Schwertmann, 2006; Robin et al., 2008).

Afin de tester l’hypothèse formulée précédemment, l’organisme modèle A. vinelandii a

été soumis à des stress abiotiques simulant les conditions environnementales, et sa

réponse a été suivie dans le cadre des sous-objectifs suivants :

Étudier l’effet de la présence de matière organique dissoute (Objectif 1) et d’oxydes de Fe

(Objectif 2) sur

- la croissance bactérienne diazotrophe par spectrophotométrie UV

- l’acquisition des métaux cofacteurs des Nases en suivant l’évolution du contenu

intracellulaire en métaux essentiels par analyse élémentaire (ICP-MS)

- la quantité et qualité des métallophores libérés dans le milieu extracellulaire par

spectrométrie de masse

Page 35: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

35

- l’expression des gènes spécifiques aux différentes isoformes des Nases par RT-

qPCR.

Page 36: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

36

CHAPITRE 2

RÉSULTATS

Les résultats obtenus au cours du doctorat sont pour la majorité contenus dans deux

articles scientifiques. L’un a été publié et l’autre a été soumis, tous deux dans des

journaux avec comité de lecture. Ce chapitre présente ces deux articles qui répondent aux

objectifs mentionnés dans la section précédente.

2.1. Effet de la matière organique sur l’homéostasie des métaux cofacteurs de la

nitrogénase pour la fixation d’azote chez A. vinelandii

2.1.1. Présentation de l’article

L’objectif de cette première étude était d’étudier la gestion des métaux essentiels pour la

fixation d’azote par A. vinelandii en présence de matière organique. En effet depuis

quelques années, plusieurs études remettent en question la prédominance de l’utilisation

du molybdène (Mo) sur le vanadium (V) et le fer (Fe) comme métaux cofacteurs pour la

diazotrophie. Ce questionnement s’appuie sur des données telles que l’abondance relative

des métaux cofacteurs essentiels ou encore la présence des gènes des Nases alternatives

dans plusieurs écosystèmes. Cependant aucune étude, à notre connaissance, n’a

réellement montré pourquoi et dans quelles conditions cette hiérarchie ne s’applique plus,

ou au moins dans quelles conditions la participation des autres métaux essentiels devient

significative.

Afin de se rapprocher des conditions environnementales d’A. vinelandii, nous avons

choisi comme facteur de stress l’ajout d’acide tannique. Cette molécule représente la

Page 37: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

37

matière organique dissoute du sol, qui caractérise litière et rhizosphère, habitats naturels

de la bactérie diazotrophe. Nous avons vérifié dans un premier temps que l’acide tannique

complexe bien Mo et V dans nos conditions de culture. Nous avons ainsi pu montrer

qu’afin de conserver un taux de croissance optimal dans ces conditions, A. vinelandii

modifie sa stratégie d’acquisition des métaux, notamment en produisant (ou secrétant)

plus de métallophores protochéline et azotochéline. Elle se détourne alors d’une

acquisition préférentielle de Mo telle que connue jusqu’à lors, pour adopter une

acquisition simultanée de Mo et V. Cette stratégie a conduit à une internalisation

simultanée de Mo et V. Pour ce qui est de la contribution des différentes Nases à la

fixation d’azote, en suivant l’évolution des niveaux de transcrits des gènes nifD, vnfD et

anfD, spécifiques des isoformes au Mo, V et Fe respectivement, nous avons observé une

diminution du niveau de transcrits de nifD tandis que celui de vnfD augmente. Ce profil

suggère une contribution de la V-Nase à la fixation d’azote. Nous avons donc démontré

qu’en présence de matière organique, A. vinelandii tire profit de la diversité de ses Nases

pour assurer une croissance diazotrophe optimale en modifiant l’homéostasie des métaux

essentiels. Ceci suggère que dans l’horizon O (couche organique du sol, constitué de

litière et de matière organique en décomposition) des sols riche en matière organique, le

V pourrait contribuer de manière plus significative à la fixation d’azote.

Les résultats de cette étude sont présentés dans l’article qui suit :

Jouogo Noumsi C.1,2

, Pourhassan N.1, Darnajoux R.

1, Deicke M.

3, Wichard T.

3, Burrus

V.2, Bellenger JP.

1 (2016). Effect of organic matter on nitrogenase metal cofactors

homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ. Microbiol.

Rep. 8(1): 76–84. doi:10.1111/1758-2229.12353

2.1.2 Contribution à l’article

Page 38: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

38

L’approche expérimentale a été définie avec Jean-Philippe Bellenger et Vincent Burrus.

J’ai réalisé les expériences de culture, analysé l’expression des gènes. L’analyse du

contenu intracellulaire en métaux par ICP-MS a été faite conjointement avec Romain

Darnajoux. La méthode de dosage des métallophores par UPLC-MS a été développée par

Nina Pourhassan, Michael Deicke et Thomas Wichard. L’analyse de ces métallophores a

été effectuée conjointement avec Nina Pourhassan. J’ai rédigé le manuscrit et généré les

figures, et tout cela a été révisé par tous les co-auteurs.

Page 39: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

39

2.1.3. Page titre

Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter

vinelandii under diazotrophic conditions

Christelle Jouogo Noumsi 1,2

, Nina Pourhassan1, Romain Darnajoux

1, Michael Deicke

3,

Thomas Wichard3, Vincent Burrus

2, Jean-Philippe Bellenger

1.

1Département de chimie, Faculté des sciences, Université de Sherbrooke;

2Laboratory of bacterial molecular genetics, Département de biologie, Faculté des

sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada.

3Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Jena

School for Microbial Communication, Lessingstr. 8, 07743 Jena, Germany.

Corresponding author: Jean-Philippe Bellenger

2500 Boulevard de l’université, J1K 2R1, Sherbrooke (Québec), Canada

Phone number: 819 821-7014. Fax number: 819 821-8017

[email protected]

Running Title: Tannic acid modulates metal use in A. vinelandii

Page 40: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

40

2.1.4. Summary

Biological nitrogen fixation can be catalyzed by three isozymes of nitrogenase: Mo-

nitrogenase, V-nitrogenase and Fe-nitrogenase. The activity of these isozymes strongly

depends on their metal cofactors, Mo, V and Fe, and their bioavailability in ecosystems.

Here, we show how metal bioavailability can be affected by the presence of tannic acid

(organic matter), and the subsequent consequences on diazotrophic growth of the soil

bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a

higher amount of metallophores, which coincides with an active, regulated and

concomitant acquisition of Mo and V under cellular conditions that are usually considered

not Mo limiting. The associated nitrogenase genes exhibit decreased nifD expression and

increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii

takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth.

Keywords: Azotobacter vinelandii, nitrogen fixation, metallophores, tannic acid

2.1.5. Introduction

Biological nitrogen fixation, the reaction that converts atmospheric dinitrogen (N2) into

bioavailable ammonia, is the main source of new nitrogen (N) in unmanaged ecosystems.

This reaction is key to the understanding of the N cycle and has been shown to limit net

primary production in many ecosystems (Galloway et al., 2004). Nitrogen fixers use the

enzyme nitrogenase, a metalloprotein, to catalyze the reaction. Three nitrogenase

isoforms have been described to date and classified based on the metal present in the

cofactor: the molybdenum nitrogenase (Mo-Nase), the vanadium nitrogenase (V-Nase)

and the iron-only nitrogenase (Fe-Nase) (Bishop et al., 1980, 1982; Hales et al., 1986;

Robson et al., 1986; Chisnell et al., 1988; Schneider et al., 1991; Rehder, 2000;

Masukawa et al., 2009). The canonical Mo-Nase is the most efficient isozyme at ambient

Page 41: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

41

temperature and is found in all diazotrophs. The less efficient V-Nase and Fe-Nase, also

called alternative nitrogenases, are present in only few N2 fixers and have never been

reported in microorganisms living in symbiotic associations with higher plants (Loveless

and Bishop, 1999; Boyd et al., 2011). Thus, the Mo-Nase is considered as the

predominant isozyme responsible for N2 fixation worldwide. However, recent evidence

questions this paradigm. Several studies have reported that Mo is limiting biological N

fixation in many aquatic and terrestrial ecosystems (Silvester, 1989; Barron et al., 2009;

Glass et al., 2012; Jean et al., 2013). The presence of alternative nitrogenases has also

been reported in diverse aquatic and terrestrial ecosystems (Loveless et al., 1999;

Betancourt et al., 2008; Hodkinson et al., 2014). While the importance of alternative

nitrogenases to biological nitrogen fixation is becoming increasingly evident (Reed et al.,

2011), our understanding of the conditions under which alternative nitrogenases come

into play in natural habitats remains incomplete. Temperature could influence

nitrogenases use as the alternative V-Nase reduces N2 more efficiently than the Mo-Nase

under low temperature (< 15˚C) (Miller and Eady, 1988). Moreover, soils contain on

average 50-200 times more V than Mo (Wedepohl, 1995; Kabata-Pendias, 2010). The

relative availability of Mo and V could thus promote the use of alternative Nases.

In the environment, Mo and V are mostly found as oxoanions in aqueous solution and

can form complexes with plant-derived tannins and tannin-like compounds in the topsoil

((Abdel-Gawad and Issa, 1986)Branca et al., 1990; Kiboku and Yoshimura, 1958; Reddy

and Gloss, 1993; Poledniok, 2003; Wichard et al., 2009a). Tannins are among the most

abundant biomolecules in terrestrial biomass especially in litters (Hättenschwiler and

Vitousek, 2000; Slabbert, 2012). Therefore, binding of Mo and V to natural organic

matter (i.e. tannin like compounds) reduces leaching of essential trace metals, and is thus

a critical process supporting biological N fixation (Wichard et al., 2009a).

Organisms have developed efficient strategies to retrieve metals from their environment

by producing small organic ligands, known as metallophores, to impact metal speciation

in the extracellular environment and better control metal acquisition (Kraemer et al.,

2015). Metallophores produced by the non-symbiotic N2 fixer Azotobacter vinelandii

Page 42: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

42

exhibit high affinity for several metals, including Fe, Mo and V, and are involved in a

specific and highly regulated uptake system for the acquisition of nitrogenase metal

cofactors (Duhme et al., 1996, 1998; Bellenger et al., 2007; Kraepiel et al., 2009;

Wichard et al., 2009b) . The efficiency of bacterial metallophores to compete with natural

metal-complexes is key to recruit Mo and likely V from natural sources, such as the leaf

litter and O-horizon of soils, both very rich in organic matter. Complex interactions

between metallophores and tannic acid complexes might significantly affect nitrogenase

metal cofactors (Fe, Mo, V) acquisition a use that remains to be determined.

To get a comprehensive view of the impact of natural organic matter on metal acquisition

and use by A. vinelandii, we evaluated the effect of the supplementation of growth media

with tannic acids, used as a model substance for dissolved organic matter, on: (1) bacterial

growth, (2) cellular Fe, V and Mo quotas, (3) production of metallophores, and (4)

relative expression of three target genes nifD, vnfD and anfD encoding the subunits of

Mo-Nase, V-Nase, and Fe-Nase, respectively (Rubio and Ludden, 2005). Experiments

were conducted in the presence of equimolar concentrations of Mo and V ([Mo] = [V] =

10-7

M, results are presented in Sup. Inf.), and in the presence of an excess of V ([Mo] =

5×10-8

M; [V] = 2×10-7

M) to mimic the relative abundance of these metals in natural leaf

litters (Jean et al., unpublished data).

2.1.6. Result and Discussion

The exponential growth rates of A. vinelandii were not significantly affected by the

presence of tannic acids (see the inset of Fig. 1 and Sup. Inf. 1 Fig. S1). The only

observable effect of the presence of tannic acids was a delay at the beginning of the

exponential growth phase (~ 1.5 and 3 hours for 1×10-5

M and 5×10-5

M tannic acids,

respectively). However, our data show that the presence of tannic acids has a significant

Page 43: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

43

effect on both the strategy of metal acquisition by A. vinelandii and the activation of its

three nitrogenase isoforms.

Figure 1: Growth curves of Azotobacter vinelandii. Absorbance at 620 nm was plotted versus

time for the three tested conditions. The inset shows curve fitting of growth by a nonlinear

regression (exponential growth) and the growth rate values obtained for each condition at the

exponential phase. Values represent the mean ± SD; n = 3. Ctrl: control. TA: tannic acid.

In common artificial growth media, bacteria have access to readily bioavailable Mo and V

sources: un-complexed molybdate and vanadate (Duhme et al., 1998; Bellenger et al.,

2011). Our data confirm that tannic acids efficiently complexed Mo and V (Sup. Inf. 2 Fig

S5) which strongly reduces their bioavailability.

This stress on metal acquisition affected metallophore production; in the presence of

tannic acid the amount of metallophores released by A. vinelandii (i.e. protochelin and

azotochelin) was up to 28-fold higher than in untreated culture, especially during the late

exponential phase (Fig. 2 and Sup. Inf. 1 Fig. S2). Complexes of Mo or V with

Page 44: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

44

azotochelin and protochelin possess higher stability constants than those with tannic acids

indicating that protochelin and azotochelin can retrieve Mo and V from tannic acids

(Abdel-Gawad and Issa, 1986; Bellenger et al., 2008a). The release of elevated amounts

of metallophores can thus improve the efficiency of metal recruitment from tannate

complexes. We conclude that the delayed growth observed during lag phase compared to

the control culture without tannic acid supplementation was due to an enhanced

production of metallophores necessary to gather the metals from the tannate complex to

support diazotrophic exponential growth.

Figure 2: Metallophores production by Azotobacter vinelandii along the growth. A.

Protochelin and B. Azotochelin concentrations in supernatants of A. vinelandii cultures at OD

0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Ctrl: control. TA: tannic acid. Values represent the mean ± SE; n =

3. A two-way ANOVA with a Tukey’s multiple comparisons test was used to compare each

metallophore concentrations per and between conditions along the growth and at each OD. Similar

letters indicate no significant difference (P > 0.05).

Page 45: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

45

The presence of tannic acids did not simply impact metallophore amount; it also had

significant effects on the metal acquisition strategy used by the bacterium. Fe cellular

quotas (QFe) were not affected by growth phase nor the presence of tannic acids (Fig. 3A

and Sup. Inf. 1 Fig S3A). The QFe measured in this study were within the range required

to sustain diazotrophic growth= (31 ± 16) × QFe – 0.2, Bellenger et al., 2011). This was

expected since Fe was supplied as Fe-EDTA, a strong complex (stability constant log =

25.7) (Martell and Smith, 1989). Taking the relatively weak stability constant of ferrous-

tannate complexes into account, the presence of tannic acids likely did not affect Fe

equilibrium or the ability of A. vinelandii to acquire iron. As observed for Fe, the presence

of tannic acids had no significant effect on Mo cellular quotas (QMo) as compared to the

control (Fig. 3B and Sup. Inf. 1 Fig S3B). In the lag phase (until OD620 = 0.1), QMo were

high in all cultures (~1-5×10-3

molMo molP-1

). Then, QMo decreased with cell division,

until OD620 0.2/0.4 was reached. For OD620 > 0.4, the decrease in QMo was decoupled

from cell division. At the end of the exponential phase, QMo remained within or higher

than the optimum range of QMo required to sustain diazotrophic growth in A. vinelandii

= (607 ± 188) × QMo, Bellenger et al., 2011). Under such conditions, V is not required for

diazotrophic growth and is not expected to be actively taken up by the bacterium. This

assumption was confirmed by the control cultures where cellular V quotas (Qv) decreased

with cell division during growth suggesting limited or no acquisition of new V from the

medium (V ≤ 10-23

molV cell-1

min-1

) (Fig. 3C and Sup. Inf. 1 Fig S3C, Sup Inf. 4 Fig

S6). Moreover, we argue that the intracellular V pool at the early stage of growth likely

resulted from the acquisition of free vanadate through low affinity uptake systems or

passive diffusion.

Page 46: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

46

Figure 3: Evolution of cellular metal to phosphorus quotas in A. vinelandii. Metals content

was measured at OD = 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Iron A, molybdenum B and vanadium C

cellular quotas. Zones between grey lines represent the range of optimum metal (i.e. Fe, Mo, V)

cellular quota required to sustain diazotrophic growth with our cultures’ instantaneous growth

rates (Bellenger et al., 2011). Opened circles represent control conditions, opened and closed

triangles represent tannic acids at 1×10-5

M and tannic acids at 5×10-5 M, respectively. Ctrl:

control. TA: tannic acid. Values represent the mean ± SD; n = 3. A two-way ANOVA with a

Tukey’s multiple comparisons test was used to compare the metal quotas between conditions

(Results of statistical tests are presented in table S2 of supporting information).

Page 47: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

47

The significance of these mechanisms was strongly reduced after production of

metallophores complexing Mo and V in the growth medium. Once complexed by

metallophores, V acquisition is tightly regulated (Bellenger et al., 2008b). In the presence

of tannic acids, acquisition of V started, and was actively controlled, earlier in the growth

phase than in the absence of tannic acids. From OD ~ 0.2, Qv was maintained constant

despite active cell division showing an acquisition of V from the medium at rates 2 to 96

times higher than in control cultures (~ 10-22

- 10-21

molV cell-1

min-1

) (Fig. 3C and Sup.

Inf. 1 Fig S3C, Sup Inf. 4 Fig S6). This increase unlikely resulted from V acquisition

through low affinity uptake systems because (i) a large fraction of V was complexed to

tannic acids (Sup. Inf. 2, Fig. S5) and (ii) at OD = 0.2 enough metallophores (at least ~

10-7

M) had been released to complex any V (and Mo). It is noteworthy that in the

presence of tannic acids, at OD > 0.2 both cellular V quotas (Qv) and V uptake rates (V)

reached optimum Qv and V (3×10-21

molV cell-1

min-1

) required to sustain diazotrophic

growth at = 0.15 OD h-1

using V-Nase alone (V = (521 ± 94) × QV, Bellenger et al.,

2011) (Fig. 3C and Sup. Inf. 1 Fig S3A, Sup. Info. 2 Fig. S6).

Finally, the presence of tannic acids also impacted Nase expression since vnfD was

significantly more expressed in the presence of tannic acids than in untreated control.

Briefly, nifD expression decreased along the exponential growth under all conditions (up

to 5 fold difference with 5×10-5

M tannic acids). During the early log phase, the presence

of tannic acids (1×10-5

M) led to a twofold decrease of nifD as compared to the control

(Fig. 4A and Sup. Inf. 1 Fig S4A). This difference vanished at mid and end-log phase.

vnfD expression was strongly induced during growth with and without tannic acids (up to

382 fold) (Fig. 4B and Sup. Inf. 1 Fig S4B). The effect of tannic acids appeared at mid-

log phase with a twofold increase of vnfD expression in the presence of tannic acids

(5×10-5

M) which was statistically significant in the Mo:V = 1:1 (10-7

M) experiments

(Sup. Inf. 1 Fig S4B). The expression of anfD remained relatively stable during the log

phase and under all conditions (Fig. 4C and Sup. Inf. 1 Fig S4C). The decrease of nifD

Page 48: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

48

mRNA levels suggests that the levels of Mo-Nase could decrease, and be compensated by

boosted vnfD expression.

Figure 4: Relative expression of nifD, vnfD and anfD during the exponential growth phase.

Gene expression was measured by RT-qPCR. Ctrl: control. TA: tannic acid. Values represent the

mean ± SD; n = 3 or 4. A two-way ANOVA with a Tukey’s multiple comparisons test was used

to compare the mRNA levels between conditions and along the growth. Asterisks indicate

significant differences between the same genes in different conditions (* = P < 0.05, ** = P <

0.01, *** = P < 0.001).

Page 49: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

49

While A. vinelandii is known to accumulate large amounts of Mo in specific storage

systems (Pienkos & Brill, 1981), no such system has been found for V to date. The

accumulation of V in cells can easily become toxic if not used in nitrogenase (Baysse et

al., 2000; Bellenger et al., 2011). We thus hypothesize that V, which has accumulated in

the cells in the presence of tannic acids, was utilized to produce V-Nase. Furthermore,

growth rates during the diazotrophic exponential phase were similar independently of the

presence of tannic acids, implying comparable N2 fixation rates under all conditions.

Differences observed in nitrogenase activity between control and tannic acids conditions

using acetylene reduction assay (ARA) (Sup. Info. 5, Fig. S7) were thus likely due to the

use of the alternative V-Nase, whose efficiency to reduce acetylene is known to be lower

than Mo-Nase, leading to less ethylene formation. During ARA, the V-Nase is known to

produce ethane in addition to ethylene (Dilworth et al., 1987). Ethane production can thus

be used as a proxy for V-Nase activity. Unfortunately, ethane represents only 2-5% of the

ethylene produced (Schneider et al., 1991) and under our experimental conditions

nitrogenase activity was insufficient to permit efficient quantification of ethane, if any.

Whether or not V-Nase is active under these conditions remains to be confirmed.

Nonetheless, these data contrast with the general assumption that V-Nases are activated

only under Mo limited conditions (Jacobson et al., 1986; Jacobitz and Bishop, 1992;

Bellenger et al., 2011).

Active acquisition of V, and use in V-Nase, under conditions during which cellular Mo

quotas (QMo) are sufficient to sustain diazotrophic growth are very surprising. It can be

explained by the higher cost of metal acquisition in the presence of tannic acids. Under

such conditions, the bacterium has access to limited amounts of readily available Mo

(non-complexed) in its environment and thus the probability of metal uptake is increased

by the release of metallophores with high affinity constants to trace metals (Kraemer,

2004). Considering the cost of the metallophore-based acquisition of Mo and V, it is likely

that the bacterium optimizes metal acquisition and growth by acquiring and using any

metal made available after metallophore production and not simply selecting Mo (Fig. 5).

Page 50: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

50

The assumption that V is acquired and the V-Nase genes are activated only when Mo

becomes limiting for diazotrophic growth might be due to the oversimplified conditions

used in laboratory experiments to study metal acquisition and homeostasis in A.

vinelandii, and other N2 fixers (Bellenger et al., 2011; Pratte et al., 2013).

Figure 5: Summary of the effects of the presence of tannic acids on nitrogenase metal

cofactors management by A. vinelandii. Left side: in the presence of free inorganic Mo and V,

A. vinelandii releases metallophores to complex and control the acquisition of metals (Bellenger

et al., 2011). Mo-metallophore complexes are preferentially taken up and Mo is used to sustain

diazotrophic growth. Right side: in the presence of tannic acids, which bind both Mo and V, A.

vinelandii releases a larger amount of metallophores to compete with tannic acids complexes. The

extra cost associated with metal acquisition leads to significant changes in both V homeostasis

and use. V is taken up and V-Nase gene expression is increased under conditions that are

traditionally viewed as not Mo-limiting.

Page 51: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

51

2.1.7. Conclusion

Our data show that the presence of tannic acids clearly induced a switch in A. vinelandii

metal acquisition strategy (improved metallophore production and V uptake) and

nitrogenases genes expression (enhanced vnfD expression). This strongly suggests that

under hindered metal recruitment, such as the presence of natural organic matter, A.

vinelandii manages the acquisition of nitrogenase metal cofactors and nitrogenase

expression in a more complex manner than previously reported. These results invite

reconsideration of the current model of nitrogenase hierarchy, i.e. the view that Mo-Nase

is the main nitrogenase and that V- and Fe-Nases are the alternative nitrogenases

(Bellenger et al., 2011). This paradigm was built on few key laboratory experiments that

are not representative of natural habitats. The assumption of the predominance of Mo-

Nase over other means of N2 fixation (V-Nase and Fe-Nase) is mostly based on the higher

efficiency of the Mo-Nase to reduce N2 compared to the alternative Nases (Masepohl et

al., 2002). Higher efficiency of the Mo-Nase was established in pure cultures where Mo

and V were provided as inorganic forms or using purified enzymes, and is only verified at

temperature above 15°C. The real efficiency of nitrogenase isoforms to reduce N2 in

natural habitats likely integrates the cost of metal cofactor acquisition (i.e. cost of

metallophore production and uptake). The effect of natural organic matter and oxides on

the efficiency of N2 fixers to acquire and use nitrogenase metal cofactors needs to be

further investigated in order to determine whether or not current views of nitrogenase

hierarchy, applies to natural habitats.

Page 52: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

52

2.1.8. Experimental procedures

2.1.8.1. Bacterial strain, Culture medium and growth conditions

The bacterium Azotobacter vinelandii strain OP (ATCC 13705) was grown aerobically

under diazotrophic conditions at 25˚ C, 210 rpm in a liquid medium as described by

Bellenger et al., 2011. Fe, V and Mo concentrations were adjusted by adding solutions of

Fe-EDTA, NaVO3 and Na2MoO4 respectively, to reach [Fe] = 5×10-6

M, [Mo] = [V] =

1×10-7

M or [Mo] = 5×10-8

M and [V] = 2×10-7

M depending on the experimental setup.

All products were purchased from Sigma-Aldrich (Saint Louis, MI, USA) and used as is.

Two final concentrations of commercial tannic acid C76H52O46 (Fisher Science, Illinois),

were tested: 1×10-5

M and 5×10-5

M. The inoculums were grown in a Mo and V free

medium to avoid any significant Mo and V pre-supply, and any Mo storage. Before

inoculation of A. vinelandii, the media were left in growth conditions for at least 2 hours

to insure stable equilibrium between tannic acid and metals.

2.1.8.2. Growth curves and growth rates

Bacterial growth was monitored and growth rates () were calculated according to

Bellenger et al., (2011). Aliquots of cultures were taken at regular time intervals. Samples

were centrifuged for 15 minutes at 4400 rpm. The supernatants were collected for

metallophore quantification (see below). Cell pellets were then prepared for metals

analysis as described by Bellenger et al., (2011) with minor modifications (see Sup. Info.

7).

Page 53: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

53

2.1.8.3. Metallophores quantification

Metallophores were extracted and quantified as previously described by Deicke et al.,

(2013) with minor modifications (see Sup. Info. 7). All species of each determined

metallophore were summed up.

2.1.8.4. RNA isolation, cDNA synthesis and quantitative PCR assays

Total RNA extractions were performed on culture aliquots collected throughout

exponential phases (OD620 = 0.2, 0.4, 0.6 and 0.8) and cDNA were synthesized as

described previously (Poulin-Laprade and Burrus, 2015). RNA purity and concentration

were evaluated with the RNA chip Bioanalyzer 2100 (Agilent) and the spectrophotometer

ND-1000 (Nanodrop). RNA samples were stored at -80°C and cDNA sample mixtures

were purified with the PCR Purification Kit (Qiagen) and stored at -80°C. A control

reaction in the absence of reverse transcriptase (no-RT reaction) was performed.

Quantitative PCR reactions were performed with Quantifast SYBR Green PCR master

mix (Qiagen) using a Mastercycler ep gradient S realplex4 system (Eppendorf AG) for

data acquisition and analysis as previously described (Daccord et al., 2012) with minor

modifications (Sup. Inf. 7 and, Sup. Inf. 6 Table S3). For normalization, the RNA

polymerase σ70 subunit gene rpoD was used (Savli et al., 2003) and results presented as

relative expression based on the ΔCt calculation method (Schmittgen and Livak, 2008).

Experiments were carried out in at least three independent biological replicates, each with

three technical replicates, and combined.

Page 54: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

54

2.1.8.5. Statistics and curve fitting

Statistical analyses and exponential fitting were all realized with the software GraphPad

Prism 6.00 for Windows, La Jolla California USA. Two-way ANOVA was performed,

followed by the Tukey’s multiple comparisons test to compare growth and/or tannic acid

effect.

2.1.9. Acknowledgments

This work was supported by a Discovery Grant and Discovery Acceleration Supplement

from the Natural Sciences and Engineering Council of Canada [326810, 412288 to V.B.];

V.B. holds a Canada Research Chair in molecular bacterial genetics. J.P.B. holds a

Canada Research Chair in terrestrial biogeochemistry. T.W. was supported by the

Collaborative Research Centre 1127 (ChemBioSys) of the Deutsche Forschungs-

gemeinschaft (DFG) and the German Academic Exchange Service (DAAD 56040395,

PPP with Canada). We are thankful to R. Gagnon, D. Matteau for their technical

assistance as well as, E. Bordeleau, N. Carraro, S. Delage, J. Letowski, D. Poulin-Laprade

and S. Rodrigue for helpful discussions and critical reading of the manuscript.

The authors declare no conflict of interest.

Page 55: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

55

2.1.10. References

Abdel-Gawad, F.M. and Issa, R.M. (1986) Spectrometric determination of vanadium (V)

with tannic acid and its application to biological fluids. Ind. J. Chem. 25: 701-702.

Ind. J. Chem. 25: 701–702.

Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living rhizospheric

bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:

173–81.

Ahmed, E. and Holmström, S.J.M. (2014) Siderophores in environmental research: roles

and applications. Microb. Biotechnol. 7: 196–208.

Alloway, B. (2013) Heavy metals in soils Third. Alloway,B.J. (ed).

Austin, S. and Lambert, J. (1994) Purification and in vitro activity of a truncated form of

ANFA. Transcriptional activator protein of alternative nitrogenase from Azotobacter

vinelandii. J. Biol. Chem. 269: 18141–8.

Baars, O., Zhang, X., Morel, F.M.M., and Seyedsayamdost, M.R. (2016) The Siderophore

Metabolome of Azotobacter vinelandii. Appl. Environ. Microbiol. 82: 27–39.

Bageshwar, U.K., Choudhury, N.R., and Das, H.K. (1998) Analysis of upstream

activation of the vnfH promoter of Azotobacter vinelandii - ProQuest. Can. J.

Microbiol. 44.:

Barrett, J., Ray, P., Sobczyk, A., Little, R., and Dixon, R. (2001) Concerted inhibition of

the transcriptional activation functions of the enhancer-binding protein NIFA by the

anti-activator NIFL. Mol. Microbiol. 39: 480–93.

Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L., and Hedin,

L.O. (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest

soils. Nat. Geosci. 2: 42–45.

Baumgartner, J. and Faivre, D. (2015) Iron solubility, colloids and their impact on iron

(oxyhydr)oxide formation from solution. Earth-Science Rev. 150: 520–530.

Baysse, C., De Vos, D., Naudet, Y., Vandermonde, A., Ochsner, U., Meyer, J.M., et al.

(2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas

aeruginosa. Microbiology 146 ( Pt 1: 2425–34.

Bellenger, J.-P., Arnaud-Neu, F., Asfari, Z., Myneni, S.C.B., Stiefel, E.I., and Kraepiel,

A.M.L. (2007) Complexation of oxoanions and cationic metals by the biscatecholate

siderophore azotochelin. J. Biol. Inorg. Chem. JBIC a Publ. Soc. Biol. Inorg. Chem.

12: 367–376.

Page 56: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

56

Bellenger, J.P., Wichard, T., and Kraepiel, A.M.L. (2008) Vanadium requirements and

uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl.

Environ. Microbiol. 74: 1478–1484.

Bellenger, J.P., Wichard, T., Kustka, A.B., and Kraepiel, A.M.L. (2008) Uptake of

molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.

Nat. Geosci. 1: 243–246.

Bellenger, J.-P., Wichard, T., Xu, Y., and Kraepiel, A.M.L. (2011) Essential metals for

nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and

high use efficiency. Environ. Microbiol. 13: 1395–411.

Bennett, L.T., Cannon, F., and Dean, D.R. (1988) Nucleotide sequence and mutagenesis

of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2: 315–21.

Betancourt, D.A., Loveless, T.M., Brown, J.W., and Bishop, P.E. (2008) Characterization

of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse

Natural Environments. Appl. Environ. Microbiol. 74: 3471–3480.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1980) Evidence for an alternative

nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U. S. A. 77:

7342–7346.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1982) Expression of an alternative

nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 150: 1244–1251.

Blanco, G., Drummond, M., Woodley, P., and Kennedy, C. (1993) Sequence and

molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9:

869–79.

Boison, G., Steingen, C., Stal, L.J., and Bothe, H. (2006) The rice field cyanobacteria

Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase.

Arch. Microbiol. 186: 367–76.

Bothe, H., Schmitz, O., Yates, M.G., and Newton, W.E. (2010) Nitrogen fixation and

hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev. 74: 529–51.

Boyd, E.S., Hamilton, T.L., and Peters, J.W. (2011) An alternative path for the evolution

of biological nitrogen fixation. Front. Microbiol. 2: 205.

Branca, M., Micera, G., Sanna, D., and Dessì, A. (1990) Complexation of

oxovanadium(IV) by humic and tannic acids. J. Inorg. Biochem. 39: 109–115.

Brenchley, J.E., Prival, M.J., and Magasanik, B. (1973) Regulation of the synthesis of

enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem.

248: 6122–8.

Brigle, K.E., Newton, W.E., and Dean, D.R. (1985) Complete nucleotide sequence of the

Page 57: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

57

Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37: 37–44.

Burgess, B.K. and Lowe, D.J. (1996) Mechanism of Molybdenum Nitrogenase. Chem.

Rev. 96: 2983–3012.

Burns, R.C. and Hardy, R.W.F. (2012) Nitrogen Fixation in Bacteria and Higher Plants

Springer Science & Business Media.

Cech, T. V. (2010) Principles of Water Resources: History, Development, Management,

and Policy John Wiley & Sons.

Chatterjee, R., Allen, R.M., Ludden, P.W., and Shah, V.K. (1997) In vitro synthesis of the

iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase.

Effect of substitution of VNFH for NIFH. J. Biol. Chem. 272: 21604–21608.

