wiegand et al. 1991

Upload: gabrielle-ribeiro

Post on 07-Jul-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Wiegand et al. 1991

    1/15

    REMOTE SENS. ENVIRON. 35:105-119 (1991)

    V egetat ion Ind ices in Crop ssessm ents

    C. L . W iegand A . J . R i cha r dson D . E . E scoba r an d A .

    R e mo te S e n s in g R e se a rc h Un i t ,

    US DA A g r i c u l tu ra l R e se a rc h S e rv i ce , We s la c o , Te x a s

    H . Ge r b erm ann

    V e g e t a t i o n i n d ic e s ( V I ), s u c h as g r e e n n e s s ( G V I ) ,

    p e rp e n d ic u la r ( P V I ) , t ra n s fo rme d so i l a d ju s t e d

    ( T S A V I ) , a n d n o r m a l i z e d d i f f e r e n c e ( N D V I ) , m e a -

    su re t h e p h o to sy n th e t i c s i z e o f p la n t c a n o p ie s a n d

    p o r t e n d y i e ld s . A se t o f e q u a t io n s , c a l l e d sp e c t ra l

    c o m p o n e n t s a n a ly s i s ( S CA ), t h a t i n te r re la t e s V I o r

    c u m u la t i v e se a so n a l V I ( Y '.V I) , l e a f a re a i n d e x ( L ),

    f r a c t i o n a l p h o t o s y n t h e t i c a l l y a c t i v e r a d i a t i o n

    ( F P A R , d ime n s io n l e s s ) , c u mu la t i v e d a i l y P A R e n -

    e r g y a b s o rb e d (E A P A R , M J / m 2 ) , a b o v e- g ro u n d

    d r y ph o t om a s s ( D M , g / m 2 ) , a n d e c o n om i c y ie l d

    ( Y, g / m 2) a r e p r e s e n t e d a n d u s e d t o a n a l y z e d a t a

    f r o m t w o s t u d i e s c o n d u c t e d i n 1 9 8 9 . I n o n e s t u d y

    w e m a d e b o l l c o u n t s a n d p e r c e n t p l a n t c o v e r m e a -

    su re m e n t s i n a sa l t - a f fe c t e d c o t to n f i e l d o n 6 0 m

    g r id i n t e rv a l s a n d c a l c u la t e d GV I , P V I , TS A V I ,

    a n d N D V I a t th e g r i d in t e r se c t io n s f o r S P O T - 1

    H R V a n d v i d e o g r a p hy s c en e s. T h e f o u r V I f r o m

    S P O T a c c o u n t e d f o r m o r e o f th e v a r i a ti o n i n t h e

    l i nt y ie l d e s ti m a t e d f r o m t h e b o l l c o u n t s ( 7 5 - 7 6 )

    t h a n t h o se f r o m v i d e o g r a p h y ( 6 1 - 6 3 ) , b u t V I

    f r o m t h e d if f e r e n t s y s t e m s e a c h a c c o u n t ed f o r 6 7

    o f th e v a r ia t i o n i n p la n t c o v er . A l l r e la ti o n s w e re

    Address correspondence to C. L. Wiegand Remote Sensing

    Research Unit USDA/ARS 2413 E. Highway 83 Weslaco TX

    78596-8344.

    Received June 1990: revised 12 November 1990.

    0034-42,57/91 / 3.50

    ©Elsevier Science Publishing Co. Inc., 1991

    6.55 Avenue of the Americas, New York, NY 10010

    l in e a r. I n t h e o th e r s tu d y , r e f l e c ta n c e f a c to r s a n d

    F P A R w e r e m e a s u r e d p e r i o d i c a l l y d u r i n g t h e s e a -

    so n in c o rn p la n t e d a t t h re e d e n s i t i e s ( 7. 7 , 5 .4 , a n d

    3 .1 p l a n t s ~ m 2 ) . F P A R c o u l d b e e s t im a t e d f r o m

    N D V I a n d P V I , r e s p e c ti v e ly , b y F P A R = - 0 .3 4 4

    + 0 .2 2 9 e x p ( 1 . 9 5 N D V I ) ( r 2 = 0 .9 7 3) a n d F P A R =

    0.015 + O.036(PVI) ( r 2 = 0 .956) . M etho ds o f ob-

    ta in in g F P A R a n d th e i r e f f e c t o n t h e e f f i c i e n c y o f

    c o n v e r s io n o f A P A R t o D M a r e il l u st r a te d a n d

    d i sc u sse d . Th e d a ta d e mo n s t ra t e h o w S CA u n i f i e s

    a n d s t re n g th e n s t h e sc i e n ti f ic b a s i s o f V I i n t e rp re -

    tations.

    INTRODUCTION

    Var ious spec t r a l vege ta t ion ind ices Rou se e t al .,

    1973 ; Kau th and Thomas , 1976 ; Richa rdson and

    Wiegand , 1977 ; Tucker e t a l . , 1979 ; Pe r ry and

    L a u t e n s e h l a g e r , 1 9 8 4 ) h a v e b e e n d e v e l o p e d t h a t

    r e d u c e m u l t i b a n d o b s e r v a ti o n s t o a s i n gl e n u m e r i -

    ca l i ndex . The index i s t yp ica l ly a sum, d i f f e r ence ,

    r a tio , o r o the r l i nea r com bina t ion o f re f l ec t ance

    fac to r o r r ad i ance obse rva t ions f rom two o r more

    w a v e l e n g t h i n t e rv a l s. H i g h a b s o r p ti o n o f in c i d e n t

    s u n l i g h t i n t h e v i s ib l e r e d R E D , 6 0 0 - 7 0 0 n m )

    por t ion and s t r ong r e f l ec t ance in t he nea r - in f r a r ed

    NIR,

    7 5 0 - 1 3 5 0 n m ) p o r t i o n o f t h e e l e c t r o m a g -

    1 0 5

  • 8/18/2019 Wiegand et al. 1991

    2/15

    10 6 Wiega nd e t a l.

    n e t i c s p e c t r u m b y p h o t o s y n t h e t ic a l l y a c ti v e t i ss u e

    in p l an t s i s d i s t i nc t ive f rom tha t o f soi l and wa te r ,

    t h e o t h e r t w o p r e d o m i n a n t l a n d s c a p e f e a t u r e s .

    T h u s , v e g e t a t i o n i n d i c e s d e v e l o p e d f r o m s p e c t r a l

    o b s e r v at i on s i n t h e s e t w o w a v e l e n g t h s h a v e c o r r e-

    l a t e d h i g h ly w i t h t h e p l a n t s t a n d p a r a m e t e r s g r e e n

    lea f a r ea index L) , ch lo rophy l l con ten t , f r e sh and

    d r y a b o v e - g r o u n d p h y t o m a s s F M , D M ) , p l a n t

    h e i g h t , p e r c e n t g r o u n d c o v e r b y v e g e t a t i o n , p l a n t

    popu la t ion , and g r a in o r f o r age y i e ld Rous e e t al .,

    1973; Wiegand e t a l . , 1973; Richardson e t a l . ,

    1974 ; Pea r son e t a l . , 1976 ; Thomas and Gausman ,

    1977 ; Tucker , 1977 ; W iega nd e t a l ., 1979 ; Cur r an ,

    1980; Ho lbe n e t a l . , 1980; Kim es e t a l ., 19 81; Aase

    and S iddoway , 1981 ; Walburg e t a l . , 1982 ;

    Richa rdson e t a l ., 1 982 ; and ma ny o the r s subse -

    quen t ly ) .

    M ore spec i f ica l ly , vege ta t ion ind ices hav e bee n

    c o n s i d e r e d a m e a s u r e o f v e g e t a t i o n d e n s i t y o r

    cover W iegan d e t a l. , 1973); pho tosy n the t i ca l ly

    ac t ive b iomass Tuck er , 1979 ; W iega nd and

    Richardson , 1984); l ea f a r ea index W iegan d e t a l.,

    1979); gree n leaf den si ty Tu cke r e t a l. , 1985);

    pho tosyn thesis ra te Sel lers , 1985; 1987); am ou nt

    o f pho tos yn the t i ca l ly ac t ive t is sue W iega nd e t a l. ,

    1986b ; Wiegand and Richardson , 1987) ; and pho-

    tosyn the t i c s ize o f canop ies W iegan d e t a l. , 1989;

    Wiegand and Richardson , 1990) .

    T h e c i t e d e m p i r i c a l st u d ie s h a v e b e e n c o m p l e -

    m en ted by mode l ing e ffor ts . Goe l 1988) has sum-

    m a r i z e d t h e e s s e n c e o f a l a rg e n u m b e r o f ca n o p y

    b i d i r e c t i o n a l r e f l e c t a n c e m o d e l s a m o n g w h i c h

    SAIL Verhoef , 1984) i s t he mo s t w id e ly used , and

    d e s c r i b e d t h e i r i n v e r s i o n t o e s t i m a t e c a n o p y b i o -

    phys ical var iables . Sel lers 1985; 1987) has pre-

    s e n t e d t h e o r e t i c a l a r g u m e n t s a n d u s e d a tw o - s t e a m

    r a d i a t i v e t r a n s f e r m o d e l t o s h o w h o w v e g e t a t i o n

    ind ices r e l a t e t o canopy r es i s t ance and r a t e o f

    p h o t o s y n th e s i s . G o e l a n d T h o m p s o n 1 9 8 4) d e v e l -

    oped a genera l t echn ique fo r t he sens i t i v i ty ana ly -

    s is o f c a n o p y r e f l e c ta n c e m o d e l s a n d C h o u d h u r y

    1 9 8 7 ) e x a m i n e d t h e r e l a t i o n s h i p s a m o n g v e g e t a -

    t i on ind ices , FPAR, and ne t pho tosyn thes i s u s ing

    sensi t iv i ty analysis .

