convergent antibody responses to sars-cov-2 infection in … · 2020-05-13 · 44 between april 1...

51
Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals 1 2 Davide F. Robbiani 1*,# , Christian Gaebler 1* , Frauke Muecksch 2* , Julio C. C. Lorenzi 1* , Zijun 3 Wang 1* , Alice Cho 1* , Marianna Agudelo 1* , Christopher O. Barnes 6* , Anna Gazumyan 1* , Shlomo 4 Finkin 1* , Thomas Hagglof 1* , Thiago Y. Oliveira 1* , Charlotte Viant 1* , Arlene Hurley 4 , Hans- 5 Heinrich Hoffmann 3 , Katrina G. Millard 1 , Rhonda G. Kost 5 , Melissa Cipolla 1 , Kristie Gordon 1 , 6 Filippo Bianchini 1 , Spencer T. Chen 1 , Victor Ramos 1 , Roshni Patel 1 , Juan Dizon 1 , Irina 7 Shimeliovich 1 , Pilar Mendoza 1 , Harald Hartweger 1 , Lilian Nogueira 1 , Maggi Pack 1 , Jill Horowitz 1 , 8 Fabian Schmidt 2 , Yiska Weisblum 2 , Eleftherios Michailidis 3 , Alison W. Ashbrook 3 , Eric Waltari 7 , 9 John E. Pak 7 , Kathryn E. Huey-Tubman 6 , Nicholas Koranda 6 , Pauline R. Hoffman 6 , Anthony P. 10 West, Jr. 6 , Charles M. Rice 3 , Theodora Hatziioannou 2 , Pamela J. Bjorkman 6 , Paul D. Bieniasz 2,8,# , 11 Marina Caskey 1,# , Michel C. Nussenzweig 1,8,# 12 13 1 Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA 14 2 Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA 15 3 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 16 10065, USA 17 4 Hospital Program Direction, The Rockefeller University, New York, NY 10065, USA 18 5 Hospital Clinical Research Office, The Rockefeller University, New York, NY 10065, USA 19 6 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, 20 CA 91125, USA 21 7 Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA 22 8 Howard Hughes Medical Institute 23 * Equal contribution 24 # Send correspondence to Paul D. Bieniasz: [email protected], Marina Caskey: 25 [email protected], Michel C. Nussenzweig: [email protected], or Davide F. 26 Robbiani: [email protected] 27 . CC-BY-NC-ND 4.0 International license was not certified by peer review) is the author/funder. It is made available under a The copyright holder for this preprint (which this version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619 doi: bioRxiv preprint

Upload: others

Post on 24-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals 1

2

Davide F. Robbiani1*,#, Christian Gaebler1*, Frauke Muecksch2*, Julio C. C. Lorenzi1*, Zijun 3

Wang1*, Alice Cho1*, Marianna Agudelo1*, Christopher O. Barnes6*, Anna Gazumyan1*, Shlomo 4

Finkin1*, Thomas Hagglof1*, Thiago Y. Oliveira1*, Charlotte Viant1*, Arlene Hurley4, Hans-5

Heinrich Hoffmann3, Katrina G. Millard1, Rhonda G. Kost5, Melissa Cipolla1, Kristie Gordon1, 6

Filippo Bianchini1, Spencer T. Chen1, Victor Ramos1, Roshni Patel1, Juan Dizon1, Irina 7

Shimeliovich1, Pilar Mendoza1, Harald Hartweger1, Lilian Nogueira1, Maggi Pack1, Jill Horowitz1, 8

Fabian Schmidt2, Yiska Weisblum2, Eleftherios Michailidis3, Alison W. Ashbrook3, Eric Waltari7, 9

John E. Pak7, Kathryn E. Huey-Tubman6, Nicholas Koranda6, Pauline R. Hoffman6, Anthony P. 10

West, Jr.6, Charles M. Rice3, Theodora Hatziioannou2, Pamela J. Bjorkman6, Paul D. Bieniasz2,8,#, 11

Marina Caskey1,#, Michel C. Nussenzweig1,8,# 12

13

1Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA 14 2Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA 15 3Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 16 10065, USA 17 4Hospital Program Direction, The Rockefeller University, New York, NY 10065, USA 18 5Hospital Clinical Research Office, The Rockefeller University, New York, NY 10065, USA 19 6Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, 20 CA 91125, USA 21 7Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA 94158, USA 22 8Howard Hughes Medical Institute 23 *Equal contribution 24 #Send correspondence to Paul D. Bieniasz: [email protected], Marina Caskey: 25 [email protected], Michel C. Nussenzweig: [email protected], or Davide F. 26 Robbiani: [email protected] 27

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 2: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Abstract 28

During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed 29

hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain 30

(RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that 31

antibodies will be essential for protection. However, little is known about the human 32

antibody response to SARS-CoV-21-5. Here we report on 149 COVID-19 convalescent 33

individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable 34

half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, 35

while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-36

specific memory B cells expressing closely related antibodies in different individuals. Despite 37

low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal 38

inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent 39

plasmas obtained from individuals who recover from COVID-19 do not contain high levels 40

of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent 41

antiviral activity were found in all individuals tested, suggesting that a vaccine designed to 42

elicit such antibodies could be broadly effective. 43

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 3: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 44

(70.7%) were individuals diagnosed with SARS-CoV-2 infection by RT-PCR (cases), and 46 45

(29.3%) were close contacts of individuals diagnosed with SARS-CoV-2 infection (contacts). 46

While inclusion criteria allowed for enrollment of asymptomatic participants, 8 contacts that did 47

not develop symptoms were excluded from further analyses. The 149 cases and contacts were free 48

of symptoms suggestive of COVID-19 for at least 14 days at the time of sample collection. 49

Participant demographics and clinical characteristics are shown in Table 1 and Extended Data 50

Tables 1 and 2. Only one individual who tested positive for SARS-CoV-2 infection by RT-PCR 51

remained asymptomatic. The other 148 participants reported symptoms suggestive of COVID-19 52

with an average onset of approximately 39 days (range 17 to 67 days) before sample collection. In 53

this cohort, symptoms lasted for an average of 12 days (0-35 days), and 11 (7%) of the participants 54

were hospitalized. The most common symptoms were fever (83.9%), fatigue (71.1%), cough 55

(62.4%) and myalgia (61.7%) while baseline comorbidities were infrequent (10.7%) (Table 1 and 56

Extended Data Tables 1 and 2). There were no significant differences in duration or severity (see 57

Methods) of symptoms, or in time from onset of symptoms to sample collection between genders 58

or between cases and contacts. There was no age difference between females and males in our 59

cohort (Extended Data Fig. 1). 60

61

Plasma samples were tested for binding to the SARS-CoV-2 RBD and trimeric spike (S) proteins 62

by ELISA using anti-IgG or -IgM secondary antibodies for detection (Fig. 1, Extended Data Table 63

1 and Extended Data Figs. 2 and 3). Eight independent negative controls and the plasma sample 64

from participant 21 (COV21) were included for normalization of the area under the curve (AUC). 65

Overall, 78% and 70% of the plasma samples tested showed anti-RBD and anti-S IgG AUCs that 66

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 4: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

were at least 2 standard deviations above the control (Fig. 1 a, b). In contrast, only 15% and 34% 67

of the plasma samples showed IgM responses to anti-RBD and anti-S that were at least 2 standard 68

deviations above control, respectively (Fig. 1 c, d). There was no positive correlation between anti-69

RBD or -S IgG or IgM levels and duration of symptoms or the timing of sample collection relative 70

to onset of symptoms (Fig. 1e, and Extended Data Figs. 3 a-c and 3 g-j). On the contrary, as might 71

be expected, anti-RBD IgM titers were negatively correlated with duration of symptoms and the 72

timing of sample collection (Fig. 1e and Extended Data Fig. 3h). Anti-RBD IgG levels were 73

modestly correlated to age, and the severity of symptoms including hospitalization (Fig. 1 f, g and 74

Extended Data Fig. 3k). Interestingly, females had lower anti-RBD and -S IgG titers than males 75

(Fig. 1h, Extended Data Fig. 2f). 76

77

To measure the neutralizing activity in convalescent plasmas we used HIV-1-based virions 78

carrying a nanoluc luciferase reporter that were pseudotyped with the SARS-CoV-2 spike (SARS-79

CoV-2 pseudovirus, see Methods, Fig. 2 and Extended Data Fig. 4). The overall level of 80

neutralizing activity in the cohort, as measured by the half-maximal neutralizing titer (NT50) was 81

generally low, with 33% undetectable and 79% below 1,000 (Fig. 2 a, b). The geometric mean 82

NT50 was 121 (arithmetic mean = 714), and only 2 individuals reached NT50s above 5,000 (Fig. 2 83

a, b and Extended Data Table 1). 84

85

Notably, levels of anti-RBD- and -S IgG antibodies correlated strongly with NT50 (Fig. 2 c, d). 86

Neutralizing activity also correlated with age, duration of symptoms and symptom severity 87

(Extended Data Fig. 5). Consistent with this observation, hospitalized individuals with longer 88

symptom duration showed slightly higher average levels of neutralizing activity than non-89

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 5: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

hospitalized individuals (p=0.0495, Fig. 2e). Finally, we observed a significant difference in 90

neutralizing activity between males and females (p=0.0031, Fig. 2f). The difference between males 91

and females was consistent with higher anti-RBD and -S IgG titers in males, and could not be 92

attributed to age, severity, timing of sample collection relative to onset of symptoms or duration 93

of symptoms (Fig. 1h, Extended Data Fig. 1 a-d and 2f). 94

95

To determine the nature of the antibodies elicited by SARS-CoV-2 infection we used flow 96

cytometry to isolate individual B lymphocytes with receptors that bound to RBD from the blood 97

of 6 selected individuals including the 2 top and 4 high to intermediate neutralizers (Fig. 3). The 98

frequency of antigen-specific B cells, identified by their ability to bind to both Phycoerythrin (PE)- 99

and AF647-labeled RBD, ranged from 0.07 to 0.005% of all circulating B cells in COVID-19 100

convalescents but they were undetectable in pre-COVID-19 controls (Fig. 3a and Extended Data 101

Fig. 6). We obtained 534 paired IgG heavy and light chain (IGH and IGL) sequences by reverse 102

transcription and subsequent PCR from individual RBD-binding B cells from the 6 convalescent 103

individuals (see Methods and Extended Data Table 3). When compared to the human antibody 104

repertoire, several IGHV and IGLV genes were significantly over-represented (Extended Data Fig. 105

7). The average number of V genes nucleotide mutations for IGH and IGL was 4.2 and 2.8, 106

respectively (Extended Data Fig. 8), which is lower than in antibodies cloned from individuals 107

suffering from chronic infections such as Hepatitis B or HIV-1, and similar to antibodies derived 108

from primary malaria infection or non-antigen-enriched circulating IgG memory cells6-8 (Wang et 109

al, in press, https://www.biorxiv.org/content/10.1101/2020.03.04.976159v1.full). Among other 110

antibody features, IGH CDR3 length was indistinguishable from the reported norm and 111

hydrophobicity was below average (Extended Data Fig. 8)9. 112

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 6: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

113

As is the case with other human pathogens, there were expanded clones of viral antigen binding B 114

cells in all COVID-19 individuals tested (see Methods and Fig. 3 b,c). Overall, 32.2% of the 115

recovered IGH and IGL sequences were from clonally expanded B cells (range 21.8-57.4% across 116

individuals, Fig. 3b). Antibodies that shared specific combinations of IGHV and IGLV genes in 117

different individuals comprised 14% of all the clonal sequences (colored pie slices in Fig. 3 b,c). 118

Remarkably, the amino acid sequences of some antibodies found in different individuals were 119

nearly identical (Fig. 3 e,d). For example, antibodies expressed by clonally expanded B cells with 120

IGHV1-58/IGKV3-20 and IGHV3-30-3/IGKV1-39 found repeatedly in different individuals had 121

amino acid sequence identities of up to 99% and 92%, respectively (Fig. 3d and Extended Data 122

Table 4). We conclude that the IgG memory response to the SARS-CoV-2 RBD is rich in recurrent 123

and clonally expanded antibody sequences. 124

125

To examine the binding properties of anti-SARS-CoV-2 antibodies, we expressed 84 126

representative antibodies, 56 from clones and 28 from singlets (Extended Data Table 5). ELISA 127

assays showed that 94% (79 out of 84) of the antibodies tested including clonal and unique 128

sequences bound to the SARS-CoV-2 RBD with an average half-maximal effective concentration 129

(EC50) of 6.1 ng/mL (Fig. 4a and Extended Data Fig. 9a). A fraction of those (7 out of 79, or 9%) 130

cross-reacted with the RBD of SARS-CoV with a mean EC50 of 120.1 ng/mL (Extended Data Fig. 131

9b and c). No significant cross-reactivity was noted to the RBDs of MERS, HCoV-OC43, HCoV-132

229E or HCoV-NL63. 133

134

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 7: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

To determine whether the monoclonal antibodies have neutralizing activity, we tested them against 135

the SARS-CoV-2 pseudovirus (Fig. 4 and Extended Data Table 6). Among 79 RBD binding 136

antibodies tested, we found 40 that neutralized SARS-CoV-2 pseudovirus with nanogram per 137

milliliter half-maximal inhibitory concentrations (IC50s) ranging from 3 to 709 (Fig. 4 b,c and e, 138

Extended Data Table 6). A subset of the most potent of these antibodies were also tested against 139

authentic SARS-CoV-2 and neutralized with IC50s of less than 5 ng/ml (Fig. 4 d,e). 140

141

Potent neutralizing antibodies were found in individuals irrespective of their plasma NT50s. For 142

example, C121, C144, and C135 with IC50s of 1.64, 2.55 and 2.98 ng/mL against authentic SARS-143

CoV-2, respectively, were obtained from individuals COV107, COV47, and COV72 whose 144

plasma NT50 values were of 297, 10,433 and 3,138, respectively (Figs. 2b and 4). Finally, clones 145

of antibodies with shared IGHV and IGLV genes were among the best neutralizers, e.g., antibody 146

C002 composed of IGHV3-30/IGKV1-39 is shared by the 2 donors with the best plasma 147

neutralizing activity (red pie slice in Fig. 3b and Fig. 4). We conclude that even individuals with 148

modest plasma neutralizing activity harbor rare IgG memory B cells that produce potent SARS-149

CoV-2 neutralizing antibodies. 150

151

To determine whether human anti-SARS-CoV-2 monoclonal antibodies with neutralizing activity 152

can bind to distinct domains on the RBD, we performed bilayer interferometry experiments in 153

which a preformed antibody-RBD immune complex was exposed to a second monoclonal. The 154

antibodies tested comprised 3 groups, all of which differ in their binding properties from CR3022, 155

an antibody that neutralizes SARS-CoV and binds to, but does not neutralize SARS-CoV-210,11. 156

Representatives of each of the 3 groups include: C144 and C101 in Group 1; C121 and C009 in 157

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 8: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Group 2; C135 in Group 3. All of these antibodies can bind after CR3022. Groups 1 and 2 also 158

bind after Group 3, and Groups 1 and 2 differ in that Group 1 can bind after Group 2 but not vice 159

versa (Fig. 4 f-n). We conclude that similar to SARS-CoV, there are multiple distinct neutralizing 160

epitopes on the RBD of SARS-CoV-2. 161

162

To further define the binding characteristics of Groups 1 and 2 antibodies, we imaged SARS-CoV-163

2 S–Fab complexes by negative stain electron microscopy (nsEM) using C002 (Group 1, an 164

IGHV3-30/IGKV1-39 antibody, which is clonally expanded in 2 donors), C119 and C121 (both in 165

Group 2) Fabs (Fig. 4 f-r and Extended Data Fig. 10). Consistent with the conformational 166

flexibility of the RBD, 2D class averages showed heterogeneity in both occupancy and 167

conformation of bound Fabs for both groups (Fig. 4o-q). The 3D reconstructions of S-Fab 168

complexes revealed both a fully-occupied RBD and partial density for a second bound Fab, 169

suggesting that Fabs from both groups are able to recognize “up” and “down” states of the RBD 170

as previously described for some of the antibodies targeting this epitope12,13. The 3D 171

reconstructions are also consistent with BLI measurements indicating that Groups 1 and 2 172

antibodies bind a RBD epitope distinct from antibody CR3022, which is only accessible on the 173

RBD “up” conformational state11, and bind the RBD with different angles of approach, with Group 174

1 antibodies most similar to the approach angle of the SARS-CoV antibody S230 (Fig. 4r)14. 175

176

Human monoclonal antibodies with neutralizing activity against pathogens ranging from viruses 177

to parasites have been obtained from naturally infected individuals by single cell antibody cloning. 178

Several have been shown to be effective in protection and therapy in model organisms and in early 179

phase clinical studies, but only one antiviral monoclonal is currently in clinical use15. Antibodies 180

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 9: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

are relatively expensive and more difficult to produce than small molecule drugs. However, they 181

differ from drugs in that they can engage the host immune system through their constant domains 182

that bind to Fc gamma receptors on host immune cells16. These interactions can enhance immunity 183

and help clear the pathogen or infected cells, but they can also lead to disease enhancement during 184

Dengue17 and possibly coronavirus infections18. This problem has impeded Dengue vaccine 185

development but would not interfere with the clinical use of potent neutralizing antibodies that can 186

be modified to prevent Fc gamma receptor interactions and remain protective against viral 187

pathogens19. 188

189

Antibodies are essential elements of most vaccines and will likely be crucial component of an 190

effective vaccine against SARS-CoV-220(PMID:32434945; PMID:32434946). Recurrent 191

antibodies have been observed in other infectious diseases and vaccinal responses 21-24(Wang et 192

al, in press, https://www.biorxiv.org/content/10.1101/2020.03.04.976159v1.full). The observation 193

that plasma neutralizing activity is low in most convalescent individuals, but that recurrent anti-194

SARS-CoV-2 RBD antibodies with potent neutralizing activity can be found in individuals with 195

unexceptional plasma neutralizing activity suggests that humans are intrinsically capable of 196

generating anti-RBD antibodies that potently neutralize SARS-CoV-2. Thus, vaccines that 197

selectively and efficiently induce antibodies targeting the SARS-CoV-2 RBD may be especially 198

effective. 199

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 10: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Table 200

201

Table 1. Cohort characteristics

Gender n IgG IgM IgG IgM45 12 39 5.8

(19-76) (0-31) (21-63) (0-10)42 12 38 5.4

(19-75) (1-35) (17-67) (1-9)Sx=symptoms

867

Female 66 46/20 1.99 1.58 4.36 1.86 522

2.44 1.61

Averageage

83Male 65/18

ELISA binding (AUC)RBD S

4.65 1.62

Case/Contact

Average duration Average Sx Severity

(0-10)Neutralization

(NT50)Sx

totalSx onset to visit

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 11: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Figures 202

203

Figure 1. Plasma antibodies against SARS-CoV-2. a-d, Graphs show results of ELISAs 204

measuring plasma reactivity to RBD (a, b) and S protein (c, d). Left shows optical density units at 205

450 nm (OD, Y axis) and reciprocal plasma dilutions (X axis). Negative controls in black; 206

individuals 21, and 47 in blue and red lines and arrowheads, respectively. Right shows normalized 207

area under the curve (AUC) for controls and each of 149 individuals in the cohort. e, Symptom 208

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 12: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

(Sx) onset to time of sample collection in days (X axis) plotted against normalized AUC for IgM 209

binding to RBD (Y axis) r=0.5517 and p=<0.0001. f, Participant age in years (X axis) plotted 210

against normalized AUC for IgG binding to RBD (Y axis) r=0.1827 and p=0.0258. The r and p 211

values for the correlations in e and f were determined by two-tailed Spearman’s. g, IgG anti-RBD 212

normalized AUC for outpatients and hospitalized individuals p=0.0178. h, IgG anti-RBD 213

normalized AUC for males and females p=0.0063. For g and h horizontal bars indicate median 214

values. Statistical significance was determined using two-tailed Mann-Whitney U test. 215