Chisnell, J.R., Premakumar, R., and Bishop, P.E. (1988) Purification of a second

alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J.

Bacteriol. 170: 27–33.

Cornell, R.M. and Schwertmann, U. (2006) The Iron Oxides: Structure, Properties,

Reactions, Occurrences and Uses John Wiley & Sons.

Cornish, A. and Page, W. (1995) Production of the triacetecholate siderophore

protochelin by Azotobacter vinelandii. Biometals 8: 332–338.

Cornish, A.S. and Page, W.J. (2000) Role of molybdate and other transition metals in the

accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol.

66: 1580–1586.

Cornish, A.S. and Page, W.J. (1998) The catecholate siderophores of Azotobacter

vinelandii: their affinity for iron and role in oxygen stress management.

Microbiology 144: 1747–1754.

Crowley, D.E., Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J. (1991) Mechanisms of iron

acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179–

198.

Daccord, A., Mursell, M., Poulin-Laprade, D., and Burrus, V. (2012) Dynamics of the

SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by

Integrating Conjugative Elements of the SXT/R391 Family. J. Bacteriol. 194: 5794–

5802.

Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., and Bellenger, J.-P. (2014) Is

vanadium a biometal for boreal cyanolichens? New Phytol. 202: 765–71.

Darnajoux, R., Zhang, X., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel,

A.M.L., and Bellenger, J.-P. (2016) Biological nitrogen fixation by alternative

nitrogenases in boreal cyanolichens: importance of molybdenum availability and

Page 58: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

58

implications for current biological nitrogen fixation estimates. New Phytol.

Deicke, M., Bellenger, J.-P., and Wichard, T. (2013) Direct quantification of bacterial

molybdenum and iron metallophores with ultra-high-performance liquid

chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A

1298: 50–60.

Deicke, M., Mohr, J.F., Bellenger, J.-P., and Wichard, T. (2014) Metallophore mapping in

complex matrices by metal isotope coded profiling of organic ligands. Analyst 139:

6096–9.

Dilworth, M.J., Eady, R.R., Robson, R.L., and Miller, R.W. (1987) Ethane formation

from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:

167–168.

Dixon, R. (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component

regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Arch.

Microbiol. 169: 371–80.

Djibaoui, D. and Bensoltane, A. (2005) Effect of iron and growth inhibitors on

siderophores production by Pseudomonas fluorescens. African J. Biotechnol. 4: 697–

702.

Drummond, M., Walmsley, J., and Kennedy, C. (1996) Expression from the nifB

promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA

transcriptional activators. J. Bacteriol. 178: 788–92.

Duhme, A.-K., Dauter, Z., Hider, R.C., and Pohl, S. (1996) Complexation of

Molybdenum by Siderophores: Synthesis and Structure of the Double-Helical cis -

Dioxomolybdenum(VI) Complex of a Bis(catecholamide) Siderophore Analogue.

Inorg. Chem. 35: 3059–3061.

Duhme, A.-K., Hider, R.C., and Khodr, H.H. (1997) Synthesis and Iron-Binding

Properties of Protochelin, the Tris (catecholamide) Siderophore ofAzotobacter

vinelandii. Chem. Ber. 130: 969–973.

Duhme, A.-K., Hider, R.C., Naldrett, M.J., and Pau, R.N. (1998) The stability of the

molybdenum-azotochelin complex and its effect on siderophore production in

Azotobacter vinelandii. J. Biol. Inorg. Chem. 3: 520–526.

Duhme-Klair, A.-K. (2009) From siderophores and self-assembly to luminescent sensors:

the binding of molybdenum by catecholamides. Eur. J. Inorg. Chem. 2009: 3689–

3701.

Dyer, J.A., Trivedi, P., Scrivner, N.C., and Sparks, D.L. (2003) Lead sorpion onto

ferrihydrite. 2. Surface complexation modeling. Environ. Sci. Technol. 37: 915–22.

Page 59: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

59

Eady, R.R. (1996) Structure−Function Relationships of Alternative Nitrogenases. Chem.

Rev. 96: 3013–3030.

Eady, R.R., Robson, R.L., Richardson, T.H., Miller, R.W., and Hawkins, M. (1987) The

vanadium nitrogenase of Azotobacter chroococcum . Purification and properties of

the VFe protein. Biochem. J. 244: 197–207.

Einsle, O. (2014) Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J.

Biol. Inorg. Chem. 19: 737–45.

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., et

al. (2007) Global analysis of nitrogen and phosphorus limitation of primary

producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10: 1135–42.

Fenske, D., Gnida, M., Schneider, K., Meyer-Klaucke, W., Schemberg, J., Henschel, V.,

et al. (2005) A new type of metalloprotein: The Mo storage protein from Azotobacter

vinelandii contains a polynuclear molybdenum-oxide cluster. Chembiochem 6: 405–

413.

Frise, E., Green, A., and Drummond, M. (1994) Chimeric transcriptional activators

generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal

domain of AnfA is responsible for dependence on nitrogenase Fe protein. J.

Bacteriol. 176: 6545–9.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger,

S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:

153–226.

Glass, J.B., Axler, R.P., Chandra, S., and Goldman, C.R. (2012) Molybdenum limitation

of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front.

Microbiol. 3: 331.

Goldberg, S. and Forster, H.S. (1998) FACTORS AFFECTING MOLYBDENUM

ADSORPTION BY SOILS AND MINERALS. Soil Sci. 163: 109–114.

Goldberg, S., Forster, H.S., and Godfrey, C.L. (1996) Molybdenum Adsorption on

Oxides, Clay Minerals, and Soils. Soil Sci. Soc. Am. J. 60: 425.

Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J.N., et al. (2013) The role of

industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 3: 636–

639.

Hales, B.J., Langosch, D.J., and Case, E.E. (1986) Isolation and characterization of a

second nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 261:

15301–15306.

Hänsch, R. and Mendel, R.R. (2009) Physiological functions of mineral micronutrients

Page 60: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

60

(Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12: 259–266.

Hättenschwiler, S. and Vitousek, P. (2000) The role of polyphenols in terrestrial

ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.

Hemingway, R.W., Karchesy, J.J., and Branham, S.J. (1989) Chemistry and Significance

of Condensed Tannins Plenum Pre. Hemingway,R.W., Karchesy,J.J., and

Branham,S.J. (eds) Springer US, New York.

Hill, S., Austin, S., Eydmann, T., Jones, T., and Dixon, R. (1996) Azotobacter vinelandii

NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation

genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. U. S. A. 93: 2143–8.

Hinnemann, B. and Nørskov, J.K. (2004) Chemical activity of the nitrogenase FeMo

cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc.

126: 3920–7.

Hirschman, J., Wong, P.K., Sei, K., Keener, J., and Kustu, S. (1985) Products of nitrogen

regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in

vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. U. S. A.

82: 7525–9.

Hodkinson, B.P., Allen, J.L., Forrest, L.L., Goffinet, B., Sérusiaux, E., Andrésson, Ó.S.,

et al. (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an

alternative vanadium-dependent nitrogen fixation system. Eur. J. Phycol. 49: 11–19.

Hooper, D.U. and Johnson, L. (1999) Nitrogen limitation in dryland ecosystems:

Responses to geographical and temporal variation in precipitation. Biogeochemistry

46: 247–293.

Howard, J.B. and Rees, D.C. (2006) How many metals does it take to fix N2? A

mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. U. S. A.

103: 17088–93.

Howard, J.B. and Rees, D.C. (1996) Structural Basis of Biological Nitrogen Fixation.

Chem. Rev. 96: 2965–2982.

Hu, Y. and Ribbe, M.W. (2011) Biosynthesis of the Metalloclusters of Molybdenum

Nitrogenase. Microbiol. Mol. Biol. Rev. 75: 664–677.

Imperial, J., Hadi, M., and Amy, N.K. (1998) Molybdate binding by ModA, the

periplasmic component of the Escherichia coli mod molybdate transport system.

Biochim. Biophys. Acta 1370: 337–46.

Jacob, J. and Drummond, M. (1993) Construction of chimeric proteins from the ?; N -

associated transcriptional activators VnfA and AnfA of Azotobacter vinelandii

shows that the determinants of promoter specificity lie outside the’recognition'helix

Page 61: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

61

of the HTH motif in the C-terminal . Mol. Microbiol. 10: 813–821.

Jacobitz, S. and Bishop, P.E. (1992) Regulation of nitrogenase-2 in Azotobacter

vinelandii by ammonium, molybdenum, and vanadium. J. Bacteriol. 174: 3884–

3888.

Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L.,

et al. (1989) Physical and genetic map of the major nif gene cluster from Azotobacter

vinelandii. J. Bacteriol. 171: 1017–1027.

Jacobson, M.R., Premakumar, R., and Bishop, P.E. (1986) Transcriptional regulation of

nitrogen fixation by molybdenum in Azotobacter vinelandii. J. Bacteriol. 167: 480–

6.

Jean, M.-E., Phalyvong, K., Forest-Drolet, J., and Bellenger, J.-P. (2013) Molybdenum

and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern

Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem.

67: 140–146.

Jiang, H.-B., Lou, W.-J., Ke, W.-T., Song, W.-Y., Price, N.M., and Qiu, B.-S. (2015)

New insights into iron acquisition by cyanobacteria: an essential role for ExbB-

ExbD complex in inorganic iron uptake. ISME J. 9: 297–309.

Joerger, R.D., Jacobson, M.R., and Bishop, P.E. (1989) Two nifA-like genes required for

expression of alternative nitrogenases by Azotobacter vinelandii. J. Bacteriol. 171:

3258–67.

Joerger, R.D., Jacobson, M.R., Premakumar, R., Wolfinger, E.D., and Bishop, P.E. (1989)

Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for

the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 171:

1075–1086.

Joerger, R.D., Loveless, T.M., Pau, R.N., Mitchenall, L.A., Simon, B.H., and Bishop, P.E.

(1990) Nucleotide sequences and mutational analysis of the structural genes for

nitrogenase 2 of Azotobacter vinelandii. J. Bacteriol. 172: 3400–8.

Jouogo Noumsi, C., Pourhassan, N., Darnajoux, R., Deicke, M., Wichard, T., Burrus, V.,

and Bellenger, J.-P. (2016) Effect of organic matter on nitrogenase metal cofactors

homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ.

Microbiol. Rep. 8: 76–84.

Kabata-Pendias, A. (2010) Trace Elements in Soils and Plants, Fourth Edition CRC Press.

Keller, R.J., Coulombe, R.A., Sharma, R.P., Grover, T.A., and Piette, L.H. (1989)

Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.

Free Radic. Biol. Med. 6: 15–22.

Page 62: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

62

Kennedy, C. and Dean, D. (1992) The nifU, nifS and nifV gene products are required for

activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:

494–8.

Kirn, J. and Rees, D.C. (1992) Crystallographic structure and functional implications of

the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:

553–560.

Kooner, Z.S. (1993) Comparative study of adsorption behavior of copper, lead, and zinc

onto goethite in aqueous systems. Environ. Geol. 21: 242–250.

Kraemer, S.M. (2004) Iron oxide dissolution and solubility in the presence of

siderophores. Aquat. Sci. - Res. Across Boundaries 66: 3–18.

Kraemer, S.M., Duckworth, O.W., Harrington, J.M., and Schenkeveld, W.D.C. (2015)

Metallophores and Trace Metal Biogeochemistry. Aquat. Geochemistry 21: 159–195.

Kraepiel, A.M.L., Bellenger, J.P., Wichard, T., and Morel, F.M.M. (2009) Multiple roles

of siderophores in free-living nitrogen-fixing bacteria. Biometals an Int. J. role Met.

ions Biol. Biochem. Med. 22: 573–581.

Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J. (2003) Tannins in nutrient dynamics of

forest ecosystems - a review. Plant Soil 256: 41–66.

Kuiters, A.T. (1990) Role of phenolic substances from decomposing forest litter in plant-

soil interactions. Acta Bot. Neerl. 39: 329–348.

Lancaster, K.M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M.W., Neese, F., et al.

(2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase

iron-molybdenum cofactor. Science 334: 974–7.

Lane, T.W. and Morel, F.M. (2000) A biological function for cadmium in marine

diatoms. Proc. Natl. Acad. Sci. U. S. A. 97: 4627–31.

LeBauer, D.S. and Treseder, K.K. (2008) Nitrogen limitation of net primary productivity

in terrestrial ecosytems is globally distributed. Ecology 89: 371–379.

Lee, C.C., Hu, Y., and Ribbe, M.W. (2009) Unique features of the nitrogenase VFe

protein from Azotobacter vinelandii. Proc. Natl. Acad. Sci. 106: 9209–9214.

Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W.C., and Dixon, R. (2000)

Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is

influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein.

EMBO J. 19: 6041–50.

Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San

Diego Calif 25: 402–408.

Page 63: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

63

Loveless, T.M. and Bishop, P.E. (1999) Identification of genes unique to Mo-independent

nitrogenase systems in diverse diazotrophs. Can. J. Microbiol. 45: 312–317.

Loveless, T.M., Saah, J.R., and Bishop, P.E. (1999) Isolation of nitrogen-fixing bacteria

containing molybdenum-independent nitrogenases from natural environments. Appl.

Environ. Microbiol. 65: 4223–4226.

Lowe, D.J., Fisher, K., and Thorneley, R.N. (1993) Klebsiella pneumoniae nitrogenase:

pre-steady-state absorbance changes show that redox changes occur in the MoFe

protein that depend on substrate and component protein ratio; a role for P-centres in

reducing dinitrogen? Biochem. J. 292: 93–98.

Lu, X., Johnson, W.D., and Hook, J. (1998) Reaction of vanadate with aquatic humic

substances: an ESR and 51 V NMR study. Environ. Sci. Technol. 32: 2257–2263.

Luque, F., Mitchenall, L.A., Chapman, M., Christine, R., and Pau, R.N. (1993)

Characterization of genes involved in molybdenum transport in Azotobacter

vinelandii. Mol. Microbiol. 7: 447–59.

Luque, F. and Pau, R.N. (1991) Transcriptional regulation by metals of structural genes

for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227: 481–7.

Macaluso, A., Best, E.A., and Bender, R.A. (1990) Role of the nac gene product in the

nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J.

Bacteriol. 172: 7249–55.

Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., and Lerman, A. (2013) Interactions of

C, N, P and S Biogeochemical Cycles and Global Change Roland,W.,

Mackenzie,F.T., and Chou,L. (eds) Springer Science & Business Media.

Marks, J.A., Perakis, S.S., King, E.K., and Pett-Ridge, J. (2015) Soil organic matter

regulates molybdenum storage and mobility in forests. Biogeochemistry 125: 167–

183.

Martell, A.E. and Smith, R.M. (1989) Critical stability constants. Plenum Press, New

York.

Masepohl, B., Schneider, K., Drepper, T., Muller, A., and Klipp, W. (2002) Nitrogen

fixation at the millennium G.J.,L. (ed) Elsevier.

Masukawa, H., Zhang, X., Yamazaki, E., Iwata, S., Nakamura, K., Mochimaru, M., et al.

(2009) Survey of the distribution of different types of nitrogenases and hydrogenases

in heterocyst-forming cyanobacteria. Mar. Biotechnol. (NY). 11: 397–409.

May, H.D. and Dean, R.D. (1991) Altered nitrogenase MoFe proteins from Azotobacter

vinelandii. Analysis of MoFe proteins having amino acid substitutions for the

conserved cysteine residues within the beta-subunit. Biochem. J. 277 (Pt 2): 457–64.

Page 64: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

64

Meletzus, D., Rudnick, P., Doetsch, N., Green, A., and Kennedy, C. (1998)

Characterization of the glnK-amtB Operon of Azotobacter vinelandii. J. Bacteriol.

180: 3260–3264.

Merrick, M., Gibbins, J., and Toukdarian, A. (1987) The nucleotide sequence of the

sigma factor gene ntrA (rpoN) of Azotobacter vinelandii: analysis of conserved

sequences in NtrA proteins. Mol. Gen. Genet. 210: 323–30.

Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. (1982)

Repressor properties of the nifL gene product in Klebsiella pneumoniae. MGG Mol.

Gen. Genet. 185: 75–81.

Merrick, M.J. and Gibbins, J.R. (1985) The nucleotide sequence of the nitrogen-

regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved

features in bacterial RNA polymerase sigma factors. Nucleic Acids Res. 13: 7607–

20.

Miller, R.W. and Eady, R.R. (1988) Molybdenum and vanadium nitrogenases of

Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium

nitrogenase. Biochem. J. 256: 429–432.

Monteiro, R.A., Souza, E.M., Yates, M.G., Pedrosa, F.O., and Chubatsu, L.S. (1999) In-

trans regulation of the N-truncated-NIFA protein of Herbaspirillum seropedicae by

the N-terminal domain. FEMS Microbiol. Lett. 180: 157–61.

Morrison, C.N., Hoy, J.A., Zhang, L., Einsle, O., and Rees, D.C. (2015) Substrate

pathways in the nitrogenase MoFe protein by experimental identification of small

molecule binding sites. Biochemistry 54: 2052–60.

Moshiri, F., Kim, J.W., Fu, C., and Maier, R.J. (1994) The FeSII protein of Azotobacter

vinelandii is not essential for aerobic nitrogen fixation, but confers significant

protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol.

Microbiol. 14: 101–114.

Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1995) Mutational analysis of genes of

the mod locus involved in molybdenum transport, homeostasis, and processing in

Azotobacter vinelandii. J. Bacteriol. 177: 5294–302.

Moure, V.R., Costa, F.F., Cruz, L.M., Pedrosa, F.O., Souza, E.M., Li, X.-D., et al. (2015)

Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr. Top.

Microbiol. Immunol. 384: 89–106.

Nakajima, H., Takatani, N., Yoshimitsu, K., Itoh, M., Aono, S., Takahashi, Y., and

Watanabe, Y. (2010) The role of the Fe-S cluster in the sensory domain of

nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J.

277: 817–32.

Page 65: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

65

Noar, J.D. and Bruno-Bárcena, J.M. (2013) Complete Genome Sequences of Azotobacter

vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome

Announc. 1: e00313–13.

Nordlund, S. and Högbom, M. (2013) ADP-ribosylation, a mechanism regulating

nitrogenase activity. FEBS J. 280: 3484–90.

Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., and Hussain, I. (2013) Effect

of plant growth promoting rhizobacteria on root morphology of Safflower (

Carthamus tinctorius L.). African J. Biotechnol. 10: 12638–12649.

Oda, Y., Samanta, S.K., Rey, F.E., Wu, L., Liu, X., Yan, T., et al. (2005) Functional

genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium

Rhodopseudomonas palustris. J. Bacteriol. 187: 7784–94.

Oelze, J. (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely

held hypothesis unequivocally supported by experimental evidence? FEMS

Microbiol. Rev. 24: 321–333.

Page, W.J. and Huyer, M. (1984) Derepression of the Azotobacter vinelandii siderophore

system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 158: 496–

502.

Page, W.J. and von Tigerstrom, M. (1982) Iron- and molybdenum-repressible outer

membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151: 237–42.

Pau, R.N. (1989) Nitrogenases without molybdenum. Trends Biochem. Sci. 14: 183–6.

Peacock, C.L. and Sherman, D.M. (2004) Vanadium(V) adsorption onto goethite (α-

FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular

geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 68: 1723–1733.

Peters, J.W., Fisher, K., Newton, W.E., and Dean, D.R. (1995) Involvement of the P

Cluster in Intramolecular Electron Transfer within the Nitrogenase MoFe Protein. J.

Biol. Chem. 270: 27007–27013.

Pienkos, P.T. and Brill, W.J. (1981) Molybdenum accumulation and storage in Klebsiella

pneumoniae and Azotobacter vinelandii. J. Bacteriol. 145: 743–51.

Poledniok, J. (2003) Speciation of vanadium in soil. Talanta 59: 1–8.

Poulin-Laprade, D. and Burrus, V. (2015) A λ Cro-like repressor is essential for the

induction of conjugative transfer of SXT/R391 elements in response to DNA

damage. J. Bacteriol.

Pratte, B.S., Eplin, K., and Thiel, T. (2006) Cross-functionality of nitrogenase

components NifH1 and VnfH in Anabaena variabilis. J. Bacteriol. 188: 5806–5811.

Page 66: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

66

Pratte, B.S., Sheridan, R., James, J.A., and Thiel, T. (2013) Regulation of V-nitrogenase

genes in Anabaena variabilis by RNA processing and by dual repressors. Mol.

Microbiol. 88: 413–24.

Pratte, B.S. and Thiel, T. (2006) High-Affinity Vanadate Transport System in the

Cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 188: 464–468.

Premakumar, R., Loveless, T.M., and Bishop, P.E. (1994) Effect of amino acid

substitutions in a potential metal-binding site of AnfA on expression from the anfH

promoter in Azotobacter vinelandii. J. Bacteriol. 176: 6139–42.

Premakumar, R., Pau, R.N., Mitchenall, L.A., Easo, M., and Bishop, P.E. (1998)

Regulation of the transcriptional activators AnfA and VnfA by metals and

ammonium in Azotobacter vinelandii. FEMS Microbiol. Lett. 164: 63–68.

Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E. (2004) The natural

history of nitrogen fixation. Mol. Biol. Evol. 21: 541–54.

Reddy, K.J. and Gloss, S.P. (1993) Geochemical speciation as related to the mobility of F,

Mo and Se in soil leachates. Appl. Geochemistry 8: 159–163.

Reed, S.C., Cleveland, C.C., and Townsend, A.R. (2011) Functional ecology of free-

living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42:

489–512.

Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and

Howard, J.B. (2005) Structural basis of biological nitrogen fixation. Philos. Trans.

A. Math. Phys. Eng. Sci. 363: 971–84; discussion 1035–40.

Rees, D.C. and Howard, J.B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin.

Chem. Biol. 4: 559–566.

Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80: 133–136.

Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., and Lemanceau, P. (2008)

Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and

Nutrition. Adv. Agron. 99: 183–225.

Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M., and Postgate,

J.R. (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium

enzyme. Nature 322: 388–390.

Robson, R.L. and Postgate, J.R. (1980) Oxygen and hydrogen in biological nitrogen

fixation. Annu. Rev. Microbiol. 34: 183–207.

Rose, A.L. and Waite, T.D. (2003) Kinetics of Hydrolysis and Precipitation of Ferric Iron

in Seawater. Environ. Sci. Technol. 37: 3897–3903.

Page 67: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

67

Rubio, L.M. and Ludden, P.W. (2005) Maturation of nitrogenase: a biochemical puzzle.

J. Bacteriol. 187: 405–414.

Sandy, M. and Butler, A. (2009) Microbial iron acquisition: marine and terrestrial

siderophores. Chem. Rev. 109: 4580–95.

Dos Santos, P.C. and Dean, D.R. (2014) Iron-Sulfur Clusters in Chemistry and Biology

Rouault,T. (ed) Walter de Gruyter GmbH & Co KG, 2014.

Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., and Vahaboglu, H. (2003)

Expression stability of six housekeeping genes: a proposal for resistance gene

quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-

PCR. J. Med. Microbiol. 52: 403–408.

Sayyed, R.Z., Badgujar, M.D., Sonawane, H.M., Mhaske, M.M., and Chincholkar, S.B.

(2005) Production of microbial iron chelators (siderophores) by fluorescent

Pseudomonads. IJBT Vol.4(4) [October 2005].

Schlesinger, W.H. and Bernhardt, E.S. (2013) Biogeochemistry: An Analysis of Global

Change Academic Press.

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the

comparative CT method. Nat. Protoc. 3: 1101–1108.

Schmitz, R.A., Klopprogge, K., and Grabbe, R. (2002) Regulation of nitrogen fixation in

Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two

environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol.

Biotechnol. 4: 235–242.

Schneider, K., Müller, A., Schramm, U., and Klipp, W. (1991) Demonstration of a

molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant

of Rhodobacter capsulatus. Eur. J. Biochem. 195: 653–661.

Schwacha, A. and Bender, R.A. (1993) The nac (nitrogen assimilation control) gene from

Klebsiella aerogenes. J. Bacteriol. 175: 2107–15.

Seefeldt, L.C., Hoffman, B.M., and Dean, D.R. (2009) Mechanism of Mo-dependent

nitrogenase. Annu. Rev. Biochem. 78: 701–22.

Self, W.T., Grunden, A.M., Hasona, A., and Shanmugam, K.T. (2001) Molybdate

transport. Res. Microbiol. 152: 311–321.

Setubal, J.C., dos Santos, P., Goldman, B.S., Ertesvåg, H., Espin, G., Rubio, L.M., et al.

(2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized

to support diverse anaerobic metabolic processes. J. Bacteriol. 191: 4534–4545.

Shailendra Singh, G.G. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current

and Future Prospects for Development of Sustainable Agriculture. J. Microb.

Page 68: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

68

Biochem. Technol. 07.:

Shieh, C. and Duedall, I.W. (1988) Role of amorphous ferric oxyhydroxide in removal of

anthropogenic vanadium from seawater. Mar. Chem. 25: 121–139.

Silvester, W. (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of

Pacific Northwest America. Soil Biol. Biochem. 21: 283–289.

Slabbert, N. (2012) Plant Polyphenols: Synthesis, Properties, Significance. Complexation

of condensed tannins with metal ions. Hemingway,R.W. and Laks,P.E. (eds)

Springer Science & Business Media.

Souza, E.M., Pedrosa, F.O., Drummond, M., Rigo, L.U., and Yates, M.G. (1999) Control

of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J.

Bacteriol. 181: 681–4.

Steenhoudt, O. and Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing

bacterium closely associated with grasses: genetic, biochemical and ecological

aspects. FEMS Microbiol. Rev. 24: 487–506.

Stefánsson, A. (2007) Iron(III) Hydrolysis and Solubility at 25 °C. Environ. Sci. Technol.

41: 6117–6123.

Stevenson, F.J. and Cole, M.A. (Michael A.. (1999) Cycles of soil : carbon, nitrogen,

phosphorus, sulfur, micronutrients Wiley.

Stintzi, A., Barnes, C., Xu, J., and Raymond, K.N. (2000) Microbial iron transport via a

siderophore shuttle: a membrane ion transport paradigm. Proc. Natl. Acad. Sci. U. S.

A. 97: 10691–6.

Tang, D. and Morel, F.M.M. (2006) Distinguishing between cellular and Fe-oxide-

associated trace elements in phytoplankton. Mar. Chem. 98: 18–30.

Thiel, T. (1993) Characterization of genes for an alternative nitrogenase in the

cyanobacterium Anabaena variabilis. J. Bacteriol. 175: 6276–6286.

Thiel, T. and Pratte, B.S. (2013) Alternative nitrogenases in Anabaena variabilis: the role

of molybdate and vanadate in nitrogenase gene. Adv. Microbiol. 03: 87–95.

Thöny, B. and Hennecke, H. (1989) The -24/-12 promoter comes of age. FEMS

Microbiol. Rev. 5: 341–57.

Tindale, A.E., Mehrotra, M., Ottem, D., and Page, W.J. (2000) Dual regulation of

catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative

stress. Microbiology 146 ( Pt 7: 1617–26.

Toukdarian, A. and Kennedy, C. (1986) Regulation of nitrogen metabolism in

Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr

Page 69: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

69

mutants. EMBO J. 5: 399–407.

Villa, J.A., Ray, E.E., and Barney, B.M. (2014) Azotobacter vinelandii siderophore can

provide nitrogen to support the culture of the green algae Neochloris oleoabundans

and Scenedesmus sp. BA032. FEMS Microbiol. Lett. 351: 70–77.

Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea :

How can it occur? Biogeochemistry 13: 87–115.

Völker, C. and Wolf-Gladrow, D.A. (1999) Physical limits on iron uptake mediated by

siderophores or surface reductases. Mar. Chem. 65: 227–244.

Walmsley, J. and Kennedy, C. (1991) Temperature-Dependent Regulation by

Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three

Nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol. 57: 622–4.

Walmsley, J., Toukdarian, A., and Kennedy, C. (1994) The role of regulatory genes nifA,

vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three

nitrogenases of Azotobacter vinelandii. Arch. Microbiol. 162: 422–9.

Wanty, R.B. and Goldhaber, M.B. (1992) Thermodynamics and kinetics of reactions

involving vanadium in natural systems: Accumulation of vanadium in sedimentary

rocks. Geochim. Cosmochim. Acta 56: 1471–1483.

Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim.

Acta 59: 1217–1232.

Wichard, T., Bellenger, J.-P., Morel, F.M.M., and Kraepiel, A.M.L. (2009) Role of the

siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors.

Environ. Sci. Technol. 43: 7218–7224.

Wichard, T., Mishra, B., Myneni, S.C.B., Bellenger, J.-P., and Kraepiel, A.M.L. (2009)

Storage and bioavailability of molybdenum in soils increased by organic matter

complexation. Nat. Geosci. 2: 625–629.

Wilhelm, S.W. and Trick, C.G. (1994) Iron-limited growth of cyanobacteria: Multiple

siderophore production is a common response. Limnol. Oceanogr. 39: 1979–1984.

Woodley, P., Buck, M., and Kennedy, C. (1996) Identification of sequences important for

recognition of vnf genes by the VnfA transcriptional activator in Azotobacter

vinelandii. FEMS Microbiol. Lett. 135: 213–21.

Xu, N., Christodoulatos, C., and Braida, W. (2006) Adsorption of molybdate and

tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.

Chemosphere 62: 1726–35.

Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M.M. (2008) Structure and metal

exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452: 56–61.

Page 70: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

70

Yoshimitsu, K., Takatani, N., Miura, Y., Watanabe, Y., and Nakajima, H. (2011) The role

of the GAF and central domains of the transcriptional activator VnfA in Azotobacter

vinelandii. FEBS J. 278: 3287–97.

Zhang, X., McRose, D.L., Darnajoux, R., Bellenger, J.P., Morel, F.M.M., and Kraepiel,

A.M.L. (2016) Alternative nitrogenase activity in the environment and nitrogen

cycle implications. Biogeochemistry 127: 189–198.

Page 71: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

71

2.1.11. Supporting information

Effect of organic matter on nitrogenase metal cofactors homeostasis in Azotobacter

vinelandii under diazotrophic conditions

Christelle Jouogo Noumsi 1,2

, Nina Pourhassan1, Romain Darnajoux

1, Michael Deicke

3,

Thomas Wichard3, Vincent Burrus

2, Jean-Philippe Bellenger

1.

1Département de chimie, Faculté des sciences, Université de Sherbrooke;

2Laboratory of bacterial molecular genetics, Département de biologie, Faculté des

sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada.

3Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Jena

School for Microbial Communication, Lessingstr. 8, 07743 Jena, Germany.

Corresponding author: Jean-Philippe Bellenger

2500 Boulevard de l’université, J1K 2R1, Sherbrooke (Québec), Canada

Phone number: 819 821-7014. Fax number: 819 821-8017

[email protected]

Running Title: Tannic acid modulates metal use in A. vinelandii

Page 72: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

72

Content:

1. Supporting information 1: Effect of tannic acids on growth, metallophore production,

metal cellular quotas and nitrogenase genes expression in a medium containing equimolar

concentration of Mo and V (Mo:V = 1:1, 10-7

M)

2. Supporting information 2: Metal complexation by tannic acid

3. Supporting information 3: Results of statistical tests realized on cellular metal quotas

4. Supporting information 4: Vanadium uptake rates

5. Supporting information 5: Acetylene reduction assay along the exponential phase with

the 1:1 [Mo]:[V] ratio

6. Supporting information 6: primers list

7. Supporting information 7: supplementary methods

Page 73: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

73

Supporting information 1: Effect of tannic acids on growth, metallophore

production, metal cellular quotas and nitrogenase genes expression in a medium

containing equimolar concentration of Mo and V (Mo:V = 1:1, 10-7

M)

Figure S1: Growth curves of Azotobacter vinelandii. Absorbance at 620 nm was plotted versus

time for the three tested conditions. The inset shows curve fitting of growth by a nonlinear

regression (exponential growth) and the growth rate values obtained for each condition at the

exponential phase. Values represent the mean ± SD; n = 3. Ctrl: control. TA: tannic acid.

Page 74: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

74

Figure S2: Metallophores production by Azotobacter vinelandii along the growth. A.

Protochelin and B. Azotochelin concentrations in supernatants of A. vinelandii cultures at OD

0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Ctrl: control. TA: tannic acid. Values represent the mean ± SE; n =

3. A two-way ANOVA with a Tukey’s multiple comparisons test was used to compare each

metallophore concentrations per and between conditions along the growth and at each OD.

Similar letters indicate no significant difference (P > 0.05).

Page 75: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

75

Figure S3: Evolution of cellular metal to phosphorus quotas in Azotobacter vinelandii. Metals

content was measured at OD = 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Iron A, molybdenum B and

vanadium C quotas. Zones between grey lines represent the optimum quota ranges expected with

our cultures’ instantaneous growth rates. Opened circles represent control conditions, opened and

closed triangles represent tannic acids at 1×10-5

M and tannic acids at 5×10-5

M, respectively. Ctrl:

control. TA: tannic acid. Values represent the mean ± SD; n = 3. A two-way ANOVA with a

Tukey’s multiple comparisons test was used to compare the metal quotas between conditions

(Results of statistical test are presented in table S1 of supporting informations).

Page 76: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

76

Figure S4: Relative expression of nifD, vnfD and anfD during the exponential growth phase.