    Ques t ions r emain , however , abou t t he in t e r -

    p r e t a t ion o f vege ta t ion ind ices i n t e rms o f t he

    cu r r en t cond i t i on and l i ke ly p roduc t iv i ty o f c rop ,

    r a n g e , a n d f o r e s t p l a n t c o m m u n i t i e s . T h e p u r p o s e

    o f t h is pa per i s t o p rov ide exam ples f rom s tud ies

    c o n d u c t e d i n 1 98 9 o f th e r e l a t i o n b e t w e e n v e g e t a -

    t i on ind ices and c rop pe r fo rmance and to d i scuss

    t h e m i n t e r m s o f a g r o n o m i c a n d p l a n t p h y s i o lo g i -

    c a l p r i n c i p l e s e m b o d i e d i n s p e c t r a l c o m p o n e n t s

    ana lys is SCA) W iegan d and Richardson , 1984 ;

    1987; 1990; W ieg an d e t a l . , 1989).

    M E T H O S

    F i e l d M e a s u r em e n t s

    Cotton

    A sal t -af fected f ie ld of cot ton Gossyp ium h irsu tum

    L. ) 15 km N E o f W es laco , Texas , t ha t mea su re d

    3 8 8 m a c ro s s a n d h a d r o w s o r ie n t e d E - W 3 8 4 m

    long spaced 1 .02 m apar t 14 .9 ha ac tua l p l an ted

    a rea ) was se l ec t ed a f t e r t he c rop was e s t ab l i shed .

    The so i l i n t he f i e ld r anged f rom nonsa l ine to so

    s a li n e th a t p l a nt s d i d n o t e m e r g e . T h e p a t t e r n a n d

    sever i ty was ve ry i r r egu la r P l a t e I ) a s is t yp ica l o f

    th is s t re ss Ca r t e r and W iegan d , 1965). A square

    g r id o f 36 sam ple s i t es a t 60 m in t e rva l s was

    pos i t i oned wi th in the f i e ld so tha t no s i t e was

    wi th in 30 m o f t he f i e ld boundary .

    S P O T - 1 H R V d a t a w a v e l e n g t h s : g r e e n G R ) ,

    5 0 0 - 5 9 0 n m ; R E D ) , 6 1 0 - 6 8 0 rim ; N I R , 7 9 0 - 8 9 0

    nm) we re a cqu i r ed on 4 Jun e 1989 f rom 13 ° eas t ,

    w h i l e n a r r o w b a n d m u l t i s p e c t r a l v i d e o g r a p h y

    w a v e l e n g t h s : y e l l o w - g r e e n Y G ), 5 4 3 - 5 5 2 n m ;

    R E D , 6 4 4 - 6 5 6 n m ; a n d N I R , 8 1 5 - 8 2 7 n m ) u s i n g

    the h igh r e so lu t ion mul t i spec t r a l v ideo sys t em de -

    sc r ibed by Ever i t t e t a l. 1991) was ob ta in ed on 19

    June and 14 Ju ly 1989 f rom 1400 m a l t i t ude . P l an t

    h e i g h t P H , m ) a n d p e r e e n t p l a n t c o v e r P C ) w e r e

    m e a s u r e d o n 5 J u l y o n a v e r a g e s i z e d p la n t s w i t h i n

    10 m o f t he g r id i n t e r sec t ions . P l an t he igh t mea-

    s u r e m e n t s w e r e m a d e l o o k i n g h o r i z o n t a l l y a e r o s s

    the tops o f p l an t s t o a me te r s t i ck and p l an t cover

    w a s d e t e r m i n e d f r om m e a s u r e d w i d t h o f p l a n ts i n

    t h e r o w d i v i d e d b y r o w s p a c i n g t i m e s 1 0 0 . T h e

    n u m b e r o f b o ll s la r g e e n o u g h t o m a t u r e w e r e

    cou n ted on 2 m o f r ow 2 .04 m 2 ) nea r t he g r id

    in t e r sec t ion on 12 and 13 Ju ly . Bo l l eoun t s were

    c o n v e r t e d t o k g l i n t / h a b a s e d o n 6 0 0 b o l l s / k g l i n t

    L . N . N a m k e n , p e r s o n a l c o m m u n i e a t i o n ) a n d e x-

    p a n d e d f ro m t h e s i ze o f t h e s a m p l e t o h e c t a re s .

    orn

    T h e c o r n

    Z e a m a y s

    L . ) e x p e r i m e n t , c o n d u c t e d a t

    the ARS No r th Fa rm, Wes laeo , Texas 26 .2°N,

    98.0°W), con sis ted of thre e populat ion s 7 .7 , 5 .4 ,

    and 3 .1 p l an t s /m 2 ) o f fi e ld co rn , eu l t i va r Con lee

  • 8/18/2019 Wiegand et al. 1991

    3/15

    Vegetation lndices in Crop ssessments

    1 0 7

    202, replicated 6 times in plots of 8 rows spaced

    0.75 m apart and 15.2 m long. The crop

    w a s

    planted on 13 March and emerged on 18 March. It

    reached the 10-leaf stage on 19 April and began

    tasseling 8 May. The various plots reached the silk

    stage between 14 May and 19 May, and physiolog-

    ical maturity of the grain, as indicated by black

    layer formation, from 23 to 30 June.

    Plots that had reached physiological maturity

    by then were harvested 28 June and the remain-

    der on 1 July. Harvest consisted of cutting all

    plants off just above the ground in 1 m 2 areas

    (1.33 m long row segments) in each plot, removing

    and putting the husked ears in one bag and all

    other harvested plant material in another. After

    about 2 weeks of drying in an unventilated, un-

    cooled glass greenhouse, the grain was shelled

    from the ears and the cobs were added to the

    other stover. The grain yield (g /m 2) consisted of

    the shelled grain that averaged 5.4% moisture

    while the grain plus all the other aboveground

    plant parts constituted the dry phytomass (DM,

    g/m2).

    The experimental area was fertilized twice with

    liquid nitrogen at the rate of 55 kg/h a, once on 28

    March and again on 17 April. The experimental

    area was irrigated prior to planting and on 4 April,

    10 May, and 7 June.

    Spectral radiance measurements were taken

    near solar noon from 2.8 m above the ground

    using a Mark II radiometer (Tucker et al., 1981)

    mounted on an aluminum pole on 11 dates begin-

    ning on 31 March and ending 26 June. The spec-

    tral bands of the Mark II are 630-690 nm and

    760-900 nm and its field of view was 15 °. Two

    observations per plot were taken centered over the

    corn row and two centered over the furrow (each

    at different places) and the measurements were

    averaged. Each end of approximately a 2 m long

    segment on the third row in from the north side of

    the plots was flagged and we returned to this row

    segment for all Mark II measurements.

    Photosynthetically active radiation (PAR) inci-

    dent on (Io), transmitted through (T), reflected

    from the composite canopy-soil backgrounds (R),

    and reflected from the bare soil (R~.) provided the

    data for fractional absorbed PAR (FPAR) defined

    (Hipps and Kanemasu, 1983; Gallo et al., 1985) as

    FPAR = I o - T - R + T R ~ ) / I o. (1)

    LI-COR l line quantum sensors (LI-191SB) were

    used to measure T, R, and R,, and I 0 was mea-

    sured using a quantum sensor (LI-190SB). 1 For

    the T measurements the line quantum sensor

    (LQS) was inserted below the canopies obliquely

    middle-to-middle. For measurements of R (canopy

    plus soil) the LQS was inverted 0.3 m above the

    canopies and parallel to the sensor below the

    canopies. The R~. term was measured by an LQS

    inverted 0.3 m above a small area in the plots

    where the plants had been removed soon after

    emergence and weeds were controlled by hoeing

    frequently. The T and R sensors were moved to

    new canopy sites for each of four measurements in

    each plot. The quantum sensor was mounted on a

    2-m-tall stand that was moved from plot to plot

    and leveled at each stop. Sensors had been inter-

    calibrated before the season began. The sensor

    outputs for

    T , R ,

    and I o and the time of observa-

    tions were electronically logged simultaneously.

    Care was taken to keep all sensors level and to

    avoid shading the sensor measuring T by the one

    measuring R. The PAR measurements described

    were made on seven dates beginning 29 March

    and ending 16 June. These measurements were

    also made on the third row from the north in each

    plot but at sites different from the reflectance

    factor observations to avoid trampling.

    a t a P r e p r o c e s s i n g

    S P O T . Digital counts for a 51 × 81 pixel area sur-

    rounding the test cotton field were extracted from

    the SPOT scene digital tapes using a PCI

    EASI/PACE 512 ×512 image analysis system in-

    terfaced to a COMPAQ 386/25 microcomputer.

    Line printer listings were generated, the bound-

    aries of the test and surrounding fields were iden-

    tified in these gray maps, and the pixels closest

    to the grid intersections were manually selected

    using the pattern of plant growth visible in the

    gray maps and reference aerial photographs as

    guides.

    Reflectance at the top of the atmosphere R t i )

    was computed from the equation (Moran et al.,

    IMention of trade names does not infer preferential

    treatment nor endorsement by the U S Departmen t of

    Agriculture over similar products available from other sources

  • 8/18/2019 Wiegand et al. 1991

    4/15

    1 0 8 W i e g a n d e t a l.