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 13: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

216

Figure 2. Neutralization of SARS-CoV-2 pseudovirus by plasma. a, Graph shows normalized 217

relative luminescence values (RLU, Y axis) in cell lysates of 293TACE2 cells 48 hours after 218

infection with nanoluc-expressing SARS-CoV-2 pseudovirus in the presence of increasing 219

concentrations of plasma (X axis) derived from 149 participants (grey, except individuals 47 and 220

21 in red, and blue lines, bars and arrowheads, respectively) and 3 negative controls (black lines). 221

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 14: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Standard deviations of duplicates of one representative experiment are shown. b, Ranked average 222

half-maximal inhibitory plasma neutralizing titer (NT50) for the 59 of 149 individuals with NT50s 223

>500 and individual 107. See also Extended Data Table 1. Asterisks indicate donors from which 224

antibody sequences were derived. c, AUC for anti-RBD IgG ELISA (X axis) plotted against NT50 225

(Y axis) r=0.6432, p=<0.0001. d, AUC for anti-S IgG ELISA (X axis) plotted against NT50 (Y 226

axis) r=0.6721, p=<0.0001. e, NT50 for outpatients and hospitalized individuals p=0.0495. f, NT50 227

for all males and females in the cohort p=0.0031. Dotted line in c to f (NT50=5) represents lower 228

limit of detection (LLOD). Samples with undetectable neutralizing titers were plotted at LLOD. 229

Correlations in c and d were determined by two-tailed Spearman’s. Statistical significance in e and 230

f was determined using two-tailed Mann-Whitney U test. Horizontal bars indicate median values. 231

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 15: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

232

Figure 3. Anti-SARS-CoV-2 RBD antibodies. a. Representative flow cytometry plots showing 233

dual AF647- and PE-RBD binding B cells in control and 6 study individuals (for gating strategy 234

see Extended Data Fig. 6). Percentages of antigen specific B cells are indicated. Control is a 235

healthy control sample obtained pre-COVID-19. b, Pie charts depicting the distribution of 236

antibody sequences from 6 individuals. The number in the inner circle indicates the number of 237

sequences analyzed for the individual denoted above the circle. White indicates sequences isolated 238

only once, and grey or colored pie slices are proportional to the number of clonally related 239

sequences. Red, blue, orange and yellow pie slices indicate clones that share the same IGHV and 240

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 16: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

IGLV genes. c, Circos plot shows sequences from all 6 individuals with clonal relationships 241

depicted as in b. Interconnecting lines indicate the relationship between antibodies that share V 242

and J gene segment sequences at both IGH and IGL. Purple, green and gray lines connect related 243

clones, clones and singles, and singles to each other, respectively. d, Sample sequence alignment 244

for antibodies originating from different individuals that display highly similar IGH V(D)J and 245

IGL VJ sequences including CDR3s. Amino acid differences in CDR3s to the bolded reference 246

sequence above are indicated in red and dots represent identities. 247

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 17: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

248

Figure 4. Anti-SARS-CoV-2 RBD antibody reactivity. a, Graph show results of ELISA assays 249

measuring monoclonal antibody reactivity to RBD. Optical density units at 450 nm (OD, Y axis) 250

vs. antibody concentrations (X axis). C121, C135 C144 and isotype control in red, green, purple, 251

and black respectively, in all panels. b, Graph shows normalized relative luminescence values 252

(RLU, Y axis) in cell lysates of 293TACE2 cells 48 hours after infection with SARS-CoV-2 253

pseudovirus in the presence of increasing concentrations of monoclonal antibodies (X axis). c, 254

RLU for SARS-CoV-2 pseudovirus assay (Y axis) vs. titration of monoclonal antibodies C121, 255

C135 and C144 in one of two independent experiments (see Extended Data Table 6). d, SARS-256

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 18: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

CoV-2 real virus neutralization assay. Infected cells (Y axis) vs. titration of monoclonal antibodies 257

C121, C135 and C144 in two independent experiments. For a and b panels, isotype control 258

antibody in black. e, IC50s for antibodies assayed in b and d. f, Diagrammatic representation of 259

biolayer interferometry experiment. g, Graph shows binding of C144, C101, C121, C009, C135, 260

and CR302210,11 to RBD. h-m, Secondary antibody binding to preformed IgG-RBD complexes 261

(Ab1). The table displays the shift in nanometers after second antibody (Ab2) binding to the 262

antigen in the presence of the first antibody (Ab1). Values are normalized by the subtraction of the 263

autologous antibody control. o-q, Representative 2D-class averages and 3D reconstructed 264

volumes for SARS-CoV-S 2P trimers complexed with C002, C119, and C121 Fabs. 2D-class 265

averages with observable Fab density are boxed. r, Overlay of S-Fab complexes with fully-266

occupied C002 (blue), C121 (magenta) and C119 (orange) Fabs aligned on the RBD “up” 267

conformational state. The SARS-CoV-2 S model with 1 “up” RBD state (PDB 6VYB) was fit into 268

the density and the SARS-CoV antibody S230 (PDB 6NB6) shown as reference (green ribbon). 269

270

271

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 19: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Methods 272

Study participants. Study participants were recruited at the Rockefeller University Hospital in 273

New York from April 1 through May 8, 2020. Eligible participants were adults aged 18-76 years 274

who were either diagnosed with SARS-CoV-2 infection by RT-PCR and were free of symptoms 275

of COVID-19 for at least 14 days (cases), or who were close contacts (e.g., household, co-workers, 276

members of same religious community) with someone who had been diagnosed with SARS-CoV-277

2 infection by RT-PCR and were free of symptoms suggestive of COVID-19 for at least 14 days 278

(contacts). Exclusion criteria included presence of symptoms suggestive of active SARS-CoV-2 279

infection, or hemoglobin < 12 g/dL for males and < 11 g/dL for females. 280

Most study participants were residents of the Greater New York City tri-state region and were 281

enrolled sequentially according to eligibility criteria. Participants were first interviewed by phone 282

to collect information on their clinical presentation, and subsequently presented to the Rockefeller 283

University Hospital for a single blood sample collection. Participants were asked to rate the 284

highest severity of their symptoms on a numeric rating scale ranging from 0 to 10. The score was 285

adapted from the pain scale chart, where 0 was the lack of symptoms, 4 were distressing symptoms 286

(e.g. fatigue, myalgia, fever, cough, shortness of breath) that interfered with daily living activities, 287

7 were disabling symptoms that prevented the performance of daily living activities, and 10 was 288

unimaginable/unspeakable discomfort (in this case, distress due to shortness of breath). All 289

participants provided written informed consent before participation in the study and the study was 290

conducted in accordance with Good Clinical Practice. 291

292

Blood samples processing and storage. Peripheral Blood Mononuclear Cells (PBMCs) were 293

obtained by gradient centrifugation and stored in liquid nitrogen in the presence of FCS and 294

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 20: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

DMSO. Heparinized plasma and serum samples were aliquoted and stored at -20°C or less. Prior 295

to experiments, aliquots of plasma samples were heat-inactivated (56C for 1 hour) and then stored 296

at 4C. 297

298

Cloning, expression and purification of recombinant coronavirus proteins. Codon-optimized 299

nucleotide sequences encoding the SARS-CoV-2 S ectodomain (residues 16-1206) and receptor 300

binding domain (RBD; residues 331-524) were synthesized and subcloned into the mammalian 301

expression pTwist-CMV BetaGlobin vector by Twist Bioscience Technologies based on an early 302

SARS-CoV-2 sequence isolate (GenBank MN985325.1). The SARS-CoV-2 RBD construct 303

included an N-terminal human IL-2 signal peptide and dual C-terminal tags ((GGGGS)2-304

HHHHHHHH (octa-histidine), and GLNDIFEAQKIEWHE (AviTag)). In addition, the 305

corresponding S1B or receptor binding domains for SARS-CoV S (residues 318-510; GenBank 306

AAP13441.1), MERS-CoV S (residues 367-588; GenBank JX869059.2), HCoV-NL63 (residues 307

481-614; GenBank AAS58177.1), HCoV-OC43 (residues 324-632; GenBank AAT84362.1), and 308

HCoV-229E (residues 286-434; GenBank AAK32191.1) were synthesized with the same N- and 309

C-terminal extensions as the SARS-CoV-2 RBD construct and subcloned into the mammalian 310

expression pTwist-CMV BetaGlobin vector (Twist Bioscience Technologies). The SARS-CoV-2 311

S ectodomain was modified as previously described 4. Briefly, the S ectodomain construct included 312

an N-terminal mu-phosphatase signal peptide, 2P stabilizing mutations (K986P and V987P), 313

mutations to remove the S1/S2 furin cleavage site (682RRAR685 to GSAS), a C-terminal extension 314

(IKGSG-RENLYFQG (TEV protease site), GGGSG-YIPEAPRDGQAYVRKDGEWVLLSTFL 315

(foldon trimerization motif), G-HHHHHHHH (octa-histidine tag), and GLNDIFEAQKIEWHE 316

(AviTag)). The SARS-CoV-2 S 2P ectodomain and RBD constructs were produced by transient 317

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 21: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

transfection of 500 mL of Expi293 cells (Thermo Fisher) and purified from clarified transfected 318

cell supernatants four days post-transfection using Ni2+-NTA affinity chromatography (GE Life 319

Sciences). Affinity-purified proteins were concentrated and further purified by size-exclusion 320

chromatography (SEC) using a Superdex200 16/60 column (GE Life Sciences) running in 1x TBS 321

(20 mM Tris-HCl pH 8.0, 150 mM NaCl, and 0.02% NaN3). Peak fractions were analyzed by SDS- 322

PAGE, and fractions corresponding to soluble S 2P trimers or monomeric RBD proteins were 323

pooled and stored at 4˚C. 324

325

ELISAs. ELISAs to evaluate antibodies binding to SARS-CoV-2 RBD and trimeric spike proteins 326

were performed by coating of high binding 96 half well plates (Corning #3690) with 50 µL per 327

well of a 1µg/mL protein solution in PBS overnight at 4°C. Plates were washed 6 times with 328

washing buffer (1xPBS with 0.05% Tween 20 (Sigma-Aldrich)) and incubated with 170 µL per 329

well blocking buffer (1xPBS with 2% BSA and 0.05% Tween20 (Sigma)) for 1 hour at room 330

temperature (RT). Immediately after blocking, monoclonal antibodies or plasma samples were 331

added in PBS and incubated for 1 hr at RT. Plasma samples were assayed at a 1:200 starting 332

dilution and seven additional 3-fold serial dilutions. Monoclonal antibodies were tested at 10µg/ml 333

starting concentration and 10 additional 4-fold serial dilutions. Plates were washed 6 times with 334

washing buffer and then incubated with anti-human IgG or IgM secondary antibody conjugated to 335

horseradish peroxidase (HRP) (Jackson Immuno Research 109-036-088 and 109-035-129) in 336

blocking buffer at a 1:5000 dilution. Plates were developed by addition of the HRP substrate, TMB 337

(ThermoFisher) for 10 minutes, then the developing reaction was stopped by adding 50µl 1M 338

H2SO4 and absorbance was measured at 450nm with an ELISA microplate reader (FluoStar 339

Omega, BMG Labtech). For plasma samples, a positive control (plasma from patient COV21, 340

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 22: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

diluted 200-fold in PBS) was added in duplicate to every assay plate. The average of its signal was 341

used for normalization of all the other values on the same plate with Excel software prior to 342

calculating the area under the curve using Prism 8 (GraphPad). For monoclonal antibodies, the 343

half-maximal effective concentration (EC50) was determined using 4-parameter nonlinear 344

regression (GraphPad Prism). 345

346

293TACE2 cells. For constitutive expression of ACE2 in 293T cells, a cDNA encoding ACE2, 347

carrying two inactivating mutations in the catalytic site (H374N & H378N), was inserted into CSIB 348

3’ to the SFFV promoter25. 293TACE2 cells were generated by transduction with CSIB based virus 349

followed by selection with 5 µg/ml Blasticidin. 350

351

SARS-CoV-2 and SARS-CoV pseudotyped reporter viruses. A plasmid expressing a C-352

terminally truncated SARS-CoV-2 S protein (pSARS-CoV2-Strunc) was generated by insertion of 353

a human-codon optimized cDNA encoding SARS-CoV-2 S lacking the C-terminal 19 codons 354

(Geneart) into pCR3.1. The S ORF was taken from “Wuhan seafood market pneumonia virus 355

isolate Wuhan-Hu-1” (NC_045512). For expression of full-length SARS-CoV S protein, “Human 356

SARS coronavirus Spike glycoprotein Gene ORF cDNA clone expression plasmid (Codon 357

Optimized)” (here referred to as pSARS-CoV-S) was obtained from SinoBiological (Cat: 358

VG40150-G-N). An env-inactivated HIV-1 reporter construct (pNL4-3DEnv-nanoluc) was 359

generated from pNL4-326 by introducing a 940 bp deletion 3’ to the vpu stop-codon, resulting in a 360

frameshift in env. The human codon-optimized nanoluc Luciferase reporter gene (Nluc, Promega) 361

was inserted in place of nucleotides 1-100 of the nef-gene. To generate pseudotyped viral stocks, 362

293T cells were transfected with pNL4-3DEnv-nanoluc and pSARS-CoV2-Strunc or pSARS-CoV-363

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 23: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

S using polyethyleneimine. Co-transfection of pNL4-3DEnv-nanoluc and S-expression plasmids 364

leads to production of HIV-1-based virions carrying either the SARS-CoV-2 or SARS-CoV spike 365

protein on the surface. Eight hours after transfection, cells were washed twice with PBS and fresh 366

media was added. Supernatants containing virions were harvested 48 hours post transfection, 367

filtered and stored at -80°C. Infectivity of virions was determined by titration on 293TACE2 cells. 368

369

Pseudotyped virus neutralization assay. Five-fold serially diluted plasma from COVID-19 370

convalescent individuals and healthy donors or four-fold serially diluted monoclonal antibodies 371

were incubated with the SARS-CoV-2 or SARS-CoV pseudotyped virus for 1 hour at 37°C 372

degrees. The mixture was subsequently incubated with 293TACE2 cells for 48 hours after which 373

cells were washed twice with PBS and lysed with Luciferase Cell Culture Lysis 5x reagent 374

(Promega). Nanoluc Luciferase activity in lysates was measured using the Nano-Glo Luciferase 375

Assay System (Promega). Relative luminescence units obtained were normalized to those derived 376

from cells infected with SARS-CoV-2 or SARS-CoV pseudotyped virus in the absence of plasma 377

or monoclonal antibodies. The half-maximal inhibitory concentration for plasma (NT50) or 378

monoclonal antibodies (IC50) was determined using 4-parameter nonlinear regression (GraphPad 379

Prism). 380

Cell lines, virus and virus titration. VeroE6 kidney epithelial cells (Chlorocebus sabaeus) and 381

Huh-7.5 hepatoma cells (H. sapiens) were cultured in Dulbecco’s Modified Eagle Medium 382

(DMEM) supplemented with 1% nonessential amino acids (NEAA) and 10% fetal bovine serum 383

(FBS) at 37oC and 5% CO2. All cell lines have been tested negative for contamination with 384

mycoplasma and were obtained from the ATCC (with the exception for Huh-7.5). 385

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 24: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

SARS-CoV-2, strain USA-WA1/2020, was obtained from BEI Resources and amplified in VeroE6 386

cells at 33°C. Viral titers were measured on Huh-7.5 cells by standard plaque assay (PA). Briefly, 387

500 µL of serial 10-fold virus dilutions in Opti-MEM were used to infect 400,000 cells seeded the 388

day prior in a 6-well plate format. After 90 min adsorption, the virus inoculum was removed, and 389

cells were overlayed with DMEM containing 10% FBS with 1.2% microcrystalline cellulose 390

(Avicel). Cells were incubated for five days at 33°C, followed by fixation with 3.5% formaldehyde 391

and crystal violet staining for plaque enumeration. All experiments were performed in a biosafety 392

level 3 laboratory. 393

Microscopy-based neutralization assay of authentic SARS-CoV-2. The day prior to infection 394

VeroE6 cells were seeded at 12,500 cells/well into 96-well plates. Antibodies were serially diluted 395

in BA-1, mixed with a constant amount of SARS-CoV-2 (grown in VeroE6) and incubated for 60 396

min at 37°C. The antibody-virus-mix was then directly applied to VeroE6 cells (MOI of ~0.1 397

PFU/cell). Cells were fixed 18 hours post infection by adding an equal volume of 7% formaldehyde 398

to the wells, followed by permeabilization with 0.1% Triton X-100 for 10 min. After extensive 399

washing, cells were incubated for 1 hour at room temperature with blocking solution of 5% goat 400

serum in PBS (catalog no. 005–000-121; Jackson ImmunoResearch). A rabbit polyclonal anti-401

SARS-CoV-2 nucleocapsid antibody (catalog no. GTX135357; GeneTex) was added to the cells 402

at 1:500 dilution in blocking solution and incubated at 4°C overnight. A goat anti-rabbit 403

AlexaFluor 594 (catalog no. A-11012; Life Technologies) at a dilution of 1:2,000 was used as a 404

secondary antibody. Nuclei were stained with Hoechst 33342 (catalog no. 62249; Thermo 405

Scientific) at a 1:1,000 dilution. Images were acquired with a fluorescence microscope and 406

analyzed using ImageXpress Micro XLS (Molecular Devices, Sunnyvale, CA). All statistical 407

analyses were done using Prism 8 software (GraphPad). 408

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 25: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Biotinylation of viral protein for use in flow cytometry. Purified and Avi-tagged SARS-CoV-2 409

RBD was biotinylated using the Biotin-Protein Ligase-BIRA kit according to manufacturer’s 410

instructions (Avidity). Ovalbumin (Sigma, A5503-1G) was biotinylated using the EZ-Link Sulfo-411

NHS-LC-Biotinylation kit according to the manufacturer’s instructions (Thermo Scientific). 412

Biotinylated Ovalbumin was conjugated to streptavidin-BV711 (BD biosciences, 563262) and 413

RBD to streptavidin-PE (BD biosciences, 554061) and streptavidin-Alexa Fluor 647 (AF647, 414

Biolegend, 405237) respectively27. 415

416

Single cell sorting by flow cytometry. PBMCs were enriched for B cells by negative selection 417

using a pan B cell isolation kit according to the manufacturer’s instructions (Miltenyi Biotec, 130-418

101-638). The enriched B cells were incubated in FACS buffer (1 X Phosphate-buffered Saline 419

(PBS), 2% calf serum, 1 mM EDTA) with the following anti-human antibodies: anti-CD20-PECy7 420

(BD Biosciences, 335793), anti-CD3-APC-eFluro 780 (Invitrogen, 47-0037-41), anti-CD8-APC-421

eFluro 780 (Invitrogen, 47-0086-42), anti-CD16-APC-eFluro 780 (Invitrogen, 47-0168-41), anti-422

CD14-APC-eFluro 780 (Invitrogen, 47-0149-42), as well as Zombie NIR (BioLegend, 423105), 423

and fluorophore-labeled RBD and Ovalbumin for 30 minutes on ice27. Single CD3-CD8-CD16-424

CD20+Ova-RBD-PE+RBD-AF647+ B cells were sorted into individual wells of a 96-well plates 425

containing 4 μl of lysis buffer (0.5 X PBS, 10mM DTT, 3000 units/mL RNasin Ribonuclease 426