Gene expression was measured by RT-qPCR; the housekeeping gene used for normalization was

rpoD; and we obtained relative expressions with 2-ΔCt calculations. Ctrl: control. TA: tannic

acid. Values represent the mean ± SD; n = 3 or 4. A two-way ANOVA with a Tukey’s multiple

comparisons test was used to compare the mRNA levels between conditions and along the

growth. Asterisks indicate significant differences between the same genes in different conditions

(* = P < 0.05, ** = P < 0.01, *** = P < 0.001).

Page 77: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

77

Supporting information 2: Metal complexation by tannic acid

Experimental procedure: Absorption spectra were recorded in quartz glass cuvettes

between 200 and 800 nm, after additions of aliquots of a 1×10–3

M stock solution of Mo

or V to a 1×10-4

M TA solution. Mo and V bound to tannic acids and formed colored

complexes with maximal absorbance at specific wavelengths (429 nm and 582 nm for

Mo-tannic acids and V-tannic acids respectively)

Fig. S5: A. Tannic acid-molybdenum complexation spectra, B. Tannic acid-vanadium

complexation spectra. Complexation was realized in a phosphate buffer at pH 6.56. C. Job’s plot

for Mo and V with tannic acid and for Mo with the metallophore protochelin. Normalized

absorbance plotted against metals/ligands ratios at wavelengths corresponding to complexes

formation.

Page 78: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

78

Supporting information 3: Results of statistical tests realized on cellular metal

quotas

Table S1: Statistics analysesa of cellular metal quotas ratio Mo:V = 1:1

OD620nm 0.05 0.1 0.2 0.4 0.6 0.8

QFe TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2

Ctrl *** ns ns ns ns ns ns ns ns ns ns ns

TA 1 / * / ns / ns / ns / ns / ns

QMo Ctrl *** *** ns *** ns ** ns ns ns ns ns ns

TA 1 / *** / *** / ** / ns / ns / ns

QV

Ctrl *** ** **** ns *** ns *** ns *** ns *** *

TA 1 / *** / *** / ** / *** / ** / ns

Table S2: Statistics analysesa of cellular metal quotas ratio Mo:V = 1:4

OD620nm 0.05 0.1 0.2 0.4 0.6 0.8

QFe TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2 TA 1 TA 2

Ctrl * ns ns ns ns ns ns ns ns ns ns ns

TA 1 / ns / ns / ns / ns / ns / ns

QMo Ctrl ns ns ns ns ns * ns ns ns ns ns ns

TA 1 / ns / ns / ns / ns / ns / ns

QV

Ctrl *** *** *** *** *** ** ** ns *** ns * ns

TA 1 / *** / *** / ns / ns / ns / ns

aTwo-way ANOVA with a Tukey’s multiple comparisons test was used to compare each metal

quota between conditions and along the growth. ns, no significant difference; *, P < 0.05; **, P <

0.01; ***, P < 0.001.

Abbreviations: Ctrl, control; TA 1, [TA] = 1×10-5 M; TA 2, [TA] = 5×10

-5 M. QFe, iron quotas;

QMo, molybdenum quotas; QV, vanadium quotas.

Page 79: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

79

Supporting information 4: Vanadium uptake rates

Fig. S6: Vanadium uptake rates between sampling times. The V uptake can be quantified

between sampling points using equations from Bellenger et al., 2011. V cellular quotas (molV

molP-1

) were transformed in V contents per cell through the relation between cell number and P

content (1 cell = 1.8×10-15

molP). The relation between optical density and cell number (1 OD =

1.16×108 cellules mL-1) allows to obtain V content in mol mL-1 and the number of cells formed

between sampling times. From a sampling point to the next, we thus can calculate the V acquired

per cell per time unit:ρ(molV cell-1

min-1

). Values represent the mean ± SD; n = 3. A two-way

ANOVA with a Tukey’s multiple comparisons test was used to compare V uptake rates between

conditions.

Page 80: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

80

Supporting information 5: Acetylene reduction assay (ARA) along the exponential

phase with the 1:1 Mo:V ratio

Experimental procedure: ARA was realized by replacing 10% (v/v) of air by acetylene

(C2H2) in a jar (250 mL) containing 10 mL of bacterial cultures along the exponential

phase. Aliquots of air samples were collected after regular time interval and analyzed by

gas chromatography (GC-8A, Shimadzu, Kyoto, Japan) to quantify ethylene (C2H4) and

ethane (C2H6) formed.

Fig. S7: ARA (left axis) and instantaneous growth rates (right axis) along the exponential

phase. Bars represent ethylene formed at different points of the log phase (early: OD = 0.1 and

0.2; mid: OD = 0.4 and 0.6; late: 0.8) for each condition. No significant ethane was detected in

samples. Ctrl: control. TA: tannic acid. Values represent the mean ± SD; n = 3. A two-way

ANOVA with a Tukey’s multiple comparisons test was used to compare the amount of ethylene

formed between conditions and along the log phase. Similar letters indicate that there was no

significant difference between treatments. Symbols are instantaneous growth rates calculated for

each sampling point. Values represent the mean ± SD; n = 3. Circles represent control conditions;

down and up triangles represent TA (1×10-5 M) and TA (5×10

-5 M) respectively.

Page 81: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

81

Supporting information 6: primers list

Table S3: primers used in quantitative PCR (5’-3’)

Target Forward Reverse Origin

nifD CGACGACTATGACCGGACCAT AGCCTGCAGTTTCTTCCAGCA (Bellenger et al., 2011)

vnfD GGAAGACTTCGAGAAGGTCAT TATCCACGGCGGCCAGGTGGC

anfD GTGCCAAGCACGTTATCGGG TCGTCTCCGATCAGCGCC This study

rpoD GGGCGAAGAAGGAAATGGTC CAGGTGGCGTAGGTGGAGAA (Savli et al., 2003)

Page 82: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

82

Supporting information 7: supplementary methods

Cellular metal quotas

Cells were digested in 500 μL of concentrated nitric acid (trace-metal grade) and 100 μL

H2O2 with the DigiPREP Jr digester (SCP SCIENCE, Baie d’Urfé, Canada) at 65˚C for

30 minutes. Samples were diluted with MilliQ® water to obtain 2% HNO3, spiked with

internal standard (Rhodium) and analyzed for their elemental contents (phosphorus (P),

Fe, Mo and V) by ICP-MS (XSeries® II, Thermofisher).

Metallophores quantification

Metallophores were separated on a reversed phase UHPLC column (Waters, BEH C18,

2.1 × 50 mm, 1.7 μm) with a binary gradient system with water/acetonitrile modified with

1 mmol / L ammonium acetate at pH 6.6 applied at a flow rate of 0.5 mL / min and the

column temperature was set to 30°C. Metallophores were extracted from the supernatant

culture filtrates by solid-phase extraction using an HLB-cartridge (Oasis HLB Plus, 225

mg sorbent per cartridge, 60 μm particle size, Waters, Milford, USA). Cartridges were

preconditioned with 5 mL of MeOH (Optima LC/MS, Fisher scientific), and equilibrated

with 5 mL of distilled water (Optima LC/MS, Fisher scientific). Cell-free growth media

(10 mL) was loaded on the cartridge at 1 mL / min. Cartridges were rinsed with 5 mL of

distilled water to remove the excess of salts. Then, the analytes were eluted with 5 mL of

MeOH. Finally, the extracts were concentrated under a flow of N2 to a volume of 500 µL.

The injection volume was 5 μL for the samples and calibration standards. Measurements

were performed on maXis 3 high resolution MS (Bruker, Germany), equipped with the

Nexera LC, (Shimadzu, Japan) and the software Data Analysis (Bruker, Germany) was

used for data acquisition and analysis.

Page 83: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

83

Quantitative PCR assays

Reaction mixtures contained 2 μL of cDNA template and 1 μM of primers. PCR

conditions were (i) 95°C for 5 min, followed by (ii) 40 cycles at 95°C for 10 s and 55°C

for 30 s. Melting curves were carried out on the final reaction products (178-281 bp) to

verify that amplification was specific to targets. Primer pairs exhibited efficiencies of

90% for nifD F2/R2, 95% for vnfD F2/R2, 88% for anfD F4/R4, and 103% for rpoD

Fw/Rev.

Page 84: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

84

2.2. Les oxydes de fer modulent l’acquisition et l’utilisation des métaux essentiels pour la

croissance diazotrophe d’Azotobacter vinelandii

2.2.1. Présentation de l’article

Les bactéries du genre Azotobacter, dans leurs habitats, sont fortement exposées à la

matière minérale dans les couches profondes du sol. En effet, ces organismes font partie

d’un ensemble nommé Plant Growth Promoting Rhizobacteria (PGPR), regroupant les

microorganismes vivant à proximité ou associés aux racines de plantes, et participant à la

croissance de ces dernières. Ils agissent à diverses fins telles que la lutte antifongique, la

solubilisation des phosphates, la production de sidérophores, la fixation d’azote (Ahmad

et al., 2008; Nosheen et al., 2013; Shailendra Singh, 2015). A. vinelandii est donc amenée

à devoir gérer la présence de matière minérale dans cette couche du sol, matière qui

affecte l’accès aux métaux essentiels Mo, V et Fe pour la fixation d’azote (Goldberg

1996, 1998, Meunier 1994). Comme pour le projet précédent, peu d’études avaient

jusqu’à lors été menées pour déterminer les conséquences découlant de ce stress minéral,

notamment en termes d’homéostasie des métaux essentiels et leur utilisation par les

nitrogénases.

Grâce aux résultats issus du projet précédent, nous savions qu’intégrer aux conditions

classiques de culture en laboratoire un paramètre environnemental représentatif de

l’habitat naturel d’A. vinelandii avait pour effet de modifier l’homéostasie métallique et

suggérer la contribution des isoformes alternatives des nitrogénases à la diazotrophie.

L’objectif de cette deuxième étude était cette fois de suivre les paramètres de croissance

diazotrophe d’A. vinelandii en présence de matière minérale, afin de mieux comprendre la

gestion et l’utilisation des métaux cofacteurs des Nases dans la couche minérale des sols.

Afin de simuler la matière minérale, nous avons choisi un groupe abondant dans le sol, les

oxydes de fer. Nous avons pu mettre en évidence une adsorption de V sur les oxydes de

fer formés en solution par ajout de FeCl3, et montré que la réponse d’A. vinelandii est

Page 85: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

85

variable selon l’ampleur du stress imputé. En effet, lorsque 55 µM de FeCl3 sont ajoutés,

la bactérie acquiert simultanément V et Mo, bien que ce dernier ne soit pas encore

limitant dans le milieu. En suivant l’évolution des niveaux de transcrits des gènes

spécifiques des nitrogénases nifD et vnfD, nous avons observé une diminution des

transcrits de nifD conjointement à une augmentation du niveau de transcrits de vnfD,

suggérant une contribution plus marquée de l’isoforme au V pour la fixation de N2. Ces

adaptations ont permis de maintenir un taux de croissance optimal. Par contre, lorsque

505 µM de FeCl3 sont ajoutés (environ 80% de précipitation théorique du fer), Mo et V

sont internalisés simultanément, mais à moindre échelle pour le V (par rapport à 55 µM

de FeCl3). Les niveaux de transcrits de nifD et vnfD sont tous les deux significatifs, mais

généralement plus faibles. Cela suggère une activité diazotrophe plus faible résultant in

fine à un taux de croissance inférieur à l’optimal. Dans tous les cas de figure, nous avons

montré qu’en présence d’oxydes de fer, A. vinelandii module son acquisition de métaux

essentiels, particulièrement en acquérant activement Mo et V. La moindre production des

métallophores suggère que l’acquisition de Mo et V est moins dépendante de ces ligands,

habituellement majoritairement impliqués dans l’acquisition de ces deux métaux, ou que

l’acquisition est plus efficace et nécessite moins de métallophores. Alternativement, ceci

pourrait également indiquer une production de luxe des métallophores dans les conditions

traditionnelles de culture peu stressantes, comparativement aux conditions en présence

d’oxydes de Fe. Ainsi, dans l’environnement, la matière minérale induirait une gestion

spécifique non conventionnelle des métaux cofacteurs des nitrogénases (pour l’acquisition

de Mo et V), ce qui pourrait donner un avantage sélectif aux diazotrophes possédant les

nitrogénases alternatives.

Les résultats de cette étude sont présentés dans l’article qui suit :

Page 86: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

86

2.2.2 Contribution à l’article

L’approche expérimentale a été définie avec Jean-Philippe Bellenger et Vincent Burrus.

J’ai effectué les expériences de culture, les analyses du contenu intracellulaire en métaux

et l’expression des gènes. L’analyse des métallophores a été faite avec le support de

Raphael Cassoulet et Oliver Baars. Les données théoriques de pourcentage de fer

précipité ont été calculées par Anne Kraepiel. J’ai rédigé le manuscrit et généré les

figures, et tout cela a été révisé par tous les co-auteurs.

Page 87: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

87

2.2.3. Page titre

Iron oxides modulate nitrogenase metal cofactors homeostasis in Azotobacter

vinelandii under diazotrophic conditions

Christelle Jouogo Noumsi 1,2

, Raphael Cassoulet1, Oliver Baars

3, Vincent Burrus

2, Jean-

Philippe Bellenger1.

1Département de chimie, Faculté des sciences, Université de Sherbrooke;

2Laboratory of bacterial molecular genetics, Département de biologie, Faculté des

sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada.

3Department of Geosciences, Princeton University, New Jersey, USA

Corresponding author: Jean-Philippe Bellenger

2500 Boulevard de l’université, J1K 2R1, Sherbrooke (Québec), Canada

Phone number: 819 821-7014. Fax number: 819 821-8017

[email protected]

Running Title: Iron oxides affect nitrogenase heterogeneity use in A. vinelandii

Page 88: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

88

2.2.4. Summary

Biological nitrogen fixation can be catalyzed by three isozymes of the enzyme

nitrogenase: Mo-nitrogenase, V-nitrogenase and Fe-nitrogenase. The dynamic use of

these isozymes relies on metal cofactors (i.e. Mo, V and Fe) availability. Here, we show

how iron oxides (natural mineral matter) can impact essential metal bioavailability, and

thus modulate the use of the nitrogenase isozymes by the soil bacterium Azotobacter

vinelandii. The presence of iron oxides, strongly affect nitrogenase metal cofactors

homeostasis, nitrogenase gene expression and metallophores production profile. The

production of metallophores was significantly impeded in the presence of iron oxides. A.

vinelandii actively acquired both Mo and V, and decreased its nifD expression and

increased vnfD expression suggesting an active use of the alternative V nitrogenase under

intracellular Mo conditions usually not considered as limiting. Considering the

importance of iron oxides on Mo and V chemistry and availability in soil, these results

suggest that nitrogenase diversity plays an important role on the ability of A. vinelandii to

sustain diazotrophic growth under adverse metal availability conditions in soil.

Keywords: Azotobacter vinelandii, nitrogen fixation, iron oxides, metal

bioavailability, molybdenum, vanadium, alternative nitrogenase

2.2.5. Introduction

Nitrogen (N) is, with phosphorus, the most limiting nutrient for primary production

worldwide (Galloway et al., 2004; Elser et al., 2007; LeBauer and Treseder, 2008).

Biological nitrogen fixation (BNF) is a key reaction of the N cycle that transforms

atmospheric dinitrogen (N2) into bioavailable ammonia (NH3). Actors of BNF are few

prokaryote species living in association with plants, mosses and fungi, or living freely. To

Page 89: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

89

catalyze this reaction they use the metalloprotein nitrogenase, for which three isoforms

have been identified: the molybdenum nitrogenase (Mo-Nase), the vanadium nitrogenase

(V-Nase) and the iron-only nitrogenase (Fe-Nase) (Bishop et al., 1980, 1982; Hales et al.,

1986; Robson et al., 1986; Chisnell et al., 1988; Schneider et al., 1991; Rehder, 2000;

Masukawa et al., 2009). The Mo-Nase is found in all N2 fixers and achieves the highest

efficiency at room temperature. The alternative V-Nase and Fe-Nase are found in a more

limited number of species and their activation is believed to be controlled by Mo. This

hierarchy in the use of Nase isozymes mostly result from laboratory studies in which Mo

and V are provided as molybdate and vanadate, two highly available forms (Glass 2012,

Thiel 2002, Pratte 2006 et al., Bellenger 2011). Under such conditions, V is acquired and

used to fix N only after Mo has been depleted from the medium. As a result, BNF is often

considered to primarily rely on Mo.

Molybdate and vanadate are indeed the predominant forms of Mo and V in oxic soil

solutions (Wanty and Goldhaber, 1992; Poledniok, 2003; Kabata-Pendias, 2010; Alloway,

2013). However, in soil, molybdate and vanadate availability is strongly affected by the

presence of organic matter and oxides (Wichard et al., 2009a; Marks et al., 2015). While

complexation of Mo and V with the soil matrix has been hypothesized to be beneficial to

N2 fixers by limiting Mo and V leaching (Wichard et al., 2009a), it can limit their

availability to bacteria. Recently, the presence of natural organic matter was reported to

significantly affect metal acquisition strategy and Nase gene expression (Jouogo Noumsi

et al., 2016) in A. vinelandii; V is acquired and V-Nase gene expressed under cellular Mo

concentrations that are usually considered to repress V uptake and use. This strongly

suggested that in organic matter rich habitats (i.e. leaf litter, top soil) alternative Nases

could contribute in a more important manner to BNF than previously thought.

Iron, the fourth most abundant element in the Earth crust, can form up to 16 iron oxides

(i.e. oxides, hydroxides or oxyhydroxides) in oxic aqueous solutions (Cornell and

Schwertmann, 2006). These oxides result from hydrolysis and precipitation reactions,

leading to highly insoluble and, hence, low bioavailable products (Rose and Waite, 2003;

Stefánsson, 2007; Baumgartner and Faivre, 2015). In addition, Fe oxides can adsorb

Page 90: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

90

many trace metals (Kooner, 1993; Dyer et al., 2003), including Mo and V (Shieh and

Duedall, 1988; Goldberg and Forster, 1998; Xu et al., 2006) thus influencing their

availability. Azotobacter species are members of Plant Growth Promoting Rhizobacteria

(PGPR), and are known to contribute to anti-fungal activity, phosphate solubilization, and

asymbiotic N2 fixation among others (Ahmad et al., 2008; Nosheen et al., 2013;

Shailendra Singh, 2015). In deeper soil layers, organic matter is significantly less

abundant than in the leaf litter and top soil. Fe oxides likely represent the main reservoir

of Mo and V for these N2 fixing bacteria associated to plants rhizosphere. A. vinelandii is

known to produce metallophores, low molecular weight organic ligands, to improve metal

(i.e. Fe, Mo and V) uptake and is likely able to access this pool of Nase metal cofactor

(Baars et al., 2016). To what extent the presence of Fe oxides affects Nase metal cofactor

acquisition and use by A. vinelandii remains undescribed. We hypothesized that, as

previously observed with organic matter (Jouogo Noumsi et al., 2016), the complex

interactions between metallophores and oxides significantly affect Mo and V acquisition

strategy and V-Nase use.

Here, we tested this hypothesis by evaluating the effect of iron oxides on Mo and V

acquisition, metallophore production as well as the expression of Nases genes in A.

vinelandii. We compared metal (i.e. Mo and V) homeostasis in cultures with and without

Fe oxides. We measured (i) bacterial growth, (ii) Fe, Mo and V cellular quotas, (iii)

metallophore production and (iv) relative expression of three target genes nifD, vnfD and

anfD encoding the α subunits of Mo-Nase, V-Nase, and Fe-Nase, respectively (Rubio and

Ludden, 2005). Our experimental conditions mimicked the relative abundance of Mo and

V in soil by providing V in excess ([Mo] = 5×10-8

M; [V] = 2×10-7

M). Iron was provided

as FeCl3 at 5 µM, 55 µM or 505 µM final concentration.

Page 91: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

91

2.2.6. Result and Discussion

In order to simulate a gradient in Fe oxide concentration in solution, we increased FeCl3

concentration in the culture medium from 5 to 505 µM (EDTA = 10-4

M). According to

equilibrium calculation (MINEQL), 0 and 80% of the added Fe at 5 µM and 505 µM

FeCl3 respectively, is not bound to EDTA.

We assumed that this pool of non-complexed Fe in solution quickly precipitated (e.g. iron

oxides, hydroxides) due to hydrolysis and precipitation reactions (Stefánsson, 2007). V

availability in solution was not significantly affected by 55 µM FeCl3 but was reduced by

half in presence of high FeCl3 concentration (505 µM, Table 1). Mo availability in

solution was not significantly affected even at high FeCl3, which is consistent with Mo

being known to be easily exchangeable when adsorbed on freshly precipitated Fe oxides

(Alloway, 2013). The limited adsorption of V and Mo on Fe oxides could also result from

the high concentration of phosphates in the culture medium that can compete with Mo

and V for adsorption sites (Xu et al., 2006). While the precise types of iron oxides formed

in solution and the adsorption constants of Mo and V on oxides were not determined

under our experimental conditions, our data show that increasing the concentration of

FeCl3 (Fe oxides) induced a stress on the bacterium growth, metal homeostasis and

nitrogenase genes expression.

Page 92: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

92

Table 1 Molybdenum and vanadium remaining in solution after addition of 55 µM and 505

µM FeCl3. Metal concentrations were measured by ICP-MS in supernatants after centrifugation

of media at each time point.

Molybdenum (ppb) Vanadium (ppb)

Incubation time FeCl3 (55 µM)

0h 4.850 ± 0.000 11.725 ± 0.011

4h 4.675 ± 0.001 10.775 ± 0.022

8h 4.850 ± 0.000 11.450 ± 0.001

16h 4.600 ± 0.003 11.550 ± 0.004

24h 4.550 ± 0.000 11.450 ± 0.008

FeCl3 (505 µM)

0h 4.450 ± 0.000 11.475 ± 0.005

4h 4.125 ± 0.004 6.375 ± 0.008

8h 3.925 ± 0.005 5.775 ± 0.013

16h 4.150 ± 0.004 7.950 ± 0.001

24h 4.225 ± 0.005 8.350 ± 0.004

Growth of A. vinelandii in the presence of 55 µM FeCl3 was similar (0.19 OD h-1

) to the

control (5 µM FeCl3, 0.19 OD h-1

), whereas it decreased (0.16 OD h-1

) at 505 µM with an

exponential phase delayed by ~6 hours (see the inset of Fig. 1). As shown in Fig. S1, this

delay in bacterial growth can be, at least in part, attributed to a slight acidification of the

medium resulting from high FeCl3 (505 µM) (pH = 6.0 versus 6.4 for 5 µM and 55 µM

FeCl3).

Page 93: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

93

Figure 1. Growth curves of A. vinelandii.

Absorbance at 620 nm was plotted versus time for the three tested conditions. The inset shows

curve fitting of growth by a non-linear regression (exponential growth) and the growth rate values

obtained for each condition at the exponential phase. Values represent the mean ± SD; n = 3.

Opened circles represent control conditions with 5 µM FeCl3 added; opened and closed triangles

represent 55 µM and 505 µM FeCl3 added, respectively.

Increasing FeCl3 concentration in the medium had contrasted effect on metal cellular

quotas. Fe and Mo cellular quotas (QFe and QMo) were not significantly affected by

increasing FeCl3 concentration. QFe remained constant (~1×10-2

molFe molP-1

) and within

the optimal range required to sustain diazotrophic growth= (31 ± 16) × QFe – 0.2,

Bellenger et al., 2011) under all FeCl3 conditions (Fig. 2A). This shows that increasing

FeCl3 concentrations did not significantly affect the ability of A. vinelandii to acquire iron

This result was predictable, as a large pool of easily available, soluble Fe was supplied as

Fe-EDTA (stability constant log = 25.7) (Martell and Smith, 1989). As observed for Fe,

Mo acquisition was not affected by increasing FeCl3 concentrations (Fig. 2B). In early

growth phase (up to OD620 = 0.4), Mo cellular quotas (QMo) decreased with cell division

Page 94: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

94

(from ~2×10-3

molMo molP-1

to ~2×10-4

molMo molP-1

). After OD620 = 0.4, the decrease in

QMo was decoupled from cell division and remained within the optimal range required to

sustain optimal diazotrophic growth in A. vinelandii = (607 ± 188) × QMo, Bellenger et

al., 2011), thereby suggesting active Mo uptake. Unlike Fe and Mo, V cellular quotas

were differentially affected by rising FeCl3 concentrations. First QV decreased with cell

division (up to OD620 = 0.2 to 0.4), then QV stabilized and increased suggesting an active

internalization of V. The acquisition of V started earlier (Fig 2C) and was more active

(instantaneous uptake rate up to 20 times higher, Fig S2) at high FeCl3 concentrations. At

the end of the exponential phase, QV in cultures supplied with 55 and 505 µM FeCl3 were

close to the optimum V cellular concentration required to sustain diazotrophic growth

with the V-Nase isoform alone (V = (521 ± 94) × QV, Bellenger et al., 2011).

Page 95: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

95

Figure 2. Evolution of cellular metal to phosphorus quotas in A. vinelandii.

Metal content was measured at OD = 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8. Iron (A), molybdenum (B)

and vanadium (C) cellular quotas. Zones between grey lines represent the range of optimum metal

(i.e. Fe, Mo, V) cellular quotas required to sustain diazotrophic growth with our cultures

instantaneous growth rates (Bellenger et al., 2011). Opened circles represent control conditions,

opened and closed triangles represent 55 µM and 505 µM FeCl3 added respectively. Values

represent the mean ± SD; n = 3. A two-way ANOVA with a Tukey’s multiple comparisons test

was used to compare the metal quotas between conditions. Results of statistical tests are presented

in Table S1).

Page 96: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

96

A similar induction of early acquisition of V under conditions traditionally considered as

not Mo limiting was recently reported in the presence of organic matter (Jouogo Noumsi

et al., 2016). This phenomenon was interpreted as the result of a higher cost of metal

acquisition, likely due to enhanced metallophore production in the presence of tannic

acid. For this reason, we evaluated the effect of increasing FeCl3 concentration on

metallophore production. In the presence of 55 and 505 µM FeCl3, production of all

known A. vinelandii metallophores (DHBA, aminochelin, azotochelin, protochelin and

the recently described vibrioferrin (Baars et al., 2016)) was drastically reduced by 4 to 70

times (Fig 3).

Page 97: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

97

Figure 3. Metallophore production by A. vinelandii during growth.

Protochelin, azotochelin, vibrioferrin, dihydroxybenzoic acid (DHBA) and aminochelin

concentrations in supernatants of A. vinelandii cultures at optical density (OD) 0.05, 0.1, 0.2, 0.4,

0.6 and 0.8. Opened bars represent control conditions, light grey and dark grey bars represent 55

µM and 505 µM FeCl3 added respectively. . n.d.: not detected. Values represent the mean ± SE; n

= 3. A one-way ANOVA with a Tukey’s multiple comparisons test was used to compare

metallophore concentrations between conditions. Identical letters indicate no significant

difference (P > 0.05)

Page 98: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

98

Adsorption of metallophores by oxides (Kraemer et al., 2015) in solution and on cell

surface was tested using organic extraction and oxalate-EDTA washing of culture pellets.

This failed to explain the absence of metallophores in solution. A replicated experiment

conducted in the absence of light also excluded the possibility of the photodegradation of

metallophores. An increased amount of iron in the culture medium has been reported to

shutdown metallophores production (Page and Huyer, 1984; Cornish and Page, 1998;

Tindale et al., 2000; Djibaoui and Bensoltane, 2005; Sayyed et al., 2005). However, the

well-controlled acquisition of Mo and V at low concentration of metallophores is

surprising. Metallophores, especially azotochelin and protochelin, have been shown to

play a major role in Mo and V homeostasis in A. vinelandii (Bellenger et al., 2008).

However, metallophores are usually produced in large excess (see control cultures) as

compared to free metal concentrations in the medium (i.e. Mo, V). At 55 and 505 µM

FeCl3, metallophores are present in the medium at concentration similar to Mo and V

(~10-8

-10-7

M). The high affinity constants of metallophores (i.e. protochelin and

azotochelin) for Mo and V suggest that low concentrations of metallophores are sufficient

to insure metal complexation and controlled uptake. In the lights of the recent

identification of new metallophores in A. vinelandii (Deicke et al., 2014; Baars et al.,

2016), the contribution of yet unknown metallophores to Mo and V acquisition under

these unusual laboratory growth conditions (high concentration of non-complexed Fe)

cannot be ruled out.

Nonetheless, increasing FeCl3 concentration in the medium resulted in early acquisition

of V. Unlike Mo that can be stored (Pienkos & Brill, 1981; Fenske et al., 2005), the

accumulation of V in cells can rapidly become toxic if not bound to nitrogenase (Keller et

al., 1989; Baysse et al., 2000; Bellenger et al., 2011). The higher acquisition of V at high

FeCl3 suggests a significant change in nitrogenase use with an increased participation of

the V-Nase to diazotrophic growth. This hypothesis was confirmed by nitrogenase gene

expression data. The expression of anfD remained below the limit of detection in all

conditions (Fig. S3). Regarding nifD and vnfD, their expression achieved opposite trends

in control conditions (5 µM FeCl3), with nifD expression decreasing 4 fold along

Page 99: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

99

exponential growth, while vnfD expression significantly increased (Fig. 4). These patterns

are in accordance with QMo and Qv trends (Fig 2A and 2B) and published data (Bellenger

et al., 2011) showing that in Fe oxides free media, A. vinelandii supports diazotrophic

growth with the Mo isoform alone until depletion of Mo from the medium, at which point

V uptake begins to produce the V-Nase and sustain growth.

Figure 4. Relative expression of nifD and vnfD in control conditions during the exponential

growth phase.

Gene expression was measured by RT-qPCR. nifD relative expression values (opened bars) were

plot on the left Y axis. vnfD relative expression values (hatched bars) were plot on the right Y

axis. Values represent the mean ± SD; n = 3. A one-way ANOVA with a Tukey’s multiple

comparisons test was used to compare the mRNA levels between log phases (statistical analysis

were performed with ΔCt values). Identical letters indicate no significant difference (P > 0.05).

The presence of 55 and 505 µM FeCl3 (iron oxides) altered this response in various

manner depending on the FeCl3 concentration. In the presence of 55 µM FeCl3, nifD

mRNA levels followed a similar decrease as in control (Fig. 5A), but vnfD mRNA levels

Page 100: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

100

showed a greater increase (3 fold at mid log phase and 1.7 fold at end log phase) as

compared to the control (Fig. 5B).

Figure 5. Relative expression of nifD and vnfD during the exponential growth phase.

Gene expression was measured by RT-qPCR. Relative genes expression was normalized to the

control condition. Opened bars represent control conditions, light grey and dark grey bars

represent 55 µM and 505 µM FeCl3 added respectively. Values represent the mean ± SD; n = 3. A

two-way ANOVA with a Tukey’s multiple comparisons test was used to compare the mRNA

levels between conditions and along the growth (statistical analysis were performed with ΔCt

values). Similar letters indicate no significant difference between conditions (P > 0.05).

Page 101: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

101

This and data from Fig. 2, suggests an earlier and a greater participation of V-Nase,

concomitant with Mo-Nase, to growth. In the presence of 505 µM FeCl3, nifD mRNA

levels were slightly lower than in control (0.6 fold lower at early and end log phases),

while vnfD mRNA levels were not significantly affected as compared to the control (Fig.

5A and 5B). Furthermore A. vinelandii growth was negatively affected (Fig. 1) showing

that acquisition and possible use of V, in addition to Mo, for N fixation is not sufficient to

sustain optimal growth. Nonetheless, gene expression data show that high FeCl3

concentrations not only affect metallophore production and V acquisition, but also

enhance V-Nase gene expression and likely contribution to diazotrophic growth.

2.2.7. Conclusion

This study shows that the presence of natural complexing agents (i.e. oxides) significantly

affects the acquisition and use of nitrogenase metal cofactor by A. vinelandii. This further

supports previous observations made in the presence of organic matter (Jouogo Noumsi et

al., 2016) that A. vinelandii can adapt to metal stress by adjusting nitrogenase isoform

expression. Unlike many observations made in laboratory studies, in natural habitats

nitrogenases are likely not use in cascade, one after the other depending on Mo and V

availability, but can be used simultaneously to optimize growth in response to metal

stress. In natural habitats, where organic matter and oxides significantly affect Mo and V

availability, alternative nitrogenases are likely more important for N2 fixation than

previously recognized.

Page 102: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

102

2.2.8. Experimental procedure

2.2.8.1. Bacterial strain, Culture medium and growth conditions

The bacterium Azotobacter vinelandii strain OP (ATCC 13705) was grown aerobically

under diazotrophic conditions at 25˚ C, 210 rpm in a liquid medium as described by

Bellenger et al., 2011. Vanadium, molybdenum, and iron concentrations were adjusted by

additions of NaVO3, Na2MoO4 and FeCl3 respectively, to reach [V] = 2×10-7

M, [Mo] =

5×10-8

M and [Fe] = 5 µM for control medium or [Fe] = 55 µM and [Fe] = 505 µM for

treated media. EDTA was kept at 1×10-4

M in all conditions to prevent iron limitation. All

products were purchased from Sigma-Aldrich (Saint Louis, MI, USA) and used as is.

The inoculum was grown in a Mo and V free medium to avoid any significant Mo and V

pre-supply, and any Mo storage. Before inoculation of A. vinelandii, the media were left

in growth conditions for 24 hours to insure both iron oxides formation and stable

equilibrium between iron oxides and metals.