    1 9 9 0 )

    R t i = [ T r ( D C , / c ~ ) d Z ] / [ E s , (c o s S Z A )] , ( 2 )

    w h e r e i n c i a r e g a i n - d e p e n d e n t c a l i b r a t i o n c o e ff i-

    c i e n t s f o r e a c h b a n d ( S P O T D a t a U s e r s H a n d -

    b o o k , F i g . 3 - 1 1 ) t h a t c o n v e r t d i g i t a l c o u n t s ( D C i )

    t o r a d i a n c e a t t h e s e n s o r ( g a i n s fo r d e t e r m i n i n g C i

    w e r e 6 , 7 a n d 5 f o r H R V b a n d s 1 , 2 a n d 3 ,

    r e s p e c t i v e l y ) , d i s t h e e a r t h / s u n d i s t a n c e i n a s tr o -

    n a u t i c a l u n i t s , Es~ i s t h e e x o a t m o s p h e r i c s o l a r

    i r r a d ia n c e ( W i n - 2 s r - 1 / z m - 1) i n b a n d i , a n d S Z A

    i s t h e s o l a r z e n i t h a n g l e a t t h e t i m e t h e s c e n e w a s

    a c q u i r e d . F o r t h e 4 J u n e s c e n e t h e f a c t o r s t h a t

    c o n v e r t e d d i g i t a l c o u n t s t o r e f l e c t a n c e w e r e 0 . 1 8 2 ,

    0 . 2 2 1 , a n d 0 . 3 4 7 f o r b a n d s 1 , 2 , a n d 3 , r e s p e c -

    t iv e l y . W e u s e d t h e r e f l e c t a n c e a t t h e t o p o f t h e

    a t m o s p h e r e t o r e p r e s e n t g r o u n d l ev e l co n d i ti o n s .

    B a r e s o i l a r e a s i n t h e 4 1 3 1 p i x e l s u b s c e n e p r o -

    v i d e d d a t a f o r d e t e r m i n i n g t h e s o i l l i n e .

    Multispectral Videography

    D a t a f r o m e a c h c a m e r a o f t h e a i r b o r n e v i d e o

    s y s t e m ( E v e r i t t e t al ., 1 9 9 1 ) w e r e r e c o r d e d o n

    1 •

    7 - m . f o rm a t S u p e r V H S P a n a s o n i c M o d e l A G - 7 4 0 0

    p o r t a b l e v i d e o c a s s e t t e r e c o r d e r s . T h e b l a c k - an d -

    w h i t e c a m e r a s ( C O H U M o d e l 4 8 10 s er ie s ) w e r e

    e q u i p p e d w i t h s y n c h r o n i z e d g e n e r a t o r lo c k c o n -

    n e c t i o n s s o t h a t c o n t i n u o u s l y s y n c h r o n i z e d c om -

    p o s i t e i m a g e r y a n d i t s b l a c k - a n d - w h i t e c o m p o -

    n e n t s w e r e a c q u i r e d .

    A M a t ro x M V P d i g i ti z in g b o a r d a n d I M A G E R

    s o f tw a r e w e r e u s e d t o d ig i t iz e t h e i n d i v i d u a l b a n d s

    s c e n e s f o r s to r a g e o n t h e h a r d d i s k o f a m i c r o c o m -

    p u t e r i n t e r f a c e d to a n E R D A S i m a g e a n a l y si s s ys -

    t e m . E R D A S s o f tw a r e w a s u s e d t o p o s i t io n p o ly -

    g o n s 7 p i x e l s × 7 p i x e l s i n s i ze c e n t e r e d o n t h e

    g r i d i n t e r s e c t i o n s , e x t r a c t t h e d i g i t a l c o u n t s , a n d

    d e t e r m i n e t h e i r m e a n s a n d s t a n d a r d d e v i a t i o n s .

    T h e p r o c e d u r e s w e r e s p e e d e d b y r e g i s te r i n g al l

    b a n d s t o t h e N I R b a n d o n o n e d a t e , s o t h a t p ix e l

    s a m p l e s c o u l d b e e x t r a c t e d f r o m t h e i n d i v i d u a l

    b a n d s o n b o t h d a t e s b y o n e s e t o f p o l y g o n c o o r d i -

    n a t e s . S a m p l e s o f b a r e s o il ar e a s ( t u r n r o w s , f i e ld

    r o a d s , a n d b a r r e n s i te s i n fi e ld s ) w i t h i n t h e v i d e o

    s c e n e s w e r e u s e d t o d e t e r m i n e t h e s o i l l i n e

    (T a b l e 1 ) .

    Mark

    T h e M a r k I I d a t a w e r e p r o c e s s e d t o r e f l e c ta n c e

    f a ct o rs u s i n g t h e p r o c e d u r e s d e s c r i b e d b y

    R i c h a r d s o n ( 1 9 8 1 ) . C u r r e n t l y , a h a l o n p a n e l i s

    u s e d a s t h e r e f e r e n c e s t a n d a r d a n d w h i t e - p a i n t e d

    p l y w o o d a s w o r k i n g p a n e l s . T h e s a m e s m a l l a r e a s

    w h e r e t h e b a r e s oi l P A R r e f l e c t a n c e ( R s ) t e r m w a s

    m e a s u r e d w e r e u s e d e a c h m e a s u r e m e n t d a t e t o

    o b t a i n t h e r e f l e c t a n c e f a c to r s o f w e t a n d d r y s o i l

    f r o m a h e i g h t o f 1 - 1 . 2 m . W a t e r f r o m a s p r in k l e r

    c a n w a s a p p l i e d t o w e t a n a p p r o x i m a t e l y 0 . 7 m 2

    a r e a . T h e p e r i o d i c a l l y o b t a i n e d w e t a n d d r y s o i l

    r e f l e c t a n c e f a c t o r s w e r e p o o l e d t o d e t e r m i n e a s o i l

    l i n e f o r t h e e n t i r e s e a s o n .

    Table 1 S oi l L i n e S L ) a n d V e g e t a t i o n I n d e x E q u a t i o n s b y S e n so r S y s t e m a n d C r o p

    Se ns or Sy s t e m Sc e ne Equa t ions

    A. Cotton

    SPOT HRV-1 4 June

    Video 19 June

    17 July

    B. Corn

    Mark II Periodic

    All

    SL: RED = -8. 20+ 1.099 NIR

    GVI = 0.841 NIR- 0.438 RED - 0.317 GR- 5.84

    PVI = 0.740 NIR-0.67 3 RED-5 .52

    TSAVI = 0.910 NIR - .910 RED - 7 .46 ) / R ED + 0.91 NIR - 6.79)

    SL: RED = 1.50+ 1.032 NIR

    GVI = 0.837 NIR - 0.401 RE D - 0.372 YC - 2.69

    PVI = 0.718 NI R- 0.696 RE D+ 1.04

    SL: RE D = - 15.5+ 1.265 NIR

    GVI = 0 .863 NIR-0 .451 RED-0 .228 YG- 14.89

    PVI = 0.784 NI R- 0.620 RE D- 9.61

    SL: RED = -2 .0 1+0. 765 NIR)

    PVI = 0.608 RIR - 0.794 RED - 1.60

    NDVI = NIR- RED) / NIR + RED)

  • 8/18/2019 Wiegand et al. 1991

    5/15

    Vegetation Indices in Crop Assessments 109

    V e g e t a t i o n I n d i c e s

    T h e t h r e e - b a n d g r e e n n e s s v e g e t a t io n i n d e x ( G V I)

    w a s d e t e r m i n e d f o r b o t h S P O T - 1 H R V a n d t h r e e -

    b a n d v i d e o d a t a u s i n g t h e n - s p a c e p r o c e d u r e o f

    Ja c kson (1983) wi t h on e modi f i c a t i on : W e c a l c u-

    l a t e d t h e g r e e n n e s s o f t h e s o il p l a n e u s i n g t h e

    c o e f f i c i e n t s f r o m t h e n - s p a c e p r o c e d u r e a n d a d d e d

    i t a l g e b r a i c a l l y t o t h e g r e e n n e s s e q u a t i o n . T h i s

    m o d i f i c a t io n p e r m i t s t h e s o il p l a n e t o h a v e a n o n -

    z e r o i n t e r c e p t a n d a g r e e n n e s s o f ze r o.

    S i n c e t h e p e r p e n d i c u l a r v e g e t a t io n i n d e x ( P V I )

    ( R i c h a r d s o n a n d W i e g a n d , 1 9 7 7 ) i s t h e o r t h o g o n a l

    d i s t a n c e f r o m a v e g e t a t i o n p o i n t i n N I R a n d R E D ,

    o r N I R a n d G R , 2 - s p a c e , w e u s e d t h e e q u a t i o n f o r

    a pe rpe ndi c u l a r t o a l i ne ( Ja c kson e t a l . , 1980) ,

    i ns t e a d o f t he o r i g i na l fo rmul a , t o c a l c u l a t e i t. Fo r

    N I R o n t h e a b sc is s a an d R E D o n t h e o r d i n a te t h e

    e qua t i on i s

    PV I NIR,RED

    = [ a , ( N I R ) - R E D + ao ]

    . 2 1 1 / 2

    / [ l + ( a l ) ] , ( 3 a)

    w he re a 0 is t he so i l l i ne i n t e rc e p t a n d a 1 i s t he

    s l ope o f t he so il li ne . Wh e n t he so il li ne i s p re -

    s e n t e d w i t h N I R o n t h e o r d i n a t e a n d R E D o n t h e

    a bsc i s sa , t he e qua t i on i s

    P V IR ED , N m = [ N I R - a l ( R E D ) - a o ]

    / [ 1 - 4 - - - a l 2 ] 1 / 2 , 3 b )

    w h e r e a o a n d a 1 a r e, a g a in , t h e i n t e r c e p t a n d

    s l ope o f t he so i l li ne . In t h i s s t ud y t he so il li ne wa s

    d e t e r m i n e d b y l e a st s q u a r e s ( M a r k I I d a t a ) o r

    g r a p h i c a l l y ( S P O T a n d v i d e o d a t a ) . T h e t r a n s f o r -

    m e d s o il a d j u s t e d v e g e t a t i o n i n d e x , T S A V I ~ E o , N m

    (Ba re t e t a l. , 1989) , is def in ed by

    T SA V IR ED , N m = a l [ N I R - a , ( R E D ) - a o]

    / [RED+a, (NIR) -a l ao] .