Inhibitors (Promega, N2615) per well using a FACS Aria III (Becton Dickinson). The sorted cells 427

were frozen on dry ice, and then stored at −80°C or immediately used for subsequent RNA reverse 428

transcription. Although cells were not stained for IgG expression, they are memory B cells based 429

on the fact that they are CD20+ (a marker absent in plasmablasts) and they express IgG (since 430

antibodies were amplified from these cells using IgG-specific primers). 431

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 26: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

432

Antibody sequencing, cloning and expression. Antibodies were identified and sequenced as 433

described previously22,28,29. Briefly, RNA from single cells was reverse-transcribed (SuperScript 434

III Reverse Transcriptase, Invitrogen, 18080-044) and the cDNA stored at -20°C or used for 435

subsequent amplification of the variable IGH, IGL and IGK genes by nested PCR and Sanger 436

sequencing28. Amplicons from the first PCR reaction were used as templates for Sequence- and 437

Ligation-Independent Cloning (SLIC) into antibody expression vectors. Recombinant monoclonal 438

antibodies and Fabs were produced and purified as previously described30,31. 439

440

Biolayer interferometry. 441

BLI assays were performed on the Octet Red instrument (ForteBio) at 30°C with shaking at 1,000 442

r.p.m. Epitope binding assays were performed with protein A biosensor (ForteBio 18-5010), 443

following the manufacture protocol “classical sandwich assay”. (1) Sensor check: sensors 444

immersed 30 sec in buffer alone (buffer ForteBio 18-1105). (2) Capture 1st Ab: sensors immersed 445

10min with Ab1 at 40 µg/mL. (3) Baseline: sensors immersed 30sec in buffer alone. (4) Blocking: 446

sensors immersed 5 min with IgG isotype control at 50 µg/mL. (6) Antigen association: sensors 447

immersed 5 min with RBD at 100 µg/mL. (7) Baseline: sensors immersed 30 sec in buffer alone. 448

(8) Association Ab2: sensors immersed 5min with Ab2 at 40 µg/mL. Curve fitting was performed 449

using the Data analysis software (ForteBio). 450

451

Computational analyses of antibody sequences. Antibody sequences were trimmed based on 452

quality and annotated using Igblastn v1.14.032 with IMGT domain delineation system. Annotation 453

was performed systematically using Change-O toolkit v.0.4.533. Heavy and light chains derived 454

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 27: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

from the same cell were paired, and clonotypes were assigned based on their V and J genes using 455

in-house R and Perl scripts (Fig. 3 b,c). All scripts and the data used to process antibody sequences 456

are publicly available on GitHub (https://github.com/stratust/igpipeline). 457

The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study 458

was compared to Sequence Read Archive SRP01097034. The V(D)J assignments were done using 459

IMGT/High V-Quest and the frequencies of heavy and light chain V genes were calculated for 14 460

and 13 individuals, respectively, using sequences with unique CDR3s. The two-tailed t test with 461

unequal variances was used to determine statistical significance (Extended Data Fig. 7). 462

Nucleotide somatic hypermutation and CDR3 length were determined using in-house R and Perl 463

scripts. For somatic hypermutations, IGHV and IGLV nucleotide sequences were aligned against 464

their closest germlines using IgBlast and the number of differences were considered nucleotide 465

mutations. The average mutations for V genes was calculated by dividing the sum of all nucleotide 466

mutations across all patients by the number of sequences used for the analysis. To calculate the 467

GRAVY scores of hydrophobicity35 we used Guy H.R. Hydrophobicity scale based on free energy 468

of transfer (kcal/mole)36 implemented by the R package Peptides available in the Comprehensive 469

R Archive Network repository (https://journal.r-project.org/archive/2015/RJ-2015-001/RJ-2015-470

001.pdf). We used 534 heavy chain CDR3 amino acid sequences from this study and 22,654,256 471

IGH CDR3 sequences from the public database of memory B-cell receptor sequences37. The 472

Shapiro-Wilk test was used to determine whether the GRAVY scores are normally distributed. 473

The GRAVY scores from all 533 IGH CDR3 amino acid sequences from this study 474

(sequence COV047_P4_IgG_51-P1369 lacks CDR3 amino acid sequence) were used to perform 475

the test and 5000 GRAVY scores of the sequences from the public database were randomly 476

selected. The Shapiro-Wilk p-values were 6.896 x 10-3 and 2.217 x 10-6 for sequences from this 477

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 28: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

study and the public database, respectively, indicating the data are not normally distributed. 478

Therefore, we used the Wilcoxon non-parametric test to compare the samples, which indicated a 479

difference in hydrophobicity distribution (p = 5 x 10-6; Extended Data Fig. 8). 480

481

Negative-stain EM Data Collection and Processing 482

Purified Fabs (C002, C119, and C121) were complexed with SARS-CoV-2 S trimer at a 2-fold 483

molar excess for 1 min and diluted to 40 µg/mL in TBS immediately before adding 3 µL to a 484

freshly-glow discharged ultrathin, 400 mesh carbon-coated copper grid (Ted Pella, Inc.). Samples 485

were blotted after a 1 min incubation period and stained with 1% uranyl formate for an additional 486

minute before imaging. Micrographs were recorded on a Thermo Fisher Talos Arctica transmission 487

electron microscope operating at 200 keV using a K3 direct electron detector (Gatan, Inc) and 488

SerialEM automated image acquisition software38. Images were acquired at a nominal 489

magnification of 28,000x (1.44 Å/pixel size) and a -1.5 to -2.0 µm defocus range. Images were 490

processed in cryoSPARC v2.14, and reference-free particle picking was completed using a 491

gaussian blob picker39. Reference-free 2D class averages and ab initio volumes were generated in 492

cryoSPARC, and subsequently 3D-classified to identify classes of S-Fab complexes, that were 493

then homogenously refined. Figures were prepared using UCSF Chimera40. 494

495

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 29: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Acknowledgements: We thank all study participants who devoted time to our research; Drs. Barry 496

Coller and Sarah Schlesinger, the Rockefeller University Hospital Clinical Research Support 497

Office and nursing staff. Dr. Joseph L. DeRisi for facilitating interactions with the Chan 498

Zuckerberg BioHub. All members of the M.C.N. laboratory for helpful discussions, Drs. Amelia 499

Escolano, Gaëlle Breton and Bernardo Reis, and Maša Jankovic for laboratory support. This work 500

was supported by NIH grant P01-AI138398-S1 (M.C.N., C.M.R., P.J.B.) and 2U19AI111825 501

(M.C.N. and C.M.R).; the Caltech Merkin Institute for Translational Research and P50 AI150464 502

(P.J.B.), George Mason University Fast Grant and the European ATAC consortium (EC 503

101003650) to D.F.R.; 3 R01-AI091707-10S1 to C.M.R.; R37-AI64003 to P.D.B.; R01AI78788 504

to T.H.; The G. Harold and Leila Y. Mathers Charitable Foundation to C.M.R.. Electron 505

microscopy was performed in the Caltech Beckman Institute Resource Center for Transmission 506

Electron Microscpy (Drs. Songye Chen and Andrey Malyutin, Directors). C.G. was supported by 507

the Robert S. Wennett Post-Doctoral Fellowship, in part by the National Center for Advancing 508

Translational Sciences (National Institutes of Health Clinical and Translational Science Award 509

program, grant UL1 TR001866), and by the Shapiro-Silverberg Fund for the Advancement of 510

Translational Research. P.D.B. and M.C.N. are Howard Hughes Medical Institute Investigators. 511

512

Contributions: D.F.R., P.D.B., P.J.B., T.H., C.M.R. and M.C.N. conceived, designed and 513

analyzed the experiments. D.F.R., M.C. and C.G. designed clinical protocols. F.M., J.C.C.L., 514

Z.W., A.C., M.A., C.O.B., S.F., T.H., C.V., K.G., F.B., S.T.C., P.M., H.H., L.N., F.S., Y.W., H.-515

H.H., E.M., A.W.A., K.E.H.T., N.K. and P.R.H. carried out all experiments. A.G. and M.C. 516

produced antibodies. C.O.B., J.P. and E.W. produced SARS-CoV-2 proteins. A.H., R.K., J.H., 517

K.G.M., C.G. and M.C. recruited participants and executed clinical protocols. R.P., J.D., M.P. and 518

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 30: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

I.S. processed clinical samples. T.Y.O., A.P.W. and V.R. performed bioinformatic analysis. 519

D.F.R., P.D.B., P.J.B., T.H., C.M.R. and M.C.N. wrote the manuscript with input from all co-520

authors. 521

522

Declaration of conflict: In connection with this work The Rockefeller University has filed a 523

provisional patent application on which D.F.R. and M.C.N. are inventors. 524

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 31: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Extended Data Tables 525

526

Extended Data Table 1. Individual participant demographics and clinical characteristics

ID Age Gender Race IgG IgM IgG IgM5 43 M White Non-Hispanic Case 9 41 9 2.52 2.35 5.51 2.43 5.07 40 M White Non-Hispanic Case 11 30 6 2.92 2.54 7.39 2.37 2730.48 37 M White Non-Hispanic Case 3 57 5 2.11 0.81 4.46 0.88 5.09 35 F White Non-Hispanic Case 12 54 5 2.90 1.07 4.44 2.80 5.012 27 F White Non-Hispanic Contact 7 24 3 1.47 1.71 4.31 1.23 5.013 28 M White Non-Hispanic Case 5 25 3 1.97 4.10 3.95 1.38 173.218 55 M White Non-Hispanic Case 16 28 6 2.57 1.75 3.92 1.31 410.320 26 F White Non-Hispanic Case 2 17 5 1.80 2.00 4.49 1.68 5.021 54 M White Hispanic Contact 11 27 7 5.60 2.88 7.60 2.47 5052.724 34 M White Non-Hispanic Case 15 30 4 2.29 1.97 4.36 1.45 280.726 66 M White Non-Hispanic Case 2 35 3 1.67 1.86 4.00 1.58 276.127 28 M White Non-Hispanic Case 9 32 4 1.79 1.64 4.41 1.30 739.328 26 M White Non-Hispanic Case 7 21 4 2.39 2.25 4.93 1.66 888.929 26 F White Non-Hispanic Contact 5 35 4 1.69 1.54 3.93 1.97 5.030 30 M White Non-Hispanic Contact 3 35 4 3.07 2.55 4.86 1.34 5.031 51 M White Non-Hispanic Case 9 33 3 1.29 1.60 4.69 1.20 192.332 46 F White Non-Hispanic Case 8 32 3 1.30 2.18 3.79 0.83 47.437 27 M White Non-Hispanic Case 6 28 6 2.13 1.52 4.11 1.04 286.338 57 F White Non-Hispanic Case 10 38 4 1.87 2.02 4.30 1.12 518.940 44 M White Non-Hispanic Case 7 23 5 1.72 1.50 3.81 1.47 42.141 35 M White Non-Hispanic Contact 10 29 8 2.13 1.67 4.15 0.98 302.542 40 M White Non-Hispanic Contact 20 36 8 2.37 1.50 5.82 1.43 627.145 55 F White Non-Hispanic Case 7 48 6 1.95 0.97 3.53 0.75 5.046 39 M White Non-Hispanic Case 8 30 2 2.68 1.45 4.14 1.29 59.247 43 F White Non-Hispanic Case 11 33 5 3.02 2.30 6.23 2.66 10433.348 37 F White Non-Hispanic Case 7 21 5 1.51 1.85 3.47 1.51 173.450 27 F White Non-Hispanic Contact 7 28 4 1.64 2.32 5.42 1.45 924.751 21 M White Non-Hispanic Contact 8 31 5 1.76 1.69 3.94 1.03 1499.254 40 F White Non-Hispanic Contact 3 24 3 1.80 2.10 4.99 1.42 5.055 36 M White Non-Hispanic Case 3 49 2 1.43 1.23 3.90 2.09 5.056 75 F White Non-Hispanic Case 22 40 3 1.79 1.81 5.89 1.47 1388.457 66 M White Non-Hispanic Case 6 21 5 1.54 2.10 4.33 1.00 2048.958 64 F White Non-Hispanic Contact 1 32 2 1.20 1.71 3.95 1.21 5.064 28 F White Non-Hispanic Contact 11 32 6 2.36 2.06 4.48 1.66 776.767 19 F N/A Hispanic Case 5 29 6 2.56 1.98 5.48 1.32 2052.971 45 F White Non-Hispanic Case 12 48 7 1.55 2.04 3.86 1.53 33.372 42 M White Non-Hispanic Case 16 35 8 4.05 3.58 6.05 2.59 3138.275 46 F White Non-Hispanic Case 10 36 4 1.64 2.37 3.98 1.20 271.576 49 F White Non-Hispanic Case 28 34 4 1.88 1.65 5.17 0.97 219.877 37 M White Non-Hispanic Contact 6 33 4 1.33 1.83 3.56 1.16 5.081 44 F White Non-Hispanic Contact 3 35 2 1.58 1.73 3.82 1.10 5.082 46 M N/A Non-Hispanic Case 0 0 2.19 1.92 5.41 1.81 130.788 41 M White Non-Hispanic Case 7 23 4 1.82 3.32 4.97 1.37 424.795 44 M White Non-Hispanic Case 9 36 6 2.61 1.62 6.03 1.62 961.996 48 F White Non-Hispanic Case 9 30 3 3.93 1.93 6.25 2.26 927.797 39 M White Non-Hispanic Case 9 31 3 1.58 1.61 4.03 2.33 202.798 35 F White Non-Hispanic Case 2 24 4 1.78 1.47 5.38 1.22 249.099 36 F White Non-Hispanic Case 13 29 5 2.50 3.27 4.38 2.49 1127.6

107 53 F White Non-Hispanic Contact 10 29 4 1.74 1.41 4.66 0.90 297.5108 75 M White Non-Hispanic Case 16 41 7 1.37 0.88 3.47 1.36 557.5110 27 M White Non-Hispanic Case 1 25 1 1.30 1.60 4.00 0.93 5.0114 30 F White Non-Hispanic Case 15 36 7 1.65 1.92 3.53 1.55 110.9115 65 F White Non-Hispanic Contact 20 41 6 2.10 3.28 4.32 3.27 1127.7119 56 M White Non-Hispanic Case 13 48 3 1.36 1.26 4.41 1.59 650.3120 56 F White Non-Hispanic Case 26 48 6 0.99 0.97 3.65 1.21 100.6121 19 M White Non-Hispanic Contact 3 42 2 0.85 0.87 3.56 1.26 5.0122 21 F White Non-Hispanic Contact 3 38 1 1.44 0.94 3.39 1.22 5.0123 26 M White Non-Hispanic Contact 12 34 6 0.94 0.95 3.39 1.40 5.0124 63 F Asian Non-Hispanic Contact 4 37 3 1.58 2.06 3.49 1.32 5.0125 51 F White Non-Hispanic Case 10 26 3 1.92 3.49 3.86 1.24 126.5127 24 F White Non-Hispanic Case 10 43 6 1.80 2.50 4.37 2.41 883.5130 39 M White Non-Hispanic Contact 7 28 5 1.24 1.72 3.91 1.34 5.0131 39 M White Non-Hispanic Case 5 25 4 1.46 1.38 4.44 1.03 7.8132 36 M White Non-Hispanic Contact 10 50 6 2.15 1.76 4.84 1.97 5.0134 27 F White Non-Hispanic Contact 16 22 5 2.51 2.18 6.84 1.94 2700.6135 62 F White Non-Hispanic Case 8 31 6 2.20 2.02 3.80 1.13 350.0140 63 F White Non-Hispanic Case 28 47 1 1.05 1.24 3.58 1.28 52.4149 41 M White Non-Hispanic Contact 17 28 6 1.68 2.02 3.67 1.09 494.9150 50 F White Non-Hispanic Contact 12 45 7 1.15 0.43 3.18 1.82 5.0154 68 M Asian Non-Hispanic Case 16 30 9 3.19 2.19 4.85 1.29 928.2157 50 M White Non-Hispanic Case 10 32 8 2.40 2.86 3.90 2.06 741.7166 28 F White Non-Hispanic Case 13 45 2 1.27 0.66 3.45 0.94 5.0167 50 F White Non-Hispanic Contact 11 41 6 1.43 3.71 3.93 8.74 5.0172 38 F White Non-Hispanic Case 8 22 9 1.71 2.58 4.29 1.20 301.1173 47 M White Non-Hispanic Case 5 47 7 2.57 4.14 4.78 4.48 646.9178 26 F White Non-Hispanic Case 6 24 4 1.54 1.59 3.66 1.02 5.0179 39 M White Non-Hispanic Contact 10 37 3 1.89 2.25 3.83 1.73 370.1182 44 F White Non-Hispanic Contact 10 38 6 3.80 1.77 5.36 8.05 1503.7183 43 F White Non-Hispanic Case 13 44 8 1.56 1.02 3.88 1.55 240.1185 54 M White Non-Hispanic Case 11 44 8 3.51 1.39 5.55 2.11 1806.8186 38 F N/A N/A Case 8 26 2 1.73 2.47 4.37 1.23 296.9190 54 F White Non-Hispanic Case 18* 63 9 3.24 1.24 7.38 1.42 598.1195 24 M White Non-Hispanic Case 18 42 5 2.74 2.55 5.01 2.33 1315.1200 60 F White Non-Hispanic Case 17 39 7 2.40 1.00 4.38 1.51 1014.4201 50 M White Non-Hispanic Contact 15 33 6 4.37 2.57 6.15 1.57 3897.4202 57 M White Non-Hispanic Case 21 34 7 2.10 2.08 5.07 1.17 257.9205 64 M White Non-Hispanic Case 7 36 4 4.51 0.70 6.12 1.69 924.4222 28 M Asian Non-Hispanic Case 11 29 7 1.28 0.69 3.94 3.46 5.0229 45 M White Non-Hispanic Case 10 63 4 2.92 1.42 4.90 1.58 1272.9230 50 M White Non-Hispanic Case 18 33 7 3.80 0.47 3.48 0.88 5.0232 38 F White Non-Hispanic Case 13 43 7 1.57 0.70 4.24 5.70 94.3233 55 M White Non-Hispanic Case 20 41 3 2.07 2.11 4.51 1.07 173.2241 36 M White Non-Hispanic Case 12 30 7 2.27 2.66 4.54 1.46 923.1242 59 M White Non-Hispanic Case 10 42 6 4.91 1.94 4.81 2.16 1353.0243 30 F Asian Non-Hispanic Case 6 26 5 2.92 2.57 5.06 1.14 1300.2246 44 F White Non-Hispanic Case 10 38 7 2.05 2.79 6.09 1.32 566.0255 33 M White Non-Hispanic Case 14 44 6 2.14 0.70 4.20 1.24 172.5256 63 F White Non-Hispanic Case 27 42 6 1.72 1.96 4.26 7.79 141.6258 52 M White Non-Hispanic Contact 14 48 6 2.64 1.20 4.52 1.85 4145.9279 41 M White Non-Hispanic Case 7 38 8 1.68 2.13 3.77 1.90 308.9280 59 M White Non-Hispanic Case 6 32 7 2.53 3.07 4.61 1.19 1072.1302 47 F White Non-Hispanic Case 35* 49 7 1.48 0.97 4.06 1.26 5.0310 34 F White Non-Hispanic Case 17 35 5 3.95 1.24 9.44 3.07 485.5314 46 M White Non-Hispanic Case 11 38 7 2.12 0.88 4.56 1.51 667.1315 29 F White Non-Hispanic Case 15 42 8 3.02 0.69 3.98 1.03 376.5319 50 M White Non-Hispanic Case 5 38 6 3.71 2.28 3.79 1.05 5.0323 39 F White Non-Hispanic Case 7 45 7 1.05 1.03 3.53 1.42 5.0325 52 M White Non-Hispanic Case 16 38 8 2.25 1.47 4.83 2.28 1603.3343 21 F White Non-Hispanic Case 16 49 5 1.63 0.94 3.37 1.70 5.0352 44 M White Non-Hispanic Case 16 43 4 3.54 0.92 4.50 1.07 519.2353 60 M White Non-Hispanic Case 14 49 6 5.38 1.12 5.69 1.05 855.5356 22 F White Non-Hispanic Contact 16 38 3 1.37 0.61 2.98 1.09 5.0357 27 F White Non-Hispanic Contact 34 56 5 7.49 1.10 2.77 1.13 5.0364 29 M White Non-Hispanic Contact 14 49 6 0.97 0.58 2.90 0.89 5.0366 41 F White Non-Hispanic Contact 9 34 7 0.98 0.52 3.51 1.19 5.0373 35 F White Non-Hispanic Case 12 51 7 1.69 1.26 5.14 1.69 5.0388 47 F White Non-Hispanic Contact 14 41 9 1.57 1.06 3.61 1.69 5.0393 69 M White Non-Hispanic Case 23* 54 9 1.28 1.74 3.81 2.65 715.4394 48 F Multiple Hispanic Case 7 67 4 2.05 0.87 4.34 2.02 1281.5397 52 M White Non-Hispanic Case 22 45 8 3.32 0.59 5.01 0.87 1516.9403 52 M Asian Non-Hispanic Case 18* 39 10 5.36 1.09 10.01 1.36 3887.8406 65 M White Non-Hispanic Case 20 56 8 4.69 0.90 7.51 1.15 1288.7410 34 M White Non-Hispanic Case 12 46 8 1.06 0.56 3.95 0.76 5.0421 62 F White Non-Hispanic Contact 12 43 9 0.95 1.07 3.34 1.35 5.0426 65 M White Non-Hispanic Case 18 51 6 2.07 0.55 3.95 1.49 804.8437 43 F Asian Non-Hispanic Case 14 34 7 2.54 0.47 4.30 1.44 698.8460 36 M White Non-Hispanic Case 11 39 6 2.94 3.18 5.51 2.80 1906.7461 49 M White Non-Hispanic Case 7 39 5 3.38 0.94 4.67 2.02 1076.6462 28 F White Non-Hispanic Case 16 45 5 1.36 0.38 3.07 1.11 5.0470 28 F White Non-Hispanic Case 17 51 4 1.26 0.86 3.97 1.50 5.0478 31 M White Non-Hispanic Case 16 52 4 1.43 0.93 3.70 1.97 263.2481 28 F Asian Non-Hispanic Case 15 43 8 1.70 0.39 3.46 1.24 5.0486 64 F White Non-Hispanic Case 11 41 10 1.70 1.00 3.68 1.29 5.0500 46 M White Non-Hispanic Case 12 53 5 1.10 0.82 3.49 1.34 5.0501 32 M Asian Non-Hispanic Case 18* 53 10 2.62 0.65 4.51 1.21 718.8502 52 M White Non-Hispanic Case 16* 53 9 5.10 0.61 5.10 1.62 2171.8506 46 M White Non-Hispanic Case 12 59 9 0.84 0.81 3.13 1.21 5.0507 39 M White Non-Hispanic Case 15 60 8 1.92 0.96 4.56 1.52 5.0509 36 M White Non-Hispanic Case 11 50 5 1.99 1.01 3.99 1.45 5.0526 49 M Asian Non-Hispanic Case 11 34 7 3.36 1.45 5.88 1.57 4193.3537 52 M White Non-Hispanic Case 15 45 6 1.47 0.95 3.65 1.58 923.3539 73 F White Non-Hispanic Case 19* 54 10 2.82 0.63 4.46 1.45 487.9547 59 M White Non-Hispanic Case 15* 36 9 2.97 1.53 5.08 2.59 2900.6587 54 M PI N/A Case 17* 51 8 3.22 0.60 4.01 1.49 473.1632 38 M White Non-Hispanic Contact 10 43 6 2.49 0.86 4.50 1.63 572.3633 39 M White Non-Hispanic Contact 8 57 4 1.25 1.04 3.38 1.73 5.0652 76 M White Non-Hispanic Case 18* 56 10 4.75 1.46 8.96 3.80 2324.0664 45 F White Non-Hispanic Case 17* 42 10 1.68 0.43 3.93 1.32 5.0675 47 M White Non-Hispanic Contact 31 47 5 0.79 0.93 2.94 1.38 5.0