2.2.8.2. Growth curves and growth rates

Bacterial growth was monitored by measuring the optical density (OD) at 620 nm in a 1

cm polystyrene cuvette on a Genesys 20 spectrophotometer (Thermo Scientific). Growth

curves were obtained by plotting the OD measurements versus time. Growth rates ()

were determined by using the slope of growth curves [plotted as ln (OD) versus time] in

the exponential phase.

Page 103: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

103

2.2.8.3. Cellular metal quotas

Aliquots of cultures were taken at OD values of 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8,

representing the end of the lag phase and the exponential growth phase. Aliquot volumes

were adjusted to insure enough biomass for analysis. Samples were centrifuged for 15

minutes at 4400 rpm. Cell pellets were then washed 3 times for 5 minutes with 5 mL of a

oxalate-EDTA solution (0.1 M – 0.05 M) (Tang and Morel, 2006). Samples were prepared

for metals analysis as described by Bellenger et al., 2011 with some modifications.

Briefly, cells were digested in 1 mL of concentrated nitric acid (trace-metal grade) with

the DigiPREP Jr digester (SCP SCIENCE, Baie d’Urfé, Canada) at 65˚C for 30 minutes.

Samples were diluted with MilliQ® water to obtain 2% HNO3, spiked with internal

standard (Rhodium) and analyzed for their elemental contents (phosphorus (P), Fe, Mo

and V) by ICP-MS (XSeries® II, Thermofisher).

2.2.8.4. Quantification of metallophores

Culture aliquots of 2 mL were filtered through 0.22 µm syringe filters (Millex-GP) and

acidified with 0.1% formic acid and 0.1% acetic acid. A 100 µL sample aliquot was then

injected onto a C18 column (Agilent Eclipse Plus C18 3.5 µm, 4.6 by 100 mm) equipped

with a matching guard column. Separation proceeded with a gradient of A and B solutions

(solution A consisted of water, 0.1% formic acid, and 0.1% acetic acid; solution B

consisted of acetonitrile, 0.1% formic acid, and 0.1% acetic acid; gradient, 0 to 100% B;

flow rate, 0.8 ml/min). Using a 6-port valve, the column outflow was diverted to waste for

the first 5.25 min, ensuring that the sample was desalted before introduction into the mass

spectrometer. Peaks for previously reported A. vinelandii metallophores were assigned

using their characteristic retention times, mass-to-charge ratios and UV-vis spectra (Baars

et al, 2016). LC-MS and UV-vis peak areas were determined using MassHunter software

(Agilent). Peak areas were converted to concentrations by calibration with standards of

Page 104: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

104

vibrioferrin, 2,3-dihydroxybenzoic acid (DHBA), azotochelin, protochelin, and

azotobactin (Baars et al, 2016).

2.2.8.5. RNA isolation and cDNA synthesis

Total RNA extractions were performed on culture aliquots collected throughout

exponential phases (OD620 = 0.2, 0.4 and 0.8) using an RNeasy minikit (Qiagen)

following the manufacturer's instructions, with lysozyme used to digest cell membranes.

In addition, to ensure that there was no contamination by genomic DNA, RNA samples

were treated with Turbo DNase (Ambion) following the manufacturer's instructions. RNA

purity and concentration were evaluated with the spectrophotometer ND-1000

(Nanodrop). RNA samples were stored at -80°C.

cDNAs were prepared using the SuperScript II reverse transcriptase (Invitrogen),

following the manufacturer's instructions. 50 ng of random hexamer primers (Integrated

DNA Technologies) and 500 ng of total bacterial RNA were used in each reaction. After

cDNA synthesis, template RNA was digested by alkaline hydrolysis with 10 L NaOH 1

M, 10 L EDTA 0.5 M and 10 L H2O, 15 min at 65˚C. The hydrolysis reaction was

stopped by adding 25 L HEPES 1 M. cDNA sample mixtures were purified with the

PCR Purification Kit (Qiagen) and stored at -80°C. A control reaction in the absence of

reverse transcriptase (no-RT reaction) was performed.

2.2.8.6. Quantitative PCR assays

Quantitative PCR reactions were performed with Quantifast SYBR Green PCR master

mix (Qiagen) using a CFX Connect Real-Time PCR detection system (BioRad) for data

acquisition and analysis. Reaction mixtures contained 2 L of cDNA template and 1 M

of primers (Jouogo Noumsi et al., 2016). The PCR conditions were (i) 95°C for 5 min,

Page 105: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

105

followed by (ii) 40 cycles at 95°C for 10 s and 55°C for 30 s. Melting curves were carried

out on the final reaction products (178-281 bp) to verify that amplification was specific to

targets. Primer pairs showed different efficiencies: 90% for nifD F2/R2, 95% for vnfD

F2/R2, 88% for anfD F4/R4, and 103% for rpoD Fw/Rev (data not shown). For

normalization, the RNA polymerase σ70 subunit gene rpoD was used (Savli et al., 2003)

and results presented as relative expression based on the ΔCt calculation method or ΔΔCt

calculation method (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008).

Experiments were carried out in three independent biological replicates, each with three

technical replicates, and combined.

2.2.8.7. Statistics and curve fitting

Statistical analyses and exponential fitting were all realized with the software GraphPad

Prism 7.00 for Windows, La Jolla California USA, www.graphpad.com.

2.2.9. Acknowledgments

This work was supported by a Discovery Grant and Discovery Acceleration Supplement

from the Natural Sciences and Engineering Council of Canada [326810-2011 and 2016-

04365 to V.B.]; V.B. holds a Canada Research Chair in molecular bacterial genetics.

J.P.B. holds a Canada Research Chair in terrestrial biogeochemistry We also thank the

Grand Challenge Program of the Princeton Environmental Institute (O.B.) for financial

support of this work.

We are thankful to Anne Kraepiel for calculations of theoretical iron precipitation, to

Adrien Rizzi for his technical assistance for ICP-MS analysis.

The authors declare no conflict of interest

Page 106: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

106

2.2.10. References

Abdel-Gawad, F.M. and Issa, R.M. (1986) Spectrometric determination of vanadium (V)

with tannic acid and its application to biological fluids. Ind. J. Chem. 25: 701-702.

Ind. J. Chem. 25: 701–702.

Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living rhizospheric

bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:

173–81.

Ahmed, E. and Holmström, S.J.M. (2014) Siderophores in environmental research: roles

and applications. Microb. Biotechnol. 7: 196–208.

Alloway, B. (2013) Heavy metals in soils Third. Alloway,B.J. (ed).

Austin, S. and Lambert, J. (1994) Purification and in vitro activity of a truncated form of

ANFA. Transcriptional activator protein of alternative nitrogenase from Azotobacter

vinelandii. J. Biol. Chem. 269: 18141–8.

Baars, O., Zhang, X., Morel, F.M.M., and Seyedsayamdost, M.R. (2016) The Siderophore

Metabolome of Azotobacter vinelandii. Appl. Environ. Microbiol. 82: 27–39.

Bageshwar, U.K., Choudhury, N.R., and Das, H.K. (1998) Analysis of upstream

activation of the vnfH promoter of Azotobacter vinelandii - ProQuest. Can. J.

Microbiol. 44.:

Barrett, J., Ray, P., Sobczyk, A., Little, R., and Dixon, R. (2001) Concerted inhibition of

the transcriptional activation functions of the enhancer-binding protein NIFA by the

anti-activator NIFL. Mol. Microbiol. 39: 480–93.

Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L., and Hedin,

L.O. (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest

soils. Nat. Geosci. 2: 42–45.

Baumgartner, J. and Faivre, D. (2015) Iron solubility, colloids and their impact on iron

(oxyhydr)oxide formation from solution. Earth-Science Rev. 150: 520–530.

Baysse, C., De Vos, D., Naudet, Y., Vandermonde, A., Ochsner, U., Meyer, J.M., et al.

(2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas

aeruginosa. Microbiology 146 ( Pt 1: 2425–34.

Bellenger, J.-P., Arnaud-Neu, F., Asfari, Z., Myneni, S.C.B., Stiefel, E.I., and Kraepiel,

A.M.L. (2007) Complexation of oxoanions and cationic metals by the biscatecholate

siderophore azotochelin. J. Biol. Inorg. Chem. JBIC a Publ. Soc. Biol. Inorg. Chem.

12: 367–376.

Page 107: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

107

Bellenger, J.P., Wichard, T., and Kraepiel, A.M.L. (2008) Vanadium requirements and

uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl.

Environ. Microbiol. 74: 1478–1484.

Bellenger, J.P., Wichard, T., Kustka, A.B., and Kraepiel, A.M.L. (2008) Uptake of

molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.

Nat. Geosci. 1: 243–246.

Bellenger, J.-P., Wichard, T., Xu, Y., and Kraepiel, A.M.L. (2011) Essential metals for

nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and

high use efficiency. Environ. Microbiol. 13: 1395–411.

Bennett, L.T., Cannon, F., and Dean, D.R. (1988) Nucleotide sequence and mutagenesis

of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2: 315–21.

Betancourt, D.A., Loveless, T.M., Brown, J.W., and Bishop, P.E. (2008) Characterization

of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse

Natural Environments. Appl. Environ. Microbiol. 74: 3471–3480.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1980) Evidence for an alternative

nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U. S. A. 77:

7342–7346.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1982) Expression of an alternative

nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 150: 1244–1251.

Blanco, G., Drummond, M., Woodley, P., and Kennedy, C. (1993) Sequence and

molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9:

869–79.

Boison, G., Steingen, C., Stal, L.J., and Bothe, H. (2006) The rice field cyanobacteria

Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase.

Arch. Microbiol. 186: 367–76.

Bothe, H., Schmitz, O., Yates, M.G., and Newton, W.E. (2010) Nitrogen fixation and

hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev. 74: 529–51.

Boyd, E.S., Hamilton, T.L., and Peters, J.W. (2011) An alternative path for the evolution

of biological nitrogen fixation. Front. Microbiol. 2: 205.

Branca, M., Micera, G., Sanna, D., and Dessì, A. (1990) Complexation of

oxovanadium(IV) by humic and tannic acids. J. Inorg. Biochem. 39: 109–115.

Brenchley, J.E., Prival, M.J., and Magasanik, B. (1973) Regulation of the synthesis of

enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem.

248: 6122–8.

Brigle, K.E., Newton, W.E., and Dean, D.R. (1985) Complete nucleotide sequence of the

Page 108: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

108

Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37: 37–44.

Burgess, B.K. and Lowe, D.J. (1996) Mechanism of Molybdenum Nitrogenase. Chem.

Rev. 96: 2983–3012.

Burns, R.C. and Hardy, R.W.F. (2012) Nitrogen Fixation in Bacteria and Higher Plants

Springer Science & Business Media.

Cech, T. V. (2010) Principles of Water Resources: History, Development, Management,

and Policy John Wiley & Sons.

Chatterjee, R., Allen, R.M., Ludden, P.W., and Shah, V.K. (1997) In vitro synthesis of the

iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase.

Effect of substitution of VNFH for NIFH. J. Biol. Chem. 272: 21604–21608.

Chisnell, J.R., Premakumar, R., and Bishop, P.E. (1988) Purification of a second

alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J.

Bacteriol. 170: 27–33.

Cornell, R.M. and Schwertmann, U. (2006) The Iron Oxides: Structure, Properties,

Reactions, Occurrences and Uses John Wiley & Sons.

Cornish, A. and Page, W. (1995) Production of the triacetecholate siderophore

protochelin by Azotobacter vinelandii. Biometals 8: 332–338.

Cornish, A.S. and Page, W.J. (2000) Role of molybdate and other transition metals in the

accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol.

66: 1580–1586.

Cornish, A.S. and Page, W.J. (1998) The catecholate siderophores of Azotobacter

vinelandii: their affinity for iron and role in oxygen stress management.

Microbiology 144: 1747–1754.

Crowley, D.E., Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J. (1991) Mechanisms of iron

acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179–

198.

Daccord, A., Mursell, M., Poulin-Laprade, D., and Burrus, V. (2012) Dynamics of the

SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by

Integrating Conjugative Elements of the SXT/R391 Family. J. Bacteriol. 194: 5794–

5802.

Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., and Bellenger, J.-P. (2014) Is

vanadium a biometal for boreal cyanolichens? New Phytol. 202: 765–71.

Darnajoux, R., Zhang, X., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel,

A.M.L., and Bellenger, J.-P. (2016) Biological nitrogen fixation by alternative

nitrogenases in boreal cyanolichens: importance of molybdenum availability and

Page 109: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

109

implications for current biological nitrogen fixation estimates. New Phytol.

Deicke, M., Bellenger, J.-P., and Wichard, T. (2013) Direct quantification of bacterial

molybdenum and iron metallophores with ultra-high-performance liquid

chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A

1298: 50–60.

Deicke, M., Mohr, J.F., Bellenger, J.-P., and Wichard, T. (2014) Metallophore mapping in

complex matrices by metal isotope coded profiling of organic ligands. Analyst 139:

6096–9.

Dilworth, M.J., Eady, R.R., Robson, R.L., and Miller, R.W. (1987) Ethane formation

from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:

167–168.

Dixon, R. (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component

regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Arch.

Microbiol. 169: 371–80.

Djibaoui, D. and Bensoltane, A. (2005) Effect of iron and growth inhibitors on

siderophores production by Pseudomonas fluorescens. African J. Biotechnol. 4: 697–

702.

Drummond, M., Walmsley, J., and Kennedy, C. (1996) Expression from the nifB

promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA

transcriptional activators. J. Bacteriol. 178: 788–92.

Duhme, A.-K., Dauter, Z., Hider, R.C., and Pohl, S. (1996) Complexation of

Molybdenum by Siderophores: Synthesis and Structure of the Double-Helical cis -

Dioxomolybdenum(VI) Complex of a Bis(catecholamide) Siderophore Analogue.

Inorg. Chem. 35: 3059–3061.

Duhme, A.-K., Hider, R.C., and Khodr, H.H. (1997) Synthesis and Iron-Binding

Properties of Protochelin, the Tris (catecholamide) Siderophore ofAzotobacter

vinelandii. Chem. Ber. 130: 969–973.

Duhme, A.-K., Hider, R.C., Naldrett, M.J., and Pau, R.N. (1998) The stability of the

molybdenum-azotochelin complex and its effect on siderophore production in

Azotobacter vinelandii. J. Biol. Inorg. Chem. 3: 520–526.

Duhme-Klair, A.-K. (2009) From siderophores and self-assembly to luminescent sensors:

the binding of molybdenum by catecholamides. Eur. J. Inorg. Chem. 2009: 3689–

3701.

Dyer, J.A., Trivedi, P., Scrivner, N.C., and Sparks, D.L. (2003) Lead sorpion onto

ferrihydrite. 2. Surface complexation modeling. Environ. Sci. Technol. 37: 915–22.

Page 110: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

110

Eady, R.R. (1996) Structure−Function Relationships of Alternative Nitrogenases. Chem.

Rev. 96: 3013–3030.

Eady, R.R., Robson, R.L., Richardson, T.H., Miller, R.W., and Hawkins, M. (1987) The

vanadium nitrogenase of Azotobacter chroococcum . Purification and properties of

the VFe protein. Biochem. J. 244: 197–207.

Einsle, O. (2014) Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J.

Biol. Inorg. Chem. 19: 737–45.

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., et

al. (2007) Global analysis of nitrogen and phosphorus limitation of primary

producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10: 1135–42.

Fenske, D., Gnida, M., Schneider, K., Meyer-Klaucke, W., Schemberg, J., Henschel, V.,

et al. (2005) A new type of metalloprotein: The Mo storage protein from Azotobacter

vinelandii contains a polynuclear molybdenum-oxide cluster. Chembiochem 6: 405–

413.

Frise, E., Green, A., and Drummond, M. (1994) Chimeric transcriptional activators

generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal

domain of AnfA is responsible for dependence on nitrogenase Fe protein. J.

Bacteriol. 176: 6545–9.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger,

S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:

153–226.

Glass, J.B., Axler, R.P., Chandra, S., and Goldman, C.R. (2012) Molybdenum limitation

of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front.

Microbiol. 3: 331.

Goldberg, S. and Forster, H.S. (1998) FACTORS AFFECTING MOLYBDENUM

ADSORPTION BY SOILS AND MINERALS. Soil Sci. 163: 109–114.

Goldberg, S., Forster, H.S., and Godfrey, C.L. (1996) Molybdenum Adsorption on

Oxides, Clay Minerals, and Soils. Soil Sci. Soc. Am. J. 60: 425.

Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J.N., et al. (2013) The role of

industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 3: 636–

639.

Hales, B.J., Langosch, D.J., and Case, E.E. (1986) Isolation and characterization of a

second nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 261:

15301–15306.

Hänsch, R. and Mendel, R.R. (2009) Physiological functions of mineral micronutrients

Page 111: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

111

(Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12: 259–266.

Hättenschwiler, S. and Vitousek, P. (2000) The role of polyphenols in terrestrial

ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.

Hemingway, R.W., Karchesy, J.J., and Branham, S.J. (1989) Chemistry and Significance

of Condensed Tannins Plenum Pre. Hemingway,R.W., Karchesy,J.J., and

Branham,S.J. (eds) Springer US, New York.

Hill, S., Austin, S., Eydmann, T., Jones, T., and Dixon, R. (1996) Azotobacter vinelandii

NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation

genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. U. S. A. 93: 2143–8.

Hinnemann, B. and Nørskov, J.K. (2004) Chemical activity of the nitrogenase FeMo

cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc.

126: 3920–7.

Hirschman, J., Wong, P.K., Sei, K., Keener, J., and Kustu, S. (1985) Products of nitrogen

regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in

vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. U. S. A.

82: 7525–9.

Hodkinson, B.P., Allen, J.L., Forrest, L.L., Goffinet, B., Sérusiaux, E., Andrésson, Ó.S.,

et al. (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an

alternative vanadium-dependent nitrogen fixation system. Eur. J. Phycol. 49: 11–19.

Hooper, D.U. and Johnson, L. (1999) Nitrogen limitation in dryland ecosystems:

Responses to geographical and temporal variation in precipitation. Biogeochemistry

46: 247–293.

Howard, J.B. and Rees, D.C. (2006) How many metals does it take to fix N2? A

mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. U. S. A.

103: 17088–93.

Howard, J.B. and Rees, D.C. (1996) Structural Basis of Biological Nitrogen Fixation.

Chem. Rev. 96: 2965–2982.

Hu, Y. and Ribbe, M.W. (2011) Biosynthesis of the Metalloclusters of Molybdenum

Nitrogenase. Microbiol. Mol. Biol. Rev. 75: 664–677.

Imperial, J., Hadi, M., and Amy, N.K. (1998) Molybdate binding by ModA, the

periplasmic component of the Escherichia coli mod molybdate transport system.

Biochim. Biophys. Acta 1370: 337–46.

Jacob, J. and Drummond, M. (1993) Construction of chimeric proteins from the ?; N -

associated transcriptional activators VnfA and AnfA of Azotobacter vinelandii

shows that the determinants of promoter specificity lie outside the’recognition'helix

Page 112: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

112

of the HTH motif in the C-terminal . Mol. Microbiol. 10: 813–821.

Jacobitz, S. and Bishop, P.E. (1992) Regulation of nitrogenase-2 in Azotobacter

vinelandii by ammonium, molybdenum, and vanadium. J. Bacteriol. 174: 3884–

3888.

Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L.,

et al. (1989) Physical and genetic map of the major nif gene cluster from Azotobacter

vinelandii. J. Bacteriol. 171: 1017–1027.

Jacobson, M.R., Premakumar, R., and Bishop, P.E. (1986) Transcriptional regulation of

nitrogen fixation by molybdenum in Azotobacter vinelandii. J. Bacteriol. 167: 480–

6.

Jean, M.-E., Phalyvong, K., Forest-Drolet, J., and Bellenger, J.-P. (2013) Molybdenum

and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern

Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem.

67: 140–146.

Jiang, H.-B., Lou, W.-J., Ke, W.-T., Song, W.-Y., Price, N.M., and Qiu, B.-S. (2015)

New insights into iron acquisition by cyanobacteria: an essential role for ExbB-

ExbD complex in inorganic iron uptake. ISME J. 9: 297–309.

Joerger, R.D., Jacobson, M.R., and Bishop, P.E. (1989) Two nifA-like genes required for

expression of alternative nitrogenases by Azotobacter vinelandii. J. Bacteriol. 171:

3258–67.

Joerger, R.D., Jacobson, M.R., Premakumar, R., Wolfinger, E.D., and Bishop, P.E. (1989)

Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for

the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 171:

1075–1086.

Joerger, R.D., Loveless, T.M., Pau, R.N., Mitchenall, L.A., Simon, B.H., and Bishop, P.E.

(1990) Nucleotide sequences and mutational analysis of the structural genes for

nitrogenase 2 of Azotobacter vinelandii. J. Bacteriol. 172: 3400–8.

Jouogo Noumsi, C., Pourhassan, N., Darnajoux, R., Deicke, M., Wichard, T., Burrus, V.,

and Bellenger, J.-P. (2016) Effect of organic matter on nitrogenase metal cofactors

homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ.

Microbiol. Rep. 8: 76–84.

Kabata-Pendias, A. (2010) Trace Elements in Soils and Plants, Fourth Edition CRC Press.

Keller, R.J., Coulombe, R.A., Sharma, R.P., Grover, T.A., and Piette, L.H. (1989)

Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.

Free Radic. Biol. Med. 6: 15–22.

Page 113: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

113

Kennedy, C. and Dean, D. (1992) The nifU, nifS and nifV gene products are required for

activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:

494–8.

Kirn, J. and Rees, D.C. (1992) Crystallographic structure and functional implications of

the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:

553–560.

Kooner, Z.S. (1993) Comparative study of adsorption behavior of copper, lead, and zinc

onto goethite in aqueous systems. Environ. Geol. 21: 242–250.

Kraemer, S.M. (2004) Iron oxide dissolution and solubility in the presence of

siderophores. Aquat. Sci. - Res. Across Boundaries 66: 3–18.

Kraemer, S.M., Duckworth, O.W., Harrington, J.M., and Schenkeveld, W.D.C. (2015)

Metallophores and Trace Metal Biogeochemistry. Aquat. Geochemistry 21: 159–195.

Kraepiel, A.M.L., Bellenger, J.P., Wichard, T., and Morel, F.M.M. (2009) Multiple roles

of siderophores in free-living nitrogen-fixing bacteria. Biometals an Int. J. role Met.

ions Biol. Biochem. Med. 22: 573–581.

Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J. (2003) Tannins in nutrient dynamics of

forest ecosystems - a review. Plant Soil 256: 41–66.

Kuiters, A.T. (1990) Role of phenolic substances from decomposing forest litter in plant-

soil interactions. Acta Bot. Neerl. 39: 329–348.

Lancaster, K.M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M.W., Neese, F., et al.

(2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase

iron-molybdenum cofactor. Science 334: 974–7.

Lane, T.W. and Morel, F.M. (2000) A biological function for cadmium in marine

diatoms. Proc. Natl. Acad. Sci. U. S. A. 97: 4627–31.

LeBauer, D.S. and Treseder, K.K. (2008) Nitrogen limitation of net primary productivity

in terrestrial ecosytems is globally distributed. Ecology 89: 371–379.

Lee, C.C., Hu, Y., and Ribbe, M.W. (2009) Unique features of the nitrogenase VFe

protein from Azotobacter vinelandii. Proc. Natl. Acad. Sci. 106: 9209–9214.

Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W.C., and Dixon, R. (2000)

Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is

influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein.

EMBO J. 19: 6041–50.

Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San

Diego Calif 25: 402–408.

Page 114: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

114

Loveless, T.M. and Bishop, P.E. (1999) Identification of genes unique to Mo-independent

nitrogenase systems in diverse diazotrophs. Can. J. Microbiol. 45: 312–317.

Loveless, T.M., Saah, J.R., and Bishop, P.E. (1999) Isolation of nitrogen-fixing bacteria

containing molybdenum-independent nitrogenases from natural environments. Appl.

Environ. Microbiol. 65: 4223–4226.

Lowe, D.J., Fisher, K., and Thorneley, R.N. (1993) Klebsiella pneumoniae nitrogenase:

pre-steady-state absorbance changes show that redox changes occur in the MoFe

protein that depend on substrate and component protein ratio; a role for P-centres in

reducing dinitrogen? Biochem. J. 292: 93–98.

Lu, X., Johnson, W.D., and Hook, J. (1998) Reaction of vanadate with aquatic humic

substances: an ESR and 51 V NMR study. Environ. Sci. Technol. 32: 2257–2263.

Luque, F., Mitchenall, L.A., Chapman, M., Christine, R., and Pau, R.N. (1993)

Characterization of genes involved in molybdenum transport in Azotobacter

vinelandii. Mol. Microbiol. 7: 447–59.

Luque, F. and Pau, R.N. (1991) Transcriptional regulation by metals of structural genes

for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227: 481–7.

Macaluso, A., Best, E.A., and Bender, R.A. (1990) Role of the nac gene product in the

nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J.

Bacteriol. 172: 7249–55.

Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., and Lerman, A. (2013) Interactions of

C, N, P and S Biogeochemical Cycles and Global Change Roland,W.,

Mackenzie,F.T., and Chou,L. (eds) Springer Science & Business Media.

Marks, J.A., Perakis, S.S., King, E.K., and Pett-Ridge, J. (2015) Soil organic matter

regulates molybdenum storage and mobility in forests. Biogeochemistry 125: 167–

183.

Martell, A.E. and Smith, R.M. (1989) Critical stability constants. Plenum Press, New

York.

Masepohl, B., Schneider, K., Drepper, T., Muller, A., and Klipp, W. (2002) Nitrogen

fixation at the millennium G.J.,L. (ed) Elsevier.

Masukawa, H., Zhang, X., Yamazaki, E., Iwata, S., Nakamura, K., Mochimaru, M., et al.

(2009) Survey of the distribution of different types of nitrogenases and hydrogenases

in heterocyst-forming cyanobacteria. Mar. Biotechnol. (NY). 11: 397–409.

May, H.D. and Dean, R.D. (1991) Altered nitrogenase MoFe proteins from Azotobacter

vinelandii. Analysis of MoFe proteins having amino acid substitutions for the

conserved cysteine residues within the beta-subunit. Biochem. J. 277 (Pt 2): 457–64.

Page 115: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

115

Meletzus, D., Rudnick, P., Doetsch, N., Green, A., and Kennedy, C. (1998)

Characterization of the glnK-amtB Operon of Azotobacter vinelandii. J. Bacteriol.

180: 3260–3264.

Merrick, M., Gibbins, J., and Toukdarian, A. (1987) The nucleotide sequence of the

sigma factor gene ntrA (rpoN) of Azotobacter vinelandii: analysis of conserved

sequences in NtrA proteins. Mol. Gen. Genet. 210: 323–30.

Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. (1982)

Repressor properties of the nifL gene product in Klebsiella pneumoniae. MGG Mol.

Gen. Genet. 185: 75–81.

Merrick, M.J. and Gibbins, J.R. (1985) The nucleotide sequence of the nitrogen-

regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved

features in bacterial RNA polymerase sigma factors. Nucleic Acids Res. 13: 7607–

20.

Miller, R.W. and Eady, R.R. (1988) Molybdenum and vanadium nitrogenases of

Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium

nitrogenase. Biochem. J. 256: 429–432.

Monteiro, R.A., Souza, E.M., Yates, M.G., Pedrosa, F.O., and Chubatsu, L.S. (1999) In-

trans regulation of the N-truncated-NIFA protein of Herbaspirillum seropedicae by

the N-terminal domain. FEMS Microbiol. Lett. 180: 157–61.

Morrison, C.N., Hoy, J.A., Zhang, L., Einsle, O., and Rees, D.C. (2015) Substrate

pathways in the nitrogenase MoFe protein by experimental identification of small

molecule binding sites. Biochemistry 54: 2052–60.

Moshiri, F., Kim, J.W., Fu, C., and Maier, R.J. (1994) The FeSII protein of Azotobacter

vinelandii is not essential for aerobic nitrogen fixation, but confers significant

protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol.

Microbiol. 14: 101–114.

Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1995) Mutational analysis of genes of

the mod locus involved in molybdenum transport, homeostasis, and processing in

Azotobacter vinelandii. J. Bacteriol. 177: 5294–302.

Moure, V.R., Costa, F.F., Cruz, L.M., Pedrosa, F.O., Souza, E.M., Li, X.-D., et al. (2015)

Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr. Top.

Microbiol. Immunol. 384: 89–106.

Nakajima, H., Takatani, N., Yoshimitsu, K., Itoh, M., Aono, S., Takahashi, Y., and

Watanabe, Y. (2010) The role of the Fe-S cluster in the sensory domain of

nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J.

277: 817–32.

Page 116: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

116

Noar, J.D. and Bruno-Bárcena, J.M. (2013) Complete Genome Sequences of Azotobacter

vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome

Announc. 1: e00313–13.

Nordlund, S. and Högbom, M. (2013) ADP-ribosylation, a mechanism regulating

nitrogenase activity. FEBS J. 280: 3484–90.

Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., and Hussain, I. (2013) Effect

of plant growth promoting rhizobacteria on root morphology of Safflower (

Carthamus tinctorius L.). African J. Biotechnol. 10: 12638–12649.

Oda, Y., Samanta, S.K., Rey, F.E., Wu, L., Liu, X., Yan, T., et al. (2005) Functional

genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium

Rhodopseudomonas palustris. J. Bacteriol. 187: 7784–94.

Oelze, J. (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely

held hypothesis unequivocally supported by experimental evidence? FEMS

Microbiol. Rev. 24: 321–333.

Page, W.J. and Huyer, M. (1984) Derepression of the Azotobacter vinelandii siderophore

system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 158: 496–

502.

Page, W.J. and von Tigerstrom, M. (1982) Iron- and molybdenum-repressible outer

membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151: 237–42.

Pau, R.N. (1989) Nitrogenases without molybdenum. Trends Biochem. Sci. 14: 183–6.

Peacock, C.L. and Sherman, D.M. (2004) Vanadium(V) adsorption onto goethite (α-

FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular

geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 68: 1723–1733.

Peters, J.W., Fisher, K., Newton, W.E., and Dean, D.R. (1995) Involvement of the P

Cluster in Intramolecular Electron Transfer within the Nitrogenase MoFe Protein. J.

Biol. Chem. 270: 27007–27013.

Pienkos, P.T. and Brill, W.J. (1981) Molybdenum accumulation and storage in Klebsiella

pneumoniae and Azotobacter vinelandii. J. Bacteriol. 145: 743–51.

Poledniok, J. (2003) Speciation of vanadium in soil. Talanta 59: 1–8.

Poulin-Laprade, D. and Burrus, V. (2015) A λ Cro-like repressor is essential for the

induction of conjugative transfer of SXT/R391 elements in response to DNA

damage. J. Bacteriol.

Pratte, B.S., Eplin, K., and Thiel, T. (2006) Cross-functionality of nitrogenase

components NifH1 and VnfH in Anabaena variabilis. J. Bacteriol. 188: 5806–5811.

Page 117: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

117

Pratte, B.S., Sheridan, R., James, J.A., and Thiel, T. (2013) Regulation of V-nitrogenase

genes in Anabaena variabilis by RNA processing and by dual repressors. Mol.

Microbiol. 88: 413–24.

Pratte, B.S. and Thiel, T. (2006) High-Affinity Vanadate Transport System in the

Cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 188: 464–468.

Premakumar, R., Loveless, T.M., and Bishop, P.E. (1994) Effect of amino acid

substitutions in a potential metal-binding site of AnfA on expression from the anfH

promoter in Azotobacter vinelandii. J. Bacteriol. 176: 6139–42.

Premakumar, R., Pau, R.N., Mitchenall, L.A., Easo, M., and Bishop, P.E. (1998)

Regulation of the transcriptional activators AnfA and VnfA by metals and

ammonium in Azotobacter vinelandii. FEMS Microbiol. Lett. 164: 63–68.

Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E. (2004) The natural

history of nitrogen fixation. Mol. Biol. Evol. 21: 541–54.

Reddy, K.J. and Gloss, S.P. (1993) Geochemical speciation as related to the mobility of F,

Mo and Se in soil leachates. Appl. Geochemistry 8: 159–163.

Reed, S.C., Cleveland, C.C., and Townsend, A.R. (2011) Functional ecology of free-

living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42:

489–512.

Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and

Howard, J.B. (2005) Structural basis of biological nitrogen fixation. Philos. Trans.

A. Math. Phys. Eng. Sci. 363: 971–84; discussion 1035–40.

Rees, D.C. and Howard, J.B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin.

Chem. Biol. 4: 559–566.

Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80: 133–136.

Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., and Lemanceau, P. (2008)

Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and

Nutrition. Adv. Agron. 99: 183–225.

Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M., and Postgate,

J.R. (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium

enzyme. Nature 322: 388–390.

Robson, R.L. and Postgate, J.R. (1980) Oxygen and hydrogen in biological nitrogen

fixation. Annu. Rev. Microbiol. 34: 183–207.

Rose, A.L. and Waite, T.D. (2003) Kinetics of Hydrolysis and Precipitation of Ferric Iron

in Seawater. Environ. Sci. Technol. 37: 3897–3903.

Page 118: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

118

Rubio, L.M. and Ludden, P.W. (2005) Maturation of nitrogenase: a biochemical puzzle.

J. Bacteriol. 187: 405–414.

Sandy, M. and Butler, A. (2009) Microbial iron acquisition: marine and terrestrial

siderophores. Chem. Rev. 109: 4580–95.