    (4)

    C o n c e p t u a l l y , T S A V I i s a m e a s u r e o f t h e a n g l e

    b e t w e e n t h e s o il li n e a n d t h e l i n e j o i n i n g t h e

    v e g e t a t i o n p o i n t w i t h t h e s o i l l i n e i n t e r c e p t . F o r

    t h e s p e c i a l c a se o f a s o il l i n e s l o p e - - 1 . 0 a n d

    i n t e r c e p t = 0 , T S A V I r e d u c e s t o N D V I d e f i n e d b y

    N D V I = ( N I R - R E D ) / ( N I R + R E D ) . (5 )

    Th e spe c i f i c e qu a t i ons o f t he so il li ne s and

    ve g e t a t i on i nd i c e s fo r t he va r i ous da t a s e t s o f t h i s

    s t u d y a r e s u m m a r i z e d i n T a b l e 1 . T h e v e g e t a t i o n

    i n d i c e s i n T a b l e 1 f o r S P O T d a t a a r e c a l c u l a t e d

    f r o m e x o a t m o s p h e r i c r e f l e ct a n c e s ( ) , f r o m e i g h t-

    b i t d i g i t a l c ount s (DC ) fo r t he v i de o da t a , a nd

    f rom re f l e c t a nc e fac t o r s ( ) fo r t he M a rk I I da t a .

    T h e s o il li n e e q u a t i o n s a r e p o o r f o r th e v i d e o d a t a

    b e c a u s e t h e s m a l l a r e a s i n t h e s c e n e s u s u a l l y

    c o n t a i n e d o n l y d r y s o i l t h a t r e p r e s e n t e d o n l y a

    s h o r t s e g m e n t o f t h e s o il l in e . C o n s e q u e n t l y , t h e r e

    w a s u n c e r t a i n t y i n t h e m . T h e b u i l t - i n a u t o m a t i c

    g a i n c o n t r o l i n t h e v i d e o c a m e r a s a l s o m a d e t h e

    DC of t he so i l un i qu e fo r e a c h ove r f l i gh t , so tha t

    d a t a c o u l d n o t b e p o o l e d a c ro s s d a t e s .

    ata I n terp reta t ion

    O n e s p e c t r a l c o m p o n e n t s a n a ly s i s e q u a t i o n

    ( W i e g a n d a n d R i c h a r d s o n , 1 9 8 4 ) i s

    F P A R (V I ) = F P A R ( L ) × L ( V I ) = F P A R ( L [V I I ) ,

    6 )

    w h i c h i s r e a d a s F P A R a s a f u n c t i o n o f a n y v e g e t a -

    t i o n i n d e x ( V I ) d o m i n a t e d b y t h e N I R r e f e c t a n c e

    o f t h e c a n o p y e q u a l s F P A R a s a f u n c t i o n o f l e a f

    a r e a i n d e x ( L ) t i m e s L a s a fi m c t i o n o f V I . T h e

    e qua t i on s t a t e s t ha t be c a use t he re i s a func t i ona l

    r e la t io n b e t w e e n F P A R an d L a n d b e t w e e n L a n d

    V I i t f o l l o w s t h a t t h e r e i s a l s o o n e b e t w e e n F P A R

    a n d V I . C a li b r a ti o n o f F P A R d i r e c t l y i n t e r m s o f

    V I a v o i d s t h e t e d i o u s l a b o r o f d e t e r m i n i n g L , b u t ,

    m o r e i m p o r t a n t l y , m a k e s F P A R e s t i m a t e s a v a i l -

    a b l e f o r m a n y r e m o t e l y o b s e r v a b l e f ie ld s . I t is n o w

    r e c o g n i z e d t h a t F P A R i s a n e a r l y l in e a r f u n c t i o n o f

    V I a n d a t t e m p t s a t t h e b i o p h y s i c a l e x p l a n a t i o n o f

    t he l i ne a r i t y ha ve be e n ma de (Se l l e r s , 1985; 1987;

    C h o u d h u r y , 1 98 7).

    A n e q u a t i o n t h a t c o n t a i n s t h e L ( V I ) t e r m o f

    E q . ( 5 ) a n d i n c o r p o r a t e s e c o n o m i c y i e ld ( Y ) i s

    Y ( VI ) = L ( V I ) X ¥ ( L ) = Y ( L [ V I ] ), ( 7)

    w h e r e Y is t h e s a l a b le p l a n t p a r t a s a p p r o p r i a t e f o r

    t he c rop (g ra i n , roo t , f ru i t , f i be r , o r a bove -ground

    b i o m a s s ) ( g / m 2 ) . E q u a t i o n ( 7 ) r e l a t e s t h e p h o t o -

    s y n t h e t i c c a p a c it y o f t h e c r o p c h a r a c t e r i z e d b y L

    a n d V I t o i ts e c o n o m i c y i e ld . T h e t e r m L ( V I ) l in k s

    Eqs . (6 ) a nd (7 ) .

    M e a s u r e m e n t s o f V I m a d e t o o e a rl y in t h e

    g r o w i n g s e a s o n o r t o o l a t e i n t o s e n e s c e n c e d o n o t

    r e l a t e w e l l t o y i e l d i n E q . ( 7 ) b e c a u s e t h e m e a -

    s u r e m e n t s d o n o t r e p r e s e n t t h e c a n o p i e s ' p h o t o -

    s y n t h e t i c s iz e. T h e v a l u e s o f V I c o r r e s p o n d i n g t o

    t he p l a t e a u L va l ue s fo r t he se a son , o r t he ma xi -

    m u m l e a f a r e a i n d e x ,

    L m

    o b s e r v e d f o r e a c h f i e l d

    o r t r e a tm e n t o f in t e re s t , c a n b e u s e d t o d e t e r m i n e

  • 8/18/2019 Wiegand et al. 1991

    6/15

    11 0 Wiega nd et al.

    the Y(VI) func t iona l re la t ion . As a ru le , when L

    reaches i t s p la teau va lue fo r the season , the s inks

    fo r pho tosyn the t ic a ss imi la te s a re domina ted by

    the p lan t pa r t s tha t cons t i tu te y ie ld .

    An equa t ion tha t expresses the le f t s ides o f

    Eqs . (6 ) and (7 ) as da i ly inc rem en t ed cumula t ions ,

    d e s ig n a t e d b y E , a n d c o u p l e s t h e m th r o u g h g r o w th

    analysis (Warren Wilson, 1981) is

    Y ( E V I ) = E A P A R ( E V I ) × A D M ( ~ A P A R )

    × Y ( A D M ) ( 8)

    w h e r e i n

    APAR = FPAR × I 0 . (9 )

    Equ a t ion (8 ) p rov ides th e ra t iona le fo r expec t -

    i n g y i e ld s ( Y ) t o b e e s t im a b l e f r o m c u m u la t i v e

    da i ly vege ta t ion ind ices , tha t i s , f rom the a rea

    under the seasona l VI ve rsus t ime cu rves . In Eq .

    (8) , APAR is the p ro duc t o f da ily FPAR (un i t le ss )

    f rom Eq . (6 ) and da i ly inc iden t PAR f lux ,

    I 0 ( M J / m Z / d a y ) , w h i c h i n c u m u l a t i o n s h a s t h e

    un i t s M J /m 2. By it s ve ry na tu re D M is in teg ra l

    g rowth tha t we express a s the d ry ma t te r change ,

    A D M .

    Th e cum ula t ions o f a l l t e rms o f Eq . (8 ) beg in

    lo g ic a ll y a t s e e d l i n g e m e r g e n c e s o t h a t t h e c u m u -

    la t ions fo r a ll va r iab les be g in e i the r a t ze ro o r th e

    va lue fo r ba re soi l. At seed l ing em erg enc e DM 1 i s

    so smal l tha t i t i s u sua l ly ignored . I f economic

    y ie ld (Y) o f nonfo rage c rops i s o f p r im e in te res t ,

    e n d in g d a t e D M , D M 2 , c o r r e s p o n d s t o e i t h e r

    physiological maturi ty or to harvest , forc ing a l l

    o the r te rms to be eva lua ted a t th i s end t ime .

    S in c e F P A R c a n b e e s t im a t e d a lm o s t a s w e l l

    f rom VI as f rom L (Ga l lo e t a l . , 1985; W iegan d

    and Richardson , 1987) , EAPAR and EVI mus t a l so

    be c lose ly re la ted because APAR is the ene rgy

    ava i lab le fo r pho tosyn thes is and VI i s a mea sure o f

    the p ho tosy n the t ic s ize o f canopy . We can an t ic i-

    pa te tha t ~V I w i l l r e la te func t iona l ly to and p ro -

    v id e a g o o d e s t im a t e o f y ie ld i f EA P A R w o u ld . W e

    h a v e t e r m e d t h e s l o pe o f t h e EA P A R( EV I ) r e la -

    t i on t h e e f f i ci e nc y o f a b s o r p ti o n ( e~ , M J m - 2 /V I

    un i t ) in te rms o f the ph o tosyn the t ic s ize o f the

    canopy.