*hospitalized, Sx=symptoms

Case/ContactEthnicity

Duration (days) Sx Severity

(0-10)Neutralization

(NT50)Sx

totalSx onset to visit

ELISA binding (AUC)RBD S

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 32: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

527

Extended Data Table 1. Individual participant demographics and clinical characteristics

ID Age Gender Race IgG IgM IgG IgM5 43 M White Non-Hispanic Case 9 41 9 2.52 2.35 5.51 2.43 5.07 40 M White Non-Hispanic Case 11 30 6 2.92 2.54 7.39 2.37 2730.48 37 M White Non-Hispanic Case 3 57 5 2.11 0.81 4.46 0.88 5.09 35 F White Non-Hispanic Case 12 54 5 2.90 1.07 4.44 2.80 5.012 27 F White Non-Hispanic Contact 7 24 3 1.47 1.71 4.31 1.23 5.013 28 M White Non-Hispanic Case 5 25 3 1.97 4.10 3.95 1.38 173.218 55 M White Non-Hispanic Case 16 28 6 2.57 1.75 3.92 1.31 410.320 26 F White Non-Hispanic Case 2 17 5 1.80 2.00 4.49 1.68 5.021 54 M White Hispanic Contact 11 27 7 5.60 2.88 7.60 2.47 5052.724 34 M White Non-Hispanic Case 15 30 4 2.29 1.97 4.36 1.45 280.726 66 M White Non-Hispanic Case 2 35 3 1.67 1.86 4.00 1.58 276.127 28 M White Non-Hispanic Case 9 32 4 1.79 1.64 4.41 1.30 739.328 26 M White Non-Hispanic Case 7 21 4 2.39 2.25 4.93 1.66 888.929 26 F White Non-Hispanic Contact 5 35 4 1.69 1.54 3.93 1.97 5.030 30 M White Non-Hispanic Contact 3 35 4 3.07 2.55 4.86 1.34 5.031 51 M White Non-Hispanic Case 9 33 3 1.29 1.60 4.69 1.20 192.332 46 F White Non-Hispanic Case 8 32 3 1.30 2.18 3.79 0.83 47.437 27 M White Non-Hispanic Case 6 28 6 2.13 1.52 4.11 1.04 286.338 57 F White Non-Hispanic Case 10 38 4 1.87 2.02 4.30 1.12 518.940 44 M White Non-Hispanic Case 7 23 5 1.72 1.50 3.81 1.47 42.141 35 M White Non-Hispanic Contact 10 29 8 2.13 1.67 4.15 0.98 302.542 40 M White Non-Hispanic Contact 20 36 8 2.37 1.50 5.82 1.43 627.145 55 F White Non-Hispanic Case 7 48 6 1.95 0.97 3.53 0.75 5.046 39 M White Non-Hispanic Case 8 30 2 2.68 1.45 4.14 1.29 59.247 43 F White Non-Hispanic Case 11 33 5 3.02 2.30 6.23 2.66 10433.348 37 F White Non-Hispanic Case 7 21 5 1.51 1.85 3.47 1.51 173.450 27 F White Non-Hispanic Contact 7 28 4 1.64 2.32 5.42 1.45 924.751 21 M White Non-Hispanic Contact 8 31 5 1.76 1.69 3.94 1.03 1499.254 40 F White Non-Hispanic Contact 3 24 3 1.80 2.10 4.99 1.42 5.055 36 M White Non-Hispanic Case 3 49 2 1.43 1.23 3.90 2.09 5.056 75 F White Non-Hispanic Case 22 40 3 1.79 1.81 5.89 1.47 1388.457 66 M White Non-Hispanic Case 6 21 5 1.54 2.10 4.33 1.00 2048.958 64 F White Non-Hispanic Contact 1 32 2 1.20 1.71 3.95 1.21 5.064 28 F White Non-Hispanic Contact 11 32 6 2.36 2.06 4.48 1.66 776.767 19 F N/A Hispanic Case 5 29 6 2.56 1.98 5.48 1.32 2052.971 45 F White Non-Hispanic Case 12 48 7 1.55 2.04 3.86 1.53 33.372 42 M White Non-Hispanic Case 16 35 8 4.05 3.58 6.05 2.59 3138.275 46 F White Non-Hispanic Case 10 36 4 1.64 2.37 3.98 1.20 271.576 49 F White Non-Hispanic Case 28 34 4 1.88 1.65 5.17 0.97 219.877 37 M White Non-Hispanic Contact 6 33 4 1.33 1.83 3.56 1.16 5.081 44 F White Non-Hispanic Contact 3 35 2 1.58 1.73 3.82 1.10 5.082 46 M N/A Non-Hispanic Case 0 0 2.19 1.92 5.41 1.81 130.788 41 M White Non-Hispanic Case 7 23 4 1.82 3.32 4.97 1.37 424.795 44 M White Non-Hispanic Case 9 36 6 2.61 1.62 6.03 1.62 961.996 48 F White Non-Hispanic Case 9 30 3 3.93 1.93 6.25 2.26 927.797 39 M White Non-Hispanic Case 9 31 3 1.58 1.61 4.03 2.33 202.798 35 F White Non-Hispanic Case 2 24 4 1.78 1.47 5.38 1.22 249.099 36 F White Non-Hispanic Case 13 29 5 2.50 3.27 4.38 2.49 1127.6

107 53 F White Non-Hispanic Contact 10 29 4 1.74 1.41 4.66 0.90 297.5108 75 M White Non-Hispanic Case 16 41 7 1.37 0.88 3.47 1.36 557.5110 27 M White Non-Hispanic Case 1 25 1 1.30 1.60 4.00 0.93 5.0114 30 F White Non-Hispanic Case 15 36 7 1.65 1.92 3.53 1.55 110.9115 65 F White Non-Hispanic Contact 20 41 6 2.10 3.28 4.32 3.27 1127.7119 56 M White Non-Hispanic Case 13 48 3 1.36 1.26 4.41 1.59 650.3120 56 F White Non-Hispanic Case 26 48 6 0.99 0.97 3.65 1.21 100.6121 19 M White Non-Hispanic Contact 3 42 2 0.85 0.87 3.56 1.26 5.0122 21 F White Non-Hispanic Contact 3 38 1 1.44 0.94 3.39 1.22 5.0123 26 M White Non-Hispanic Contact 12 34 6 0.94 0.95 3.39 1.40 5.0124 63 F Asian Non-Hispanic Contact 4 37 3 1.58 2.06 3.49 1.32 5.0125 51 F White Non-Hispanic Case 10 26 3 1.92 3.49 3.86 1.24 126.5127 24 F White Non-Hispanic Case 10 43 6 1.80 2.50 4.37 2.41 883.5130 39 M White Non-Hispanic Contact 7 28 5 1.24 1.72 3.91 1.34 5.0131 39 M White Non-Hispanic Case 5 25 4 1.46 1.38 4.44 1.03 7.8132 36 M White Non-Hispanic Contact 10 50 6 2.15 1.76 4.84 1.97 5.0134 27 F White Non-Hispanic Contact 16 22 5 2.51 2.18 6.84 1.94 2700.6135 62 F White Non-Hispanic Case 8 31 6 2.20 2.02 3.80 1.13 350.0140 63 F White Non-Hispanic Case 28 47 1 1.05 1.24 3.58 1.28 52.4149 41 M White Non-Hispanic Contact 17 28 6 1.68 2.02 3.67 1.09 494.9150 50 F White Non-Hispanic Contact 12 45 7 1.15 0.43 3.18 1.82 5.0154 68 M Asian Non-Hispanic Case 16 30 9 3.19 2.19 4.85 1.29 928.2157 50 M White Non-Hispanic Case 10 32 8 2.40 2.86 3.90 2.06 741.7166 28 F White Non-Hispanic Case 13 45 2 1.27 0.66 3.45 0.94 5.0167 50 F White Non-Hispanic Contact 11 41 6 1.43 3.71 3.93 8.74 5.0172 38 F White Non-Hispanic Case 8 22 9 1.71 2.58 4.29 1.20 301.1173 47 M White Non-Hispanic Case 5 47 7 2.57 4.14 4.78 4.48 646.9178 26 F White Non-Hispanic Case 6 24 4 1.54 1.59 3.66 1.02 5.0179 39 M White Non-Hispanic Contact 10 37 3 1.89 2.25 3.83 1.73 370.1182 44 F White Non-Hispanic Contact 10 38 6 3.80 1.77 5.36 8.05 1503.7183 43 F White Non-Hispanic Case 13 44 8 1.56 1.02 3.88 1.55 240.1185 54 M White Non-Hispanic Case 11 44 8 3.51 1.39 5.55 2.11 1806.8186 38 F N/A N/A Case 8 26 2 1.73 2.47 4.37 1.23 296.9190 54 F White Non-Hispanic Case 18* 63 9 3.24 1.24 7.38 1.42 598.1195 24 M White Non-Hispanic Case 18 42 5 2.74 2.55 5.01 2.33 1315.1200 60 F White Non-Hispanic Case 17 39 7 2.40 1.00 4.38 1.51 1014.4201 50 M White Non-Hispanic Contact 15 33 6 4.37 2.57 6.15 1.57 3897.4202 57 M White Non-Hispanic Case 21 34 7 2.10 2.08 5.07 1.17 257.9205 64 M White Non-Hispanic Case 7 36 4 4.51 0.70 6.12 1.69 924.4222 28 M Asian Non-Hispanic Case 11 29 7 1.28 0.69 3.94 3.46 5.0229 45 M White Non-Hispanic Case 10 63 4 2.92 1.42 4.90 1.58 1272.9230 50 M White Non-Hispanic Case 18 33 7 3.80 0.47 3.48 0.88 5.0232 38 F White Non-Hispanic Case 13 43 7 1.57 0.70 4.24 5.70 94.3233 55 M White Non-Hispanic Case 20 41 3 2.07 2.11 4.51 1.07 173.2241 36 M White Non-Hispanic Case 12 30 7 2.27 2.66 4.54 1.46 923.1242 59 M White Non-Hispanic Case 10 42 6 4.91 1.94 4.81 2.16 1353.0243 30 F Asian Non-Hispanic Case 6 26 5 2.92 2.57 5.06 1.14 1300.2246 44 F White Non-Hispanic Case 10 38 7 2.05 2.79 6.09 1.32 566.0255 33 M White Non-Hispanic Case 14 44 6 2.14 0.70 4.20 1.24 172.5256 63 F White Non-Hispanic Case 27 42 6 1.72 1.96 4.26 7.79 141.6258 52 M White Non-Hispanic Contact 14 48 6 2.64 1.20 4.52 1.85 4145.9279 41 M White Non-Hispanic Case 7 38 8 1.68 2.13 3.77 1.90 308.9280 59 M White Non-Hispanic Case 6 32 7 2.53 3.07 4.61 1.19 1072.1302 47 F White Non-Hispanic Case 35* 49 7 1.48 0.97 4.06 1.26 5.0310 34 F White Non-Hispanic Case 17 35 5 3.95 1.24 9.44 3.07 485.5314 46 M White Non-Hispanic Case 11 38 7 2.12 0.88 4.56 1.51 667.1315 29 F White Non-Hispanic Case 15 42 8 3.02 0.69 3.98 1.03 376.5319 50 M White Non-Hispanic Case 5 38 6 3.71 2.28 3.79 1.05 5.0323 39 F White Non-Hispanic Case 7 45 7 1.05 1.03 3.53 1.42 5.0325 52 M White Non-Hispanic Case 16 38 8 2.25 1.47 4.83 2.28 1603.3343 21 F White Non-Hispanic Case 16 49 5 1.63 0.94 3.37 1.70 5.0352 44 M White Non-Hispanic Case 16 43 4 3.54 0.92 4.50 1.07 519.2353 60 M White Non-Hispanic Case 14 49 6 5.38 1.12 5.69 1.05 855.5356 22 F White Non-Hispanic Contact 16 38 3 1.37 0.61 2.98 1.09 5.0357 27 F White Non-Hispanic Contact 34 56 5 7.49 1.10 2.77 1.13 5.0364 29 M White Non-Hispanic Contact 14 49 6 0.97 0.58 2.90 0.89 5.0366 41 F White Non-Hispanic Contact 9 34 7 0.98 0.52 3.51 1.19 5.0373 35 F White Non-Hispanic Case 12 51 7 1.69 1.26 5.14 1.69 5.0388 47 F White Non-Hispanic Contact 14 41 9 1.57 1.06 3.61 1.69 5.0393 69 M White Non-Hispanic Case 23* 54 9 1.28 1.74 3.81 2.65 715.4394 48 F Multiple Hispanic Case 7 67 4 2.05 0.87 4.34 2.02 1281.5397 52 M White Non-Hispanic Case 22 45 8 3.32 0.59 5.01 0.87 1516.9403 52 M Asian Non-Hispanic Case 18* 39 10 5.36 1.09 10.01 1.36 3887.8406 65 M White Non-Hispanic Case 20 56 8 4.69 0.90 7.51 1.15 1288.7410 34 M White Non-Hispanic Case 12 46 8 1.06 0.56 3.95 0.76 5.0421 62 F White Non-Hispanic Contact 12 43 9 0.95 1.07 3.34 1.35 5.0426 65 M White Non-Hispanic Case 18 51 6 2.07 0.55 3.95 1.49 804.8437 43 F Asian Non-Hispanic Case 14 34 7 2.54 0.47 4.30 1.44 698.8460 36 M White Non-Hispanic Case 11 39 6 2.94 3.18 5.51 2.80 1906.7461 49 M White Non-Hispanic Case 7 39 5 3.38 0.94 4.67 2.02 1076.6462 28 F White Non-Hispanic Case 16 45 5 1.36 0.38 3.07 1.11 5.0470 28 F White Non-Hispanic Case 17 51 4 1.26 0.86 3.97 1.50 5.0478 31 M White Non-Hispanic Case 16 52 4 1.43 0.93 3.70 1.97 263.2481 28 F Asian Non-Hispanic Case 15 43 8 1.70 0.39 3.46 1.24 5.0486 64 F White Non-Hispanic Case 11 41 10 1.70 1.00 3.68 1.29 5.0500 46 M White Non-Hispanic Case 12 53 5 1.10 0.82 3.49 1.34 5.0501 32 M Asian Non-Hispanic Case 18* 53 10 2.62 0.65 4.51 1.21 718.8502 52 M White Non-Hispanic Case 16* 53 9 5.10 0.61 5.10 1.62 2171.8506 46 M White Non-Hispanic Case 12 59 9 0.84 0.81 3.13 1.21 5.0507 39 M White Non-Hispanic Case 15 60 8 1.92 0.96 4.56 1.52 5.0509 36 M White Non-Hispanic Case 11 50 5 1.99 1.01 3.99 1.45 5.0526 49 M Asian Non-Hispanic Case 11 34 7 3.36 1.45 5.88 1.57 4193.3537 52 M White Non-Hispanic Case 15 45 6 1.47 0.95 3.65 1.58 923.3539 73 F White Non-Hispanic Case 19* 54 10 2.82 0.63 4.46 1.45 487.9547 59 M White Non-Hispanic Case 15* 36 9 2.97 1.53 5.08 2.59 2900.6587 54 M PI N/A Case 17* 51 8 3.22 0.60 4.01 1.49 473.1632 38 M White Non-Hispanic Contact 10 43 6 2.49 0.86 4.50 1.63 572.3633 39 M White Non-Hispanic Contact 8 57 4 1.25 1.04 3.38 1.73 5.0652 76 M White Non-Hispanic Case 18* 56 10 4.75 1.46 8.96 3.80 2324.0664 45 F White Non-Hispanic Case 17* 42 10 1.68 0.43 3.93 1.32 5.0675 47 M White Non-Hispanic Contact 31 47 5 0.79 0.93 2.94 1.38 5.0