Dos Santos, P.C. and Dean, D.R. (2014) Iron-Sulfur Clusters in Chemistry and Biology

Rouault,T. (ed) Walter de Gruyter GmbH & Co KG, 2014.

Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., and Vahaboglu, H. (2003)

Expression stability of six housekeeping genes: a proposal for resistance gene

quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-

PCR. J. Med. Microbiol. 52: 403–408.

Sayyed, R.Z., Badgujar, M.D., Sonawane, H.M., Mhaske, M.M., and Chincholkar, S.B.

(2005) Production of microbial iron chelators (siderophores) by fluorescent

Pseudomonads. IJBT Vol.4(4) [October 2005].

Schlesinger, W.H. and Bernhardt, E.S. (2013) Biogeochemistry: An Analysis of Global

Change Academic Press.

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the

comparative CT method. Nat. Protoc. 3: 1101–1108.

Schmitz, R.A., Klopprogge, K., and Grabbe, R. (2002) Regulation of nitrogen fixation in

Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two

environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol.

Biotechnol. 4: 235–242.

Schneider, K., Müller, A., Schramm, U., and Klipp, W. (1991) Demonstration of a

molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant

of Rhodobacter capsulatus. Eur. J. Biochem. 195: 653–661.

Schwacha, A. and Bender, R.A. (1993) The nac (nitrogen assimilation control) gene from

Klebsiella aerogenes. J. Bacteriol. 175: 2107–15.

Seefeldt, L.C., Hoffman, B.M., and Dean, D.R. (2009) Mechanism of Mo-dependent

nitrogenase. Annu. Rev. Biochem. 78: 701–22.

Self, W.T., Grunden, A.M., Hasona, A., and Shanmugam, K.T. (2001) Molybdate

transport. Res. Microbiol. 152: 311–321.

Setubal, J.C., dos Santos, P., Goldman, B.S., Ertesvåg, H., Espin, G., Rubio, L.M., et al.

(2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized

to support diverse anaerobic metabolic processes. J. Bacteriol. 191: 4534–4545.

Shailendra Singh, G.G. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current

and Future Prospects for Development of Sustainable Agriculture. J. Microb.

Page 119: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

119

Biochem. Technol. 07.:

Shieh, C. and Duedall, I.W. (1988) Role of amorphous ferric oxyhydroxide in removal of

anthropogenic vanadium from seawater. Mar. Chem. 25: 121–139.

Silvester, W. (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of

Pacific Northwest America. Soil Biol. Biochem. 21: 283–289.

Slabbert, N. (2012) Plant Polyphenols: Synthesis, Properties, Significance. Complexation

of condensed tannins with metal ions. Hemingway,R.W. and Laks,P.E. (eds)

Springer Science & Business Media.

Souza, E.M., Pedrosa, F.O., Drummond, M., Rigo, L.U., and Yates, M.G. (1999) Control

of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J.

Bacteriol. 181: 681–4.

Steenhoudt, O. and Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing

bacterium closely associated with grasses: genetic, biochemical and ecological

aspects. FEMS Microbiol. Rev. 24: 487–506.

Stefánsson, A. (2007) Iron(III) Hydrolysis and Solubility at 25 °C. Environ. Sci. Technol.

41: 6117–6123.

Stevenson, F.J. and Cole, M.A. (Michael A.. (1999) Cycles of soil : carbon, nitrogen,

phosphorus, sulfur, micronutrients Wiley.

Stintzi, A., Barnes, C., Xu, J., and Raymond, K.N. (2000) Microbial iron transport via a

siderophore shuttle: a membrane ion transport paradigm. Proc. Natl. Acad. Sci. U. S.

A. 97: 10691–6.

Tang, D. and Morel, F.M.M. (2006) Distinguishing between cellular and Fe-oxide-

associated trace elements in phytoplankton. Mar. Chem. 98: 18–30.

Thiel, T. (1993) Characterization of genes for an alternative nitrogenase in the

cyanobacterium Anabaena variabilis. J. Bacteriol. 175: 6276–6286.

Thiel, T. and Pratte, B.S. (2013) Alternative nitrogenases in Anabaena variabilis: the role

of molybdate and vanadate in nitrogenase gene. Adv. Microbiol. 03: 87–95.

Thöny, B. and Hennecke, H. (1989) The -24/-12 promoter comes of age. FEMS

Microbiol. Rev. 5: 341–57.

Tindale, A.E., Mehrotra, M., Ottem, D., and Page, W.J. (2000) Dual regulation of

catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative

stress. Microbiology 146 ( Pt 7: 1617–26.

Toukdarian, A. and Kennedy, C. (1986) Regulation of nitrogen metabolism in

Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr

Page 120: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

120

mutants. EMBO J. 5: 399–407.

Villa, J.A., Ray, E.E., and Barney, B.M. (2014) Azotobacter vinelandii siderophore can

provide nitrogen to support the culture of the green algae Neochloris oleoabundans

and Scenedesmus sp. BA032. FEMS Microbiol. Lett. 351: 70–77.

Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea :

How can it occur? Biogeochemistry 13: 87–115.

Völker, C. and Wolf-Gladrow, D.A. (1999) Physical limits on iron uptake mediated by

siderophores or surface reductases. Mar. Chem. 65: 227–244.

Walmsley, J. and Kennedy, C. (1991) Temperature-Dependent Regulation by

Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three

Nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol. 57: 622–4.

Walmsley, J., Toukdarian, A., and Kennedy, C. (1994) The role of regulatory genes nifA,

vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three

nitrogenases of Azotobacter vinelandii. Arch. Microbiol. 162: 422–9.

Wanty, R.B. and Goldhaber, M.B. (1992) Thermodynamics and kinetics of reactions

involving vanadium in natural systems: Accumulation of vanadium in sedimentary

rocks. Geochim. Cosmochim. Acta 56: 1471–1483.

Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim.

Acta 59: 1217–1232.

Wichard, T., Bellenger, J.-P., Morel, F.M.M., and Kraepiel, A.M.L. (2009) Role of the

siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors.

Environ. Sci. Technol. 43: 7218–7224.

Wichard, T., Mishra, B., Myneni, S.C.B., Bellenger, J.-P., and Kraepiel, A.M.L. (2009)

Storage and bioavailability of molybdenum in soils increased by organic matter

complexation. Nat. Geosci. 2: 625–629.

Wilhelm, S.W. and Trick, C.G. (1994) Iron-limited growth of cyanobacteria: Multiple

siderophore production is a common response. Limnol. Oceanogr. 39: 1979–1984.

Woodley, P., Buck, M., and Kennedy, C. (1996) Identification of sequences important for

recognition of vnf genes by the VnfA transcriptional activator in Azotobacter

vinelandii. FEMS Microbiol. Lett. 135: 213–21.

Xu, N., Christodoulatos, C., and Braida, W. (2006) Adsorption of molybdate and

tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.

Chemosphere 62: 1726–35.

Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M.M. (2008) Structure and metal

exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452: 56–61.

Page 121: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

121

Yoshimitsu, K., Takatani, N., Miura, Y., Watanabe, Y., and Nakajima, H. (2011) The role

of the GAF and central domains of the transcriptional activator VnfA in Azotobacter

vinelandii. FEBS J. 278: 3287–97.

Zhang, X., McRose, D.L., Darnajoux, R., Bellenger, J.P., Morel, F.M.M., and Kraepiel,

A.M.L. (2016) Alternative nitrogenase activity in the environment and nitrogen

cycle implications. Biogeochemistry 127: 189–198.

Page 122: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

122

2.2.11. Supporting information

Iron oxides modulate nitrogenase metal cofactors homeostasis in Azotobacter

vinelandii under diazotrophic conditions

Christelle Jouogo Noumsi 1,2

, Raphael Cassoulet1, Oliver Baars

3, Vincent Burrus

2, Jean-

Philippe Bellenger1.

1Département de chimie, Faculté des sciences, Université de Sherbrooke;

2Laboratory of bacterial molecular genetics, Département de biologie, Faculté des

sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada.

3Department of Geosciences, Princeton University, New Jersey, USA

Corresponding author: Jean-Philippe Bellenger

2500 Boulevard de l’université, J1K 2R1, Sherbrooke (Québec), Canada

Phone number: 819 821-7014. Fax number: 819 821-8017

[email protected]

Running Title: Iron oxides affect nitrogenase heterogeneity use in A. vinelandii

Page 123: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

123

Figure S1. Growth curves of A. vinelandii at two pH values.

Absorbance at 620 nm was plotted versus time for the two tested conditions. The inset shows

curve fitting of growth by a non-linear regression (exponential growth). Values represent the

mean ± SD; n = 3. Opened circles represent control conditions with 5 µM FeCl3 added (pH = 6.4).

Closed circles represent the same control conditions acidified with HCl (pH = 6.0).

Page 124: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

124

Figure S2. Vanadium uptake rates between sampling times.

The V uptake can be quantified between sampling points using equations from Bellenger et al.,

2011. V cellular quotas (molV molP-1

) were transformed in V contents per cell through the relation

between cell number and P content (1 cell = 1.8×10-15

molP). The relation between optical density

and cell number (1 OD = 1.16×108 cellules mL

-1) allows to obtain V content in mol mL

-1 and the

number of cells formed between sampling times. From a sampling point to the next, we thus can

calculate the V acquired per cell per time unit:ρ (molV cell-1

min-1

). Values represent the mean ±

SD; n = 3. A two-way ANOVA with a Tukey’s multiple comparisons test was used to compare V

uptake rates between conditions.

Page 125: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

125

Figure S3. Relative expression of anfD during the exponential growth phase.

Gene expression was measured by RT-qPCR. Opened bars represent control conditions, light grey

and dark grey bars represent 55 µM and 505 µM FeCl3 added respectively. The dashed line

represents the threshold value for anfD expression. Values represent the mean ± SD; n = 3.

Page 126: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

126

Table S1. Statistical analysesa of cellular metal quotas

0.8

505

µM

**

*

***

***

55

µM

***

0.6

505

µM

ns

ns ns

ns *

***

55

µM

ns ns

***

0.4

50

5

µM

ns

ns ns

ns ns

**

55

µM

ns ns

***

0.2

50

5

µM

ns * ns

ns ns

ns

55

µM

ns ns ns

0.1

50

5

µM

ns

ns ns

ns ns

ns

55

µM

ns ns *

0.0

5 50

5

µM

ns

ns ns

***

ns

ns

55

µM

ns

***

ns

OD

62

0n

m

QF

e

5 µ

M

55 µ

M

QM

o

5 µ

M

55 µ

M

QV

5 µ

M

55 µ

M

aTwo-way ANOVA with a Tukey’s multiple comparisons test was used to compare each

metal quota between conditions (added FeCl3) and along the growth (OD620nm). ns, no

significant difference; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Abbreviations: QFe, iron quotas; QMo, molybdenum quotas; QV, vanadium quotas.

Page 127: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

127

CHAPITRE 3

DISCUSSION GÉNÉRALE ET CONCLUSION

Ce projet de doctorat a permis de mettre en lumière une modulation méconnue de

l’acquisition des métaux essentiels Mo et V pour la fixation d’azote chez Azotobacter

vinelandii, en réponse à la présence d’agents complexants naturels. Cette modulation se

caractérise d’une part par une modulation de la quantité des métallophores, et d’autre part

par une acquisition active et simultanée des métaux Mo et V. L’acquisition active de V

survient sans que l’on soit en conditions limitantes en Mo, critère jusqu’à lors reconnu

nécessaire pour l’acquisition de ce métal. L’implication des métallophores dans le

contrôle de l’acquisition des métaux cofacteurs en présence d’oxydes de fer reste encore à

confirmer. La conséquence de cette acquisition non préférentielle des métaux est une

modification des niveaux d’expression des gènes des isoformes des Nases suggérant

fortement l’utilisation simultanée et significative des deux isoformes Mo-Nase et V-Nase

pour assurer la fixation d’azote.

Ces résultats questionnent la vision traditionnelle de la hiérarchisation des Nases et

amènent à s’interroger sur la pertinence des conditions expérimentales d’étude des Nases

et de ses cofacteurs en laboratoire. Enfin ces résultats apportent des éclaircissements sur

le débat concernant les conditions dans lesquelles les Nases alternatives contribuent à

l’apport en azote en milieu naturel.

Page 128: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

128

3.1. Perspectives d’amélioration du projet de recherche : présence et activité des

nitrogénases

Les résultats obtenus au cours de ce doctorat nous permettent seulement de suggérer

l’utilisation des isoformes des Nases. L’expression des gènes nifD et vnfD ne sont pas une

garantie que les protéines associées ont été produites. Et si elles sont produites, nous ne

pouvions au moment des expériences, confirmer distinctement leur utilisation effective

pour la fixation d’azote.

Pour ce qui est de la présence des isoformes des protéines, un seul anticorps commercial,

anticorps anti nifH, était disponible lors de nos travaux. Sa spécificité n’aurait pas permis

de conclure avec certitude sur la production de la V-Nase. Un autre moyen permettant de

suivre distinctement la production des Nases est la construction d’un mutant d’A.

vinelandii permettant de quantifier les Nases produites. L’un des projets connexe de ce

doctorat était de construire ce mutant. Le but était d’effectuer des fusions traductionnelles

de chaque isoforme avec une protéine fluorescente, et le suivi de l’intensité de

fluorescence de chaque fluorophore aurait été un indicateur de l’abondance des isoformes

des Nases. Malheureusement, ce projet s’est heurté à la difficulté d’insérer les gènes des

fluorophores dans le génome d’A. vinelandii et n’a pas abouti à la production de mutants.

Une autre approche, reposant sur la mesure de l’activité de la Nase, permet de discriminer

les activités des différentes isoformes. Cette méthode, ISARA (isotopic acetylene

reduction assay) (Zhang et al., 2016), repose sur le fractionnement isotopique différentiel

du carbone lors de la réduction d’acétylène en éthylène. L’ISARA s’est montrée fiable

lors d’essais avec des cultures pures avec et sans Nases alternatives, ainsi qu’avec des

échantillons naturels. Cette nouvelle méthode récemment publiée, et non disponible lors

de la réalisation du projet, est la mieux adaptée à l’heure actuelle pour évaluer la

contribution des différentes Nases à la fixation d’azote, et devrait être mise à profit lors de

futures travaux sur l’utilisation des Nases.

Page 129: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

129

3.2. La nitrogénase au vanadium : véritable avantage?

Afin de confirmer que la V-Nase constitue effectivement un atout dans les conditions

stressantes testées lors de ces études, des expériences complémentaires seraient

intéressantes à mener. Le suivi d’un mutant d’A. vinelandii déficient en V-Nase dans ces

conditions de stress métallique permettrait d’évaluer l’importance de cette isoforme pour

la diazotrophie. Si notre hypothèse selon laquelle l’acquisition et l’utilisation simultanées

de Mo et V servent à maintenir une croissance optimale est vraie, nous devrions observer

un effet non négligeable du stress métallique sur la croissance de ce mutant. Une baisse

du taux de croissance serait par exemple un bon indicateur de la plus-value de la V-Nase.

Cela conforterait notre vision des Nases alternatives comme avantage considérable en

conditions naturelles pour les diazotrophes qui les possèdent.

3.3. La hiérarchie des nitrogénases : un concept révolu?

L’utilisation en cascade des Nases a été décrite chez de nombreux diazotrophes tels qu’A.

vinelandii, Anabaena variabilis, Rhodopseudomonas palustris, ou encore Rhodobacter

capsulatus (Bishop et al., 1982; Hales et al., 1986; Robson et al., 1986; Chisnell et al.,

1988; Joerger, Jacobson, Premakumar, et al., 1989; Schneider et al., 1991; Thiel, 1993;

Oda et al., 2005). Ces observations sont en accord avec les efficacités relatives des

isoformes de la Nase et ont mené à une généralisation du concept de hiérarchie : Mo-Nase

> V-Nase > Fe-Nase. Cependant, ce concept de hiérarchie dans l’acquisition et

l’utilisation des métaux cofacteurs de la Nase, repose principalement sur des expériences

de laboratoire effectuées dans des conditions simples, température > 15˚C et métaux

cofacteurs fournis sous forme inorganique et biodisponible.

Lors de ce projet de doctorat nous avons testé la robustesse de la hiérarchie dans des

conditions se rapprochant des conditions naturelles en incluant des agents complexants

Page 130: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

130

naturels de métaux. Les résultats de cette thèse montrent que le concept de hiérarchie telle

qu’acceptée jusqu’à lors, ne s’applique sans doute pas, du moins directement, aux milieux

naturels. Ceci illustre à quel point simplifier les conditions expérimentales peut conduire à

l’établissement d’un concept peu ou pas transposable aux milieux naturels. La présence

des agents complexants testés ici ne sont à mon avis que quelques exemples pouvant

mener à une stratégie d’acquisition et d’utilisation des métaux cofacteurs divergeant de la

hiérarchie telle qu’acceptée aujourd’hui. De nombreuses avenues sont alors envisageables

afin d’améliorer nos pratiques d’étude en laboratoire et ainsi mieux cerner le rôle de la

diversité des Nases dans la gestion des stress environnementaux, en particulier la

biodisponibilité des métaux cofacteurs.

Au-delà des effets de la présence d’agents complexants, d’autres facteurs abiotiques

méritent une attention accrue. Par exemple, l’effet de la température sur la régulation des

Nases alternatives par Mo est connu de longue date. À une température inférieure à 15°C,

les Nases au Mo et V présentent des efficacités similaires et le Mo ne régule plus

l’activation de la V-Nase (Miller and Eady, 1988; Walmsley and Kennedy, 1991;

Darnajoux et al., en préparation). Cependant, la grande majorité des études sur la

régulation de l’utilisation des Nases sont réalisées dans des conditions de laboratoire entre

25˚C et 30˚C pour A. vinelandii, correspondant à une plage optimale de températures pour

la croissance. Ces études à températures optimales ont sans doute contribué à

l’établissement du concept de hiérarchie des Nases. Les variations de température des

habitats naturels sont rarement prises en compte dans les expériences de laboratoire. La

température est pourtant un facteur important à prendre en compte, considérant que la

température moyenne annuelle de la terre est de 14°C. Il est donc envisageable qu’à basse

température l’acquisition préférentielle du Mo ne soit plus avantageuse pour les

diazotrophes. Étudier l’homéostasie de Mo et V à basse température (< 15˚C) permettrait

de vérifier l’hypothèse d’une contribution simultanée de ceux-ci pour maximiser la

fixation d’azote. Cela concorderait avec les résultats obtenus ici, et appuierait cette

nouvelle vision de la diversité des Nases.

Page 131: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

131

3.4. Les métallophores : clef de voute de la régulation de l’utilisation des nitrogénases en

milieu naturel?

3.4.1. Les métallophores, système d’acquisition versatile de contrôle du stress métallique

La diversité de métallophores que peut produire A. vinelandii témoigne de l’importance

accordée à l’acquisition de métaux (Baars et al., 2016). En effet, dans les horizons O et A

(couches organique et organo-minérale) des sols très riches en matières organique et

minérale, Mo et V sont complexés par de nombreuses molécules organiques et des oxydes

divers, augmentant ainsi le défi de les récupérer (Alloway, 2013). Disposer d’un arsenal

de métallophores de natures diverses est sans doute un avantage important pour

l’acquisition des métaux. Cependant, nos connaissances sur la manière dont A. vinelandii

exploite cette diversité de ligands afin de répondre à divers stress d’acquisition restent

limitées. De nombreux travaux se sont penchés sur l’importance de la disponibilité du Fe

sur la production des métallophores (Page and Huyer, 1984; Crowley et al., 1991;

Wilhelm and Trick, 1994; Duhme et al., 1997; Cornish and Page, 1998; Tindale et al.,

2000; Kraemer, 2004; Sandy and Butler, 2009; Jiang et al., 2015; Baars et al., 2016). Un

nombre nettement plus restreint d’études s’est intéressé au rôle d’autres métaux tels que

Mo, V et W (Duhme et al., 1998; Baysse et al., 2000; Cornish and Page, 2000; Bellenger

et al., 2007; J P Bellenger et al., 2008; Kraepiel et al., 2009). Cependant toutes ces études

ont souvent été réalisées en conditions relativement simples en termes de stress

métallique. Les résultats de ce projet doctoral illustrent comment A. vinelandii peut tirer

profit de la diversité de ses métallophores afin de gérer un stress métallique. A. vinelandii

peut jouer sur la quantité des métallophores produits afin d’optimiser sa croissance. Bien

que nos conditions de travail se rapprochent de conditions plus réalistes, la réponse que

nous avons observée ici en culture pure et en présence d’un seul agent complexant est

sans doute loin d’être représentative des conditions réelles. Notamment, il n’est pas exclu

que les métallophores contribuant le plus à l’acquisition et donc ultimement au contrôle

de l’activité des isoformes de la Nase en milieu naturel soient très différents (en quantité

Page 132: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

132

et qualité) de ceux généralement étudiés en conditions de laboratoire; protochéline,

azotochéline et azotobactine chez A. vinelandii. La récente découverte de la vibrioferrine

chez A. vinelandii suggère que des métallophores d’importance environnementale

pourraient ne pas avoir encore été caractérisés chez nos organismes modèles.

Le rôle de la diversité des métallophores peut également se discuter dans le contexte

d’interaction interspécifique. La coopération existant au sein des communautés

microbiennes permet une utilisation de toutes les molécules extracellulaires pour le bien-

être individuel (Ahmad et al., 2008; Villa et al., 2014). Cet aspect peut autant constituer

un avantage qu’un inconvénient selon qui sont les organismes producteurs de

métallophores et qui sont les pirates du système. Il n’est pas exclu, que la quantité ainsi

que la qualité des métallophores supportant l’acquisition de métaux en milieu naturel

soient très différentes de celles observées avec des cultures pures. Il serait possible de

tester l’investissement d’A. vinelandii dans une situation où sa production de

métallophores est piratée par un autre organisme. Par exemple, la souche de Bacillus

subtilis 3610 ΔdhbA-F (incapable de produire ses propres métallophores) peut utiliser

l’azotochéline comme sidérophore/métallophore et former un biofilm (travaux en cours

d’Adrien Rizzi, étudiant au doctorat du laboratoire Bellenger). Dans une expérience de

co-culture de ces organismes, il sera intéressant de voir jusqu’à quel point A. vinelandii

peut modifier sa production de métallophores, et même quels métaux vont dans cette

situation être privilégiés pour sa propre croissance diazotrophe. Cela pourrait avoir des

conséquences non négligeables sur l’utilisation de chacun des métaux cofacteurs des

Nases.

Page 133: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

133

3.4.2. Le coût d’acquisition des métaux

Malgré l’importance des métallophores dans les processus d’acquisition de métaux

essentiels, le coût associé à la production de métallophores et au transport des complexes

est rarement considéré. Le cout de production et de récupération des métallophores est

sans doute un facteur important dans le contrôle de l’expression des isoformes de la Nase

qui demeure peu, voire non étudié (Völker and Wolf-Gladrow, 1999). En effet, le fait de

se tourner vers une production plus abondante de métallophores produits en réponse à un

stress métallique implique un investissement énergétique important pour la bactérie qui

influence sans doute la stratégie d’acquisition et d’utilisation des métaux. Les voies

métaboliques du chélome d’A. vinelandii, résumées dans les travaux de Baars et al. en

2016, montrent bien que de tels changements de stratégies impliquent un certain coût en

termes d’énergie, de carbone, et des voies de synthèse mis en jeu. Par exemple, la

production de protochéline et d’azotochéline augmentée jusqu’à 28 fois en présence

d’acide tannique reflète un investissement important. Ce dernier est d’une certaine

manière rentabilisé par l’internalisation simultanée de Mo et V. En effet, la moindre

efficacité de la V-Nase par rapport à la Mo-Nase (environ 20%) (Lee et al., 2009) devient

sans doute un paramètre moins important guidant la stratégie d’utilisation des isoformes

de la Nase par A. vinelandii dans ces conditions de stress. Il semble donc que la principale

adaptation de cette bactérie à la présence des agents complexants est l’augmentation du

coût d’acquisition des métaux. Après avoir augmenté celui-ci, privilégier un métal

cofacteur (Mo) par rapport à un autre (V) ne serait plus primordial pour les besoins de la

fixation d’azote. Ces travaux nous permettent d’entrevoir l’entrée en jeu des Nases

alternatives pour la FBA non plus comme une mise à profit de celles-ci lorsque le Mo est

limitant, mais plutôt comme le résultat d’un investissement important requis pour

l’acquisition des métaux cofacteurs via les métallophores. Le véritable défi pour les

diazotrophes en environnement naturel serait-il le coût d’acquisition des métaux? Cette

hypothèse est à tester en étudiant l’homéostasie des métaux cofacteurs et le chélome

d’autres diazotrophes possédant les Nases alternatives en présence d’agents complexants.

Page 134: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

134

Comme mentionné par Kraemer et al. (2015), entre l’étape du relargage des

métallophores et l’acquisition des complexes avec les métaux, différents phénomènes

interviennent : dégradation, adsorption, compétition et piratage. En milieu naturel où les

sources de métaux sont très variées et où de nombreux organismes sont en compétition

pour des ressources limitées, le coût associé à l’acquisition de métaux via les

métallophores est sans doute significativement supérieur à celui observé en conditions de

laboratoire.

La Nase n’est pas un cas isolé d’enzyme ayant subi le stress de l’accès aux métaux

cofacteurs, menant à une diversité d’isoformes. D’autres métalloenzymes assurent une

même réaction en diversifiant le métal cofacteur pour s’adapter aux conditions

environnementales des organismes. C’est le cas de l’anhydrase carbonique, enzyme

catalysant l’hydratation du CO2 en bicarbonate et inversement. Cette réaction est

retrouvée dans tous les règnes du vivants, avec comme métal cofacteur le zinc, à

l’exception des diatomées qui utilisent le cadmium comme métal cofacteur. Des études

ont montré que la limitation du Zn en milieux marins est à l’origine de cette

diversification, et que le Cd, élément abondant des fonds marins, substitue le Zn pour

assurer ces réactions (Lane and Morel, 2000; Xu et al., 2008).

Une prise en compte plus systématique du coût de production des métallophores et du

rendement de récupération des complexes dans la gestion, l’utilisation et la régulation de

la fixation d’azote, et dans d’autres processus biologiques, est sans doute nécessaire à

l’accroissement de notre compréhension des cycles biogéochimiques des éléments, et

donc de nos écosystèmes.

Page 135: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

135

3.5. La régulation des nitrogénases : un consortium multifactoriel

Nos connaissances actuelles sur la régulation des Nases par les métaux ne corrèlent pas

avec les résultats d’expression des gènes que nous avons obtenus. En effet, plusieurs

travaux sur la régulation des Nases par les métaux essentiels ont montré que chez A.

vinelandii la présence de Mo inhibe la transcription des gènes vnfHDGK (Jacobitz and

Bishop, 1992) et que 25 nM et 100nM de Mo étaient suffisants pour réprimer l’expression

des activateurs vnfA et anfA respectivement, inhibant ainsi la transcription des gènes vnf

et anf qui en dépendent (Jacobson et al., 1986; Walmsley and Kennedy, 1991;

Premakumar et al., 1998). Pourtant, en présence d’acide tannique et d’oxydes de fer, nous

avons observé une expression significative de vnfD en présence de Mo. La régulation de

l’expression des gènes vnf semble donc ne pas être un système fixe qui fonctionne de la

même façon en toutes conditions. L’effet de la température sur la régulation de la V-Nase

par Mo est une parfaite illustration qu’A. vinelandii adapte ses mécanismes de régulation

en réponse à des stress environnementaux (voir article en annexe pour plus de détails sur

la régulation des Nases). De même, l’acquisition et le transport de V sont considérés

comme activés seulement en conditions limitantes en Mo. Chez la cyanobactérie

diazotrophe Anabaena variabilis par exemple, il a été démontré que la présence de Mo

réprime le système de transport actif VupABC du vanadium (Pratte and Thiel, 2006). Nos

résultats montrent pourtant une acquisition active et simultanée de ces deux métaux dans

des conditions traditionnellement considérées comme non limitantes en Mo. Ce

changement important dans le rôle régulateur de Mo sur l’acquisition de V pourrait

refléter une adaptation relative au coût accru d’acquisition (voir section 3.3).

Considérant l’importance des métallophores pour l’acquisition des métaux, ainsi que les

résultats de mes travaux, je pense que la compréhension de la régulation de l’acquisition

et du transport des métaux Mo, V et Fe ne peut pas être dissociée de celle de la régulation

des trois Nases associées. Tester les liens entre la régulation de la capacité à acquérir les

métaux essentiels (ex. production de métallophores, transporteurs membranaires,…) et la

Page 136: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

136

régulation de l’activation et activité des isoformes de la Nase pourrait accroitre

significativement notre compréhension de la FBA en milieux naturels.

3.6. Répartition des isoformes des nitrogénases chez les diazotrophes

Comme le laissent entrevoir les résultats obtenus au cours de ce projet, les contraintes

abiotiques inhérentes aux habitats des diazotrophes semblent contribuer significativement

à l’acquisition et l’utilisation des métaux cofacteurs des Nases. Au cours de l’évolution,

ces contraintes ont pu influencer l’acquisition des gènes des Nases alternatives par les

microorganismes, dans le but de s’adapter aux conditions environnementales spécifiques

de leurs milieux, notamment à la biodisponibilité des métaux pouvant servir de cofacteurs

(Raymond et al., 2004; Boyd et al., 2011). Cela pourrait expliquer la répartition aléatoire

des isoformes des Nases telle que nous la connaissons aujourd’hui. En effet en plus de la

Mo-Nase les Nases alternatives ne sont retrouvées que chez quelques diazotrophes,

certains possédant la V-Nase, la Fe-Nase ou encore les deux. L’évolution de la chimie des

métaux dans les milieux où se sont développés ces microorganismes aurait probablement

favorisé une diversification aléatoire. L’acquisition et le maintien des gènes des Nases

alternatives résulteraient donc entre autres d’une adaptation à l’accès aux métaux. Cette

pérennité au fil de l’évolution suggère une contribution significative des Nases

alternatives à l’apport en azote dans les écosystèmes.

Dans cette logique, l’absence des Nases alternatives chez les diazotrophes en symbiose

avec les plantes supérieures s’expliquerait alors par un apport en Mo toujours suffisant

pour la FBA. Il est envisageable que les plantes supérieures, grâce au déploiement de leur

système racinaire et de leur symbiose mycorhizienne aient toujours été aptes à récupérer

assez de Mo à partir de toutes les matrices du sol pour supporter les besoins de leur

symbiontes fixateurs d’azote. Cet investissement pour assurer l’apport de ce

micronutriment essentiel peut justifier que (i) les diazotrophes associés aux plantes

n’aient pas été exposés au défi d’acquérir le métal cofacteur et n’aient donc jamais acquis

Page 137: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

137

les gènes des Nases alternatives pour s’adapter aux stress environnementaux, ou (ii)

l’établissement de ces symbioses soient un moyen de contourner ces stress, en s’associant

à un organisme pourvoyeur de micronutriments.

Qu’importe le scénario, l’accès aux métaux, tout comme le coût d’acquisition de ceux-ci,

semblent être des éléments pertinents ayant pu contribuer à la diversité des organismes

diazotrophes.

Page 138: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

138

ANNEXE

Alternative nitrogenases regulation in the diazotrophic bacterium Azotobacter

vinelandii

Christelle Jouogo Noumsi1,2

, Vincent Burrus2, Jean-Philippe Bellenger

1,

1Département de chimie, Faculté des sciences, Université de Sherbrooke.

2Laboratory of bacterial molecular genetics, Département de biologie, Faculté des

sciences, Université de Sherbrooke, Sherbrooke (Québec), Canada.

Corresponding author: Jean-Philippe Bellenger

2500 Boulevard de l’université, J1K 2R1, Sherbrooke (Québec), Canada

Phone number: 819 821-7014. Fax number: 819 821-8017

[email protected]

Page 139: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

139

Abstract

Nitrogenases (Nase) are the enzymes responsible of dinitrogen reduction into bioavailable

ammonia. Three isozymes have been identified so far: the molybdenum-Nase, the

vanadium-Nase and the iron-only Nase. For years, the Mo-Nase has been considered as

the canonical isozyme, responsible for the major part of biological nitrogen fixation

(BNF) worldwide. While the two alternative Nases (V- and Fe-Nases) received less

attention, they are now suggested to be more active than previously recognized. The soil-

dwelling bacterium Azotobacter vinelandii is a model organism that possesses the three

Nase isozymes and has been used for years to study BNF. Regulation of BNF in this

microorganism is thus primordial to ensure an optimal, low energy-consumption nitrogen

fixation. In this review, we highlight the molecular mechanisms involved in regulation of

alternative Nases compared to the canonical Mo-Nase in A. vinelandii. Recent discoveries

suggest more complex systems explaining alternative Nase contribution to BNF in this

bacterium. This highlights the need for experimental designs more representative of

natural conditions to better understand the dynamic use of alternative Nases.