    Th e s e c o n d r ig h t s i d e t e rm , A D M ( EA P A R ) , is

    o f ten approx imate ly l inea r fo r much o f the season

    fo r a g iven p lan t ing (M onte i th , 1977) and i t s s lope

    is the e f f ic iency o f convers ion o f pho tosyn the t i -

    ca l ly ac t ive rad ia t ion to d ry mass (e c , g D M /

    MJ) , somet imes ca l led rad ia t ion use e f f ic iency

    ( RU E) . U n d e r l o w to m o d e r a t e s t r e s s c o n d i t i o n s

    A D M ( Y A P A R) i s l i n e a r b e c a u s e a n y r e d u c t i o n i n

    APAR reduc es th e supp ly o f ass imi la te s o f pho to -

    s y n th e s is a n d c o n s e q u e n t l y d e c r e a s e s t h e d r y m a t -

    te r ch ange (g row th) p ropor t iona l ly .

    W h e n t h e f u l l g r o w in g s e a s o n , e m e r g e n c e t o

    ha rves t , i s cons ide red the th i rd te rm in Eq . (8 ) ,

    Y(DM2) , i s , by de f in i t ion , the ha rves t index . The

    harvest index is approximately 0 .5 for s tarchy en-

    dospe rm g ra in c rops (e .g ., co rn , t emp era te ce rea ls,

    g ra in so rghum) when adap ted cu l t iva rs and rec -

    o m m e n d e d a g r o n o m ic p ra c t ic e s a r e f o l l o w e d u n -

    le ss ex t reme s t re ss t runca tes rep roduc t ion ( fo l ia r

    d isease , d rough t , fo r example ) . Ev idence i s accu-

    mu lat ing (e .g. , H ow ell , 1990) that the harv est in-

    d e x is c l im a t e - d e p e n d e n t , h e n c e s i t e - d e p e n d e n t .

    The r igh t -hand s ide te rms in Eq . (8 ) do no t

    n e e d t o b e k n o w n o r o b s e r v e d t o u s e t h e l e f t - h a n d

    s ide in app ly ing rem ote obse rva t ion capab i li ty ; the

    r i g h t - h a n d s i d e t e r m s p r o v id e t h e a g r o n o m ic a n d

    phys io log ica l exp lana t ion o f why the le f t s ide re la -

    t ion ex is t s and i s mean ingfu l . We have te rmed the

    s lope o f the Y(~V I) re la t ion the y ie ld e f f ic iency

    ( ey , g m - 2 / V I u n it ) in t e rm s o f th e p h o t o s yn t h e ti c

    s ize o f the canop y (W iegan d e t a l . , 1989 ; W iegan d

    and Richardson , 1990) . The numer ica l va lue o f ey

    is s imilar for the indices GVI and PVI, and for

    NDVI and TSAVI because those VI pa i r s have

    s imi la r magn i tudes .

    Eq u a t i o n s ( 6 ) a n d ( 7 ) d e s c r i b e d LA N D S A T

    MSS obse rva t ions fo r g ra in so rghum Sorghum

    bicolor

    L. M o e n c h ) ( W ie g a n d a n d R ic h a r d s o n ,

    1984) and smal l p lo t handhe ld rad iomete r s tud ies

    f o r w h e a t

    Triticum aestivum

    L.) , cot ton, and corn

    (Wiegand e t a l . , 1986a , Wiegand and Richardson ,

    1987). Equations (6) , (7) , and (8) have been veri-

    f ied for r ice

    Oryza sativa

    L.) (Wiegand e t a l . ,

    1989).

    Spec t ra l componen ts ana lys i s (SCA) assumes

    impl ic i t ly tha t i ) p lan t s tands in teg ra te th e g row -

    in g c o n d i t i o n s e x p e r i e n c e d a n d e x p r e s s t h e n e t

    ass imi la t ion th rough the canop ies ach ieved , i i )

    s t re sses seve re eno ugh to af fect eco nom ic y ie ld

    wi l l be de tec tab le th rough the i r e f fec ts on the

    d e v e lo p m e n t a n d p e r s i s t e n c e o f p h o to s y n th e t i ca l l y

    ac t ive t i s sue in the canop ies , i i i ) h igh economic

    y ie lds canno t be ach ieved un less p lan t canop ies

    are achieved that fu l ly u t i l ize avai lable solar radia-

    t ion as the p lan ts en te r the rep ro duc t ive s tage , and

    iv ) vege ta t ion ind ices ca lcu la ted f rom remote ob-

    se rva t ions in appropr ia te wave leng ths e f fec t ive ly

  • 8/18/2019 Wiegand et al. 1991

    7/15

    Vegetat ion Ind ices in Crop Assessm ents 11 ]

    m e a s u r e t h e p h o t o s y n t h e t i c s i z e o f t h e c a n o p ie s .

    Equ a t ions 6 ), 7 ), and 8 ) a r e u sed to a id the

    in t e rp r e t a t ion o f da t a f r om the s tud ies r epor t e d

    h e r e i n .

    R E S U L T S

    C o t t o n

    Figu re 1 d i sp l ays the sca t t e r i n t he bo l l coun ts ,

    exp ress ed as l i n t y i e ld kg /ha ) , f o r t he 36 samples

    f rom wi th in the sa l t - a f f ec t ed co t ton f i e ld ve r sus

    the fou r vege ta t ion ind ices ca l cu la t ed fo r t he

    SPOT-1 HRV da ta . The func t iona l r e l a t i ons a r e

    those fo r t he l e f t - hand s ide o f Eq . 7 ) app l icab le t o

    in t e rp r e t ing spec t r a l da t a ob ta ined du r ing ac t ive

    r ep roduc t ion by the c rop . A t t he s tudy s i t e , co t ton

    i s b looming and se t t i ng bo l l s by 15 May . Af t e r 1

    J u n e t h e p h o t o s y n t h e t i c s i z e o f t h e c a n o p y i n -

    c r eases on ly modes t ly because a ss imi l a t e s i n ex -

    cess o f t hose fo r r e sp i r a t ion , w a te r an d n u t r i en t

    u p t a k e , a n d s t r u c t u r a l e n l a r g e m e n t s u p p o r t b o l l

    g rowth , wh ich con t inues fo r i nd iv idua l bo l l s f o r

    abou t 40 days . Consequen t ly , t he pho tosyn the t i c

    0

    r-

    O~

    v

    I . -

    z

    . J

    1 8 0 0

    1 6 0 0

    1 4 0 0

    1 2 0 0

    1 0 0 0

    8 O O

    6 O O

    4 0 O

    2 0 0

    0

    0

    Figure I

    L in t yield of c otton versus fo ur vegetation indices calculated from SPOT-1 HRV observations.

    6 - 0 4 - 1 9 8 9

    Y I E L D , , - 110+95.6 G VI) / x

    R M S E - 2 2 2 x

    r * , 2 -. 7 56 x xX x y

    /

    x X x

    x x

    x X

    x x x

    X X X

    5 l O 1 5

    t

    - I

    .I

    I

    A 1

    2O

    1 8 0 0

    1 6 0 0

    1 4 0 0

    1 2 0 0

    l O 0 0

    8 O O

    6 O O

    4 0 0

    2 O O

    . 1 0

    6 - 0 4 - 1 9 8 9

    Y IE L D - -6 4 9 + 4 5 3 6 . 8 ( N O M )

    R M S E - 2 2 3

    r * ,2 , , .75 4 x /

    X X X

    X X

    : S

    x x x

    x

    x

    x J ' x x x

    i I ~ I

    0 . 3 0 0 . 5 0

    GVISPOT

    N D VI SPOT

    o

    r ,

    I , -

    ,_i

    1 8 0 0

    1 6 0 0

    1 4 0 0

    1 2 0 0

    1 0 0 0

    8 O 0

    8 O 0

    4 0 O

    2 0 0

    0 0 :

    I i i

    6 - 0 4 - 1 9 8 9

    Y I E L D - , - 3 , ~ + 104 2 PVI ) / x

    /

    R M S E - 2 2 2 x /

    r ** 2- , 757 x xX x J

    /

    x x X

    ~Ot x

    x x ~

    X I* X X

    ~ 1 I I X

    i I

    5 1 0 1 5

    C

    1 8 0 0

    1 6 0 0

    1 4 0 0

    1 2 0 0

    1 0 0 o

    8 O O

    6 O O

    2 O O

    i

    6 - 0 4 - 1 9 8 9

    Y I E L D ,, - 8 9 + 3 8 6 7 8 ( T S A V I )

    R M S E - 2 2 3 , / k

    r * - 2 - . 7 5 6 x ~ /

    x ) I x x

    0 2 0 0 4 0

    0

    PVIspoT TSAVI

  • 8/18/2019 Wiegand et al. 1991

    8/15

  • 8/18/2019 Wiegand et al. 1991

    9/15

    Vegetat ion Indices in Crop Assessm ents 1 1 3

    T h e l i n t y i e l d v e r s u s G V I a n d N D V I a s in t h e

    l e f t s i d e t e r m o f E q . 7 ) f o r v i d e o d a t a c o l l e c t e d o n