*hospitalized, Sx=symptoms

Case/ContactEthnicity

Duration (days) Sx Severity

(0-10)Neutralization

(NT50)Sx

totalSx onset to visit

ELISA binding (AUC)RBD S

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 33: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

528

Extended Data Table 2. Frequency of symptoms and comorbidities reported by participants

SymptomParticipants

(n=149) %Fever 125 83.9Fatigue 106 71.1Cough 93 62.4Myalgia 92 61.7Shortness of breath 66 44.3Headache 63 42.3Loss of smell/taste 50 33.3Sore throat 38 25.3Diarrhea 32 21.3Presence of comorbidities (HTN, CAD, DM, COPD, asthma, cancer) 16 10.7

HTN (hypertension), CAD (coronary artery disease), DM (diabetes mellitus), COPD (chronic obstructive pulmonary disease)

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 34: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Extended Data Tables 3 and 4 are provided as separate Excel files. 529

530

531

Extended data table 5. Sequences of cloned recombinant antibodies

C002 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTATCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGAGGGGAGACCATCTGATATTGTAGTGGTGGTGGCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSIYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEGRPSDIVVVVAFDYWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPRTFGQGTKVEIKC003 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGGGGACACGGCCGTGTATTACTGTGCGAGGGATTACGGTGACTTCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAGDTAVYYCARDYGDFYFDYWGQGTLVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCACCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCTAGGACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKLEIKC004 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCGGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACCCTATCAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGCCCAGCATCACGTGGATATAGTGGCTACGATCATGGGTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPISGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCASPASRGYSGYDHGYYYYMDVWGKGTTVTVSSGCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCTATCACCTTCGGCCAAGGGACACGACTGGAGATTAAACAIRMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPITFGQGTRLEIKC005 CAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGACCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATTCACCTTTACTAGCTCTGCTGTGCAGTGGGTGCGACAGGCTCGTGGACAACGCCTTGAGTGGATAGGATGGATCGTCGTTGGCAGTGGTAACACAAACTACGCACAGAAGTTCCAGGAAAGAGTCACCATTACCAGGGACATGTCCACAAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCCGAGGACACGGCCGTGTATTACTGTGCGGCTCCCCATTGTAGCGGTGGTAGCTGCCTTGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLVQSGPEVKKPGTSVKVSCKASGFTFTSSAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPHCSGGSCLDAFDIWGQGTMVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGAAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVRSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIKC006 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCATCTTCAGTGACTACTGCATGAGCTGGATCCGCCGGGCTCCAGGGAAGGGGCTGGAATGGCTTTCATATATTAGTAATAGTGGTACCACCAGATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGGGACAACGGCAGGAACTCACTGTATCTGCAAATGGACAGCCTGAGCGCCGAAGACACGGCCGTTTATTACTGTGCGAGAAGGGGGGACGGTAGCAGCTCGATCTACTACTACAACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAQVQLVESGGGLVKPGGSLRLSCAASGFIFSDYCMSWIRRAPGKGLEWLSYISNSGTTRYYADSVKGRFTISRDNGRNSLYLQMDSLSAEDTAVYYCARRGDGSSSIYYYNYMDVWGKGTTVTVSSCAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGACAGAGGGTCACCGTCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGCAATACTGTAAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTTCTGTGCAGCATGGGATGACAGCCTGAATGGTCCGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSVLTQPPSASGTPGQRVTVSCSGSSSNIGSNTVNWYQQLPGTAPKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYFCAAWDDSLNGPVFGGGTKLTVLC008 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGACAGTTATTTCATATGATGGAAGGAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGAATTCGGTGACCCCGAGTGGTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVTVISYDGRNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREFGDPEWYFDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAATCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQMTQSPSTLSASVGDRVTITCRANQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYWTFGQGTKVEIKC009 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCATGGCTTCTGGATACACCTTCACCGGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACCCTAACAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGACTCCCCATTTAGTGCTTTAGGGGCCTCCAATGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVKVSCMASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARDSPFSALGASNDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAGGATGAGGCTGAGTATTACTGCAGCTCAGATGCAGGCAGCAACAATGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEAEYYCSSDAGSNNVVFGGGTKLTVLC010 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGCCAAGGGGCTGGAGTGGGTGGCAGTTATATTATATGATGGAAGCGGTAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGTTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGACGGGATCGTGGATACAGCTCTGGTTACGTGGTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPAKGLEWVAVILYDGSGKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDGIVDTALVTWFDYWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCACCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSISTYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVEIKC013 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGATCATCCCTATCTTTGGTACAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGGGAATCGACTACTTTATTGTAGTAGTACCAGCTGCTATCTAGATGCGGTTAGGCAGGGGTACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCARGNRLLYCSSTSCYLDAVRQGYYYYYYMDVWGKGTTVTVSSGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCCCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPLTFGGGTKVEIKC016 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGATATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGTGACCGCCCCTTATTGTAGTGGTGGTAGCTGCTACGGAGGTAACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKVTAPYCSGGSCYGGNFDYWGQGTLVTVSSGCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGCGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAACAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCTCCTACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACAIRMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTINSLQPEDIATYYCQQYDNLPPTFGGGTKVEIKC017 GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTACCATAGGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGACACGGCCTTTTATTACTGTGCAAAAGCGGGCGTAAGGGGTATAGCAGCAGCTGGTCCCGACCTCAACTTCGACCACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGTIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAFYYCAKAGVRGIAAAGPDLNFDHWGQGTLVTVSSGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTATCACCTTCGGCCAAGGGACACGACTGGAGATTAAACEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRITFGQGTRLEIKC018 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAACTATGCTATACACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATTTTGACGATAGTTCGTTCTGGGCGTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAIHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDFDDSSFWAFDYWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCGTCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTCGCAGCTATTTAAATTGGTATCAACAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCTTCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGATGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGGCCACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSIRSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPDDFATYYCQQSYSTPPATFGQGTKLEIKC019 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTTCACCAGTTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCTAGAGTGCCCCGTGAGGGGACCCCAGGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARVPREGTPGFDPWGQGTLVTVSSTCCTATGAGCTGACACAGCCACCCTCAGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGAAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAACAGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGKTARITCGENNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTINRVEAGDEADYYCQVWDSSSDHVVFGGGTKLTVLC021 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGTTTGGCAATACTATGATAGTAGTGGTTCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVWQYYDSSGSFDYWGQGTLVTVSSGATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAAACTCCATTCACTTTCGGCCCTGGGACCAAAGTGGATATCAAACDIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPFTFGPGTKVDIKC022 CAGGTGCAGTTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCGTCACTTGCACTGTCTCTGGTGGCTCCATCAGCAGTAGTAGGTACTACTGGGGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGAGTATCTATTATAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTGGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCAGACACGGCTGTGTATTACTGTGCGAGACATGCGGCAGCATACTATGATAGAAGTGGTTATTATTTCATCGAATACTTCCAGCACTGGGGCCAGGGCACCCTGGTCACCGTCTCCTCAGQVQLQESGPGLVKPSETLSVTCTVSGGSISSSRYYWGWIRQPPGKGLEWIGSIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARHAAAYYDRSGYYFIEYFQHWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGCGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAATTACCGGTACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQMTQSPSTLSASVGDSVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNNYRYTFGQGTKLEIKC027 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGCAAGTGGAATTTATTGTAGTGGTGGAGACTGCTACTCATACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKASGIYCSGGDCYSYYFDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQGTKVEIKC029 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCACAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTACTACTGGAGCTGGATCCGCCAGCACCCAGGGAAGGGCCTGGAGTGGATTGGGTACATCTATTACAGTGGGAGCACCTACTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCCGCGGACACGGCCGTGTATTACTGTGCGAGAACAATGTATTACTATGATAGTAGTGGTTCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGYYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARTMYYYDSSGSFDYWGQGTLVTVSSGATATTGTGATGACTCAGTCTCCACTCTCCCTGCCCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGATACAACTATTTGGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGCTCTACAAACTCCTCACACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACDIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYNYLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQALQTPHTFGGGTKVEIKC030 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGCAAGTGGAATATATTGTAGTGGTGGTAACTGCTACTCATACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKASGIYCSGGNCYSYYFDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAGCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTCATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATTCGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQMTQSPSTLSASVGDRVTITCRASQSISSWLAWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYSTFGQGTKVEIKC031 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTACGACATGCACTGGGTCCGCCAAGCTACAGGAAAAGGTCTGGAGTGGGTCTCAGCTATTGGTACTGCTGGTGACACATACTATCCAGGCTCCGTGAAGGGCCGATTCACCATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAGCCGGGGACACGGCTGTGTATTACTGTGCAAGAGTAGGGTATGATAGTAGTGGTTATTCGGGCTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSAIGTAGDTYYPGSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARVGYDSSGYSGWYFDLWGRGTLVTVSSGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGGTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKVLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPLTFGGGTKVEIKC101 CAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCATCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATTCTACACAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACTCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGTGCGGGACTACGGTGACTTCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYTDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCVRDYGDFYFDYWGQGTLVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCGGTGGGTCTGAGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTGTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCCCGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGGGSETDFTLTISRLEPEDCAVYYCQQYGSSPRTFGQGTKVEIKC102 CAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCATCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATTCTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGGGACTACGGTGACTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDYYFDYWGQGTLVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTCTATTACTGTCAGCAGTATGGTAGCTCACCTCGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPRTFGQGTKVEIKC103 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCGCTGTCTCTGGTGGGTCACTCAGTGGTTTCTACTGGACCTGGATCCGCCAGCCCCCAGGAAAGGGGCTGGAGTGGATTGGGGAAACCAATCATTTTGGAAGCACCGGCTACAAGCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACATGTCCAGGAACCAGTTCTCCCTGAAGGTGACCTCTGTGACCGCCGCGGACACGGCTGTGTATTACTGTGCGAGAAAGCCCCTCCTCTACAGTGACTTCTCTCCTGGTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLQQWGAGLLKPSETLSLTCAVSGGSLSGFYWTWIRQPPGKGLEWIGETNHFGSTGYKPSLKSRVTISVDMSRNQFSLKVTSVTAADTAVYYCARKPLLYSDFSPGAFDIWGQGTMVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGACTGTTACCGCCAACTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGACTCCTCATCTATGGTGCATCCAAGAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCAGCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATACTACTACACCTCGGACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACEIVLTQSPGTLSLSPGERATLSCRASQTVTANYLAWYQQKPGQAPRLLIYGASKRATGIPDRFSGSGSGTDFTLSISRLEPEDFAVYYCQQYTTTPRTFGGGTKVEIKC104 CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTGTTGAAGCCTTCGGAGACCCTGTCCCTCTCCTGCGCTGTCTATGGTGGGTCCCTCAGTGGTTACTACTGGAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAGATCAATCATTTTGGAAGCACCGGCTACAACCCGTCCCTCAAGAGTCGAGTCACCATCTCCGTGGACACGTCCAAGAGCCAGTTCTCCGTGAAGCTGAGCTCTGTGACCGCCGCGGACACGGCTGTCTATTACTGCGCGAGAAAGCCCCTCCTCTACAGTAACTTATCCCCTGGTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLQQWGAGLLKPSETLSLSCAVYGGSLSGYYWSWIRQPPGKGLEWIGEINHFGSTGYNPSLKSRVTISVDTSKSQFSVKLSSVTAADTAVYYCARKPLLYSNLSPGAFDIWGQGTMVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCGTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCTGGGCCAGTCAGAGTGTTAGCGCCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGTAGACTGGAGCCTGAAGATTTTGCAGTATATTACTGTCAGCAGTACGGTACTACACCTCGGACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACEIVLTQSPGTVSLSPGERATLSCWASQSVSASYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGTTPRTFGGGTKVEIKC105 CAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGTACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGGCGAGGGGTGGGAGCTACCATACGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGEGWELPYDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAAGTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGTCAGTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTTTCTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCAGCTCATATGAAGGCAGCAACAATTTTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPPSASGSPGQSVTISCTGTSSDVGGYKYVSWYQQHPGKAPKLMIYEVSKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYEGSNNFVVFGGGTKLTVLC106 CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGCCTCCGTCAGCAGTGGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAATGGATTGGGTATATCTATTACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTGGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGAGCGGCCCGGTGGAACGTATAGCAACACCTGGTACACCCCAACCGATACCAACTGGTTCGACACCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQLQLQESGPGLVKPSETLSLTCTVSGASVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARERPGGTYSNTWYTPTDTNWFDTWGQGTLVTVSSTCCTATGAGCTGACACAGCCACCCTCAGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTTTGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTCGTGATCATGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYFDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSRDHVVFGGGTKLTVLC107 CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAGGGTCTCCTGCAAGGCTTCTGGTTACACCTTTACCAGCTATGGTTTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAGCGCTTACAATGGTAACACAAACTTTGCACAGAAGCTCCAGGGCAGAGTCACCATGACCACAGACACATCCACGAGCACAGCCTACATGGAGCTGAGGAGCCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGGGGAAGCAGTGGCTGGTACAACCGGTTTTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVRVSCKASGYTFTSYGFSWVRQAPGQGLEWMGWISAYNGNTNFAQKLQGRVTMTTDTSTSTAYMELRSLRSDDTAVYYCARGEAVAGTTGFFDYWGQGTLVTVSSCAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATTATGTATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGGAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAGTGGTTTTGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSVLTQPPSASGTPGQRVTISCSGSSSNIGSNYVYWYQQLPGTAPKLLIYRNNQRPSGVPDRFSGSKSGTSASLAISGLRSEDEADYYCAAWDDSLSGFVVFGGGTKLTVLC108 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGGGACCCTGTCCCTCACCTGCGCTGTCTCTGGTGGCTCCATCAGCAGTACTAACTGGTGGAGTTGGGTCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAAATCTATCATACTGGGAGCACCAACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGACACGGCCGTGTATTACTGTGTGAGAGATGGAGGACGACCCGGGGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLQESGPGLVKPSGTLSLTCAVSGGSISSTNWWSWVRQPPGKGLEWIGEIYHTGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYYCVRDGGRPGDAFDIWGQGTMVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAACTCATATACAAGCAGCAGCACTCGAGTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCNSYTSSSTRVFGTGTKVTVLC109 GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTAGCTATTGGATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAGCAAGATGGAAGTGAGAAATACTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCGGAGACAACGCCAAGAACTCACTGTATCTGCACATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCTATACAGCTATGGTTAAGGGGGGGCTATGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANIKQDGSEKYYVDSVKGRFTISGDNAKNSLYLHMNSLRAEDTAVYYCAIQLWLRGGYDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTCCCTCCGCGTCCGGGTCTCCTGGACAGTCAGTCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGTCACTAAGCGGCCCTCAGGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAGGATGAGGCTGATTATTACTGCAGCTCATATGCAGGCAGCAACAATTATGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPPSASGSPGQSVTISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYEVTKRPSGVPDRFSGSKSGNTASLTVSGLQAEDEADYYCSSYAGSNNYVVFGGGTKLTVLC110 CAGGTACAGCTGCAGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTTTACCAGCTACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCTACATGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGATCGTTCCGGGACGACCCCCGTATAGCAGTGGCTGGCCCGGCTGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLQQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYMQWSSLKASDTAMYYCARSFRDDPRIAVAGPADAFDIWGQGTMVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTTACTGGTTGGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATCAGGCGTCTAGTTTAGAAAGTGGGGTCCCGTCAAGGTTCAGCGGCAGTGAGTCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTACCCGTACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQMTQSPSTLSASVGDRVTITCRASQSISYWLAWYQQKPGKAPKLLIYQASSLESGVPSRFSGSESGTEFTLTISSLQPDDFATYYCQQYNSYPYTFGQGTKLEIKC111 CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGAGTAGAAGACTGGGGATATTGTAGTAGTACCAACTGCTATTCTGGTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQLQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARVEDWGYCSSTNCYSGAFDIWGQGTMVTVSSCAGTCTGTGCTGACGCAGCCACCCTCGGTGTCTGAAGCCCCCAGGCAGAGGGTCACCATCTCCTGTTCTGGAAGCAGCTCCAACATCGGAAATAATGCTGTAAATTGGTACCAGCAGGTCCCAGGAAAGGCTCCCAAACTCCTCATCTATTATGATGATCTGCTGCCCTCAGGGGTCTCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGCGCTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSVLTQPPSVSEAPRQRVTISCSGSSSNIGNNAVNWYQQVPGKAPKLLIYYDDLLPSGVSDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGAWVFGGGTKLTVLC112 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCCATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGAGGATTACTATGATAGTAGTGGTTCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSSHAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREDYYDSSGSFDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACCGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGCACTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTWVFGGGTKLTVLC113 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAACTTTGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATGGTATGATGGAAGTAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGGAGTAAACCCCGACGATATTTTGACTGGCGTAGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSNFGMHWVRQAPGKGLEWVAVIWYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGVNPDDILTGVDAFDIWGQGTMVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATGAGTAGCTGGTTGGCCTGGTATCAGCAGAAACCAGGGAACGCCCCTAAGCTCCTGATCTATAAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGCATAATAGTTCCCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACDIQMTQSPSTLSASVGDRVTITCRASQSMSSWLAWYQQKPGNAPKLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQHNSSPLTFGGGTKVEIKC114 CAGGTGCAGCTGGTGGAGTCTGGAGGAGGGTTGATCCAGCCTGGGGGGTCCCTGAAACTCTCCTGTGTAGTCTCTGGGTTCACCGTCAGTAAGAACTACATCAGTTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAATGGGTCTCAGTTATTTTTGCCGGTGGTAGTACATTCTACGCAGACTCCGTTAAGGGCCGATTCGCCATCTCCAGAGACAACTCCAACAACACGCTGTTTCTTCAAATGAACAGCCTGAGAGTCGAGGACACGGCCATTTATTACTGTGCGAGAGGGGACGGGGAGTTATTCTTTGACCAATGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGLIQPGGSLKLSCVVSGFTVSKNYISWVRQAPGKGLEWVSVIFAGGSTFYADSVKGRFAISRDNSNNTLFLQMNSLRVEDTAIYYCARGDGELFFDQWGQGTLVTVSSCAGTCTGTGCTGACTCAGCCGCCCTCAGTGTCTGGGGCCCCAGGGCAGAGGGTCACCATCTCCTGCACTGGGACCAGTTCCAACATCGGGGCAGGTTATGATGTGCACTGGTACCAGCAACTTCCTGGAAGAGCCCCCAAAGTCCTCATCTCTGGAAACAACATTCGGCCCTCAGAGGTCCCTGACCGATTCTCTGGCTCCAGGTCTGGCACCTCAGCCTCCCTGGCCATCACTAGTCTCCAGCCTGAGGATGAGGCTCAATATTACTGTCAGTCTTATGACAGCAGTCTCTATGCGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAQSVLTQPPSVSGAPGQRVTISCTGTSSNIGAGYDVHWYQQLPGRAPKVLISGNNIRPSEVPDRFSGSRSGTSASLAITSLQPEDEAQYYCQSYDSSLYAVFGGGTKLTVLC115 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGATAAAGCCAGGGCGGTCCCTGAGACTCTCTTGTACAGCCTCTGGATTCACCTTTGGTGATTATGCTATGACCTGGTTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTAGGTTTCATTAGAAGTAAAGCTTATGGTGGGACAACAGGATACGCCGCGTCTGTGAAATACAGATTTACCATCTCAAGAGATGATTCCAAAAGCATCGCCTATCTGCAAATGGACAGCCTGAAAACCGAGGACACAGCCGTGTATTACTGTACTAGGTGGGACGGGTGGAGTCAACATGACTATTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGLIKPGRSLRLSCTASGFTFGDYAMTWFRQAPGKGLEWVGFIRSKAYGGTTGYAASVKYRFTISRDDSKSIAYLQMDSLKTEDTAVYYCTRWDGWSQHDYWGQGTLVTVSSGATATTGTGATGACTCAGTCTCCACTCTCCCTGTCCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTGCAGGTCTAGTCAGAGCCTCCTGCATAGTAATGGAAACAACTATTTCGATTGGTACCTGCAGAAGCCAGGGCAGTCTCCACAGCTCCTGATCTATTTGGGTTCTAATCGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAGATCAGCAGAGTGGAGGCTGAGGATGTTGGGGTTTATTACTGCATGCAAGTTCTACAAATTCCGTACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIVMTQSPLSLSVTPGEPASISCRSSQSLLHSNGNNYFDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQVLQIPYTFGQGTKLEIKC116 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTACAGTACCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCATTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATTTCTACCATAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTYSTYAMHWVRQAPGKGLEWVAFISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDFYHNWFDPWGQGTLVTVSSAATTTTATGCTGACTCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCAGTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCTATGAGGATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGGTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCGGCAATCATTGGGTGGTATTCGGCGGAGGGACCAGGCTGACCGTCCTAGNFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDRSSNSASLTISGLKTEDEADYYCQSYDSGNHWVVFGGGTRLTVLC117 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTACCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCGAGGGGCTGGAGTGGGTGGCAGTTATTTCATATGATGGAAGCAATACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAAGACACGGCTGTGTATTACTGTGCGAGAGATCCCATATGGTTCGGGGAGTTATTATCTCCTCCTTTTGTTCACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSTYAMHWVRQAPGEGLEWVAVISYDGSNTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDPIWFGELLSPPFVHFDYWGQGTLVTVSSCAGTCTGTGCTGACTCAGCCGCCCTCAGTGTCTGCGGCCCCAGGACAGAAGGTCACCATCTCCTGCTCTGGAAGCAGCTCCAACATTGGGAATAATTTGGTATCCTGGTACCAGCAGCTCCCAGGAACAGCCCCCAAACTCCTCATCTATGAAAATAATAAGCGACCCTCAGGGATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGACGAGGCCGATTATTACTGCGGAGCATGGGATAGCAGCCTGAGTGCTGGCGGGGTTTATGTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGQSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNLVSWYQQLPGTAPKLLIYENNKRPSGIPDRFSGSKSGTSATLGITGLQTGDEADYYCGAWDSSLSAGGVYVFGTGTKVTVLC118 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAACTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTATTTATTACTGTGCGAGTGGATATACTGGCTACGATTATTTTGTGCGGGGGGACTACTACGGTCTGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAQVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAIYYCASGYTGYDYFVRGDYYGLDVWGQGTTVTVSSCAGCCTGTGCTGACTCAATCGCCCTCTGCCTCTGCCTCCCTGGGAGCCTCGGTCAAGCTCACCTGCACTCTGAGCAGTGGGCACAGCAGCTACGCCATCGCATGGCATCAGCAGCAGCCAGAGAAGGGCCCTCGGTACTTGATGAAGCTTAACACTGATGGCAGCCACAGCAAGGGGGACGGGATCCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTCTGAGGATGAGGCTGACTATTACTGTCAGACCTGGGGCACTGGCATTCTCGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQPVLTQSPSASASLGASVKLTCTLSSGHSSYAIAWHQQQPEKGPRYLMKLNTDGSHSKGDGIPDRFSGSSSGAERYLTISSLQSEDEADYYCQTWGTGILVFGGGTKLTVLC119 CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTTCACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGTTACAGGGCAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGCCAATCATGAAACAACTATGGACACTTACTACTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGAEVKKPGASVKVSCKASGYTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKLQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARANHETTMDTYYYYYYMDVWGKGTTVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAAGTATGTCTCCTGGTACCAACGGCACCCAGGCAAAGCCCCCAAACTCATGATATATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATACACAAGCAGCAGCACTTCTGTGGTGTTCGGCGGAGGGACCCAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYKYVSWYQRHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTSVVFGGGTQLTVLC120 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAGCAACTACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCACTTATTTATCCCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTCTATTACTGTGCGAGAGAGGGTATGGGTATGGCAGCAGCTGGTACGTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMTWVRQAPGKGLEWVSLIYPGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGMGMAAAGTWGQGTLVTVSSGCCATCCGGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACACAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAAGTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCTCAGACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACAIRMTQSPSSLSASVGDTVTITCQASQDISKYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPQTFGGGTKVEIKC121 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCGGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAGCCCTGTCAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGAGCCCCACTGTTCCCCACAGGGGTGCTAGCTGGGGACTACTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWISPVSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCARAPLFPTGVLAGDYYYYGMDVWGQGTTVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTTGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGACTCCAGGCTGAGGACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGCACTTTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTLVFGGGTKLTVLC122 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGCTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTCTTTATAGCGGTGGTAGCTCATTCTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAAGACACGGCCGTGTATTACTGTGCGAGAGAAAGTGGGGATACAACTATGGCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGLTVSSNYMSWVRQAPGKGLEWVSVLYSGGSSFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARESGDTTMAFDYWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTGACTCGTACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSDSYTFGQGTKLEIKC123 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGGTCACCGTCAGTAGGAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGATCTATCTGCTGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGEVQLVESGGGLIQPGGSLRLSCAASGVTVSRNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDLSAAFDIWGQGTMVTVSSGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTACCCTCCAGCCTTCGGCCAAGGGACACGACTGGAGATTAAACDIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPPAFGQGTRLEIKC124 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTGGCTATAGCATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCCGGAGTGGGTTTCATACATTAGTAGGAGTAGTAGTACCATATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGACGAGGACACGGCTGTGTATTACTGTGCGAGAGAAGGGGCTAGAGTGGGAGCTACATATGACACGTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTFSGYSMNWVRQAPGKGPEWVSYISRSSSTIYYADSVKGRFTISRDNAKNSLYLQMNSLRDEDTAVYYCAREGARVGATYDTYYFDYWGQGTLVTVSSGAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTTTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAACAACTGGCCTCCCGAGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPATLSLSPGERATLSCRASQSFSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRNNWPPEWTFGQGTKVEIKC125 CAGGTGCAGCTGGTGCAGTCTGGGCCTGAGGTGAAGAAGCCTGGGACCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATTCACCTTTACTAGCTCTGCTGTGCAGTGGGTGCGACAGGCTCGTGGACAACGCCTTGAGTGGATAGGATGGATCGTCGTTGGCAGTGGTAACACAAACTACGCACAGAAGTTCCAGGAAAGAGTCACCATTACCAGGGACATGTCCACAAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCCGAGGACACGGCCGTGTATTACTGTGCGGCACCTTATTGTAGTGGTGGTAGCTGCTCTGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLVQSGPEVKKPGTSVKVSCKASGFTFTSSAVQWVRQARGQRLEWIGWIVVGSGNTNYAQKFQERVTITRDMSTSTAYMELSSLRSEDTAVYYCAAPYCSGGSCSDAFDIWGQGTMVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIKC126 