Page 140: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

140

Introduction

Biological nitrogen fixation (BNF) is a key reaction of the nitrogen cycle that converts

atmospheric dinitrogen (N2) into bioavailable ammonia (NH3). This reaction is a major

input of nitrogen in unmanaged ecosystems. Several studies have highlighted a limitation

of net primary productivity due to a lack of fixed nitrogen in diverse ecosystems. This

lack of bioavailable nitrogen is the result of a BNF limitation (Vitousek & Howarth,

1991; Elser et al., 2007; LeBauer & Treseder, 2008). BNF relies on a few number of

prokaryotes called diazotrophs. These microorganisms can be involved in symbiotic

associations with higher plants, mosses and fungi or live freely. They use the enzyme

nitrogenase (Nase), a metalloprotein to catalyze the dinitrogen reduction. Three isoforms

of nitrogenase have been identified so far: the molybdenum-Nase (Mo-Nase), the

vanadium-Nase and the iron-only Nase (V- and Fe-Nases). The Mo-Nase is found in all

diazotrophs, and is the most efficient isoform in theory (it needs fewer electrons and less

energy to reduce 1 mole of N2). V- and Fe-Nases are found only in some diazotrophs

(alone or together), in addition to Mo-Nase, and are in theory less efficient to reduce N2

compared to Mo-Nase (equations [1], [2] and [3]) (Masepohl 2002, Bothe 2010). For

these reasons, V- and Fe-Nase are called alternative nitrogenases.

N2 + 8H+ + 8e

− + 16ATP → 2NH3 + H2 + 16ADP + 16Pi [1]

N2 + 12H+ + 12e

− + 24ATP → 2NH3 + 3H2 + 24ADP + 24Pi [2]

N2 + 21H+ + 21e

− + 42ATP → 2NH3 + 7.5H2 + 42ADP + 42Pi [3]

The so-called alternative Nases are however present in many aquatic and terrestrial

ecosystems suggesting an important input in BNF (Loveless 1999, Betancourt 2008,

Hodkinson 2014). Their contribution to global N fixation need to be reevaluated in order

to have a better overview of BNF (Reed et al., 2011).

Page 141: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

141

The ubiquitous bacterium Azotobacter vinelandii is a good model to study BNF used for

years. This aerobic Gram negative Gammaproteobacteria grows as free-living organism in

soils. It has the advantage to possess the three isozymes of Nase (Bishop et al., 1980,

1982; Chisnell et al., 1988), allowing the study of all isoforms within the same

microorganism. A specific nomenclature to distinguish isoform genes was established:

nif, vnf and anf code for the Mo-, V- and Fe-Nases respectively (Fig. 1). Nitrogenase

structure is well known and made of two major metalloproteins working in tandem: the

dinitrogenase reductase (60 kDa) that acts as an electron acceptor and transfer them to the

dinitrogenase (230-260 kDa) that contains the active site of the protein (Howard and

Rees, 1996). The dinitrogenase reductase is a homodimer of the subunit γ encoded by

nifH (Mo-Nase), vnfH (V-Nase) and anfH (Fe-Nase) genes. The dinitrogenase is an

heterotetramer of subunits α and β, for Mo-Nase, encoded by nifDK or an heterooctomer

of subunits α, β and δ encoded by the operons vnfDGK and anfDGK for V and Fe-Nases

respectively (May and Dean, 1991; Lowe et al., 1993; Peters et al., 1995; Lee et al.,

2009).

Page 142: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

142

Figure 1: schematic representation of gene organization in the nitrogenase isoforms clusters

of Azotobacter vinelandii. Structural genes HD(G)K are represented in grey (subunits encoded are

listed under each gene). Regulatory genes A and L are shown in green (activator) and red

(repressor) respectively. Other genes in white are involved in folding, maturation or have

unpredicted functions.

BNF is an energy consuming reaction (at least 16 ATP to reduce 1 mole of N2), and

requires microaerophilic or anaerobic conditions (Robson and Postgate, 1980). A.

vinelandii and N2 fixers in general thus have to tightly control Nases activity to efficiently

ensure their N supply at the lower cost. While almost all the mechanisms involved in BNF

regulation by Mo-Nase are well understood, there are still black boxes about alternative

V- and Fe-Nases. Now that the importance of these Nases to global N budget is increasily

evident (Reed et al., 2011, Hodkinson 2014, Zhang 2016, Zhang 2014, Bellenger 2014, ),

it will be helpful to understand deeply when alternative Nases are required and used, and

how they are regulated. The present review summarizes the current knowledge on the

mechanisms involved in alternatives Nases regulation by A. vinelandii regarding specific

Page 143: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

143

environmental factors, and highlights the knowledge gap in our comprehension of these

systems compared to the canonical Mo-Nase.

1. Genetic actors of regulation

The universal Mo-Nase has been the most deeply studied Nase isoform for many years.

Genetic, structural, biochemical, spectroscopic aspects of this isoform have been studied,

allowing a better understanding of Mo-Nase folding, activity and regulation (Jacobson et

al., 1989; Kirn and Rees, 1992; Burgess and Lowe, 1996; Howard and Rees, 1996; Rees

and Howard, 2000; Seefeldt et al., 2009; Setubal et al., 2009; Noar and Bruno-Bárcena,

2013; Morrison et al., 2015). Genetic studies helped to understand regulation

mechanisms, in particular the role of the transcriptional activator- and repressor- encoding

genes nifA and nifL, which have been well characterized. nifA and nifL respectively

activate and indirectly repress the other genes of the nif cluster and thus the subsequent

activity of the Mo-Nase (Fig. 1).

Actors and mechanisms involved in the nif cluster regulation were then used as models to

find equivalent systems and functions for the alternative Nases. Direct repressor genes

similar to nifL have not been found for the alternative Nases, suggesting a different

pathway for these Nases repression or a role of NifL. The nifA paralogs genes vnfA and

anfA were found to code for activators of the vnf and anf clusters respectively (Fig. 1)

(Joerger, Jacobson, and Bishop, 1989).

nifA, vnfA and anfA share high nucleotide similarities, and are all preceded by a ntrA-

dependent promoter, suggesting a regulation by the level of fixed nitrogen (Hirschman et

al., 1985; Merrick and Gibbins, 1985; Merrick et al., 1987). Amino acids alignments

show that NifA has only 40% identity with VnfA and AnfA, while these last two share

Page 144: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

144

63% identity. The half-protein C-terminal sequence of the 3 activators contains an ATP

binding site and a DNA binding domain (helix-turn-helix motif). The central domain

contains interaction sites with the alternative sigma54 transcription factor, RNA-

polymerase, or both. Finally the N-terminal region contains cysteine rich motifs possibly

implied in interaction with metals and oxygen sensing. This region is thought to be the

regulatory domain of the activators (Fig. 2) (Joerger, Jacobson, and Bishop, 1989; Frise et

al., 1994; Premakumar et al., 1994; Yoshimitsu et al., 2011).

Figure 2. Essential domains in nitrogenase activators NifA, VnfA and AnfA. 3 major domains

are involved in activators activity: the N-terminal regulatory domain (sensor of environmental

factors), the central domain (interaction with σ factor-RNA polymerase and NTPase activity) and

the C-terminal domain (DNA-binding site for target genes to regulate).

Divergence between the 3 activators are mainly localized in regions corresponding to

DNA-binding sites (Joerger, Jacobson, and Bishop, 1989), probably to confer specificity

to each activator for the appropriate genes to regulate (Jacob and Drummond, 1993), and

in the N-terminal part, allowing differential regulation of activators by various signals like

metals, O2 or reactive oxygen species (ROS) (Jacob and Drummond, 1993; Frise et al.,

1994; Nakajima et al., 2010; Yoshimitsu et al., 2011).

Page 145: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

145

vnfA and anfA encode proteins of about 520 amino acids which likely bind to specific

sequences upstream of the genes they regulate. While these sequences have been studied

in detail for the V-Nase regulation, studies have been more scarce for the regulation of the

Fe-Nase. Austin and Lambert (1994) showed using in vitro experiments that AnfA protein

binding sites are located between 200 and 300 bp upstream of the anfH promoter. VnfA

target sequences are better characterized. The intergenic region between the activator

vnfA and the vnf clusters extends from 228 bp to 15 kb (228 bp for the vnfEN cluster, 8.8

kb for the vnfHFd, 11 kb for the vnfDGK cluster), implying a large set of 15 to 17 genes

to regulate (and more if we take in account other clusters like the nifBUSVM gene,

essential for V-Nase expression as shown by Drummond et al., in 1996). These promoter

regions contain a characteristic activator recognition motif, the upstream activator

sequence (UAS), which is a 4 bp inverted repeat sequence separated by 6 variable

nucleotides (GTAC-N6-GTAC). This motif is duplicated in promoters of structural V-

Nase genes vnfH and vnfD (probably for the DNA-binding property of VnfA), and their

deletion abolished gene expression (Woodley et al., 1996; Bageshwar et al., 1998).

Additional studies are needed to better understand the role of the regulators VnfA and

AnfA. Moreover, since no repressor of the vnf and anf clusters has been identified, VnfA

and AnfA are likely involved in the repression of these clusters (through the regulatory

domains), or there might be a role of NifL.

Page 146: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

146

2. Physiological cell state: regulation by cellular needs

Nitrogen fixation is an energy consuming process and needs to be tightly regulated to

prevent energy waste. Alternative nitrogenases are more ATP consuming for lower

activities (equations [1], [2] and [3]) compared to Mo-Nase, and they eventually need a

thighter control. Physiological factors known to control nitrogen fixation in A. vinelandii

are intracellular fixed-nitrogen level and dissolved oxygen.

2.1. Regulation by fixed-nitrogen: promoters of vnf and anf clusters, as well as nif cluster,

are characterized by a consensus sequence specifically ntrA-dependent, GC at position 12

and GG at position 24 upstream of the transcription initiation nucleotide (Thöny and

Hennecke, 1989). The ntr (nitrogen regulatory) system was first known to be involved in

transcriptional regulation of many genes required when the level of the preferential form

of fixed-nitrogen (ammonium) is low for enteric bacteria like Klebsiella aerogenes

(Brenchley et al., 1973; Macaluso et al., 1990; Schwacha and Bender, 1993). This system

was also found, with more or less similarities in non-enteric bacteria like N2 fixers A.

vinelandii or Klebsiella pneumoniae where it comes at play under diazotrophic

conditions. The component ntrA encodes the sigma 54 transcription factor essential for

nif, vnf and anf genes transcription by RNA polymerase (Hirschman et al., 1985; Merrick

and Gibbins, 1985; Merrick et al., 1987). In the absence or low level of fixed-nitrogen,

this protein could thus allow the expression of genes coding for the activators VnfA

and/or AnfA and consequently the expression of others vnf and/or anf genes, all having

ntrA-dependent promoters (Fig. 3). The other component of the ntr system found in some

N2 fixers such as A. vinelandii or K. pneumoniae is NtrC. Once phosphorylated, it helps

recruit sigma 54 and RNA polymerase and thus enhances transcription of ntr-dependent

genes (Fig. 3) (Martinez-Argudo 2004, Zhang 2005). NtrC phosphorylation is the end of a

cascade induced by a low level of fixed-nitrogen in cells. This has been reported by

Schmitz et al (2002) in K. pneumoniae for the nifLA operon which regulates Mo-Nase.

However, this protein seems to be non-essential for alternative Nases genes expression in

Page 147: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

147

A. vinelandii like ntrA product is (Toukdarian and Kennedy, 1986). Fixed-nitrogen,

ammonium (NH4+), only partially represses vnfA and anfA expression as well as

expression of the structural vnf genes (Toukdarian and Kennedy, 1986). This partial

repression (Jacobitz and Bishop, 1992) suggests a regulation at post-transcriptional or

translational level for V-Nase by NH4+ and at transcriptional level for Fe-Nase. Precise

mechanisms and actors explaining how NH4+ ions could act at transcriptional and

translational levels for alternative Nases expression remain to be determined. However,

there are some trails based on the work done on Mo-Nase regulation by NH4+ in different

diazotrophs. A. vinelandii codes for a PII-like protein which is a major actor of a nitrogen-

sensing and signal transduction cascade (Meletzus et al., 1998). Under nitrogen-sufficient

conditions, the PII-like protein is non-uridylylated and can interact with the repressor

NifL, leading to its functional activation (Little et al., 2000). NifL has been shown to

inhibit : (i) NifA transcriptional activity in vivo (Merrick et al., 1982) and (ii) the DNA

binding function of NifA (Barrett et al., 2001) (Fig. 3A). For diazothrophs that do not

belong to the Gammaproteobacteria and those that do not code for a NifL protein (e.g.

Herbaspirillum seropedicae, Azospirillum brasilense), data suggest that the PII proteins

participate in signaling the nitrogen status to the N-terminal domain of NifA (Monteiro et

al., 1999; Souza et al., 1999; Steenhoudt and Vanderleyden, 2000). This inhibitory

pathway of the activator could be possible for alternative Nases as they do not possess

NifL homologs. VnfA and AnfA could thus be targeted in their N-terminal domain by

PII-related proteins and inactivated under sufficient fixed-nitrogen conditions. However

this would only explain the low transcriptional regulation (Fig. 3B). To date, no data

explain the translational regulation observed for Vnf- and Anf-Nases. One can however

imagine protein inactivation, as observed in some diazotrophs such as Azospirillum

brasilense with the inactivation of the dinitrogenase reductase through a reversible ADP-

ribosylation (Fig. 3B) (Nordlund and Högbom, 2013; Moure et al., 2015).

Page 148: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

148

Figure 3. Schematic pathways of Nase regulation by nitrogen level. A) Regulation of Mo-Nase

through the ntr components and the PII proteins. B) Regulation of alternative Nases. Suggested

mechanisms are presented with a question mark. Circled P and U represent phosphorylated and

uridylated forms of proteins respectively. Gray zones marked p represent ntr promoters. Dashed

line represents the partial repression of alternative gene expression

2.2. Regulation by oxygen: nitrogenase is a protein sensitive to oxygen and reactive

oxygen species (ROS), especially demonstrated in vitro, with half-life after air exposure

ranging from only 45 seconds to 8 minutes depending on bacterial species and

nitrogenase isoform (Robson and Postgate, 1980). Consequently, diazotrophs have to

perform BNF into anaerobic or microaerophilic conditions to prevent nitrogenase damage

and inactivation. While natural anaerobic or microaerophilic diazotrophs remain in near-

optimal oxygen levels, aerobic diazotrophs such as A. vinelandii have to deal with their

important need for oxygen for respiration for ATP supply, while avoiding nitrogenase

inhibition by high oxygen levels and its derivatives. Unlike cyanobacteria such as

Anabaena variabilis or Anabaena cylindrica, A. vinelandii does not form specialized cells

(such as heterocysts) that can control oxygen stress and ensure BNF (Masukawa 2009,

Page 149: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

149

Kumar 2010). BNF has thus to be tightly regulated in this bacterium to face oxygen

damage.

Gallon (1992) well summarized mechanisms used by A. Vinelandii to mitigate the oxygen

level-N2 fixation incompatibility. Major actions used when oxygen concentrations

increase are: cells aggregation, increased respiration rate (also known as “respiratory

protection”), increased superoxide dismutase activity, all leading to a decrease in

dissolved O2 and ROS, thereby allowing the folding of a functional and active

nitrogenase. Even if the efficiency of the respiratory protection is now questioned to

decrease enough the oxygen level in cells in order to prevent Nase damage (Oelze, 2000),

it remains an important input for such aerobic organism under diazotrophic conditions. A

temporary protection of a folded nitrogenase (regardless of the isoform) from oxygen has

also been demonstrated. It is an interaction between a protein called Shethna and the

nitrogenase which confers a significant protection to oxygen-mediated inactivation; this

has been named conformational protection (Moshiri et al., 1994). This last mechanism is

transient and reversible; nitrogenases are thus not degraded but remain inactive until

oxygen concentration is lowered. This is an efficient post-translational regulation used by

A. vinelandii. Unlike the well described oxygen regulation of Mo-Nase (Blanco et al.,

1993; Hill et al., 1996; Dixon, 1998; Barrett et al., 2001; Schmitz et al., 2002) (sensing

redox ability of NifL and then its interaction with NifA in order to inhibit other nif genes

transcription), the specific effect of oxygen and ROS on alternative Nases remains

unclear. However several studies suggested that ROS, more than O2 itself, could be the

environmental factor inducing alternative Nases regulation. In the N-terminal domain

(regulatory region) of VnfA and AnfA, a Cys-rich motif (Cys-X-Cys-XXXX-Cys for

VnfA and Ser-X-Cys-XXXX-Cys for AnfA) is located upstream of the GAF domains and

likely assembles [Fe-S] clusters. When ROS level is elevated, the [Fe-S] clusters

disassemble (maybe as a consequence of a Fenton reaction), leading to a conformational

modification of VnfA and AnfA (Fig. 4). This modification makes them unable to

activate vnf and anf gene transcription (Nakajima et al., 2010; Yoshimitsu et al., 2011).

Page 150: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

150

Figure 4. Schematic pathways of Nase regulation by oxygen level. A) Regulation of Mo-Nase

through the oxidation of the repressor NifL. Active NifL interacts with the activator NifA, thus

inhibits its activity. B) Regulation of alternative Nases by reactive oxygen species (ROS).

Suggested mechanisms are presented with a question mark. Gray zones marked p represent ntr

promoters.

3. Effect of temperature on regulation and activity

Temperature has been first shown to reduce Nase activity in an in vitro study using

purified enzymes from Azotobacter chroococcum (Miller and Eady, 1988). Mo- and V-

Nases activities were both lowered when temperature decreased from 30 to 5˚C, with a

stronger reduction of Mo-Nase activity. Furthermore, work by Darnajoux (thesis) on the

cyanobacterium Anabaena variabilis revealed a decreased activity of both Mo and V-

Nases in vivo when the temperature was lowered gradually from 35 to 7˚C. This effect

likely results from a general slowdown of the metabolic activity of the microorganism as

it is below its optimal growth temperature. The authors however noticed that the V-Nase

activity was less affected below 15˚C, suggesting that V-Nases are less sensitive to low

Page 151: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

151

temperatures. Walmsley and Kennedy’s work revealed how temperature could affect

regulation by metal in A. vinelandii. While at optimal temperature (30˚C) Mo represses

vnfH and anfH transcription and V represses anfH transcription, the repression levels

were found to be lower or even absent at 20˚C and 14˚C. They hypothesized that this

lower repression level might be due to a less efficient acquisition of the repressing metal.

Temperature could thus be seen as a general factor regulating BNF by general slowdown

of the metabolic function and as an indirect regulator of Nase activities through the

repression of metal uptake pathways. This last suggested role requires further

investigations to better understand the molecular mechanisms of regulation by metals, in

order to decipher at which step and how temperature actually comes into play.

4. Regulation by essential metals: transcriptional level for repression, and

translational level for activation

The activity of Nase isozymes, as metalloproteins, depends on the availability of their

metal cofactors, molybdenum (Mo), vanadium (V) and iron (Fe). Because of the

theoretical efficiencies of Nases and the high energetic cost to reduce N2 ([1], [2] and [3])

(Masepohl et al., 2002), it is likely that A. vinelandii would preferentially use the Mo-

Nase, then the V-Nase and finally the Fe-Nase to ensure its N supply under diazotrophic

conditions. This theoretical hierarchy has actually been observed in laboratory

experiments with pure cultures of A. vinelandii (Bellenger et al., 2011).

The first evidence of Nase regulation by metals came with the studies describing how A.

vinelandii’s alternatives Nases have been discovered. The V-Nase was found when Mo

was absent from the growth medium and the Fe-Nase was discovered when both Mo and

V were missing in the growth medium (Bishop et al., 1980, 1982; Hales et al., 1986;

Chisnell et al., 1988; Joerger, Jacobson, Premakumar, et al., 1989; Pau, 1989). To

investigate more at which level this regulation is operating, structural subunits genes of

different Nases were tested using transcriptional lacZ fusions, and their expression

Page 152: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

152

quantified in different conditions. Jacobitz and Bishop (1992) showed that the presence of

Mo inhibits the transcription of the vnfHDGK cluster that codes for the structural subunits

of V-Nase. In the absence of Mo, transcription of these genes was observed, even in the

absence of V in the medium. However, translation of these mRNA transcripts is V-

dependent. Minimal Mo concentrations necessary to repress vnfA and anfA transcription

are 25 nM and 100 nM, respectively (Jacobson et al., 1986; Premakumar et al., 1998).

Repression of Fe-Nase at the transcriptional level by Mo and V was also demonstrated,

and the presence of each metal was sufficient to repress anfH transcription (a structural

gene of Fe-Nase) (Walmsley and Kennedy, 1991). However, temperature was shown to

significantly decrease the level of repression (see above). There are less data about

repression of Fe-Nase expression by Mo and V compared to V-Nase, and almost all

studies focus on anfH transcription, with few data on the other genes of the anfHDGK

operon. As it has been demonstrated in vitro and in vivo that the γ subunit of one Nase

isozyme (encoded by nifH, vnfH and anfH) can be used with the other subunits of another

isozyme (α, β, δ) to form an active Nase (Chatterjee et al., 1997; Pratte et al., 2006), it

would be interesting to systematically assess the mRNA transcript levels of all these

structural genes to confirm the regulation of a Nase by a specific metal cofactor.

Premakumar et al., (1998) well resumed and explained alternative Nases gene regulation

by showing that the presence of metals actually represses the expression of the

transcriptional activators VnfA (by Mo) and AnfA (by Mo and V), thereby leading to the

lack of V- and Fe-Nase subunits. Unfortunately, precise molecular mechanisms by which

this repression by metals occurs remain unknown. Interestingly, AnfA also has a putative

metal-binding site in its N-terminal sequence, and requires a dinitrogenase protein

(regardless of its provenance, nifH or vnfH) to be functional (Frise et al., 1994;

Premakumar et al., 1994). The N-terminal regulatory domains of VnfA and AnfA,

through the Cys-rich motifs, could be involved in this regulation. This highlights a

potential more specific pathway of regulation by metal which remains to be characterized.

Taken together, these information help to understand the hierarchy suggested by the

theoretical isozymes efficiencies and demonstrated by Bellenger et al., (2011) in A.

Page 153: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

153

vinelandii (Mo-Nase, V-Nase and Fe-Nase). This study showed that when the three

essential metals are bioavailable, the bacterium first takes up Mo and expresses the nifD

gene that codes for a structural subunit. Additionally, internalized Mo could thus repress

the expression of V and Fe-Nases as demonstrated above. Then intracellular Mo reached

the threshold to ensure N fixation with Mo-Nase only (2×10-4

molMo/molP), V-Nase

mRNA transcripts are thus generated, and translated when the bacterium has acquired

enough V. Meanwhile Fe-Nase remains repressed (this repression results from sufficient

NH4+ amount and the presence of Mo and V). Only when intracellular V threshold is

reached, the Fe-Nase can be activated and used to fix nitrogen. This suggests that there

are 2 intermediary phases, corresponding to the depletion of Mo and V. During these

periods, does A. vinelandii stop fix dinitrogen? Some studies have shown that repression

by metals is not a strict bistable “on/off” switch, and that as demonstrated for Mo, there

are minimal concentrations of metals required to exert the repression (Jacobson 1986).

This leads to two possibilities during the above mentioned intermediary phases: (i)

simultaneous use of 2 Nases as suggested by Bellenger (2011) or (ii) no N2 fixation if we

assume that the bacteria have fixed enough N2 to bypass this transition. A recent study

investigating the effect of natural organic matter on diazotrophic growth of A. vinelandii

questioned about metal regulation (Jouogo Noumsi et al., 2016). In the presence of

dissolved organic concomitant high Mo and V contents were observed with nif and vnf

gene expression. This work showed that regulation of V-Nase by Mo is more complex

than previously thought and can be Mo-independent. Thus regulation by essential metals

seems not to be an undiverted procedure, and could probably be more versatile in natural

habitats. Other factors can be involved in Nase regulation, such as metal uptake,

metallophores production. Further studies are needed to understand how they can affect

Nase regulation at genetic level.

Page 154: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

154

Conclusion

Alternative nitrogenases have been discovered in the soil-dwelling bacterium

A. vinelandii 30 years ago. Since then, comprehension of their structure, function and

specificities compared to the canonical molybdenum-nitrogenase has shown important

progress. However, several gaps need to be filled to understand all of the regulatory

aspects and complete the story of N2 fixation. Major actors of regulation have been

characterized (activators, repressors, sensor proteins and their domains), yet we know a

lot less about how these actors actually interact with their targets, and at the end lead to

transcriptional and/or translational regulation. More precise and temporal analyses are

necessary to understand (i) what is going on during the switch between one nitrogenase to

another and (ii) how the bacterium can stop its repression mechanisms and allows

simultaneous expression of different isoforms. We highlighted here a decrease of quantity,

precision and relevance of knowledge regarding regulatory mechanisms when we go from

the most efficient Mo-Nase to the less efficient isoform Fe-Nase. Our knowledge likely

follows the hierarchy efficiency of nitrogenase isoforms in A. vinelandii. There are

increasing evidence of the under-estimation of the role of alternative nitrogenases in the

global nitrogen budget, and recent findings have shown that V-Nase expression can

escape the Mo regulation. It is thus primordial to build experiments under more realistic

conditions to better understand the link between metal acquisition and alternative Nase

regulation. A better understanding the overall system of BNF and correct assignment,

without doubt, of which isoform is active and when will help us to better predict and

estimate nitrogen inputs in ecosystems.

Page 155: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

155

References

Abdel-Gawad, F.M. and Issa, R.M. (1986) Spectrometric determination of vanadium (V)

with tannic acid and its application to biological fluids. Ind. J. Chem. 25: 701-702.

Ind. J. Chem. 25: 701–702.

Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living rhizospheric

bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:

173–81.

Ahmed, E. and Holmström, S.J.M. (2014) Siderophores in environmental research: roles

and applications. Microb. Biotechnol. 7: 196–208.

Alloway, B. (2013) Heavy metals in soils Third. Alloway,B.J. (ed).

Austin, S. and Lambert, J. (1994) Purification and in vitro activity of a truncated form of

ANFA. Transcriptional activator protein of alternative nitrogenase from Azotobacter

vinelandii. J. Biol. Chem. 269: 18141–8.

Baars, O., Zhang, X., Morel, F.M.M., and Seyedsayamdost, M.R. (2016) The Siderophore

Metabolome of Azotobacter vinelandii. Appl. Environ. Microbiol. 82: 27–39.

Bageshwar, U.K., Choudhury, N.R., and Das, H.K. (1998) Analysis of upstream

activation of the vnfH promoter of Azotobacter vinelandii - ProQuest. Can. J.

Microbiol. 44.:

Barrett, J., Ray, P., Sobczyk, A., Little, R., and Dixon, R. (2001) Concerted inhibition of

the transcriptional activation functions of the enhancer-binding protein NIFA by the

anti-activator NIFL. Mol. Microbiol. 39: 480–93.

Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L., and Hedin,

L.O. (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest

soils. Nat. Geosci. 2: 42–45.

Baumgartner, J. and Faivre, D. (2015) Iron solubility, colloids and their impact on iron

(oxyhydr)oxide formation from solution. Earth-Science Rev. 150: 520–530.

Baysse, C., De Vos, D., Naudet, Y., Vandermonde, A., Ochsner, U., Meyer, J.M., et al.

(2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas

aeruginosa. Microbiology 146 ( Pt 1: 2425–34.

Bellenger, J.-P., Arnaud-Neu, F., Asfari, Z., Myneni, S.C.B., Stiefel, E.I., and Kraepiel,

A.M.L. (2007) Complexation of oxoanions and cationic metals by the biscatecholate

siderophore azotochelin. J. Biol. Inorg. Chem. JBIC a Publ. Soc. Biol. Inorg. Chem.

12: 367–376.

Page 156: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

156

Bellenger, J.P., Wichard, T., and Kraepiel, A.M.L. (2008) Vanadium requirements and

uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl.

Environ. Microbiol. 74: 1478–1484.

Bellenger, J.P., Wichard, T., Kustka, A.B., and Kraepiel, A.M.L. (2008) Uptake of

molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.

Nat. Geosci. 1: 243–246.

Bellenger, J.-P., Wichard, T., Xu, Y., and Kraepiel, A.M.L. (2011) Essential metals for

nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and

high use efficiency. Environ. Microbiol. 13: 1395–411.

Bennett, L.T., Cannon, F., and Dean, D.R. (1988) Nucleotide sequence and mutagenesis

of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2: 315–21.

Betancourt, D.A., Loveless, T.M., Brown, J.W., and Bishop, P.E. (2008) Characterization

of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse

Natural Environments. Appl. Environ. Microbiol. 74: 3471–3480.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1980) Evidence for an alternative

nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U. S. A. 77:

7342–7346.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1982) Expression of an alternative

nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 150: 1244–1251.

Blanco, G., Drummond, M., Woodley, P., and Kennedy, C. (1993) Sequence and

molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9:

869–79.

Boison, G., Steingen, C., Stal, L.J., and Bothe, H. (2006) The rice field cyanobacteria

Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase.

Arch. Microbiol. 186: 367–76.

Bothe, H., Schmitz, O., Yates, M.G., and Newton, W.E. (2010) Nitrogen fixation and

hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev. 74: 529–51.

Boyd, E.S., Hamilton, T.L., and Peters, J.W. (2011) An alternative path for the evolution

of biological nitrogen fixation. Front. Microbiol. 2: 205.

Branca, M., Micera, G., Sanna, D., and Dessì, A. (1990) Complexation of

oxovanadium(IV) by humic and tannic acids. J. Inorg. Biochem. 39: 109–115.

Brenchley, J.E., Prival, M.J., and Magasanik, B. (1973) Regulation of the synthesis of

enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem.

248: 6122–8.

Brigle, K.E., Newton, W.E., and Dean, D.R. (1985) Complete nucleotide sequence of the

Page 157: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

157

Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37: 37–44.

Burgess, B.K. and Lowe, D.J. (1996) Mechanism of Molybdenum Nitrogenase. Chem.

Rev. 96: 2983–3012.

Burns, R.C. and Hardy, R.W.F. (2012) Nitrogen Fixation in Bacteria and Higher Plants

Springer Science & Business Media.

Cech, T. V. (2010) Principles of Water Resources: History, Development, Management,

and Policy John Wiley & Sons.

Chatterjee, R., Allen, R.M., Ludden, P.W., and Shah, V.K. (1997) In vitro synthesis of the

iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase.

Effect of substitution of VNFH for NIFH. J. Biol. Chem. 272: 21604–21608.

Chisnell, J.R., Premakumar, R., and Bishop, P.E. (1988) Purification of a second

alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J.

Bacteriol. 170: 27–33.

Cornell, R.M. and Schwertmann, U. (2006) The Iron Oxides: Structure, Properties,

Reactions, Occurrences and Uses John Wiley & Sons.

Cornish, A. and Page, W. (1995) Production of the triacetecholate siderophore

protochelin by Azotobacter vinelandii. Biometals 8: 332–338.

Cornish, A.S. and Page, W.J. (2000) Role of molybdate and other transition metals in the

accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol.

66: 1580–1586.

Cornish, A.S. and Page, W.J. (1998) The catecholate siderophores of Azotobacter

vinelandii: their affinity for iron and role in oxygen stress management.

Microbiology 144: 1747–1754.

Crowley, D.E., Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J. (1991) Mechanisms of iron

acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179–

198.

Daccord, A., Mursell, M., Poulin-Laprade, D., and Burrus, V. (2012) Dynamics of the

SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by

Integrating Conjugative Elements of the SXT/R391 Family. J. Bacteriol. 194: 5794–

5802.

Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., and Bellenger, J.-P. (2014) Is

vanadium a biometal for boreal cyanolichens? New Phytol. 202: 765–71.

Darnajoux, R., Zhang, X., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel,

A.M.L., and Bellenger, J.-P. (2016) Biological nitrogen fixation by alternative

nitrogenases in boreal cyanolichens: importance of molybdenum availability and

Page 158: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

158

implications for current biological nitrogen fixation estimates. New Phytol.

Deicke, M., Bellenger, J.-P., and Wichard, T. (2013) Direct quantification of bacterial

molybdenum and iron metallophores with ultra-high-performance liquid

chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A

1298: 50–60.

Deicke, M., Mohr, J.F., Bellenger, J.-P., and Wichard, T. (2014) Metallophore mapping in

complex matrices by metal isotope coded profiling of organic ligands. Analyst 139:

6096–9.

Dilworth, M.J., Eady, R.R., Robson, R.L., and Miller, R.W. (1987) Ethane formation

from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:

167–168.

Dixon, R. (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component

regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Arch.

Microbiol. 169: 371–80.

Djibaoui, D. and Bensoltane, A. (2005) Effect of iron and growth inhibitors on

siderophores production by Pseudomonas fluorescens. African J. Biotechnol. 4: 697–

702.

Drummond, M., Walmsley, J., and Kennedy, C. (1996) Expression from the nifB

promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA

transcriptional activators. J. Bacteriol. 178: 788–92.

Duhme, A.-K., Dauter, Z., Hider, R.C., and Pohl, S. (1996) Complexation of

Molybdenum by Siderophores: Synthesis and Structure of the Double-Helical cis -

Dioxomolybdenum(VI) Complex of a Bis(catecholamide) Siderophore Analogue.

Inorg. Chem. 35: 3059–3061.

Duhme, A.-K., Hider, R.C., and Khodr, H.H. (1997) Synthesis and Iron-Binding

Properties of Protochelin, the Tris (catecholamide) Siderophore ofAzotobacter

vinelandii. Chem. Ber. 130: 969–973.

Duhme, A.-K., Hider, R.C., Naldrett, M.J., and Pau, R.N. (1998) The stability of the

molybdenum-azotochelin complex and its effect on siderophore production in

Azotobacter vinelandii. J. Biol. Inorg. Chem. 3: 520–526.

Duhme-Klair, A.-K. (2009) From siderophores and self-assembly to luminescent sensors:

the binding of molybdenum by catecholamides. Eur. J. Inorg. Chem. 2009: 3689–

3701.