    1 9 J u n e a n d 1 4 J u l y is s h o w n i n F i g u r e 2 . T h e

    c o e f f ic i e n ts o f d e t e r m i n a t i o n a r e s l i g h tl y h i g h e r f o r

    1 9 J u n e t h a n f o r 1 4 J u l y , b u t l o w e r f o r b o t h d a t e s

    t h a n f o r t h e S P O T - 1 H R V d a t a . B y 1 4 J u l y b o l l s

    w e r e o p e n i n g a n d h a r v e s t w a s o n ly a b o u t 3 w e e k s

    a w a y . I n F i g u r e 2 , t h e G V I a r e m u c h l a r g e r t h a n

    i n F i g u r e 1 b e c a u s e t h e y a r e b a s e d o n d i g i ta l

    c o u n t s t h a t h a d v a l u e s a b o u t f i v e t i m e s a s l a r g e a s

    t h e r e f l e c t a n c e s u s e d f o r t h e H R V d a t a . T h e H R V

    s e n s o r h a s a n o m i n a l g r o u n d r e s o l u ti o n o f 2 0 m

    w h e r e a s t h e 4 9 v i d e o p i xe l s r e p r e s e n t e d a d i s ta n c e

    7 . 2 m a c r o s s t h e r o w s a n d 9 . 3 m d o w n t h e r o w s .

    orn

    E x p e r i m e n t a l d a t a f o r t h e l e f t si d e o f E q . 7 ),

    F P A R a s a f u n c t io n o f V I , a r e p r e s e n t e d i n F i g u r e

    3 f o r t w o v e g e t a t i o n i n d i c e s , P V I a n d N D V I . W e

    d i d n o t e x p e r i m e n t a l l y d e t e r m i n e t h e r i g h t - h a n d

    s ide t e rms beca us e E q . 7 ), it s e lf , imp l ie s tha t i t

    i s n o t n e c e s s a r y t o d o s o . E x p e r i m e n t a l d a t a i n

    t h e l i t e r a t u r e G a l l o e t a l. , 19 85 ; W i e g a n d a n d

    R i c h a r d s o n , 1 9 8 7 ) a l s o s h o w t h a t F P A R c a n b e

    e s t i m a t e d w e l l f r o m V I a s F i g u r e 3 d e m o n s t r a t e s

    a g a i n r 2 = 0 .9 5 6 a n d 0 . 9 7 3 f o r P V I a n d N D V I ,

    r e s p e c t i v e l y ) , d u r i n g t h e p r e t a s s e l i n g f i rs t t a ss e ls

    b e c a m e v i si b le o n 8 M a y a n d t h e m a x i m u m V I

    r e a d i n g s o c c u r r e d o n 9 M a y b e f o r e t h e y h a d

    e m e r g e d ) o r p r e - V l m a x p e r i o d . W h e n t h e t a s s e l s

    f u ll y e m e r g e d , t h e y s h a d e d t h e s e n so r s m e a s u r i n g

    t r a n s m i t t a n c e T ) a n d F P A R i n c r e a s e d b y

    0 . 1 0 - 0 .1 5 . T h u s P A R w a s i n t e r c e p t e d b y p h o to -

    s yn th e t i ca l ly inac t iv e t i s s ue Ro s en th a l e t a l. , 1985)

    w h i c h p e r v e r t s F P A R d e f i n e d b y E q . 1 ). T h e

    s o l u ti o n w e h a v e s u g g e s t e d i s u s e o f V I m e a s u r e d

    t h r o u g h o u t t h e s e a s o n i n t h e f u n c t i o n a l r e l a t i o n

    b e t w e e n F P A R a n d V I d e v e l o p e d f r o m t h e p r e-

    V l m a x p o r t i o n o f t h e s e as o n .

    I n F i g u r e 3 , t h e p o s t - V l m a x r e g r e s s i o n l i n e

    a n d e q u a t i o n a r e f o r t h e d a t a p o o l e d a m o n g p o p u -

    l a ti o n s. H o w e v e r , i t i s k n o w n e . g. , R o s e n t h a l

    e t a l., 1 9 8 5) t h a t F P A R f o r th e p o s t - V l m a x p e r i o d

    i n t e r c e p t s t h e F P A R a x i s b e t w e e n 0 . 3 a n d 0 . 7 f o r a

    c o m p l e t e l y s e n e s c e n t c a n o p y d e p e n d i n g u p o n

    d e n s i t y o f t h e s t an d . C o n s e q u e n t l y , h a d e x p e r i-

    m e n t a l F P A R o b s e r v a t i o n s c o n t i n u e d a f t e r 1 6 J u n e ,

    t h e l o w p o p u l a t i o n t r e a t m e n t , a t l e a s t , w o u l d r e -

    q u i r e a d i f f e r e n t f i t f r o m t h e o t h e r t w o t r e a t m e n t s

    a n d w o u l d l i k e l y i n t e r c e p t b e l o w 0 . 3 .

    0 . 9 0

    0 . 7 0

    0 . 5 0

    0 . 3 0

    0 . 1 0

    i i

    P R E I ~ q m o x P O S T

    H I G H P O P • . • ~ I / D I D / / 0

    i . m p o P _ , . , ¢ 0 * / I °

    L o w P O p , o _ = / . I h . / o

    • . r / ~

    . o / ~ ,

    7 - _

    / / • ~ t r - - PRE-PVlmm¢

    • / . . , . , ~ , ~ F P A R - - . O 1 5 + . O ~ ( P V l )

    r ~ 2 - . 9 5 6 RMSE- .O81

    I~ P O - - - P ( ) S T - P V I m o x

    FPAR,,.114+.037(PM)

    r ~ 2 , - . 6 3 9

    RMSE- .092

    - - 0 . 1 0 , I , I ,

    0 10 20 .30

    P V l u K ,

    P ~

  • 8/18/2019 Wiegand et al. 1991

    10/15

    1 1 4 W i e g a n d e t a l

    H P O P 7 . 7 ) m . . 2 ) A

    ] e - e M E D P O P 5 . 4 / m * . 2 )

    20

    i

    0 | I ~ 1 1 ~ : I I I I

    8 0

    1 0 0 1 2 0 1 4 0

    1 6 0

    HIGH~ P O P ( 7 . 7 / m * . 2 ) ~ 1

    --

    o---o MED POP (5 .4 /m *.2) --,-- Is

    . .

    L o w P O P . L

    0 . 8

    o . 6 1

    0.4

    0.2

    0.0

    8 0 1 O 0 1 2 0 1 4 0 1 6 0

    OY

    Figure 4

    Experimentally observed PVI and FPAR means

    and standard deviations by population treatm ent versus day of

    year (DOY ) for corn.

    t " q

    4l-

    t .

    E

    c n

    v

    C3

    ._J

    LI.J

    > -

    9 0 0

    7

    5

    . . . . i . . . .

    H I G H P 0 P ' 6 / 0 5 1 8 9 A

    o ME{ ) POP

    ,, LOW POP o

    O

    El

    o

    r * . 2 = , 3 2 6 ~ Q

    O

    3 0 0 . . . . . . . . i . . . .

    ,5 10 15

    PVI UK

    4l.

    4l-

    E

    C ~

    v

    _ J

    LIJ

    > -

    9 0 0

    700

    500

    • • I 1 i

    O H I G H P O P W H O L E S E A S O N

    o M E D P O P

    A L O W P O P o

    o

    E l

    Y I E L D = 1

    /t)+.¢~ tt :wU o

    o

    (O)

    r * , 2 = . 2 3 5 R M S E = 1 5 5 o

    A

    8

    ( Q

    (~ , I , I * I , I ,

    3 0 C 7 0 0 9 0 0 1 1 0 0 1 0 0

    PV I MK.

    Figure 5

    Grain yield of corn versus PVI on one date [left

    side of Eq. (7)] and cum ulative PVI for the growing season,

    EPVI [left side of Eq. (8)].

    h a d t o o f e w p l a n t s / m 2 t o u t i li z e t h e P A R e f f ec -

    t i ve ly F ig . 4 ) and the r e was in su f f i c ien t e l a s t i c it y

    in ea r s i ze t o compensa t e f o r t he de f i c i t i n p l an t

    p o p u l a t i o n . T h e m e d i u m p o p u l a t i o n w a s a b o u t

    t h a t r e c o m m e n d e d l o c a l l y f o r c o m m e r c i a l c o r n

    p r o d u c t i o n a n d t h e r e w a s a g o o d b a l a n c e a m o n g

    p lan t popu la t ion , f e r ti l it y , wa te r , and ava i l ab l e PAR

    r e s o u r ce s . T h e r e w e r e t o o m a n y p l a n t s i n t h e h i g h

    popu la t ion fo r t he nu t r i en t cond i t i ons tha t ex i s t ed

    a n d v e r y s m a l l e a r s w e r e p r o d u c e d t h a t y i e l d e d

    l es s g r a i n / m 2 t h a n d i d t h e m e d i u m p o p u la t io n .

    T h e d a t a p o i n t e n c l o s e d i n p a r e n t h e s e s f o r o n e

    p lo t o f each t r ea tm en t i s f r om the f ir s t t i e r o f p lo t s

    o n o n e s i d e o f t h e e x p e r i m e n t a l a r e a w h e r e t h e

    p lan t s w ere v i s ib ly n i t r ogen de f i c i en t due to

    l each ing by excess ive i r r i ga t ion the p r ev ious c rop

    season.