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCTCCTGCGCTGTCTCTGGTGGCTCCATCGGTAGTTACTTCTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGATATCTCCATTACAGTGGGAGCACCAACTACAACCCCTCCCTGAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAATCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTACTGTGCGAGATTGCAGTGGCTACGCGGAGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLQESGPGLVKPSETLSLSCAVSGGSIGSYFWSWIRQPPGKGLEWIGYLHYSGSTNYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCARLQWLRGAFDIWGQGTMVTVSSAATTTTATGCTGACTCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCAGTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCAATGAAGATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCAGCAATTTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGNFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVINEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNLVFGGGTKLTVLC127 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCGGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAACCCTAACAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCAGGGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGAGATCTGACGACACGGCCGTGTATTACTGTGCGACGGCGCACCCCCGGAGGATCCAAGGGGTATTTTTTTTGGGGCCGGGCGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYMHWVRQAPGQGLEWMGWINPNSGGTNYAQKFQGRVTMTRDTSISTAYMELSRLRSDDTAVYYCATAHPRRIQGVFFLGPGVWGQGTTVTVSSCAGTCTGTGCTGACTCAGCCACCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAGCTCCAACATCGGAAGTAATACTGTAAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATCTATAGTAATAATCAGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGCGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSVLTQPPSASGTPGQRVTISCSGSSSNIGSNTVNWYQQLPGTAPKLLIYSNNQRPSGVPDRFSGSKSGTSASLAISGLQSEDEADYYCAAWDDSLNGVVFGGGTKLTVLC128 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCACCTATGCCATGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAACTATTACTGGTAGTGGTCGTGACACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTTTCTGCAACTGAACAGCCTGAGAGCCGAGGACGCGGCCGTGTATTCCTGTGCGAACCACCCTCTGGCATCAGGCGACGACTACTACCACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAEVQLLESGGGLVQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVSTITGSGRDTYYADSVKGRFTISRDNSKNTLFLQLNSLRAEDAAVYSCANHPLASGDDYYHYYMDVWGKGTTVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAACAGCAGGCAGTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCGTCCAGCAGGGCCACTGGCATCCCAGAGAGGTTCAGTGGCAGTGGATCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGTCTGAAGATTTTGCAGTGTATCACTGTCAGCAATATGGTAGCTCAAGGGCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVNSRQLAWYQQKPGQAPRLLIYGASSRATGIPERFSGSGSGTDFTLTISRLESEDFAVYHCQQYGSSRALTFGGGTKVEIKC130 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTTCACCAACTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATAATCAACCCTAGTGGTGGTAGCACAGGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGATCCCGACCGACTCCTGACTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVKVSCKASGYTFTNYYMHWVRQAPGQGLEWMGIINPSGGSTGYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARSRPTPDWYFDLWGRGTLVTVSSTCCTATGAGCTGACACAGCCACCCTCAGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCATCCGGGGGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDHPGVVFGGGTKLTVLC131 CAGGTGCAGCTGGTGCAGTCTGGGTCTGAGGTGAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGCTATGCTTTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAAGGATCATCCCTATCCTTGCTTTAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGTCAATCAAGCAGTAACTACTCCCTTCTCCATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAQVQLVQSGSEVKKPGSSVKVSCKASGGTFSSYAFSWVRQAPGQGLEWMGRIIPILALANYAQKFQGRVTITADKSTSTAYMELSSLRSEDTAVYYCARVNQAVTTPFSMDVWGQGTTVTVSSGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCGATCACCTTCGGCCAAGGGACACGACTGGAGATTAAACEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPITFGQGTRLEIKC132 CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGGGACCCTGTCCCTCACCTGCGCTGTCTCTGGTGGCTCCATCAGCAGTAATAACTGGTGGAGTTGTGTCCGCCAGCCCCCAGGGAAGGGGCTGGAGTGGATTGGGGAAATCTATCATAGTGGGAGCACCAACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGACACGGCCGTGTATTACTGTGCGAGAGGGGGGGATACAGCTATGGGCCCCGAATACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLQESGPGLVKPSGTLSLTCAVSGGSISSNNWWSCVRQPPGKGLEWIGEIYHSGSTNYNPSLKSRVTISVDKSKNQFSLKLSSVTAADTAVYYCARGGDTAMGPEYFDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGCACTCTTTTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTLLFGGGTKLTVLC133 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATTATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATTCGGACGTAGATACATCTATGGTTACTTGGTTCGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVILYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDSDVDTSMVTWFDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVEIKC134 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAACTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGATGGTAGCACATACTACGCAGGCTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGATCCCCTTATAACTGGACCTACCTATCAATACTTTCACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLLESGGGLVQPGGSLRLSCAASGFTFSNYAMSWVRQAPGKGLEWVSAISGSDGSTYYAGSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDPLITGPTYQYFHYWGQGTLVTVSSTCCTATGAGCTGACACAGCCACCCTCAGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGAATATCACTGTCAGGTGTGGGATAGTAGTAGTGATCGTCCGGGGGTGGTTTTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEAEYHCQVWDSSSDRPGVVFGGGTKLTVLC135 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATACCATTTGATGGAAGAAATAAGTACTACGCAGACTCCGTGACGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGTAGTAGTGGTTATCTTTTCCACTCTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVIPFDGRNKYYADSVTGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASSSGYLFHSDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCTTCCACCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGAGTATTAGTAACTGGTTGGCCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGAGGCGTCTAGTTTAGAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAGTATAATAGTTATCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACDIQMTQSPSTLSASVGDRVTITCRASQSISNWLAWFQQKPGKAPKLLIYEASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNSYPWTFGQGTKVEIKC138 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGTACCTATTGGATGAGCTGGGTCCGCCAGCCTCCAGGGAAGGGGCTGGAGTGGGTGGCCAACATAAAGCAAGATGGAAGTGAGAAATACTATGTGGATTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGACGACACGGCCGTGTATTACTGTGCCGGGGGGACATGGCTACGATCCTCTTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTFSTYWMSWVRQPPGKGLEWVANIKQDGSEKYYVDSVKGRFTISRDNAKNSLYLQMNSLRADDTAVYYCAGGTWLRSSFDYWGQGTLVTVSSAATTTTATGCTGACTCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCAGTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCTATGAGGATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCAGCAATTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTANFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNWVFGGGTKLTVLC139 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGTAATAAATACTCTGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGGGGGGGCCTACAGCTACTACTACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYSADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKGGAYSYYYYMDVWGKGTTVTVSSGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACDIQMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGGGTKVEIKC140 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGAGTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCACTTATTTATAGCGGTGGTAGCACATTCTACGCAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCGAGAACACGCTGTATCTTCAAATGAACACCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGATCTGTATTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAEVQLVESGGGLVQPGGSLRLSCAASGVTVSSNYMSWVRQAPGKGLEWVSLIYSGGSTFYADSVKGRFTISRDNSENTLYLQMNTLRAEDTAVYYCARDLYYYGMDVWGQGTTVTVSSGACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTACTCTTACACTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYSYTFGQGTKLEIKC141 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATGCTATGTTCTGGGTCCGCCAGGCTCCGGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAGCAATAAATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGGGCGGATTTAGGATATTGTACTAATGGTGTATGCTATGTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAEVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMFWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADLGYCTNGVCYVDYWGQGTLVTVSSAATTTTATGCTGACTCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCAGTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCTATGAGGATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCAGCAATTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGNFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNWVFGGGTKLTVLC143 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCGGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGTGTCAGCACCAAGTACATGACATGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTCTTTACAGCGGTGGTAGTGATTACTACGCAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACGCTTTATATCTTCAAATGAACAGCTTGAGAGTCGAGGACACGGGTGTTTATTACTGTGCCAGAGACTCGTCGGAAGTCCGTGACCACCCCGGGCACCCAGGGCGCTCGGTGGGGGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGEVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTWVRQAPGKGLEWVSVLYSGGSDYYADSVKGRFTISRDNSKNALYLQMNSLRVEDTGVYYCARDSSEVRDHPGHPGRSVGAFDIWGQGTMVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAATGATGTTGGGAGTTATACCCTTGTCTCCTGGTACCAACAGTACCCAGGCAAAGCCCCCAAACTCTTAATTTTTGAGGGCACTAAGCGGTCCTCAGGGATTTCTAATCGCTTCTCTGGTTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGGTGAAGACGAGGCTGATTATTATTGCTGCTCATATGCAGGTGCTAGCACTTTCGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSNDVGSYTLVSWYQQYPGKAPKLLIFEGTKRSSGISNRFSGSKSGNTASLTISGLQGEDEADYYCCSYAGASTFVFGGGTKLTVLC144 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAACAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAAATCCAAGAACACGCTGTATCTTCAAATGAACAGGCTGAGAGCCGAGGACACGGCCGTGTATTATTGTGCGAGAGAAGGGGAGGTAGAAGGGTATAACGATTTTTGGAGTGGTTATTCTAGAGACCGTTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFTVSNNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDKSKNTLYLQMNRLRAEDTAVYYCAREGEVEGYNDFWSGYSRDRYYFDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCAGCACTCGAGTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVLC145 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCAGCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGTACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGAAGGGGAGGTAGAAGGGTATTACGATTTTTGGAGTGGTTATTCTAGAGACCGTTACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFSVSSNYMSWVRQAPGKGLEWVSVIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAREGEVEGYYDFWSGYSRDRYYFDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTGGTTATAACTATGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGATGTCAGTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATACAAGCAGCACCACTCGAGTCTTCGGAACTGGGACCAGGGTCACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSTTRVFGTGTRVTVLC146 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGACTCACCTTCACTGCCTATAGAATGAATTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGCTCTCATCAATTAGTAATACAAATGGCGACATATACTATGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAATTCTCTGTATCTGCAAATGAACAGCCTGAGGGCCGACGACACGGCTGTATATTACTGTGCGAGAGATGTTGCATCTAACTACGCTTACTTTGACCTTTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVKPGGSLRLSCAASGLTFTAYRMNWVRQAPGKGLEWLSSISNTNGDIYYADSVKGRFTISRDNAKNSLYLQMNSLRADDTAVYYCARDVASNYAYFDLWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACATTGGTGTTTATAACTATATCTCCTGGAGCCAACAACACCCAGGCAAAGCCCCCAAAGTCATGATTTATGATGTCACTAATCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTATTGCAGCTCATATAGAGGCAGCAGCACTCCCTATGTCTTCGGAACTGGGACCAAGGTCACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDIGVYNYISWSQQHPGKAPKVMIYDVTNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYRGSSTPYVFGTGTKVTVLC147 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGATTTACCAACTACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCACCACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCCTCGGACACCGCCATGTATTACTGTGCGAGACTCAGTGACCGCTGGTACAGTCCGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVQSGAEVKKPGESLKISCKGSGYRFTNYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSITTAYLQWSSLKASDTAMYYCARLSDRWYSPFDPWGQGTLVTVSSCAGGCTGTGGTGACCCAGGAGCCCTCACTGACTGTGTCCCCAGGAGGGACAGTCACTCTCACCTGTGGCTCCAGCACTGGAGCTGTCACCAGTGGTCATTATCCCTACTGGTTCCAGCAGAAGTCTGGCCAAGCCCCCAGGACACTGATTTATGAAACAAGCATCAAACACTCCTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTCGGGTGCGCAGCCTGAGGATGAGGCTGATTATTACTGCTTGCTCTCCTATAGTGGTGCTCGGCCGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQAVVTQEPSLTVSPGGTVTLTCGSSTGAVTSGHYPYWFQQKSGQAPRTLIYETSIKHSWTPARFSGSLLGGKAALTLSGAQPEDEADYYCLLSYSGARPVFGGGTKLTVLC148 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCAGAGACTCTCCTGTGCAGCCTCTGGATTCACCGTCAGTAGCAATTACATGAGCTGGATCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCGCATACTACGTAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACCCTGTATCTTCAAATGAACAGCCTGAGACCCGAGGACACGGCTGTGTATTACTGTGCGAGAATCGCAAACTACATGGACGTCTGGGGCAAAGGGACCACGGTCACCGTCTCCTCAEVQLVESGGGLVQPGGSQRLSCAASGFTVSSNYMSWIRQAPGKGLEWVSVIYSGGSAYYVDSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCARIANYMDVWGKGTTVTVSSGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCCACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAACCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGCCAGCAGTATAATAACTGGCCTCCGCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCAAACEIVMTQSPATLSVSPGERATLSCRASQSVSSHLAWYQQKPGQAPRLLIYGASTRATGIPTRFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPPLTFGGGTKVEIKC150 GAGGTGCAGCTGGTGGAGTCCGGGGGAGGCTTAGTTCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGTAGCCTCTGGATTCACCTTCAGTAGCTACTGGATGCACTGGGTCCGCCAAGTCCCAGGGAAGGGGCCGGTGTGGGTCTCACATATTAACAGTGAAGGGAGTAGCACAAACTACGCGGACTCCGTGAGGGGCCGATTCACCATCTCCAGAGACAACGCCAAGGACACGCTATATCTTCAAATGAACAATCTGAGAGCCGAGGACACGGCTGTATATTACTGTGCAAGACCGACGGCTGTAGCAGCAGCTGGCAATTACTTCTACTACTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAEVQLVESGGGLVQPGGSLRLSCVASGFTFSSYWMHWVRQVPGKGPVWVSHINSEGSSTNYADSVRGRFTISRDNAKDTLYLQMNNLRAEDTAVYYCARPTAVAAAGNYFYYYGMDVWGQGTTVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGACGTTGGTTATTATAACTTTGTCTCCTGGTACCAACAACACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGTCAGTAATCGGCCCTCTGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGATCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCAGCTCATATAGAAGCAGCAGCACTCTGGTGTTCGGCGGGGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGYYNFVSWYQQHPGKAPKLMIYEVSNRPSGVSNRFSGSKSGNTASLIISGLQAEDEADYYCSSYRSSSTLVFGGGTKLTVLC151 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTGGTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTATAACATGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCATGCATTAGTAGTAGTAGTAGTTACATATACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGAGAGGGGGTATGACGGTGGTAAAACCCCCCCATTTCTTGGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVKPGGSLRLSCAASGFTFSSYNMNWVRQAPGKGLEWVSCISSSSSYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARERGYDGGKTPPFLGGQGTLVTVSSAATTTTATGCTGACTCAGCCCCACTCTGTGTCGGAGTCTCCGGGGAAGACGGTAACCATCTCCTGCACCGGCAGCAGTGGCAGCATTGCCAGCAACTATGTGCAGTGGTACCAGCAGCGCCCGGGCAGTGCCCCCACCACTGTGATCTATGAGGATAACCAAAGACCCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGACTACTACTGTCAGTCTTATGATAGCAGCAATTATTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGNFMLTQPHSVSESPGKTVTISCTGSSGSIASNYVQWYQQRPGSAPTTVIYEDNQRPSGVPDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDSSNYWVFGGGTKLTVLC153 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTTATAGCACATACTACGTAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGTGGGGGGAGCACATAGTGGCTACGACGGATCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGYSTYYVDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVGGAHSGYDGSFDYWGQGTLVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTTGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGGCAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGCACTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEGSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTWVFGGGTKLTVLC154 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTCGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATGTCATATGATGGAAGTAGTAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTGTCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAACAGGCGGGCCCATATTGTAGTGGTGGTAGCTGCTACTCCGCGCCCTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSRYGMHWVRQAPGKGLEWVAVMSYDGSSKYYADSVKGRFTISRDNSKNTLCLQMNSLRAEDTAVYYCAKQAGPYCSGGSCYSAPFDYWGQGTLVTVSSGACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGGCATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCGATCACCTTCGGCCAAGGGACACGACTGGAGATTAAACDIQMTQSPSSLSASVGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPITFGQGTRLEIKC155 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCATCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATTCTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGATTTTGGAGAGTTCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFIVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDFGEFYFDYWGQGTLVTVSSGAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCACCAGGGCCACTGCTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCTCGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQAPRLLIYGASTRATAIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPRTFGQGTKVEIKC156 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAACTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGTTATATCATATGATGGAAATAATAAATACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAAAGATCCTTTCCCCTTAGCAGTGGCTGGGACGGGCTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVISYDGNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKDPFPLAVAGTGYFDYWGQGTLVTVSSTCCTATGAGCTGACTCAGCCACCCTCGGTGTCAGTGGCCCCAGGACAGACGGCCAGGATTTCCTGTGGGGGAAACAACATTGGAAGTAAAAATGTGCACTGGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCGTCTATGATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTAGTAGTGATCCTTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGQTARISCGGNNIGSKNVHWYQQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSSSDPWVFGGGTKLTVLC164 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCGGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCAGTGTCAGCACCAAGTACATGACATGGGTCCGTCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTCTTTACAGCGGTGGTAGTGATTACTACGCAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACGCTTTATATCTTCAAATGAACAGCTTGAGAGTCGAGGACACGGGTGTTTATTACTGTGCCAGAGACTCGTCGGAAGTCCGTGACCACCCCGGGCACCCAGGGCGCTCGGTGGGGGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGEVQLVESGGGLVQPGGSLRLSCAASGFSVSTKYMTWVRQAPGKGLEWVSVLYSGGSDYYADSVKGRFTISRDNSKNALYLQMNSLRVEDTGVYYCARDSSEVRDHPGHPGRSVGAFDIWGQGTMVTVSSCAGTCTGCCCTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAATGATGTTGGGAGTTATACCCTTGTCTCCTGGTACCAACAGTACCCAGGCAAAGCCCCCAAGCTCTTAATTTTTGAGGTCACTAAGCGGTCCTCAGGGATTTCTAATCGCTTCTCTGGTTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGGTGAAGACGAGGCTGATTATTATTGCTGCTCATATGCAGGTGCTAGCACTTTCGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGQSALTQPASVSGSPGQSITISCTGTSNDVGSYTLVSWYQQYPGKAPKLLIFEVTKRSSGISNRFSGSKSGNTASLTISGLQGEDEADYYCCSYAGASTFVFGGGTKLTVLC165 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCGTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGTAGCTATGCTATCAACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAAGGATCATCCCTATCGTTGGTATAGCAAACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACGGCGGACAAATCCTCGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTGTATTACTGTGCGAGAGATCTCCTGGACCCCCAGCTAGATGATGCTTTTGATATCTGGGGCCAAGGGACAATGGTCACCGTCTCTTCAGQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAINWVRQAPGQGLEWMGRIIPIVGIANYAQKFQGRVTITADKSSSTAYMELSSLRSEDTAVYYCARDLLDPQLDDAFDIWGQGTMVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCACCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCACCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSTYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEIKC201 GAAGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGCCATGCACTGGGTCCGGCAAGCTCCAGGGAAGGGCCTGGAGTGGGTCTCAGGTATTAGTTGGAATAGTGGTAGTATAGGCTATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCTGAGGAC ACGGCCTTGTATTACTGTGTAAAAGGGGTCGAGTATAGCAGCTCGAGCAACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSGISWNSGSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTALYYCVKGVEYSSSSNFDYWGQGTLVTVSSCATCCGGATGACCCAGTCTCCATCTTCTGTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAGCCTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGTTGAATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGCCTGAAGATTTTGCAACCTACTATTGTCAACAGGCTAACAGTTTCCCTCTCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACIRMTQSPSSVSASVGDRVTITCRASQGISSWLAWYQQKPGKAPKLLIYVESSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQANSFPLTFGGGTKVEIKC202 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTAAGACTCTCCTGTGCAGCCTCTGGATTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCACTTATTTATAGCGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCTGAGGACACGGCTGTGTATTACTGTGCGAGAGATACCCTTGGTAGGGGGGGCGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSLIYSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDTLGRGGDYWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCAGGCGAGTCAGGACATTAGCAACTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTACGATGCATCCAATTTGGAAACAGGGGTCCCATCAAGGTTCAGTGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGATATTGCAACATATTACTGTCAACAGTATGATAATCTCCCTCGGAGTTTTGGCCAGGGGACCAAGCTGGAGATCAAACDIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPRSFGQGTKLEIKC204 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGAACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACTTTTAGCACCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGCTGGCACATTCTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAGAGAGAGCGATTGTGGTAGTACCAGCTGCTATCAAGTCGGGTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLLESGGGLEQPGGSLRLSCAASGFTFSTYAMSWVRQAPGKGLEWVSAISGSGAGTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARESDCGSTSCYQVGWFDPWGQGTLVTVSSGACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGTGGACGTTCGGCCAGGGGACCAAGGTGGAAATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVEIKC205 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGACACACCTTCACCAGCTACTATATGCACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAATCATCAACCCTAGTGGTGGTAGCACAAGCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAGATCTGAGGACACGGCTGTGTATTACTGTGCTAGGGGGCCGGAACGGGGTATAGTGGGAGCTACTGACTACTTTGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVKVSCKASGHTFTSYYMHWVRQAPGQGLEWMGIINPSGGSTSYAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARGPERGIVGATDYFDYWGQGTLVTVSSGAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAGCTACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCATCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGTTAGCTCACCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYVSSPWTFGQGTKVEIK C207 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTATATTACTGTGCGAAAGAACCCATCGGCCAGCCACTGCTATGGTGGGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKEPIGQPLLWWDYWGQGTLVTVSS GAAATTGTGTTGACACAGTCTCCAGCCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCTACTTAGCCTGGTACCAACAGAAACCTGGCCAGGCTCCCAGGCTCCTCATCTATGATGCATCCAACAGGGCCACTGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAGTTTATTACTGTCAGCAGCGTAGCAACTGGCCCCGGGGGTTCGGCCAAGGGACCAAGGTGGAGATCAAACEIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAPRLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYCQQRSNWPRGFGQGTKVEIK C208 GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTGAAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGTAAGGGTTCTGGATACAGCTTTACCAGCTACTGGATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCCTGGAGTGGATGGGGATCATCTATCCTGGTGACTCTGATACCAGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCTACCTGAAGTGGAGCAGCCTGAAGGCCTCGGACAGCGCCATGTATTACTGTGCGAGGGGGCCCAACCTCCAGAACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQGQVTISADKSISTAYLKWSSLKASDSAMYYCARGPNLQNWFDPWGQGTLVTVSS GAAATTGTGTTGACGCAGTCTCCAGGCACCCTGTCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCGGCAGCTACTTAGCCTGGTACCAGCAGAGACCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTGCTTCCAGCAGGGCCACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTATTACTGTCAGCAGTATGGTAGCTCGCTCACTTTCGGCGGGGGGACCAAGGTGGAGATCAAACEIVLTQSPGTLSLSPGERATLSCRASQSVSGSYLAWYQQRPGQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSLTFGGGTKVEIK C209 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGTCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCAGTTATGATATCAACTGGGTGCGACAGGCCACTGGACAAGGGCTTGAGTGGATGGGATGGATGAACCCTAACAGTGGTAACACAGGCTATGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGAACACCTCCATAAGCACAGCCTACATGGANCTGAGCAGCCTGANATCTGANGANACGGCCGTGTATTACTGTGCGANAGGGTTCAGCCTGACTTGGTACTTCGATCTCTGGGGCCGTGGNNCCCTGGTCACCGNCTCCTCAGQVQLVQSGAEVKKSGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPNSGNTGYAQKFQGRVTMTRNTSISTAYMXLSSLXSXXTAVYYCAXGFSLTWYFDLWGRGXLVTXSS TCCTATGAGCTGACACAGCCACCCTCGGTGTCAGTGGCCCCAGGAAAGACGGCCAGGATTACCTGTGGGGGAAACAACATTGGAAGCAAAAGTGTGCACTGGTACCAGCAGAAGCCAGGCCATGCCCCTGTACTGGTCGTCTATGATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATTACTGTCAGGTGTGGGATAGTACTGGTGGTCATCCCGATGTGGTGTTCGGCGGAGGGACCAAGCTGACCGTCCTAGSYELTQPPSVSVAPGKTARITCGGNNIGSKSVHWYQQKPGHAPVLVVYDDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYYCQVWDSTGGHPDVVFGGGTKLTVL C210 GAGGTGCAGCTGGTGGAGTCTGGAGGAGGCTTGATCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGGTTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGTACATTCTACGCAGACTCCGTGAAGGGCCGATTCACCTTCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGATTTGATGGCCTACGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGEVQLVESGGGLIQPGGSLRLSCAASGFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTFSRDNSKNTLYLQMNSLRAEDTAVYYCARDLMAYGMDVWGQGTTVTVSS GACATCCAGTTGACCCAGTCTCCATCCTTCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCCAGTCAGGGCATTAGCAGTTATTTAGCCTGGTATCAGCAAAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCACTTTGCAAAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAACTTATTACTGTCAACAGCTTAATAGTTACCCTCAGGGCACTTTCGGCGGAGGGACCAAGGTGGAAATCAAACDIQLTQSPSFLSASVGDRVTITCRASQGISSYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTEFTLTISSLQPEDFATYYCQQLNSYPQGTFGGGTKVEIK C211 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTCCAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGAATTCACCGTCAGTAGCAACTACATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGTTATTTATAGCGGTGGTAGCACATTCTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGACCTGAGGACACGGCTGTGTATTACTGTGCGAGAGACTACGGTGACTTCTACTTTGACTTCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASEFTVSSNYMSWVRQAPGKGLEWVSVIYSGGSTFYADSVKGRFTISRDNSKNTLYLQMNSLRPEDTAVYYCARDYGDFYFDFWGQGTLVTVSS GAAATAGTGATGACGCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAGCCTGGTACCAGCAGAAACCTGGCCAGGGTCCCAGGCTCCTCATCTATGGTGCATCCACCAGGGCCACTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCCCGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACEIVMTQSPATLSVSPGERATLSCRASQSVSSNLAWYQQKPGQGPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDFAVYYCQQYNNWPRTFGQGTKVEIK C212 CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCGTCACCGGCTATTATATACACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGGATCAGCCCTAACAGTGGTGGCACAAACTATGCACAGAAGTTTCAGGGCTGGGTCACCATGACCAGGGACATGTCCATCACCACAGCCTACATGGAGCTGAGTAGACTGAGATCTGACGACACGGCCGTGTATTACTGTGCGAGGGAACGATATTTTGACTTGGGTGGTATGGACGTCTGGGGCCAAGGGACCACGGTCACCGTCTCCTCAGQVQLVQSGAEVKKPGASVKVSCKASGYTVTGYYIHWVRQAPGQGLEWMGWISPNSGGTNYAQKFQGWVTMTRDMSITTAYMELSRLRSDDTAVYYCARERYFDLGGMDVWGQGTTVTVSS CTGACTCAGCCTGCCTCCGTGTCTGGGTCTCCTGGACAGTCGATCACCATCTCCTGCACTGGAACCAGCAGTGATGTTGGGAGTTATAACCTTGTCTCCTGGTACCAACAGCACCCAGGCAAAGCCCCCAAACTCATGATTTATGAGGACAGTAAGCGGCCCTCAGGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGCTGCTCATATGCAGGTAGTAGCACTCGGCTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGLTQPASVSGSPGQSITISCTGTSSDVGSYNLVSWYQQHPGKAPKLMIYEDSKRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCCSYAGSSTRLFGGGTKLTVL C214 CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGTGCAGCGTCTGGATTCACCTTCAGTAGCTATGGCATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGCTGGAGTGGGTGGCAGCTATATGGTATGATGGAAGTAATAAACACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCTGTGTATTACTGTGCGAGAGATGTAGGGCGGGTGACGACCTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAAIWYDGSNKHYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDVGRVTTWFDPWGQGTLVTVSS GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAACTTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAGATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSISSYLTWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVEIK C215 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTACTGATAGTGGTGATGGCACATTCTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTTTATTACTGTGCGTCCGAAGAGGACTACAGTAACTACGTGGGGTGGTTCGACCCCTGGGGCCAGGGAACCCTGGTCACCGTCTCCTCAGEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAITDSGDGTFYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCASEEDYSNYVGWFDPWGQGTLVTVSS GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGCTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTACAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCTCCGTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAACDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPWTFGQGTKVEIK C216 GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCTACGACATGCACTGGGTCCGCCAAGCTACAGGAAAAGGTCTGGAGTGGGTCTCAGCTATTGGTACTGCTGGTGACACATACTATCCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAGCCGGGGACACGGCTGTGTATTACTGTGCAAGAGATCGGGGAAGCAGTGGCTGGTACGGCTGGTACTTCGATCTCTGGGGCCGTGGCACCCTGGTCACCGTCTCCTCAGEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYDMHWVRQATGKGLEWVSAIGTAGDTYYPDSVKGRFTISRENAKNSLYLQMNSLRAGDTAVYYCARDRGSSGWYGWYFDLWGRGTLVTVSS GACATCCAGTTGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACAGAGTCACCATCACTTGCCGGGCAAGTCAGAGCATTAGCAGCTATTTAAATTGGTATCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTATGTTGCATCCAGTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAGTACCCCCCCGATCACCTTCGGCCAAGGGACACGACTGGAGATTAAACDIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPPITFGQGTRLEIK

Antibody ID IGH VDJ (nt) IGH VDJ (aa) IGL VJ (nt) IGL VJ (aa)

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 35: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

532

Extended Data Table 6. Effective and inhibitory concentrations of the monoclonal antibodies

COV21 C002 8.88 21.95 37.61 3.14 >1000COV21 C003 313.79 992.62 >1000 6.37 >1000COV21 C004 10.67 41.08 91.71 2.39 >1000COV21 C005 60.49 130.65 205.20 4.41 >1000COV21 C006 321.51 >1000 >1000 1.81 >1000COV21 C008 625.46 >1000 >1000 4.63 >1000COV21 C009 4.82 14.54 29.34 1.80 >1000COV21 C010 >1000 >1000 >1000 5.44 >1000COV21 C013 42.48 360.59 >1000 2.59 >1000COV21 C016 >1000 >1000 >1000 7.41 >1000COV21 C017 72.67 256.18 543.87 1.63 >1000COV21 C018 >1000 >1000 >1000 1.53 >1000COV21 C019 >1000 >1000 >1000 11.85 >1000COV21 C021 >1000 >1000 >1000 1.25 >1000COV21 C022 73.57 314.71 736.87 2.40 5.99COV21 C027 >1000 >1000 >1000 2.65 696.05COV21 C029 >1000 >1000 >1000 4.13 >1000COV21 C030 >1000 >1000 >1000 2.89 >1000COV21 C031 >1000 >1000 >1000 22.69 >1000