Dyer, J.A., Trivedi, P., Scrivner, N.C., and Sparks, D.L. (2003) Lead sorpion onto

ferrihydrite. 2. Surface complexation modeling. Environ. Sci. Technol. 37: 915–22.

Page 159: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

159

Eady, R.R. (1996) Structure−Function Relationships of Alternative Nitrogenases. Chem.

Rev. 96: 3013–3030.

Eady, R.R., Robson, R.L., Richardson, T.H., Miller, R.W., and Hawkins, M. (1987) The

vanadium nitrogenase of Azotobacter chroococcum . Purification and properties of

the VFe protein. Biochem. J. 244: 197–207.

Einsle, O. (2014) Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J.

Biol. Inorg. Chem. 19: 737–45.

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., et

al. (2007) Global analysis of nitrogen and phosphorus limitation of primary

producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10: 1135–42.

Fenske, D., Gnida, M., Schneider, K., Meyer-Klaucke, W., Schemberg, J., Henschel, V.,

et al. (2005) A new type of metalloprotein: The Mo storage protein from Azotobacter

vinelandii contains a polynuclear molybdenum-oxide cluster. Chembiochem 6: 405–

413.

Frise, E., Green, A., and Drummond, M. (1994) Chimeric transcriptional activators

generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal

domain of AnfA is responsible for dependence on nitrogenase Fe protein. J.

Bacteriol. 176: 6545–9.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger,

S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:

153–226.

Glass, J.B., Axler, R.P., Chandra, S., and Goldman, C.R. (2012) Molybdenum limitation

of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front.

Microbiol. 3: 331.

Goldberg, S. and Forster, H.S. (1998) FACTORS AFFECTING MOLYBDENUM

ADSORPTION BY SOILS AND MINERALS. Soil Sci. 163: 109–114.

Goldberg, S., Forster, H.S., and Godfrey, C.L. (1996) Molybdenum Adsorption on

Oxides, Clay Minerals, and Soils. Soil Sci. Soc. Am. J. 60: 425.

Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J.N., et al. (2013) The role of

industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 3: 636–

639.

Hales, B.J., Langosch, D.J., and Case, E.E. (1986) Isolation and characterization of a

second nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 261:

15301–15306.

Hänsch, R. and Mendel, R.R. (2009) Physiological functions of mineral micronutrients

Page 160: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

160

(Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12: 259–266.

Hättenschwiler, S. and Vitousek, P. (2000) The role of polyphenols in terrestrial

ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.

Hemingway, R.W., Karchesy, J.J., and Branham, S.J. (1989) Chemistry and Significance

of Condensed Tannins Plenum Pre. Hemingway,R.W., Karchesy,J.J., and

Branham,S.J. (eds) Springer US, New York.

Hill, S., Austin, S., Eydmann, T., Jones, T., and Dixon, R. (1996) Azotobacter vinelandii

NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation

genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. U. S. A. 93: 2143–8.

Hinnemann, B. and Nørskov, J.K. (2004) Chemical activity of the nitrogenase FeMo

cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc.

126: 3920–7.

Hirschman, J., Wong, P.K., Sei, K., Keener, J., and Kustu, S. (1985) Products of nitrogen

regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in

vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. U. S. A.

82: 7525–9.

Hodkinson, B.P., Allen, J.L., Forrest, L.L., Goffinet, B., Sérusiaux, E., Andrésson, Ó.S.,

et al. (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an

alternative vanadium-dependent nitrogen fixation system. Eur. J. Phycol. 49: 11–19.

Hooper, D.U. and Johnson, L. (1999) Nitrogen limitation in dryland ecosystems:

Responses to geographical and temporal variation in precipitation. Biogeochemistry

46: 247–293.

Howard, J.B. and Rees, D.C. (2006) How many metals does it take to fix N2? A

mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. U. S. A.

103: 17088–93.

Howard, J.B. and Rees, D.C. (1996) Structural Basis of Biological Nitrogen Fixation.

Chem. Rev. 96: 2965–2982.

Hu, Y. and Ribbe, M.W. (2011) Biosynthesis of the Metalloclusters of Molybdenum

Nitrogenase. Microbiol. Mol. Biol. Rev. 75: 664–677.

Imperial, J., Hadi, M., and Amy, N.K. (1998) Molybdate binding by ModA, the

periplasmic component of the Escherichia coli mod molybdate transport system.

Biochim. Biophys. Acta 1370: 337–46.

Jacob, J. and Drummond, M. (1993) Construction of chimeric proteins from the ?; N -

associated transcriptional activators VnfA and AnfA of Azotobacter vinelandii

shows that the determinants of promoter specificity lie outside the’recognition'helix

Page 161: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

161

of the HTH motif in the C-terminal . Mol. Microbiol. 10: 813–821.

Jacobitz, S. and Bishop, P.E. (1992) Regulation of nitrogenase-2 in Azotobacter

vinelandii by ammonium, molybdenum, and vanadium. J. Bacteriol. 174: 3884–

3888.

Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L.,

et al. (1989) Physical and genetic map of the major nif gene cluster from Azotobacter

vinelandii. J. Bacteriol. 171: 1017–1027.

Jacobson, M.R., Premakumar, R., and Bishop, P.E. (1986) Transcriptional regulation of

nitrogen fixation by molybdenum in Azotobacter vinelandii. J. Bacteriol. 167: 480–

6.

Jean, M.-E., Phalyvong, K., Forest-Drolet, J., and Bellenger, J.-P. (2013) Molybdenum

and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern

Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem.

67: 140–146.

Jiang, H.-B., Lou, W.-J., Ke, W.-T., Song, W.-Y., Price, N.M., and Qiu, B.-S. (2015)

New insights into iron acquisition by cyanobacteria: an essential role for ExbB-

ExbD complex in inorganic iron uptake. ISME J. 9: 297–309.

Joerger, R.D., Jacobson, M.R., and Bishop, P.E. (1989) Two nifA-like genes required for

expression of alternative nitrogenases by Azotobacter vinelandii. J. Bacteriol. 171:

3258–67.

Joerger, R.D., Jacobson, M.R., Premakumar, R., Wolfinger, E.D., and Bishop, P.E. (1989)

Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for

the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 171:

1075–1086.

Joerger, R.D., Loveless, T.M., Pau, R.N., Mitchenall, L.A., Simon, B.H., and Bishop, P.E.

(1990) Nucleotide sequences and mutational analysis of the structural genes for

nitrogenase 2 of Azotobacter vinelandii. J. Bacteriol. 172: 3400–8.

Jouogo Noumsi, C., Pourhassan, N., Darnajoux, R., Deicke, M., Wichard, T., Burrus, V.,

and Bellenger, J.-P. (2016) Effect of organic matter on nitrogenase metal cofactors

homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ.

Microbiol. Rep. 8: 76–84.

Kabata-Pendias, A. (2010) Trace Elements in Soils and Plants, Fourth Edition CRC Press.

Keller, R.J., Coulombe, R.A., Sharma, R.P., Grover, T.A., and Piette, L.H. (1989)

Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.

Free Radic. Biol. Med. 6: 15–22.

Page 162: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

162

Kennedy, C. and Dean, D. (1992) The nifU, nifS and nifV gene products are required for

activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:

494–8.

Kirn, J. and Rees, D.C. (1992) Crystallographic structure and functional implications of

the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:

553–560.

Kooner, Z.S. (1993) Comparative study of adsorption behavior of copper, lead, and zinc

onto goethite in aqueous systems. Environ. Geol. 21: 242–250.

Kraemer, S.M. (2004) Iron oxide dissolution and solubility in the presence of

siderophores. Aquat. Sci. - Res. Across Boundaries 66: 3–18.

Kraemer, S.M., Duckworth, O.W., Harrington, J.M., and Schenkeveld, W.D.C. (2015)

Metallophores and Trace Metal Biogeochemistry. Aquat. Geochemistry 21: 159–195.

Kraepiel, A.M.L., Bellenger, J.P., Wichard, T., and Morel, F.M.M. (2009) Multiple roles

of siderophores in free-living nitrogen-fixing bacteria. Biometals an Int. J. role Met.

ions Biol. Biochem. Med. 22: 573–581.

Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J. (2003) Tannins in nutrient dynamics of

forest ecosystems - a review. Plant Soil 256: 41–66.

Kuiters, A.T. (1990) Role of phenolic substances from decomposing forest litter in plant-

soil interactions. Acta Bot. Neerl. 39: 329–348.

Lancaster, K.M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M.W., Neese, F., et al.

(2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase

iron-molybdenum cofactor. Science 334: 974–7.

Lane, T.W. and Morel, F.M. (2000) A biological function for cadmium in marine

diatoms. Proc. Natl. Acad. Sci. U. S. A. 97: 4627–31.

LeBauer, D.S. and Treseder, K.K. (2008) Nitrogen limitation of net primary productivity

in terrestrial ecosytems is globally distributed. Ecology 89: 371–379.

Lee, C.C., Hu, Y., and Ribbe, M.W. (2009) Unique features of the nitrogenase VFe

protein from Azotobacter vinelandii. Proc. Natl. Acad. Sci. 106: 9209–9214.

Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W.C., and Dixon, R. (2000)

Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is

influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein.

EMBO J. 19: 6041–50.

Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San

Diego Calif 25: 402–408.

Page 163: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

163

Loveless, T.M. and Bishop, P.E. (1999) Identification of genes unique to Mo-independent

nitrogenase systems in diverse diazotrophs. Can. J. Microbiol. 45: 312–317.

Loveless, T.M., Saah, J.R., and Bishop, P.E. (1999) Isolation of nitrogen-fixing bacteria

containing molybdenum-independent nitrogenases from natural environments. Appl.

Environ. Microbiol. 65: 4223–4226.

Lowe, D.J., Fisher, K., and Thorneley, R.N. (1993) Klebsiella pneumoniae nitrogenase:

pre-steady-state absorbance changes show that redox changes occur in the MoFe

protein that depend on substrate and component protein ratio; a role for P-centres in

reducing dinitrogen? Biochem. J. 292: 93–98.

Lu, X., Johnson, W.D., and Hook, J. (1998) Reaction of vanadate with aquatic humic

substances: an ESR and 51 V NMR study. Environ. Sci. Technol. 32: 2257–2263.

Luque, F., Mitchenall, L.A., Chapman, M., Christine, R., and Pau, R.N. (1993)

Characterization of genes involved in molybdenum transport in Azotobacter

vinelandii. Mol. Microbiol. 7: 447–59.

Luque, F. and Pau, R.N. (1991) Transcriptional regulation by metals of structural genes

for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227: 481–7.

Macaluso, A., Best, E.A., and Bender, R.A. (1990) Role of the nac gene product in the

nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J.

Bacteriol. 172: 7249–55.

Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., and Lerman, A. (2013) Interactions of

C, N, P and S Biogeochemical Cycles and Global Change Roland,W.,

Mackenzie,F.T., and Chou,L. (eds) Springer Science & Business Media.

Marks, J.A., Perakis, S.S., King, E.K., and Pett-Ridge, J. (2015) Soil organic matter

regulates molybdenum storage and mobility in forests. Biogeochemistry 125: 167–

183.

Martell, A.E. and Smith, R.M. (1989) Critical stability constants. Plenum Press, New

York.

Masepohl, B., Schneider, K., Drepper, T., Muller, A., and Klipp, W. (2002) Nitrogen

fixation at the millennium G.J.,L. (ed) Elsevier.

Masukawa, H., Zhang, X., Yamazaki, E., Iwata, S., Nakamura, K., Mochimaru, M., et al.

(2009) Survey of the distribution of different types of nitrogenases and hydrogenases

in heterocyst-forming cyanobacteria. Mar. Biotechnol. (NY). 11: 397–409.

May, H.D. and Dean, R.D. (1991) Altered nitrogenase MoFe proteins from Azotobacter

vinelandii. Analysis of MoFe proteins having amino acid substitutions for the

conserved cysteine residues within the beta-subunit. Biochem. J. 277 (Pt 2): 457–64.

Page 164: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

164

Meletzus, D., Rudnick, P., Doetsch, N., Green, A., and Kennedy, C. (1998)

Characterization of the glnK-amtB Operon of Azotobacter vinelandii. J. Bacteriol.

180: 3260–3264.

Merrick, M., Gibbins, J., and Toukdarian, A. (1987) The nucleotide sequence of the

sigma factor gene ntrA (rpoN) of Azotobacter vinelandii: analysis of conserved

sequences in NtrA proteins. Mol. Gen. Genet. 210: 323–30.

Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. (1982)

Repressor properties of the nifL gene product in Klebsiella pneumoniae. MGG Mol.

Gen. Genet. 185: 75–81.

Merrick, M.J. and Gibbins, J.R. (1985) The nucleotide sequence of the nitrogen-

regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved

features in bacterial RNA polymerase sigma factors. Nucleic Acids Res. 13: 7607–

20.

Miller, R.W. and Eady, R.R. (1988) Molybdenum and vanadium nitrogenases of

Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium

nitrogenase. Biochem. J. 256: 429–432.

Monteiro, R.A., Souza, E.M., Yates, M.G., Pedrosa, F.O., and Chubatsu, L.S. (1999) In-

trans regulation of the N-truncated-NIFA protein of Herbaspirillum seropedicae by

the N-terminal domain. FEMS Microbiol. Lett. 180: 157–61.

Morrison, C.N., Hoy, J.A., Zhang, L., Einsle, O., and Rees, D.C. (2015) Substrate

pathways in the nitrogenase MoFe protein by experimental identification of small

molecule binding sites. Biochemistry 54: 2052–60.

Moshiri, F., Kim, J.W., Fu, C., and Maier, R.J. (1994) The FeSII protein of Azotobacter

vinelandii is not essential for aerobic nitrogen fixation, but confers significant

protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol.

Microbiol. 14: 101–114.

Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1995) Mutational analysis of genes of

the mod locus involved in molybdenum transport, homeostasis, and processing in

Azotobacter vinelandii. J. Bacteriol. 177: 5294–302.

Moure, V.R., Costa, F.F., Cruz, L.M., Pedrosa, F.O., Souza, E.M., Li, X.-D., et al. (2015)

Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr. Top.

Microbiol. Immunol. 384: 89–106.

Nakajima, H., Takatani, N., Yoshimitsu, K., Itoh, M., Aono, S., Takahashi, Y., and

Watanabe, Y. (2010) The role of the Fe-S cluster in the sensory domain of

nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J.

277: 817–32.

Page 165: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

165

Noar, J.D. and Bruno-Bárcena, J.M. (2013) Complete Genome Sequences of Azotobacter

vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome

Announc. 1: e00313–13.

Nordlund, S. and Högbom, M. (2013) ADP-ribosylation, a mechanism regulating

nitrogenase activity. FEBS J. 280: 3484–90.

Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., and Hussain, I. (2013) Effect

of plant growth promoting rhizobacteria on root morphology of Safflower (

Carthamus tinctorius L.). African J. Biotechnol. 10: 12638–12649.

Oda, Y., Samanta, S.K., Rey, F.E., Wu, L., Liu, X., Yan, T., et al. (2005) Functional

genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium

Rhodopseudomonas palustris. J. Bacteriol. 187: 7784–94.

Oelze, J. (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely

held hypothesis unequivocally supported by experimental evidence? FEMS

Microbiol. Rev. 24: 321–333.

Page, W.J. and Huyer, M. (1984) Derepression of the Azotobacter vinelandii siderophore

system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 158: 496–

502.

Page, W.J. and von Tigerstrom, M. (1982) Iron- and molybdenum-repressible outer

membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151: 237–42.

Pau, R.N. (1989) Nitrogenases without molybdenum. Trends Biochem. Sci. 14: 183–6.

Peacock, C.L. and Sherman, D.M. (2004) Vanadium(V) adsorption onto goethite (α-

FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular

geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 68: 1723–1733.

Peters, J.W., Fisher, K., Newton, W.E., and Dean, D.R. (1995) Involvement of the P

Cluster in Intramolecular Electron Transfer within the Nitrogenase MoFe Protein. J.

Biol. Chem. 270: 27007–27013.

Pienkos, P.T. and Brill, W.J. (1981) Molybdenum accumulation and storage in Klebsiella

pneumoniae and Azotobacter vinelandii. J. Bacteriol. 145: 743–51.

Poledniok, J. (2003) Speciation of vanadium in soil. Talanta 59: 1–8.

Poulin-Laprade, D. and Burrus, V. (2015) A λ Cro-like repressor is essential for the

induction of conjugative transfer of SXT/R391 elements in response to DNA

damage. J. Bacteriol.

Pratte, B.S., Eplin, K., and Thiel, T. (2006) Cross-functionality of nitrogenase

components NifH1 and VnfH in Anabaena variabilis. J. Bacteriol. 188: 5806–5811.

Page 166: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

166

Pratte, B.S., Sheridan, R., James, J.A., and Thiel, T. (2013) Regulation of V-nitrogenase

genes in Anabaena variabilis by RNA processing and by dual repressors. Mol.

Microbiol. 88: 413–24.

Pratte, B.S. and Thiel, T. (2006) High-Affinity Vanadate Transport System in the

Cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 188: 464–468.

Premakumar, R., Loveless, T.M., and Bishop, P.E. (1994) Effect of amino acid

substitutions in a potential metal-binding site of AnfA on expression from the anfH

promoter in Azotobacter vinelandii. J. Bacteriol. 176: 6139–42.

Premakumar, R., Pau, R.N., Mitchenall, L.A., Easo, M., and Bishop, P.E. (1998)

Regulation of the transcriptional activators AnfA and VnfA by metals and

ammonium in Azotobacter vinelandii. FEMS Microbiol. Lett. 164: 63–68.

Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E. (2004) The natural

history of nitrogen fixation. Mol. Biol. Evol. 21: 541–54.

Reddy, K.J. and Gloss, S.P. (1993) Geochemical speciation as related to the mobility of F,

Mo and Se in soil leachates. Appl. Geochemistry 8: 159–163.

Reed, S.C., Cleveland, C.C., and Townsend, A.R. (2011) Functional ecology of free-

living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42:

489–512.

Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and

Howard, J.B. (2005) Structural basis of biological nitrogen fixation. Philos. Trans.

A. Math. Phys. Eng. Sci. 363: 971–84; discussion 1035–40.

Rees, D.C. and Howard, J.B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin.

Chem. Biol. 4: 559–566.

Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80: 133–136.

Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., and Lemanceau, P. (2008)

Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and

Nutrition. Adv. Agron. 99: 183–225.

Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M., and Postgate,

J.R. (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium

enzyme. Nature 322: 388–390.

Robson, R.L. and Postgate, J.R. (1980) Oxygen and hydrogen in biological nitrogen

fixation. Annu. Rev. Microbiol. 34: 183–207.

Rose, A.L. and Waite, T.D. (2003) Kinetics of Hydrolysis and Precipitation of Ferric Iron

in Seawater. Environ. Sci. Technol. 37: 3897–3903.

Page 167: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

167

Rubio, L.M. and Ludden, P.W. (2005) Maturation of nitrogenase: a biochemical puzzle.

J. Bacteriol. 187: 405–414.

Sandy, M. and Butler, A. (2009) Microbial iron acquisition: marine and terrestrial

siderophores. Chem. Rev. 109: 4580–95.

Dos Santos, P.C. and Dean, D.R. (2014) Iron-Sulfur Clusters in Chemistry and Biology

Rouault,T. (ed) Walter de Gruyter GmbH & Co KG, 2014.

Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., and Vahaboglu, H. (2003)

Expression stability of six housekeeping genes: a proposal for resistance gene

quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-

PCR. J. Med. Microbiol. 52: 403–408.

Sayyed, R.Z., Badgujar, M.D., Sonawane, H.M., Mhaske, M.M., and Chincholkar, S.B.

(2005) Production of microbial iron chelators (siderophores) by fluorescent

Pseudomonads. IJBT Vol.4(4) [October 2005].

Schlesinger, W.H. and Bernhardt, E.S. (2013) Biogeochemistry: An Analysis of Global

Change Academic Press.

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the

comparative CT method. Nat. Protoc. 3: 1101–1108.

Schmitz, R.A., Klopprogge, K., and Grabbe, R. (2002) Regulation of nitrogen fixation in

Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two

environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol.

Biotechnol. 4: 235–242.

Schneider, K., Müller, A., Schramm, U., and Klipp, W. (1991) Demonstration of a

molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant

of Rhodobacter capsulatus. Eur. J. Biochem. 195: 653–661.

Schwacha, A. and Bender, R.A. (1993) The nac (nitrogen assimilation control) gene from

Klebsiella aerogenes. J. Bacteriol. 175: 2107–15.

Seefeldt, L.C., Hoffman, B.M., and Dean, D.R. (2009) Mechanism of Mo-dependent

nitrogenase. Annu. Rev. Biochem. 78: 701–22.

Self, W.T., Grunden, A.M., Hasona, A., and Shanmugam, K.T. (2001) Molybdate

transport. Res. Microbiol. 152: 311–321.

Setubal, J.C., dos Santos, P., Goldman, B.S., Ertesvåg, H., Espin, G., Rubio, L.M., et al.

(2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized

to support diverse anaerobic metabolic processes. J. Bacteriol. 191: 4534–4545.

Shailendra Singh, G.G. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current

and Future Prospects for Development of Sustainable Agriculture. J. Microb.

Page 168: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

168

Biochem. Technol. 07.:

Shieh, C. and Duedall, I.W. (1988) Role of amorphous ferric oxyhydroxide in removal of

anthropogenic vanadium from seawater. Mar. Chem. 25: 121–139.

Silvester, W. (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of

Pacific Northwest America. Soil Biol. Biochem. 21: 283–289.

Slabbert, N. (2012) Plant Polyphenols: Synthesis, Properties, Significance. Complexation

of condensed tannins with metal ions. Hemingway,R.W. and Laks,P.E. (eds)

Springer Science & Business Media.

Souza, E.M., Pedrosa, F.O., Drummond, M., Rigo, L.U., and Yates, M.G. (1999) Control

of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J.

Bacteriol. 181: 681–4.

Steenhoudt, O. and Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing

bacterium closely associated with grasses: genetic, biochemical and ecological

aspects. FEMS Microbiol. Rev. 24: 487–506.

Stefánsson, A. (2007) Iron(III) Hydrolysis and Solubility at 25 °C. Environ. Sci. Technol.

41: 6117–6123.

Stevenson, F.J. and Cole, M.A. (Michael A.. (1999) Cycles of soil : carbon, nitrogen,

phosphorus, sulfur, micronutrients Wiley.

Stintzi, A., Barnes, C., Xu, J., and Raymond, K.N. (2000) Microbial iron transport via a

siderophore shuttle: a membrane ion transport paradigm. Proc. Natl. Acad. Sci. U. S.

A. 97: 10691–6.

Tang, D. and Morel, F.M.M. (2006) Distinguishing between cellular and Fe-oxide-

associated trace elements in phytoplankton. Mar. Chem. 98: 18–30.

Thiel, T. (1993) Characterization of genes for an alternative nitrogenase in the

cyanobacterium Anabaena variabilis. J. Bacteriol. 175: 6276–6286.

Thiel, T. and Pratte, B.S. (2013) Alternative nitrogenases in Anabaena variabilis: the role

of molybdate and vanadate in nitrogenase gene. Adv. Microbiol. 03: 87–95.

Thöny, B. and Hennecke, H. (1989) The -24/-12 promoter comes of age. FEMS

Microbiol. Rev. 5: 341–57.

Tindale, A.E., Mehrotra, M., Ottem, D., and Page, W.J. (2000) Dual regulation of

catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative

stress. Microbiology 146 ( Pt 7: 1617–26.

Toukdarian, A. and Kennedy, C. (1986) Regulation of nitrogen metabolism in

Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr

Page 169: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

169

mutants. EMBO J. 5: 399–407.

Villa, J.A., Ray, E.E., and Barney, B.M. (2014) Azotobacter vinelandii siderophore can

provide nitrogen to support the culture of the green algae Neochloris oleoabundans

and Scenedesmus sp. BA032. FEMS Microbiol. Lett. 351: 70–77.

Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea :

How can it occur? Biogeochemistry 13: 87–115.

Völker, C. and Wolf-Gladrow, D.A. (1999) Physical limits on iron uptake mediated by

siderophores or surface reductases. Mar. Chem. 65: 227–244.

Walmsley, J. and Kennedy, C. (1991) Temperature-Dependent Regulation by

Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three

Nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol. 57: 622–4.

Walmsley, J., Toukdarian, A., and Kennedy, C. (1994) The role of regulatory genes nifA,

vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three

nitrogenases of Azotobacter vinelandii. Arch. Microbiol. 162: 422–9.

Wanty, R.B. and Goldhaber, M.B. (1992) Thermodynamics and kinetics of reactions

involving vanadium in natural systems: Accumulation of vanadium in sedimentary

rocks. Geochim. Cosmochim. Acta 56: 1471–1483.

Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim.

Acta 59: 1217–1232.

Wichard, T., Bellenger, J.-P., Morel, F.M.M., and Kraepiel, A.M.L. (2009) Role of the

siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors.

Environ. Sci. Technol. 43: 7218–7224.

Wichard, T., Mishra, B., Myneni, S.C.B., Bellenger, J.-P., and Kraepiel, A.M.L. (2009)

Storage and bioavailability of molybdenum in soils increased by organic matter

complexation. Nat. Geosci. 2: 625–629.

Wilhelm, S.W. and Trick, C.G. (1994) Iron-limited growth of cyanobacteria: Multiple

siderophore production is a common response. Limnol. Oceanogr. 39: 1979–1984.

Woodley, P., Buck, M., and Kennedy, C. (1996) Identification of sequences important for

recognition of vnf genes by the VnfA transcriptional activator in Azotobacter

vinelandii. FEMS Microbiol. Lett. 135: 213–21.

Xu, N., Christodoulatos, C., and Braida, W. (2006) Adsorption of molybdate and

tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.

Chemosphere 62: 1726–35.

Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M.M. (2008) Structure and metal

exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452: 56–61.

Page 170: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

170

Yoshimitsu, K., Takatani, N., Miura, Y., Watanabe, Y., and Nakajima, H. (2011) The role

of the GAF and central domains of the transcriptional activator VnfA in Azotobacter

vinelandii. FEBS J. 278: 3287–97.

Zhang, X., McRose, D.L., Darnajoux, R., Bellenger, J.P., Morel, F.M.M., and Kraepiel,

A.M.L. (2016) Alternative nitrogenase activity in the environment and nitrogen

cycle implications. Biogeochemistry 127: 189–198.

Page 171: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

171

BIBLIOGRAPHIE

Abdel-Gawad, F.M. and Issa, R.M. (1986) Spectrometric determination of vanadium (V)

with tannic acid and its application to biological fluids. Ind. J. Chem. 25: 701-702.

Ind. J. Chem. 25: 701–702.

Ahmad, F., Ahmad, I., and Khan, M.S. (2008) Screening of free-living rhizospheric

bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:

173–81.

Ahmed, E. and Holmström, S.J.M. (2014) Siderophores in environmental research: roles

and applications. Microb. Biotechnol. 7: 196–208.

Alloway, B. (2013) Heavy metals in soils Third. Alloway,B.J. (ed).

Austin, S. and Lambert, J. (1994) Purification and in vitro activity of a truncated form of

ANFA. Transcriptional activator protein of alternative nitrogenase from Azotobacter

vinelandii. J. Biol. Chem. 269: 18141–8.

Baars, O., Zhang, X., Morel, F.M.M., and Seyedsayamdost, M.R. (2016) The Siderophore

Metabolome of Azotobacter vinelandii. Appl. Environ. Microbiol. 82: 27–39.

Bageshwar, U.K., Choudhury, N.R., and Das, H.K. (1998) Analysis of upstream

activation of the vnfH promoter of Azotobacter vinelandii - ProQuest. Can. J.

Microbiol. 44.:

Barrett, J., Ray, P., Sobczyk, A., Little, R., and Dixon, R. (2001) Concerted inhibition of

the transcriptional activation functions of the enhancer-binding protein NIFA by the

anti-activator NIFL. Mol. Microbiol. 39: 480–93.

Barron, A.R., Wurzburger, N., Bellenger, J.P., Wright, S.J., Kraepiel, A.M.L., and Hedin,

L.O. (2009) Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest

soils. Nat. Geosci. 2: 42–45.

Baumgartner, J. and Faivre, D. (2015) Iron solubility, colloids and their impact on iron

(oxyhydr)oxide formation from solution. Earth-Science Rev. 150: 520–530.

Baysse, C., De Vos, D., Naudet, Y., Vandermonde, A., Ochsner, U., Meyer, J.M., et al.

(2000) Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas

aeruginosa. Microbiology 146 ( Pt 1: 2425–34.

Bellenger, J.-P., Arnaud-Neu, F., Asfari, Z., Myneni, S.C.B., Stiefel, E.I., and Kraepiel,

Page 172: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

172

A.M.L. (2007) Complexation of oxoanions and cationic metals by the biscatecholate

siderophore azotochelin. J. Biol. Inorg. Chem. JBIC a Publ. Soc. Biol. Inorg. Chem.

12: 367–376.

Bellenger, J.P., Wichard, T., and Kraepiel, A.M.L. (2008) Vanadium requirements and

uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl.

Environ. Microbiol. 74: 1478–1484.

Bellenger, J.P., Wichard, T., Kustka, A.B., and Kraepiel, A.M.L. (2008) Uptake of

molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores.

Nat. Geosci. 1: 243–246.

Bellenger, J.-P., Wichard, T., Xu, Y., and Kraepiel, A.M.L. (2011) Essential metals for

nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and

high use efficiency. Environ. Microbiol. 13: 1395–411.

Bennett, L.T., Cannon, F., and Dean, D.R. (1988) Nucleotide sequence and mutagenesis

of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2: 315–21.

Betancourt, D.A., Loveless, T.M., Brown, J.W., and Bishop, P.E. (2008) Characterization

of Diazotrophs Containing Mo-Independent Nitrogenases, Isolated from Diverse

Natural Environments. Appl. Environ. Microbiol. 74: 3471–3480.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1980) Evidence for an alternative

nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U. S. A. 77:

7342–7346.

Bishop, P.E., Jarlenski, D.M., and Hetherington, D.R. (1982) Expression of an alternative

nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 150: 1244–1251.

Blanco, G., Drummond, M., Woodley, P., and Kennedy, C. (1993) Sequence and

molecular analysis of the nifL gene of Azotobacter vinelandii. Mol. Microbiol. 9:

869–79.

Boison, G., Steingen, C., Stal, L.J., and Bothe, H. (2006) The rice field cyanobacteria

Anabaena azotica and Anabaena sp. CH1 express vanadium-dependent nitrogenase.

Arch. Microbiol. 186: 367–76.

Bothe, H., Schmitz, O., Yates, M.G., and Newton, W.E. (2010) Nitrogen fixation and

hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev. 74: 529–51.

Boyd, E.S., Hamilton, T.L., and Peters, J.W. (2011) An alternative path for the evolution

of biological nitrogen fixation. Front. Microbiol. 2: 205.

Branca, M., Micera, G., Sanna, D., and Dessì, A. (1990) Complexation of

oxovanadium(IV) by humic and tannic acids. J. Inorg. Biochem. 39: 109–115.

Brenchley, J.E., Prival, M.J., and Magasanik, B. (1973) Regulation of the synthesis of

Page 173: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

173

enzymes responsible for glutamate formation in Klebsiella aerogenes. J. Biol. Chem.

248: 6122–8.

Brigle, K.E., Newton, W.E., and Dean, D.R. (1985) Complete nucleotide sequence of the

Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37: 37–44.

Burgess, B.K. and Lowe, D.J. (1996) Mechanism of Molybdenum Nitrogenase. Chem.

Rev. 96: 2983–3012.

Burns, R.C. and Hardy, R.W.F. (2012) Nitrogen Fixation in Bacteria and Higher Plants

Springer Science & Business Media.

Cech, T. V. (2010) Principles of Water Resources: History, Development, Management,

and Policy John Wiley & Sons.

Chatterjee, R., Allen, R.M., Ludden, P.W., and Shah, V.K. (1997) In vitro synthesis of the

iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase.

Effect of substitution of VNFH for NIFH. J. Biol. Chem. 272: 21604–21608.

Chisnell, J.R., Premakumar, R., and Bishop, P.E. (1988) Purification of a second

alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J.

Bacteriol. 170: 27–33.

Cornell, R.M. and Schwertmann, U. (2006) The Iron Oxides: Structure, Properties,

Reactions, Occurrences and Uses John Wiley & Sons.

Cornish, A. and Page, W. (1995) Production of the triacetecholate siderophore

protochelin by Azotobacter vinelandii. Biometals 8: 332–338.

Cornish, A.S. and Page, W.J. (2000) Role of molybdate and other transition metals in the

accumulation of protochelin by Azotobacter vinelandii. Appl. Environ. Microbiol.

66: 1580–1586.

Cornish, A.S. and Page, W.J. (1998) The catecholate siderophores of Azotobacter

vinelandii: their affinity for iron and role in oxygen stress management.

Microbiology 144: 1747–1754.

Crowley, D.E., Wang, Y.C., Reid, C.P.P., and Szaniszlo, P.J. (1991) Mechanisms of iron

acquisition from siderophores by microorganisms and plants. Plant Soil 130: 179–

198.

Daccord, A., Mursell, M., Poulin-Laprade, D., and Burrus, V. (2012) Dynamics of the

SetCD-Regulated Integration and Excision of Genomic Islands Mobilized by

Integrating Conjugative Elements of the SXT/R391 Family. J. Bacteriol. 194: 5794–

5802.