    Th e da t a o f F igu re 5 i ll u s t r a t e t ha t i n t e rp r e t a -

    t io n i s a i d e d b y a g r o n o m i c u n d e r s t a n d i n g o f l im i t -

    ing f ac to rs i n c rop g row th and y i e ld o f t en re -

    v e a l e d t h r o u g h t h e p a t t e r n s s e e n i n m u l t i t e m p o r a l

    i m a g e r y o f t h e g r o u n d s c e n e s ). T h e a p p r o a c h i s

    i n t e n d e d t o a p p ly t o c o m m e r c i a l c r o p s h u s b a n d e d

    b y r e c o m m e n d e d p r a c t i c e s f o r t h e p r o d u c t i o n a r e a

    w h e r e g r o w n .

  • 8/18/2019 Wiegand et al. 1991

    11/15

    V e g e ta t io n I n d i c e s i n C r o p A s s e s s m e n t s 1 1 5

    Table 2 .

    Solution of Eq. (8) Term by Term for the Whole Corn Growing Season (Emergence to Physiological

    Maturity of the Grain) by Population Treatment

    Y i el d Y i e ld A D M ~ A P A R

    P o p u la ti o n E P V I - A D M × F~APA---------R × EP~----Q--F

    (p lan ts / m 2 ) (g m - 2 PVI un i t ) a (g m - e / g m - 2 ) t (g / MJ) : (MJ m - 2 PVl un i t ) a

    A. PVI and APAR Summed Daily (based on Fig. 5)

    7.7 0.576 0.436 2.726 0.484

    5.4 0.738 0.473 3.000 0.520

    3.1 0.611 0.452 2.774 0.487

    B. FPAR after 9 May (tasseling) from FPAR = - 0.015 + 0.036 (PVI) of Fig. 4a

    7.7 same same 3.249 0.406

    5.4 same same 3.706 0.419

    3.1 same same 3.251 0.416

    ayield efficiency ey in terms o f cumulative perpendicular vegetation index.

    t Harvest index, HI.

    CEfl~ciency of conversion o f absorbed PAR to dry matter, e,..

    aEfficiency of absorption, e, , in terms of perpendicular vegetation index.

    The so lu t ion o f Eq . ( 8 ) f o r t he who le co rn

    g r o w i n g s e a s o n ( e m e r g e n c e t o p h y s i o lo g i c a l m a t u -

    r i ty o f t h e g r a i n ) is p r e s e n t e d t e r m b y t e r m b y

    p o p u l a t i o n t r e a t m e n t i n T a b l e 2 . A b s o r b e d P A R

    was ca l cu la t ed two ways : 1 ) by mul t ip ly ing exper i -

    m e n t a l F P A R o f F i g u r e 4 b b y t h e u n i q u e o b s e r v ed

    da i ly i nc iden t PAR f lux (upp er pa r t o f Tab le 2 ),

    and 2 ) a s i n 1 ) , above , t h rough 9 May bu t t he r e -

    a f t e r by in se r t i ng o bse rve d da i ly va lues o f PVI in to

    t h e p r e - P V I m a x ( p r e t a s s e l i n g ) F P A R e q u a t i o n i n

    F i g u r e 3 a a n d m u l t i p l y i n g t h a t a n s w e r b y t h e

    inc iden t PAR f lux fo r each day . Cumula t ive (o r

    i n t e g r a l ) A P A R w a s o b t a i n e d b y s u m m i n g t h e

    da i ly va lues t h rou gho u t t he season .

    Th i s p rocedura l d i f f e r ence a f f ec t s t he l a s t two

    r igh t s ide t e rms o f Eq . ( 8) , t he e f f ic i ency o f con -

    v e r s i o n o f a b s o r b e d P A R t o d r y m a t t e r , e c a n d t h e

    e f f i c iency o f abso rp t ion in t e rm s o f the vege ta t ion

    index , e a . S ince Y ',APAR i s sm a l l e r w he n pho tosyn-

    the t i ca l ly i nac t ive t i s sue a f f ec t ing FPAR i s min i -

    miz ed, e c is 1 .19, 1 .24, and 1 .17 t im es large r for

    h i g h , m e d i u m , a n d l o w p l a n t p o p u l a t i o n s , r e s p e c -

    t iv e l y , i n t h e l o w e r t h a n i n t h e u p p e r p a r t o f T a b l e

    2 . T h e v a l u e s i n t h e l o w e r p a r t o f T a b l e 2 a g r e e

    w e l l w i t h t h e v a lu e o f 3 .4 g D M / M J P A R re c o m -

    mended fo r co rn by S inc l a i r and Hor i e ( 1989) .

    L ikew ise , t he e f f i c ienc i es o f abso rp t ion a r e sm a l l e r

    b y a l m o s t t h e s e s a m e f a c t o r s . W e c o n c l u d e t h a t

    w o r k n e e d s t o b e d o n e t o e d u c a t e u s e r s a b o u t t h e

    var i ab i l i t y i n e f f i c i enc i es o f conver s ion o f PAR to

    d r y m a t t e r b a s e d o n m e t h o d s o f d e t e r m i n i n g

    F P A R .

    I n T a b l e 2 , t h e h a r v e s t i n d i c e s - - t h e s l o p e o f

    g r a in y i e ld a s a f unc t ion o f t o t a l abovegro und d ry

    m a t t e r i n c l u d i n g t h e g r a i n - - r a n g e d f r o m 0 . 4 3 6 f o r

    the denses t popu la t ion to 0 .473 fo r t he in t e rmed i -

    a t e p l an t ing . Th i s r ange i s qu i t e na r row bu t s t i l l

    impor t an t . A t ha rves t t o t a l above g round a i r -d ry

    phy tomass , DM 2 , was 1645 , 1700 , and 1115 g / m 2

    fo r h igh , med ium, and low popu la t ions , r e spec -

    t ive ly . Fo r D M 2 = 1500 , each 0 .01 inc r ease in t he

    h a r v e s t i n d e x m e a n s a 1 5 g / m 2 o r 1 5 0 k g / h a

    inc r ease in g r a in y i e ld , enough to make a d i f f e r -

    ence in p ro f i t o r l o ss t o t he g rower in cu r r en t

    na r row p ro f i t - l o ss marg ins .

    Th e y i e ld e f fi c i ency , t he l e f t s ide t e rm in Eq .

    (8 ) was in t he sam e o rde r a s t he e f f i c i ency o f

    a b s o rp t io n , t h e s a m e f i n d i n g r e p o r t e d b y W i e g a n d

    et a l . (1989) for r ice . In that s tudy there were 13

    t r e a t m e n t s c o n s i s ti n g o f i n c o m p l e t e c o m b i n a t io n s

    o f two p l an t ing da t es , t h r ee cu l t iva r s , and 6N

    app l i ca t ion r a te s . R e la t ive to t he m ean , va r i a t i on in

    t h e ~ A P A R ( E P V I ) t e r m w a s a b o u t 1 5 c o m p a r e d

    wi th 5 fo r t he o the r two righ t s ide t e rms , so tha t

    i t d o m i n a t e d t h e Y ( E P V I ) t e rm . I t is n o t n e c e s s a r y

    t o k n o w w h i c h o f th e r i g h t s i d e t e r m s i n E q . ( 8 )

    d e t e r m i n e ~ V I f o r i t t o b e c o m e a v i a b l e r e m o t e

    es t ima to r o f y i e ld . Tha t i s h igh ly des i r ab le f o r

    s c ie n t if ic u n d e r s t a n d i n g a n d c a n b e e s t a b l is h e d b y

    add i t i ona l i n t ens ive smal l p lo t s tud ies .

    D I S C U S S I O N

    The spec t r a l componen t s ana lys i s (SCA) equa t ions

    r e v i e w e d a n d i l l u s t r a t e d p r o v i d e a f r a m e w o r k

    w i t h i n w h i c h t o e x a m i n e a l a r g e n u m b e r o f r e la -

    t i onsh ips t ha t desc r ibe the g rowth , pho tosyn the t i c

  • 8/18/2019 Wiegand et al. 1991

    12/15

    11 6 Wiegand et al.

    s i ze, and y i e ld o f c rops a s a f fec t ed by the i r env i -

    ronmen t s and s t re sses . The spec t ra l t e rms ( t hose

    invo lv ing VI) i n t e r re l a t e V I , L , FPAR , APAR, y i e ld ,

    a n d D M i n a w a y t h a t i s c o n s i s t e n t w i t h p h y s i c a l

    a n d p h y s i o l o g i c al p r i n c i p le s a n d i n a g r e e m e n t w i t h

    g row th and y i e ld behav io r o f c rops i n t he f i e ld .

    I n t e r n a l c o n s i s t e n c y i s e n h a n c e d b y t h e f a c t s t h a t

    FPAR, VI , and y i e ld a l l app roach l im i t i ng va lues

    a s y m p t o t i c a l l y a s L i n c r e a s e s ( W i e g a n d a n d

    Rich ardson , 198 4; Sel lers , 1985).

    T h e e q u a t i o n s w e r e d e v e l o p e d t o m a x i m i z e

    the i n fo rmat ion ex t rac t ab l e f rom spec t ra l obse rva -

    t i ons abou t c rop cond i t i ons and y i e lds . The l e f t

    s ide t e rms o f Eqs . (6 ) , (7 ), and (8 ) a re e mp has i z ed

    to take adv an tage o f rem ote obse rv a t ion capab i l i t y

    whi l e t he r i gh t s i des add ress t he p l an t p rocesses

    i n v o l v e d . U n t i l t h e e q u a t i o n s w e r e d e v e l o p e d ,

    t h e r e w a s n o t h e o r y t o u n d e r g i r d t h e i n t e r p r e t a -

    t i ons . Hopefu l ly , SCA wi l l i nc rease t he appea l o f

    spec t ra l obse rva t ions t o o the r po t en t i a l u se rs o f

    th i s capab i l i t y , fo r example , p l an t p rocess mode l -

    e rs , eco log i s ts , hydro log i s t s , and me teo ro log i s t s .