COV107 C101 8.20 30.15 65.30 1.51 >1000COV107 C102 34.03 84.21 143.23 4.54 >1000COV107 C103 4.38 12.58 23.59 3.77 >1000COV107 C104 23.31 72.12 140.28 8.31 >1000COV107 C105 26.09 72.24 133.70 5.20 >1000COV107 C106 >1000 >1000 >1000 19.03 106.75COV107 C107 >1000 >1000 >1000 11.55 >1000COV107 C108 480.69 >1000 >1000 5.32 >1000COV107 C110 18.44 45.11 77.28 7.29 >1000COV107 C112 111.79 701.99 >1000 3.38 >1000COV107 C113 >1000 >1000 >1000 6.93 >1000COV107 C114 >1000 >1000 >1000 9.51 >1000COV107 C115 198.33 958.18 >1000 3.40 >1000COV107 C116 >1000 >1000 >1000 37.56 >1000COV107 C117 348.00 >1000 >1000 5.38 >1000COV107 C118 103.69 417.76 >1000 3.45 3.817COV107 C119 9.12 39.45 97.78 3.57 >1000COV107 C120 13.26 26.73 40.30 1.41 >1000COV107 C121 6.73 14.31 22.33 2.85 >1000COV107 C122 22.80 57.77 100.12 2.67 >1000COV107 C123 149.22 355.47 595.51 1.92 >1000COV107 C124 341.82 937.26 >1000 2.23 >1000COV107 C125 43.32 92.54 144.26 1.87 >1000COV107 C126 >1000 >1000 >1000 4.78 >1000COV107 C127 68.74 190.96 347.31 2.62 >1000COV072 C128 101.22 263.35 460.73 1.95 >1000COV072 C130 >1000 >1000 >1000 2.05 >1000COV072 C131 30.52 178.90 759.11 1.67 >1000COV072 C132 708.67 >1000 >1000 2.92 >1000COV072 C133 >1000 >1000 >1000 1.98 >1000COV072 C134 >1000 >1000 >1000 1.57 >1000COV072 C135 16.61 32.81 48.90 1.80 >1000COV072 C136 >1000 >1000 >1000 33.61 >1000COV072 C137 >1000 >1000 >1000 25.22 >1000COV072 C138 >1000 >1000 >1000 2.94 >1000COV072 C139 >1000 >1000 >1000 1.89 >1000COV072 C140 23.88 66.24 120.69 2.19 >1000COV072 C141 >1000 >1000 >1000 1.71 >1000COV047 C143 >1000 >1000 >1000 3.66 >1000COV047 C144 6.91 17.28 29.66 3.24 >1000COV047 C145 3.04 14.51 36.79 3.86 >1000COV047 C146 >1000 >1000 >1000 >1000 >1000COV047 C147 >1000 >1000 >1000 >1000 >1000COV047 C148 >1000 >1000 >1000 64.69 >1000COV047 C150 >1000 >1000 >1000 8.11 >1000COV047 C151 31.79 363.97 >1000 4.30 >1000COV047 C153 70.71 490.08 >1000 3.17 >1000COV047 C154 435.50 >1000 >1000 2.92 10.65COV047 C155 11.00 35.75 77.01 3.30 >1000COV047 C156 >1000 >1000 >1000 3.32 >1000COV047 C164 239.15 865.40 >1000 2.06 >1000COV072 C165 40.81 138.66 297.38 4.25 >1000COV96 C201 >1000 >1000 >1000 2.98 >1000COV96 C202 >1000 >1000 >1000 3.40 >1000COV96 C204 >1000 >1000 >1000 3.73 9.41COV96 C205 >1000 >1000 >1000 >1000 >1000COV96 C207 158.52 960.39 >1000 1.87 >1000COV96 C208 >1000 >1000 >1000 >1000 >1000COV96 C209 >1000 >1000 >1000 3.79 >1000COV96 C210 50.73 155.24 298.90 2.83 >1000COV96 C211 12.79 34.87 62.89 2.82 >1000COV96 C212 >1000 >1000 >1000 >1000 >1000COV96 C214 >1000 >1000 >1000 5.75 >1000COV96 C215 >1000 >1000 >1000 5.33 17.944COV96 C216 >1000 >1000 >1000 9.53 >1000

Participant ID Antibody IDSARS-CoV-2 RBD

EC50 ng/mlSARS-CoV RBD

EC50 ng/mlSARS-CoV-2

IC50 ng/mlSARS-CoV-2

IC80 ng/mlSARS-CoV-2

IC90 ng/ml

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 36: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

Extended Data Figures 533

534

Extended Data Figure 1. Clinical correlates. a, Age distribution (Y axis) for all males and 535

females in the cohort p=0.2074. b, Duration of symptoms in days (Y axis) for all males and females 536

in the cohort p=0.8704. c, Time between symptom onset and plasma collection (Y axis) for all 537

males and females in the cohort p=0.5514. d, Subjective symptom severity on a scale of 0-10 (Y 538

axis) for all males and females in the cohort p=0.1888. e, Age distribution (Y axis) for all cases 539

and contacts in the cohort p=0.0305. f, Duration of symptoms in days (Y axis) for all cases and 540

contacts in the cohort p=0.1241. g, Time between symptom onset and plasma collection in days 541

(Y axis) for all cases and contacts in the cohort p=0.1589. h, Symptom severity (Y axis) for all 542

cases and contacts in the cohort p=0.0550. i, Age distribution (Y axis) for all outpatient and 543

hospitalized participants p=0.0024. j, Duration of symptoms in days (Y axis) for all outpatient and 544

hospitalized participants in the cohort p=<0.0001. k, Time between symptom onset and plasma 545

collection in days (Y axis) for all outpatient and hospitalized participants in the cohort p=0.0001. 546

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 37: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

l, Symptom severity (Y axis) for all outpatient and hospitalized participants in the cohort 547

p=<0.0001. Horizontal bars indicate median values. Statistical significance was determined using 548

two-tailed Mann-Whitney U test. 549

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 38: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

550

Extended Data Figure 2. Clinical correlates of plasma antibody titers. a, AUC for IgG anti-551

RBD (Y axis) for all cases and contacts in the cohort p=0.0107. b, AUC for IgM anti-RBD (Y 552

axis) for all cases and contacts in the cohort p=0.5371. c, AUC for IgG anti-S (Y axis) for all cases 553

and contacts in the cohort p=0.0135. d, AUC for IgM anti-S (Y axis) for all cases and contacts in 554

the cohort p=0.7838. e, AUC for IgM anti-RBD (Y axis) for all males and females in the cohort 555

p=0.9597. f, AUC for IgG anti-S (Y axis) for all males and females in the cohort p=0.0275. g, 556

AUC for IgM anti-S (Y axis) for all males and females in the cohort p=0.5363. h, AUC for IgM 557

anti-RBD (Y axis) for all outpatient and hospitalized participants in the cohort p=0.0059. i, AUC 558

for IgG anti-S (Y axis) for all outpatient and hospitalized participants in the cohort p=0.0623. j, 559

AUC for IgM anti-S (Y axis) for all outpatient and hospitalized participants in the cohort p=0.2976. 560

Horizontal bars indicate median values. Statistical significance was determined using two-tailed 561

Mann-Whitney U test. 562

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 39: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

563

Extended Data Figure 3. Additional clinical correlates of plasma antibody titers. a, Time 564

between symptom onset and plasma collection in days (X axis) plotted against AUC for IgG anti-565

RBD (Y axis) r=-0.0261 p=0.7533. b, Time between symptom onset and plasma collection in days 566

(X axis) plotted against AUC for IgG anti-S (Y axis) r=-0.1495 p=0.0697. c, Time between 567

symptom onset and plasma collection in days (X axis) plotted against AUC for IgM anti-S (Y axis) 568

r=0.1496 p=0.0695. d, Age (X axis) plotted against AUC for IgM anti-RBD (Y axis) r=0.0172 569

p=0.8355. e, Age (X axis) plotted against AUC for IgG anti-S (Y axis) r=0.1523 p=0.0638. f, Age 570

(X axis) plotted against AUC for IgM anti-S (Y axis) r=0.0565 p=0.4934. g, Duration of symptoms 571

in days (X axis) plotted against AUC for IgG anti-RBD (Y axis) r=0.1525, p=0.0633. h, Duration 572

of symptoms in days (X axis) plotted against AUC for IgM anti-RBD (Y axis) r=-0.3187, 573

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 40: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

p=<0.0001. i, Duration of symptoms in days (X axis) plotted against AUC for IgG anti-S (Y axis) 574

r=0.0329, p=0.6904. j, Duration of symptoms in days (X axis) plotted against AUC for IgM anti-575

S (Y axis) r=0.0824, p=0.3177. k, Severity of symptoms (X axis) plotted against AUC for IgG 576

anti-RBD (Y axis) r=0.2679 p=0.0010. l, Severity of symptoms (X axis) plotted against AUC for 577

IgM anti-RBD (Y axis) r=-0.1943 p=0.0176. m, Severity of symptoms (X axis) plotted against 578

AUC for IgG anti-S (Y axis) r=0.1187 p=0.1492. n, Severity of symptoms (X axis) plotted against 579

AUC for IgM anti-S (Y axis) r=0.1597 p=0.0517. All correlations were analyzed by two-tailed 580

Spearman’s. 581

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 41: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

582

Extended Data Figure 4. Diagrammatic representation of the SARS-CoV2 pseudovirus 583

luciferase assay. a, Co-transfection of pNL4-3ΔEnv-nanoluc and pSARS-CoV-2 spike vectors 584

into 293T cells leads to production of SARS-CoV-2 Spike-pseudotyped HIV-1 particles (SARS-585

CoV-2 pseudovirus) carrying the Nanoluc gene. b, SARS-CoV-2 pseudovirus is incubated for 1 h 586

at 37°C with plasma or monoclonal antibody dilutions. The virus-antibody mixture is used to infect 587

ACE2-expressing 293T cells, which will express nanoluc Luciferase upon infection. c, Relative 588

luminescence units (RLU) reads from lysates of ACE2-expressing 293T cells infected with 589

increasing amounts of SARS-CoV-2 pseudovirus. 590

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 42: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

591

Extended Data Figure 5. Clinical correlates of neutralization. a, Anti-RBD IgM AUC (X axis) 592

plotted against NT50 (Y axis) r=0.3119, p=0.0001. b, Anti-S IgM AUC (X axis) plotted against 593

NT50 (Y axis) r=0.3211, p=<0.0001. c, Duration of symptoms in days (X axis) plotted against NT50 594

(Y axis) r=0.1997, p=0.0146. d, Time between symptom onset and plasma collection in days (X 595

axis) plotted against NT50 (Y axis) r=-0.1344, p=0.1033. e, Symptom severity (X axis) plotted 596

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 43: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

against NT50 (Y axis) r=0.2234, p=0.0062. f, Age (X axis) plotted against NT50 (Y axis) r=0.3005, 597

p=0.0002. All correlations were analyzed by two-tailed Spearman’s. Dotted line (NT50=5) 598

represents lower limit of detection (LLOD) of pseudovirus neutralization assay. Samples with 599

undetectable neutralizing titers were plotted at LLOD. 600

601

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 44: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

602

Extended Data Figure 6. Flow cytometry. Gating strategy used for cell sorting. Gating was on 603

singlets that were CD20+ and CD3-CD8-CD16-Ova-. Sorted cells were RBD-PE+ and RBD-604

AF647+. 605

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 45: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

606

Extended Data Figure 7. Frequency distributions of human V genes. The two-tailed t test with 607

unequal variance was used to compare the frequency distributions of human V genes of anti-608

SARS-CoV-2 antibodies from this study to Sequence Read Archive SRP01097034. 609

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 46: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

610

Extended Data Figure 8. Analysis of antibody somatic hypermutation and CDR3 length. a, 611

For each individual, the number of somatic nucleotide mutations (Y axis) at the IGVH and IGVL 612

are shown on the left panel, and the amino acid length of the CDR3s (Y axis) are shown on the 613

right panel. The horizontal bar indicated the mean. b, same as in a but for all antibodies combined. 614

c, Distribution of the hydrophobicity GRAVY scores at the IGH CDR3 in antibody sequences 615

from this study compared to a public database (see Methods). 616

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 47: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

617

Extended Data Figure 9. Binding of the monoclonal antibodies to the RBD of SARS-CoV-2 618

and SARS-CoV. a, EC50 values for binding to the RBD of SARS-CoV-2. b and c, Binding curves 619

and EC50 values for binding to the RBD of SARS-CoV. 620

621

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 48: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

622

Extended Data Figure 10. Biolayer interferometry experiment. showing binding of antibodies 623

C144, C101, C002, C121, C009, C019 (see also main text Fig. 4). Graphs show secondary 624

antibody binding to preformed C121 IgG-RBD complexes. The table displays the shift in 625

nanometers after second antibody (Ab2) binding to the antigen in the presence of the first antibody 626

(Ab1). Values are normalized by the subtraction of the autologous antibody control. 627

628

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 49: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

References 629

1 Graham, R. L., Donaldson, E. F. & Baric, R. S. A decade after SARS: strategies for 630 controlling emerging coronaviruses. Nat Rev Microbiol 11, 836-848, 631 doi:10.1038/nrmicro3143 (2013). 632

2 Gralinski, L. E. & Baric, R. S. Molecular pathology of emerging coronavirus infections. J 633 Pathol 235, 185-195, doi:10.1002/path.4454 (2015). 634

3 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is 635 Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280 e278, 636 doi:10.1016/j.cell.2020.02.052 (2020). 637

4 Walls, A. C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike 638 Glycoprotein. Cell 181, 281-292 e286, doi:10.1016/j.cell.2020.02.058 (2020). 639

5 Jiang, S., Hillyer, C. & Du, L. Neutralizing Antibodies against SARS-CoV-2 and Other 640 Human Coronaviruses. Trends Immunol, doi:10.1016/j.it.2020.03.007 (2020). 641

6 Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B 642 cells in HIV-infected individuals. Nature 458, 636-640, doi:10.1038/nature07930 (2009). 643

7 Tiller, T. et al. Autoreactivity in human IgG+ memory B cells. Immunity 26, 205-213, 644 doi:10.1016/j.immuni.2007.01.009 (2007). 645

8 Murugan, R. et al. Clonal selection drives protective memory B cell responses in 646 controlled human malaria infection. Sci Immunol 3, doi:10.1126/sciimmunol.aap8029 647 (2018). 648

9 Briney, B., Inderbitzin, A., Joyce, C. & Burton, D. R. Commonality despite exceptional 649 diversity in the baseline human antibody repertoire. Nature 566, 393-397, 650 doi:10.1038/s41586-019-0879-y (2019). 651

10 ter Meulen, J. et al. Human monoclonal antibody combination against SARS coronavirus: 652 synergy and coverage of escape mutants. PLoS Med 3, e237, 653 doi:10.1371/journal.pmed.0030237 (2006). 654

11 Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of 655 SARS-CoV-2 and SARS-CoV. Science 368, 630-633, doi:10.1126/science.abb7269 656 (2020). 657

12 Walls, A. C. et al. Unexpected Receptor Functional Mimicry Elucidates Activation of 658 Coronavirus Fusion. Cell 176, 1026-1039 e1015, doi:10.1016/j.cell.2018.12.028 (2019). 659

13 Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV 660 antibody. Nature, doi:10.1038/s41586-020-2349-y (2020). 661

14 Zhu, Z. et al. Potent cross-reactive neutralization of SARS coronavirus isolates by human 662 monoclonal antibodies. Proc Natl Acad Sci U S A 104, 12123-12128, 663 doi:10.1073/pnas.0701000104 (2007). 664

15 Salazar, G., Zhang, N., Fu, T. M. & An, Z. Antibody therapies for the prevention and 665 treatment of viral infections. NPJ Vaccines 2, 19, doi:10.1038/s41541-017-0019-3 666 (2017). 667

16 Bournazos, S. & Ravetch, J. V. Anti-retroviral antibody FcgammaR-mediated effector 668 functions. Immunol Rev 275, 285-295, doi:10.1111/imr.12482 (2017). 669

17 Feinberg, M. B. & Ahmed, R. Advancing dengue vaccine development. Science 358, 670 865-866, doi:10.1126/science.aaq0215 (2017). 671

18 Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in 672 COVID-19. Nat Rev Immunol, doi:10.1038/s41577-020-0321-6 (2020). 673

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 50: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

19 Van Rompay, K. K. A. et al. A combination of two human monoclonal antibodies limits 674 fetal damage by Zika virus in macaques. Proc Natl Acad Sci U S A 117, 7981-7989, 675 doi:10.1073/pnas.2000414117 (2020). 676

20 Plotkin, S. A. Correlates of protection induced by vaccination. Clin Vaccine Immunol 17, 677 1055-1065, doi:10.1128/CVI.00131-10 (2010). 678

21 Scheid, J. F. et al. Sequence and structural convergence of broad and potent HIV 679 antibodies that mimic CD4 binding. Science 333, 1633-1637, 680 doi:10.1126/science.1207227 (2011). 681

22 Robbiani, D. F. et al. Recurrent Potent Human Neutralizing Antibodies to Zika Virus in 682 Brazil and Mexico. Cell 169, 597-609 e511, doi:10.1016/j.cell.2017.04.024 (2017). 683

23 Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine 684 rVSV-ZEBOV. Nat Med 25, 1589-1600, doi:10.1038/s41591-019-0602-4 (2019). 685

24 Pappas, L. et al. Rapid development of broadly influenza neutralizing antibodies through 686 redundant mutations. Nature 516, 418-422, doi:10.1038/nature13764 (2014). 687

25 Kane, M. et al. Identification of Interferon-Stimulated Genes with Antiretroviral Activity. 688 Cell Host Microbe 20, 392-405, doi:10.1016/j.chom.2016.08.005 (2016). 689

26 Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated 690 retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J 691 Virol 59, 284-291 (1986). 692

27 Wang, Z. et al. Isolation of single HIV-1 Envelope specific B cells and antibody cloning 693 from immunized rhesus macaques. J Immunol Methods 478, 112734, 694 doi:10.1016/j.jim.2019.112734 (2020). 695

28 Tiller, T. et al. Efficient generation of monoclonal antibodies from single human B cells 696 by single cell RT-PCR and expression vector cloning. J Immunol Methods 329, 112-124, 697 doi:10.1016/j.jim.2007.09.017 (2008). 698

29 von Boehmer, L. et al. Sequencing and cloning of antigen-specific antibodies from 699 mouse memory B cells. Nat Protoc 11, 1908-1923, doi:10.1038/nprot.2016.102 (2016). 700

30 Klein, F. et al. Enhanced HIV-1 immunotherapy by commonly arising antibodies that 701 target virus escape variants. J Exp Med 211, 2361-2372, doi:10.1084/jem.20141050 702 (2014). 703

31 Schoofs, T. et al. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of 704 the HIV Envelope. Immunity 50, 1513-1529 e1519, doi:10.1016/j.immuni.2019.04.014 705 (2019). 706

32 Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable 707 domain sequence analysis tool. Nucleic Acids Res 41, W34-40, doi:10.1093/nar/gkt382 708 (2013). 709

33 Gupta, N. T. et al. Change-O: a toolkit for analyzing large-scale B cell immunoglobulin 710 repertoire sequencing data. Bioinformatics 31, 3356-3358, 711 doi:10.1093/bioinformatics/btv359 (2015). 712

34 Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of 713 human immunoglobulin mRNA repertoires. PLoS One 7, e49774, 714 doi:10.1371/journal.pone.0049774 (2012). 715

35 Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a 716 protein. J Mol Biol 157, 105-132, doi:10.1016/0022-2836(82)90515-0 (1982). 717

36 Guy, H. R. Amino acid side-chain partition energies and distribution of residues in 718 soluble proteins. Biophys J 47, 61-70, doi:10.1016/S0006-3495(85)83877-7 (1985). 719

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint

Page 51: Convergent Antibody Responses to SARS-CoV-2 Infection in … · 2020-05-13 · 44 Between April 1 and May 8, 2020, 157 eligible participants enrolled in the study. Of these, 111 45

37 DeWitt, W. S. et al. A Public Database of Memory and Naive B-Cell Receptor 720 Sequences. PLoS One 11, e0160853, doi:10.1371/journal.pone.0160853 (2016). 721

38 Mastronarde, D. N. Automated electron microscope tomography using robust prediction 722 of specimen movements. J Struct Biol 152, 36-51, doi:10.1016/j.jsb.2005.07.007 (2005). 723

39 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for 724 rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290-296, 725 doi:10.1038/nmeth.4169 (2017). 726

40 Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF 727 Chimera. J Struct Biol 157, 281-287, doi:10.1016/j.jsb.2006.06.010 (2007). 728

729

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under aThe copyright holder for this preprint (whichthis version posted May 22, 2020. . https://doi.org/10.1101/2020.05.13.092619doi: bioRxiv preprint