Darnajoux, R., Constantin, J., Miadlikowska, J., Lutzoni, F., and Bellenger, J.-P. (2014) Is

vanadium a biometal for boreal cyanolichens? New Phytol. 202: 765–71.

Page 174: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

174

Darnajoux, R., Zhang, X., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel,

A.M.L., and Bellenger, J.-P. (2016) Biological nitrogen fixation by alternative

nitrogenases in boreal cyanolichens: importance of molybdenum availability and

implications for current biological nitrogen fixation estimates. New Phytol.

Deicke, M., Bellenger, J.-P., and Wichard, T. (2013) Direct quantification of bacterial

molybdenum and iron metallophores with ultra-high-performance liquid

chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A

1298: 50–60.

Deicke, M., Mohr, J.F., Bellenger, J.-P., and Wichard, T. (2014) Metallophore mapping in

complex matrices by metal isotope coded profiling of organic ligands. Analyst 139:

6096–9.

Dilworth, M.J., Eady, R.R., Robson, R.L., and Miller, R.W. (1987) Ethane formation

from acetylene as a potential test for vanadium nitrogenase in vivo. Nature 327:

167–168.

Dixon, R. (1998) The oxygen-responsive NIFL-NIFA complex: a novel two-component

regulatory system controlling nitrogenase synthesis in gamma-proteobacteria. Arch.

Microbiol. 169: 371–80.

Djibaoui, D. and Bensoltane, A. (2005) Effect of iron and growth inhibitors on

siderophores production by Pseudomonas fluorescens. African J. Biotechnol. 4: 697–

702.

Drummond, M., Walmsley, J., and Kennedy, C. (1996) Expression from the nifB

promoter of Azotobacter vinelandii can be activated by NifA, VnfA, or AnfA

transcriptional activators. J. Bacteriol. 178: 788–92.

Duhme, A.-K., Dauter, Z., Hider, R.C., and Pohl, S. (1996) Complexation of

Molybdenum by Siderophores: Synthesis and Structure of the Double-Helical cis -

Dioxomolybdenum(VI) Complex of a Bis(catecholamide) Siderophore Analogue.

Inorg. Chem. 35: 3059–3061.

Duhme, A.-K., Hider, R.C., and Khodr, H.H. (1997) Synthesis and Iron-Binding

Properties of Protochelin, the Tris (catecholamide) Siderophore ofAzotobacter

vinelandii. Chem. Ber. 130: 969–973.

Duhme, A.-K., Hider, R.C., Naldrett, M.J., and Pau, R.N. (1998) The stability of the

molybdenum-azotochelin complex and its effect on siderophore production in

Azotobacter vinelandii. J. Biol. Inorg. Chem. 3: 520–526.

Duhme-Klair, A.-K. (2009) From siderophores and self-assembly to luminescent sensors:

the binding of molybdenum by catecholamides. Eur. J. Inorg. Chem. 2009: 3689–

3701.

Page 175: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

175

Dyer, J.A., Trivedi, P., Scrivner, N.C., and Sparks, D.L. (2003) Lead sorpion onto

ferrihydrite. 2. Surface complexation modeling. Environ. Sci. Technol. 37: 915–22.

Eady, R.R. (1996) Structure−Function Relationships of Alternative Nitrogenases. Chem.

Rev. 96: 3013–3030.

Eady, R.R., Robson, R.L., Richardson, T.H., Miller, R.W., and Hawkins, M. (1987) The

vanadium nitrogenase of Azotobacter chroococcum . Purification and properties of

the VFe protein. Biochem. J. 244: 197–207.

Einsle, O. (2014) Nitrogenase FeMo cofactor: an atomic structure in three simple steps. J.

Biol. Inorg. Chem. 19: 737–45.

Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H., et

al. (2007) Global analysis of nitrogen and phosphorus limitation of primary

producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10: 1135–42.

Fenske, D., Gnida, M., Schneider, K., Meyer-Klaucke, W., Schemberg, J., Henschel, V.,

et al. (2005) A new type of metalloprotein: The Mo storage protein from Azotobacter

vinelandii contains a polynuclear molybdenum-oxide cluster. Chembiochem 6: 405–

413.

Frise, E., Green, A., and Drummond, M. (1994) Chimeric transcriptional activators

generated in vivo from VnfA and AnfA of Azotobacter vinelandii: N-terminal

domain of AnfA is responsible for dependence on nitrogenase Fe protein. J.

Bacteriol. 176: 6545–9.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger,

S.P., et al. (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:

153–226.

Glass, J.B., Axler, R.P., Chandra, S., and Goldman, C.R. (2012) Molybdenum limitation

of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Front.

Microbiol. 3: 331.

Goldberg, S. and Forster, H.S. (1998) FACTORS AFFECTING MOLYBDENUM

ADSORPTION BY SOILS AND MINERALS. Soil Sci. 163: 109–114.

Goldberg, S., Forster, H.S., and Godfrey, C.L. (1996) Molybdenum Adsorption on

Oxides, Clay Minerals, and Soils. Soil Sci. Soc. Am. J. 60: 425.

Gu, B., Chang, J., Min, Y., Ge, Y., Zhu, Q., Galloway, J.N., et al. (2013) The role of

industrial nitrogen in the global nitrogen biogeochemical cycle. Sci. Rep. 3: 636–

639.

Hales, B.J., Langosch, D.J., and Case, E.E. (1986) Isolation and characterization of a

second nitrogenase Fe-protein from Azotobacter vinelandii. J. Biol. Chem. 261:

Page 176: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

176

15301–15306.

Hänsch, R. and Mendel, R.R. (2009) Physiological functions of mineral micronutrients

(Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12: 259–266.

Hättenschwiler, S. and Vitousek, P. (2000) The role of polyphenols in terrestrial

ecosystem nutrient cycling. Trends Ecol. Evol. 15: 238–243.

Hemingway, R.W., Karchesy, J.J., and Branham, S.J. (1989) Chemistry and Significance

of Condensed Tannins Plenum Pre. Hemingway,R.W., Karchesy,J.J., and

Branham,S.J. (eds) Springer US, New York.

Hill, S., Austin, S., Eydmann, T., Jones, T., and Dixon, R. (1996) Azotobacter vinelandii

NIFL is a flavoprotein that modulates transcriptional activation of nitrogen-fixation

genes via a redox-sensitive switch. Proc. Natl. Acad. Sci. U. S. A. 93: 2143–8.

Hinnemann, B. and Nørskov, J.K. (2004) Chemical activity of the nitrogenase FeMo

cofactor with a central nitrogen ligand: density functional study. J. Am. Chem. Soc.

126: 3920–7.

Hirschman, J., Wong, P.K., Sei, K., Keener, J., and Kustu, S. (1985) Products of nitrogen

regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in

vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. U. S. A.

82: 7525–9.

Hodkinson, B.P., Allen, J.L., Forrest, L.L., Goffinet, B., Sérusiaux, E., Andrésson, Ó.S.,

et al. (2014) Lichen-symbiotic cyanobacteria associated with Peltigera have an

alternative vanadium-dependent nitrogen fixation system. Eur. J. Phycol. 49: 11–19.

Hooper, D.U. and Johnson, L. (1999) Nitrogen limitation in dryland ecosystems:

Responses to geographical and temporal variation in precipitation. Biogeochemistry

46: 247–293.

Howard, J.B. and Rees, D.C. (2006) How many metals does it take to fix N2? A

mechanistic overview of biological nitrogen fixation. Proc. Natl. Acad. Sci. U. S. A.

103: 17088–93.

Howard, J.B. and Rees, D.C. (1996) Structural Basis of Biological Nitrogen Fixation.

Chem. Rev. 96: 2965–2982.

Hu, Y. and Ribbe, M.W. (2011) Biosynthesis of the Metalloclusters of Molybdenum

Nitrogenase. Microbiol. Mol. Biol. Rev. 75: 664–677.

Imperial, J., Hadi, M., and Amy, N.K. (1998) Molybdate binding by ModA, the

periplasmic component of the Escherichia coli mod molybdate transport system.

Biochim. Biophys. Acta 1370: 337–46.

Jacob, J. and Drummond, M. (1993) Construction of chimeric proteins from the ?; N -

Page 177: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

177

associated transcriptional activators VnfA and AnfA of Azotobacter vinelandii

shows that the determinants of promoter specificity lie outside the’recognition'helix

of the HTH motif in the C-terminal . Mol. Microbiol. 10: 813–821.

Jacobitz, S. and Bishop, P.E. (1992) Regulation of nitrogenase-2 in Azotobacter

vinelandii by ammonium, molybdenum, and vanadium. J. Bacteriol. 174: 3884–

3888.

Jacobson, M.R., Brigle, K.E., Bennett, L.T., Setterquist, R.A., Wilson, M.S., Cash, V.L.,

et al. (1989) Physical and genetic map of the major nif gene cluster from Azotobacter

vinelandii. J. Bacteriol. 171: 1017–1027.

Jacobson, M.R., Premakumar, R., and Bishop, P.E. (1986) Transcriptional regulation of

nitrogen fixation by molybdenum in Azotobacter vinelandii. J. Bacteriol. 167: 480–

6.

Jean, M.-E., Phalyvong, K., Forest-Drolet, J., and Bellenger, J.-P. (2013) Molybdenum

and phosphorus limitation of asymbiotic nitrogen fixation in forests of Eastern

Canada: Influence of vegetative cover and seasonal variability. Soil Biol. Biochem.

67: 140–146.

Jiang, H.-B., Lou, W.-J., Ke, W.-T., Song, W.-Y., Price, N.M., and Qiu, B.-S. (2015)

New insights into iron acquisition by cyanobacteria: an essential role for ExbB-

ExbD complex in inorganic iron uptake. ISME J. 9: 297–309.

Joerger, R.D., Jacobson, M.R., and Bishop, P.E. (1989) Two nifA-like genes required for

expression of alternative nitrogenases by Azotobacter vinelandii. J. Bacteriol. 171:

3258–67.

Joerger, R.D., Jacobson, M.R., Premakumar, R., Wolfinger, E.D., and Bishop, P.E. (1989)

Nucleotide sequence and mutational analysis of the structural genes (anfHDGK) for

the second alternative nitrogenase from Azotobacter vinelandii. J. Bacteriol. 171:

1075–1086.

Joerger, R.D., Loveless, T.M., Pau, R.N., Mitchenall, L.A., Simon, B.H., and Bishop, P.E.

(1990) Nucleotide sequences and mutational analysis of the structural genes for

nitrogenase 2 of Azotobacter vinelandii. J. Bacteriol. 172: 3400–8.

Jouogo Noumsi, C., Pourhassan, N., Darnajoux, R., Deicke, M., Wichard, T., Burrus, V.,

and Bellenger, J.-P. (2016) Effect of organic matter on nitrogenase metal cofactors

homeostasis in Azotobacter vinelandii under diazotrophic conditions. Environ.

Microbiol. Rep. 8: 76–84.

Kabata-Pendias, A. (2010) Trace Elements in Soils and Plants, Fourth Edition CRC Press.

Keller, R.J., Coulombe, R.A., Sharma, R.P., Grover, T.A., and Piette, L.H. (1989)

Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.

Page 178: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

178

Free Radic. Biol. Med. 6: 15–22.

Kennedy, C. and Dean, D. (1992) The nifU, nifS and nifV gene products are required for

activity of all three nitrogenases of Azotobacter vinelandii. Mol. Gen. Genet. 231:

494–8.

Kirn, J. and Rees, D.C. (1992) Crystallographic structure and functional implications of

the nitrogenase molybdenum–iron protein from Azotobacter vinelandii. Nature 360:

553–560.

Kooner, Z.S. (1993) Comparative study of adsorption behavior of copper, lead, and zinc

onto goethite in aqueous systems. Environ. Geol. 21: 242–250.

Kraemer, S.M. (2004) Iron oxide dissolution and solubility in the presence of

siderophores. Aquat. Sci. - Res. Across Boundaries 66: 3–18.

Kraemer, S.M., Duckworth, O.W., Harrington, J.M., and Schenkeveld, W.D.C. (2015)

Metallophores and Trace Metal Biogeochemistry. Aquat. Geochemistry 21: 159–195.

Kraepiel, A.M.L., Bellenger, J.P., Wichard, T., and Morel, F.M.M. (2009) Multiple roles

of siderophores in free-living nitrogen-fixing bacteria. Biometals an Int. J. role Met.

ions Biol. Biochem. Med. 22: 573–581.

Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J. (2003) Tannins in nutrient dynamics of

forest ecosystems - a review. Plant Soil 256: 41–66.

Kuiters, A.T. (1990) Role of phenolic substances from decomposing forest litter in plant-

soil interactions. Acta Bot. Neerl. 39: 329–348.

Lancaster, K.M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M.W., Neese, F., et al.

(2011) X-ray emission spectroscopy evidences a central carbon in the nitrogenase

iron-molybdenum cofactor. Science 334: 974–7.

Lane, T.W. and Morel, F.M. (2000) A biological function for cadmium in marine

diatoms. Proc. Natl. Acad. Sci. U. S. A. 97: 4627–31.

LeBauer, D.S. and Treseder, K.K. (2008) Nitrogen limitation of net primary productivity

in terrestrial ecosytems is globally distributed. Ecology 89: 371–379.

Lee, C.C., Hu, Y., and Ribbe, M.W. (2009) Unique features of the nitrogenase VFe

protein from Azotobacter vinelandii. Proc. Natl. Acad. Sci. 106: 9209–9214.

Little, R., Reyes-Ramirez, F., Zhang, Y., van Heeswijk, W.C., and Dixon, R. (2000)

Signal transduction to the Azotobacter vinelandii NIFL-NIFA regulatory system is

influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein.

EMBO J. 19: 6041–50.

Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using

Page 179: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

179

real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San

Diego Calif 25: 402–408.

Loveless, T.M. and Bishop, P.E. (1999) Identification of genes unique to Mo-independent

nitrogenase systems in diverse diazotrophs. Can. J. Microbiol. 45: 312–317.

Loveless, T.M., Saah, J.R., and Bishop, P.E. (1999) Isolation of nitrogen-fixing bacteria

containing molybdenum-independent nitrogenases from natural environments. Appl.

Environ. Microbiol. 65: 4223–4226.

Lowe, D.J., Fisher, K., and Thorneley, R.N. (1993) Klebsiella pneumoniae nitrogenase:

pre-steady-state absorbance changes show that redox changes occur in the MoFe

protein that depend on substrate and component protein ratio; a role for P-centres in

reducing dinitrogen? Biochem. J. 292: 93–98.

Lu, X., Johnson, W.D., and Hook, J. (1998) Reaction of vanadate with aquatic humic

substances: an ESR and 51 V NMR study. Environ. Sci. Technol. 32: 2257–2263.

Luque, F., Mitchenall, L.A., Chapman, M., Christine, R., and Pau, R.N. (1993)

Characterization of genes involved in molybdenum transport in Azotobacter

vinelandii. Mol. Microbiol. 7: 447–59.

Luque, F. and Pau, R.N. (1991) Transcriptional regulation by metals of structural genes

for Azotobacter vinelandii nitrogenases. Mol. Gen. Genet. 227: 481–7.

Macaluso, A., Best, E.A., and Bender, R.A. (1990) Role of the nac gene product in the

nitrogen regulation of some NTR-regulated operons of Klebsiella aerogenes. J.

Bacteriol. 172: 7249–55.

Mackenzie, F.T., Ver, L.M., Sabine, C., Lane, M., and Lerman, A. (2013) Interactions of

C, N, P and S Biogeochemical Cycles and Global Change Roland,W.,

Mackenzie,F.T., and Chou,L. (eds) Springer Science & Business Media.

Marks, J.A., Perakis, S.S., King, E.K., and Pett-Ridge, J. (2015) Soil organic matter

regulates molybdenum storage and mobility in forests. Biogeochemistry 125: 167–

183.

Martell, A.E. and Smith, R.M. (1989) Critical stability constants. Plenum Press, New

York.

Masepohl, B., Schneider, K., Drepper, T., Muller, A., and Klipp, W. (2002) Nitrogen

fixation at the millennium G.J.,L. (ed) Elsevier.

Masukawa, H., Zhang, X., Yamazaki, E., Iwata, S., Nakamura, K., Mochimaru, M., et al.

(2009) Survey of the distribution of different types of nitrogenases and hydrogenases

in heterocyst-forming cyanobacteria. Mar. Biotechnol. (NY). 11: 397–409.

May, H.D. and Dean, R.D. (1991) Altered nitrogenase MoFe proteins from Azotobacter

Page 180: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

180

vinelandii. Analysis of MoFe proteins having amino acid substitutions for the

conserved cysteine residues within the beta-subunit. Biochem. J. 277 (Pt 2): 457–64.

Meletzus, D., Rudnick, P., Doetsch, N., Green, A., and Kennedy, C. (1998)

Characterization of the glnK-amtB Operon of Azotobacter vinelandii. J. Bacteriol.

180: 3260–3264.

Merrick, M., Gibbins, J., and Toukdarian, A. (1987) The nucleotide sequence of the

sigma factor gene ntrA (rpoN) of Azotobacter vinelandii: analysis of conserved

sequences in NtrA proteins. Mol. Gen. Genet. 210: 323–30.

Merrick, M., Hill, S., Hennecke, H., Hahn, M., Dixon, R., and Kennedy, C. (1982)

Repressor properties of the nifL gene product in Klebsiella pneumoniae. MGG Mol.

Gen. Genet. 185: 75–81.

Merrick, M.J. and Gibbins, J.R. (1985) The nucleotide sequence of the nitrogen-

regulation gene ntrA of Klebsiella pneumoniae and comparison with conserved

features in bacterial RNA polymerase sigma factors. Nucleic Acids Res. 13: 7607–

20.

Miller, R.W. and Eady, R.R. (1988) Molybdenum and vanadium nitrogenases of

Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium

nitrogenase. Biochem. J. 256: 429–432.

Monteiro, R.A., Souza, E.M., Yates, M.G., Pedrosa, F.O., and Chubatsu, L.S. (1999) In-

trans regulation of the N-truncated-NIFA protein of Herbaspirillum seropedicae by

the N-terminal domain. FEMS Microbiol. Lett. 180: 157–61.

Morrison, C.N., Hoy, J.A., Zhang, L., Einsle, O., and Rees, D.C. (2015) Substrate

pathways in the nitrogenase MoFe protein by experimental identification of small

molecule binding sites. Biochemistry 54: 2052–60.

Moshiri, F., Kim, J.W., Fu, C., and Maier, R.J. (1994) The FeSII protein of Azotobacter

vinelandii is not essential for aerobic nitrogen fixation, but confers significant

protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo. Mol.

Microbiol. 14: 101–114.

Mouncey, N.J., Mitchenall, L.A., and Pau, R.N. (1995) Mutational analysis of genes of

the mod locus involved in molybdenum transport, homeostasis, and processing in

Azotobacter vinelandii. J. Bacteriol. 177: 5294–302.

Moure, V.R., Costa, F.F., Cruz, L.M., Pedrosa, F.O., Souza, E.M., Li, X.-D., et al. (2015)

Regulation of nitrogenase by reversible mono-ADP-ribosylation. Curr. Top.

Microbiol. Immunol. 384: 89–106.

Nakajima, H., Takatani, N., Yoshimitsu, K., Itoh, M., Aono, S., Takahashi, Y., and

Watanabe, Y. (2010) The role of the Fe-S cluster in the sensory domain of

Page 181: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

181

nitrogenase transcriptional activator VnfA from Azotobacter vinelandii. FEBS J.

277: 817–32.

Noar, J.D. and Bruno-Bárcena, J.M. (2013) Complete Genome Sequences of Azotobacter

vinelandii Wild-Type Strain CA and Tungsten-Tolerant Mutant Strain CA6. Genome

Announc. 1: e00313–13.

Nordlund, S. and Högbom, M. (2013) ADP-ribosylation, a mechanism regulating

nitrogenase activity. FEBS J. 280: 3484–90.

Nosheen, A., Bano, A., Ullah, F., Farooq, U., Yasmin, H., and Hussain, I. (2013) Effect

of plant growth promoting rhizobacteria on root morphology of Safflower (

Carthamus tinctorius L.). African J. Biotechnol. 10: 12638–12649.

Oda, Y., Samanta, S.K., Rey, F.E., Wu, L., Liu, X., Yan, T., et al. (2005) Functional

genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium

Rhodopseudomonas palustris. J. Bacteriol. 187: 7784–94.

Oelze, J. (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely

held hypothesis unequivocally supported by experimental evidence? FEMS

Microbiol. Rev. 24: 321–333.

Page, W.J. and Huyer, M. (1984) Derepression of the Azotobacter vinelandii siderophore

system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 158: 496–

502.

Page, W.J. and von Tigerstrom, M. (1982) Iron- and molybdenum-repressible outer

membrane proteins in competent Azotobacter vinelandii. J. Bacteriol. 151: 237–42.

Pau, R.N. (1989) Nitrogenases without molybdenum. Trends Biochem. Sci. 14: 183–6.

Peacock, C.L. and Sherman, D.M. (2004) Vanadium(V) adsorption onto goethite (α-

FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular

geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 68: 1723–1733.

Peters, J.W., Fisher, K., Newton, W.E., and Dean, D.R. (1995) Involvement of the P

Cluster in Intramolecular Electron Transfer within the Nitrogenase MoFe Protein. J.

Biol. Chem. 270: 27007–27013.

Pienkos, P.T. and Brill, W.J. (1981) Molybdenum accumulation and storage in Klebsiella

pneumoniae and Azotobacter vinelandii. J. Bacteriol. 145: 743–51.

Poledniok, J. (2003) Speciation of vanadium in soil. Talanta 59: 1–8.

Poulin-Laprade, D. and Burrus, V. (2015) A λ Cro-like repressor is essential for the

induction of conjugative transfer of SXT/R391 elements in response to DNA

damage. J. Bacteriol.

Page 182: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

182

Pratte, B.S., Eplin, K., and Thiel, T. (2006) Cross-functionality of nitrogenase

components NifH1 and VnfH in Anabaena variabilis. J. Bacteriol. 188: 5806–5811.

Pratte, B.S., Sheridan, R., James, J.A., and Thiel, T. (2013) Regulation of V-nitrogenase

genes in Anabaena variabilis by RNA processing and by dual repressors. Mol.

Microbiol. 88: 413–24.

Pratte, B.S. and Thiel, T. (2006) High-Affinity Vanadate Transport System in the

Cyanobacterium Anabaena variabilis ATCC 29413. J. Bacteriol. 188: 464–468.

Premakumar, R., Loveless, T.M., and Bishop, P.E. (1994) Effect of amino acid

substitutions in a potential metal-binding site of AnfA on expression from the anfH

promoter in Azotobacter vinelandii. J. Bacteriol. 176: 6139–42.

Premakumar, R., Pau, R.N., Mitchenall, L.A., Easo, M., and Bishop, P.E. (1998)

Regulation of the transcriptional activators AnfA and VnfA by metals and

ammonium in Azotobacter vinelandii. FEMS Microbiol. Lett. 164: 63–68.

Raymond, J., Siefert, J.L., Staples, C.R., and Blankenship, R.E. (2004) The natural

history of nitrogen fixation. Mol. Biol. Evol. 21: 541–54.

Reddy, K.J. and Gloss, S.P. (1993) Geochemical speciation as related to the mobility of F,

Mo and Se in soil leachates. Appl. Geochemistry 8: 159–163.

Reed, S.C., Cleveland, C.C., and Townsend, A.R. (2011) Functional ecology of free-

living nitrogen fixation: a contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42:

489–512.

Rees, D.C., Akif Tezcan, F., Haynes, C.A., Walton, M.Y., Andrade, S., Einsle, O., and

Howard, J.B. (2005) Structural basis of biological nitrogen fixation. Philos. Trans.

A. Math. Phys. Eng. Sci. 363: 971–84; discussion 1035–40.

Rees, D.C. and Howard, J.B. (2000) Nitrogenase: standing at the crossroads. Curr. Opin.

Chem. Biol. 4: 559–566.

Rehder, D. (2000) Vanadium nitrogenase. J. Inorg. Biochem. 80: 133–136.

Robin, A., Vansuyt, G., Hinsinger, P., Meyer, J.M., Briat, J.F., and Lemanceau, P. (2008)

Chapter 4 Iron Dynamics in the Rhizosphere: Consequences for Plant Health and

Nutrition. Adv. Agron. 99: 183–225.

Robson, R.L., Eady, R.R., Richardson, T.H., Miller, R.W., Hawkins, M., and Postgate,

J.R. (1986) The alternative nitrogenase of Azotobacter chroococcum is a vanadium

enzyme. Nature 322: 388–390.

Robson, R.L. and Postgate, J.R. (1980) Oxygen and hydrogen in biological nitrogen

fixation. Annu. Rev. Microbiol. 34: 183–207.

Page 183: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

183

Rose, A.L. and Waite, T.D. (2003) Kinetics of Hydrolysis and Precipitation of Ferric Iron

in Seawater. Environ. Sci. Technol. 37: 3897–3903.

Rubio, L.M. and Ludden, P.W. (2005) Maturation of nitrogenase: a biochemical puzzle.

J. Bacteriol. 187: 405–414.

Sandy, M. and Butler, A. (2009) Microbial iron acquisition: marine and terrestrial

siderophores. Chem. Rev. 109: 4580–95.

Dos Santos, P.C. and Dean, D.R. (2014) Iron-Sulfur Clusters in Chemistry and Biology

Rouault,T. (ed) Walter de Gruyter GmbH & Co KG, 2014.

Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., and Vahaboglu, H. (2003)

Expression stability of six housekeeping genes: a proposal for resistance gene

quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-

PCR. J. Med. Microbiol. 52: 403–408.

Sayyed, R.Z., Badgujar, M.D., Sonawane, H.M., Mhaske, M.M., and Chincholkar, S.B.

(2005) Production of microbial iron chelators (siderophores) by fluorescent

Pseudomonads. IJBT Vol.4(4) [October 2005].

Schlesinger, W.H. and Bernhardt, E.S. (2013) Biogeochemistry: An Analysis of Global

Change Academic Press.

Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the

comparative CT method. Nat. Protoc. 3: 1101–1108.

Schmitz, R.A., Klopprogge, K., and Grabbe, R. (2002) Regulation of nitrogen fixation in

Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two

environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol.

Biotechnol. 4: 235–242.

Schneider, K., Müller, A., Schramm, U., and Klipp, W. (1991) Demonstration of a

molybdenum- and vanadium-independent nitrogenase in a nifHDK-deletion mutant

of Rhodobacter capsulatus. Eur. J. Biochem. 195: 653–661.

Schwacha, A. and Bender, R.A. (1993) The nac (nitrogen assimilation control) gene from

Klebsiella aerogenes. J. Bacteriol. 175: 2107–15.

Seefeldt, L.C., Hoffman, B.M., and Dean, D.R. (2009) Mechanism of Mo-dependent

nitrogenase. Annu. Rev. Biochem. 78: 701–22.

Self, W.T., Grunden, A.M., Hasona, A., and Shanmugam, K.T. (2001) Molybdate

transport. Res. Microbiol. 152: 311–321.

Setubal, J.C., dos Santos, P., Goldman, B.S., Ertesvåg, H., Espin, G., Rubio, L.M., et al.

(2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized

to support diverse anaerobic metabolic processes. J. Bacteriol. 191: 4534–4545.

Page 184: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

184

Shailendra Singh, G.G. (2015) Plant Growth Promoting Rhizobacteria (PGPR): Current

and Future Prospects for Development of Sustainable Agriculture. J. Microb.

Biochem. Technol. 07.:

Shieh, C. and Duedall, I.W. (1988) Role of amorphous ferric oxyhydroxide in removal of

anthropogenic vanadium from seawater. Mar. Chem. 25: 121–139.

Silvester, W. (1989) Molybdenum limitation of asymbiotic nitrogen fixation in forests of

Pacific Northwest America. Soil Biol. Biochem. 21: 283–289.

Slabbert, N. (2012) Plant Polyphenols: Synthesis, Properties, Significance. Complexation

of condensed tannins with metal ions. Hemingway,R.W. and Laks,P.E. (eds)

Springer Science & Business Media.

Souza, E.M., Pedrosa, F.O., Drummond, M., Rigo, L.U., and Yates, M.G. (1999) Control

of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J.

Bacteriol. 181: 681–4.

Steenhoudt, O. and Vanderleyden, J. (2000) Azospirillum, a free-living nitrogen-fixing

bacterium closely associated with grasses: genetic, biochemical and ecological

aspects. FEMS Microbiol. Rev. 24: 487–506.

Stefánsson, A. (2007) Iron(III) Hydrolysis and Solubility at 25 °C. Environ. Sci. Technol.

41: 6117–6123.

Stevenson, F.J. and Cole, M.A. (Michael A.. (1999) Cycles of soil : carbon, nitrogen,

phosphorus, sulfur, micronutrients Wiley.

Stintzi, A., Barnes, C., Xu, J., and Raymond, K.N. (2000) Microbial iron transport via a

siderophore shuttle: a membrane ion transport paradigm. Proc. Natl. Acad. Sci. U. S.

A. 97: 10691–6.

Tang, D. and Morel, F.M.M. (2006) Distinguishing between cellular and Fe-oxide-

associated trace elements in phytoplankton. Mar. Chem. 98: 18–30.

Thiel, T. (1993) Characterization of genes for an alternative nitrogenase in the

cyanobacterium Anabaena variabilis. J. Bacteriol. 175: 6276–6286.

Thiel, T. and Pratte, B.S. (2013) Alternative nitrogenases in Anabaena variabilis: the role

of molybdate and vanadate in nitrogenase gene. Adv. Microbiol. 03: 87–95.

Thöny, B. and Hennecke, H. (1989) The -24/-12 promoter comes of age. FEMS

Microbiol. Rev. 5: 341–57.

Tindale, A.E., Mehrotra, M., Ottem, D., and Page, W.J. (2000) Dual regulation of

catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative

stress. Microbiology 146 ( Pt 7: 1617–26.

Page 185: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

185

Toukdarian, A. and Kennedy, C. (1986) Regulation of nitrogen metabolism in

Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr

mutants. EMBO J. 5: 399–407.

Villa, J.A., Ray, E.E., and Barney, B.M. (2014) Azotobacter vinelandii siderophore can

provide nitrogen to support the culture of the green algae Neochloris oleoabundans

and Scenedesmus sp. BA032. FEMS Microbiol. Lett. 351: 70–77.

Vitousek, P.M. and Howarth, R.W. (1991) Nitrogen limitation on land and in the sea :

How can it occur? Biogeochemistry 13: 87–115.

Völker, C. and Wolf-Gladrow, D.A. (1999) Physical limits on iron uptake mediated by

siderophores or surface reductases. Mar. Chem. 65: 227–244.

Walmsley, J. and Kennedy, C. (1991) Temperature-Dependent Regulation by

Molybdenum and Vanadium of Expression of the Structural Genes Encoding Three

Nitrogenases in Azotobacter vinelandii. Appl. Environ. Microbiol. 57: 622–4.

Walmsley, J., Toukdarian, A., and Kennedy, C. (1994) The role of regulatory genes nifA,

vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three

nitrogenases of Azotobacter vinelandii. Arch. Microbiol. 162: 422–9.

Wanty, R.B. and Goldhaber, M.B. (1992) Thermodynamics and kinetics of reactions

involving vanadium in natural systems: Accumulation of vanadium in sedimentary

rocks. Geochim. Cosmochim. Acta 56: 1471–1483.

Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim.

Acta 59: 1217–1232.

Wichard, T., Bellenger, J.-P., Morel, F.M.M., and Kraepiel, A.M.L. (2009) Role of the

siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors.

Environ. Sci. Technol. 43: 7218–7224.

Wichard, T., Mishra, B., Myneni, S.C.B., Bellenger, J.-P., and Kraepiel, A.M.L. (2009)

Storage and bioavailability of molybdenum in soils increased by organic matter

complexation. Nat. Geosci. 2: 625–629.

Wilhelm, S.W. and Trick, C.G. (1994) Iron-limited growth of cyanobacteria: Multiple

siderophore production is a common response. Limnol. Oceanogr. 39: 1979–1984.

Woodley, P., Buck, M., and Kennedy, C. (1996) Identification of sequences important for

recognition of vnf genes by the VnfA transcriptional activator in Azotobacter

vinelandii. FEMS Microbiol. Lett. 135: 213–21.

Xu, N., Christodoulatos, C., and Braida, W. (2006) Adsorption of molybdate and

tetrathiomolybdate onto pyrite and goethite: effect of pH and competitive anions.

Chemosphere 62: 1726–35.

Page 186: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

186

Xu, Y., Feng, L., Jeffrey, P.D., Shi, Y., and Morel, F.M.M. (2008) Structure and metal

exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452: 56–61.

Yoshimitsu, K., Takatani, N., Miura, Y., Watanabe, Y., and Nakajima, H. (2011) The role

of the GAF and central domains of the transcriptional activator VnfA in Azotobacter

vinelandii. FEBS J. 278: 3287–97.

Zhang, X., McRose, D.L., Darnajoux, R., Bellenger, J.P., Morel, F.M.M., and Kraepiel,

A.M.L. (2016) Alternative nitrogenase activity in the environment and nitrogen

cycle implications. Biogeochemistry 127: 189–198.

Page 187: HOMEOSTASIE DES COFACTEURS METALLIQUES DE LA …

1