    Sa t e l l i t e obse rva t ion capab i l i t y shou ld pe rmi t

    e s t i m a t i o n o f F P A R f o r v e g e t a t e d a r e a s e x p r e s s e d

    b y

    F e A R = ( 1 - R ) ( 1 - T ) , ( 10 )

    w h e r e i n s u r f a c e r e f l e c t a n c e R c a n b e a p p r o x i -

    m a t e d b y a b r o a d v i s i b l e b a n d s u c h a s t h e

    p a n c h r o m a t i c b a n d ( 5 1 0 - 7 3 0 n m ) o f t h e S P O T - 1

    HRV . One l im i t o f R i s t he re f l ec t ance o f ba re so il

    ( 0 . 0 5 - 0 .2 0 , d e p e n d i n g o n w a t e r c o n t e n t a n d c o l o r)

    and the o the r ex t reme i s t he i n f in i t e re f l ec t ance o f

    t h e c a n o p y ( 0 . 0 3 - 0 .0 5 ) . I n t e r c e p t e d P A R , ( 1 - T ,

    c a n b e e s t i m a t e d b y t h e S A I L o r o t h e r c a n o p y

    r e f l e c t a n c e m o d e l f r o m o b s e r v e d N I R a n d R E D

    ban d re f l ec t ances . I f capab i li t y t o execu te t he SA IL

    mode l i s l ack ing , t he func t iona l re l a t i on be tween

    ( 1 - T ) a n d V I m a y b e f o u n d i n t h e l it e r at u r e o r

    c a n b e e x p e r i m e n t a l l y d e v e l o p e d f o r t h e c r o p ( s ) o f

    in t e res t . S ince [ Io (1 - R)] i s a l so phys i ca l ly t he ne t

    d o w n w a r d f l u x , A P A R ( M J / m 2 / d a y ) i s t h e p r o d -

    u c t [ I o ( 1 - R ) ] ( 1 - T ) . F o r b a r e s oil T = 1 .0 s o

    tha t APA R = 0 , and fo r a ve ry d ense canopy T

    approa ches 0 , so t ha t APAR = (0 .95 -0 .97 ) /0 . Pe r i -

    o d i c r e m o t e o b s e r v a t i o n s o f R a n d m o d e l e s t i -

    m a t e s o f T n e a r s o l a r n o o n p e r m i t g r a p h s o f

    1 - R ) a n d ( 1 - T ) v e r s u s D O Y ( l i k e F i g . 4 ) f r o m

    wh ich es t ima tes fo r al l days o f i n t e res t ca n be

    m a d e . C h o u d h u r y ( 1 9 8 7 ) h a s u s e d a r a d i a t i v e

    t r a n s f e r e q u a t i o n t o e s t i m a t e F P A R a n d B a r e t a n d

    co-workers (e .g . , Baret and Ol ioso , 1989) have

    u s e d t h e S A I L m o d e l i n c o n j u n c t i o n w i t h e s t i -

    ma tes o f l i gh t abso rp t ion by c anop ies bu t no t i n

    con tex t o f Eq . (10 ). Adv ances mu s t be m ade in

    s t andard i z ing the e s t ima t ion o f PAR abso rp t ion by

    canop ies , l e s t t he e f f i c i enc i es o f convers ion o f

    APAR to DM wi l l remain va r i ab l e . In t h i s s t udy

    t h e t w o m e t h o d s o f c a l c u la t io n u s e d g a v e v a l u es

    tha t d if fe red by abou t 20 .

    I t i s ev iden t t ha t ~VI i s s imi l a r i n some re -

    s p e c ts t o l e a f a re a d u r a t i o n ( L A D ) p r o p o s e d b y

    W a t s o n (1 95 2) , w h i c h h a s l a r g e ly b e e n a b a n d o n e d

    b e c a u s e i t d id n o t h o l d a c r o ss e n v i r o n m e n t s ( E v a n s

    and Ward law, 1976) . (LAD used he re i s no t t o be

    confu sed wi th l ea f ang le d i s t r i bu t ion as u sed in

    c a n o p y r a d i a t i v e t r a n sf e r m o d e l i n g .) L e a f a r e a d u -

    ra t i on had the un i t s , days , and made no d i s t i nc t ion

    b e t w e e n , f o r e x a m p l e , c o o l , l o w i r r a d i a n c e w i n t e r

    a n d w a r m , h i g h i r r a d i a n c e s u m m e r d a y s . I n c o n -

    t ra s t , t he VI measu re t he pho tosyn the t i c s i ze o f

    the canop ies a s a f fec t ed by env i ronmen ta l va r i -

    ab l es . The va r i ab l es t ha t con t ro l t he po t en t i a l VI

    a re s t ab l e fo r a g iven p roduc t ion a rea f rom yea r t o

    yea r (day leng th o r i n so l a t i on , i nhe ren t so i l p roper -

    t i e s , cu l t i va rs , managemen t p rac t i ces ) wh i l e t he

    st ress variables (precip i ta t ion , d iseases , toxic pest i -

    c i d e r e s i d u e s , w e a t h e r e v e n t s , e t c . ) a r e g r o w i n g -

    s e a s o n - d e p e n d e n t . T h e r e f o r e , c a l ib r a ti o n s o f y i e l d

    ve rsus VI ac ross good and poor g rowing cond i t i ons

    w i t h i n p r o d u c t i o n a r e a s c a n d e s c r i b e t h e r e s u l ts o f

    pas t and fu tu re g rowing seasons accep tab ly .

    T h e c a l i b r a t i o n s a r e n e e d e d p r e s e n t l y b e c a u s e

    two o f t he t h ree r i gh t s i de te rms in Eq . (8 ) a re

    s i t e - d e p e n d e n t . W e s p e c u l a t e t h a t t h e d o m i n a n t

    env i ronmen ta l va r i ab l e caus ing va r i ab i l i t y i n t he

    dxDM(EAPAR) func t iona l re l a t i on i s ambien t

    t empera tu re ; i n p r inc ip l e , any s t re ss such as l ow

    t e m p e r a t u r e t o w h i c h c e l l e x p a n s i o n a n d p h o t o -

    syn thes i s d i f fe r i n sens i t i v i t y , o r above op t imum

    t e m p e r a t u r e w i t h i n t h e p l a n t t o l e r a n c e r a n g e t o

    which re sp i ra t i on and pho tosyn thes i s d i f fe r i n sen -

    s i t i v i t y , can cause dev ia t i on f rom cons t ancy in t he

    e f f i c iency o f convers ion .

    The ha rves t i ndex i s h ighes t fo r a g iven c rop

    where i t i s bes t adap ted and dec reases a s i t i s

    g r o w n u n d e r l e s s i d e a l c o n d i t i o n s . W e s p e c u l a t e

    that s a tura t ion defic i t s of the a i r , insola t ion , and a i r

    and so i l t empera tu res t ha t a re pa r t l y con t ro l l ed by

    l a t i t u d e a n d e l e v a t i o n a r e p r o b a b l y t h e i m p o r t a n t

  • 8/18/2019 Wiegand et al. 1991

    13/15

    V e g e t a t i o n I n d i c e s in C r o p A s s e s s m e n t s

    7

    f a c t o r s . U n f o r t u n a t e l y , t h e f a c t o r s t h a t c a u s e t h e

    e f f ic i e n c y o f c o n v e r s i o n a n d t h e h a r v e s t i n d e x t o

    v a r y g e o g r a p h i c a l l y a r e p o o r l y r e s e a r c h e d .

    I n te r m s o f a p p l y i n g E q s . 7 ) a n d 8 ) , w e c a n

    s a y th a t t h e l e f t s id e t e r m s w o u l d n o t b e s i t e -

    d e p e n d e n t i f t h e r i g h t s id e t e r m s w e r e n o t . L i k e -

    w i s e , if t h e r i g h t s i d e s it e d e p e n d e n c i e s w e r e

    k n o w n , t h e l e f t s i d e s it e d e p e n d e n c i e s w o u l d b e

    p r e d i c t a b l e a n d t h e l e f t s i d e f u n c t i o n a l r e l a t i o n s

    w o u l d n o t h a v e t o b e c a l i b r a t e d b y p r o d u c t i o n

    a r e a s . O n t h e o t h e r h a n d , i f t h e l e f t s i d e t e r m

    f u n c t io n a l r e l a ti o n s a r e c a r e f u l l y d e t e r m i n e d , t h e y

    c a n h e l p e l u c i d a t e t h e r i g h t s i d e f u n c t i o n a l r e l a -

    t i o n s .

    I n s u m m a r y , o b s e r v e d y i e l d d i f f e r en c e s a m o n g

    f i el d s a r e a s s o c i a t e d w i t h d i f f e r e n c e s in L , D M ,

    a n d p e r c e n t c o v e r th a t s t ar t b e c o m i n g e v i d e n t i n

    t h e v e g e t a t i o n i n d i ce s e a r l y i n v e g e t a t i v e d e v e l o p -

    m e n t e . g . , R i c h a r d s o n e t a l. , 1 9 8 2 ) . T h e d i f fe r -

    e n c e s i n g r o w t h h a v e m a n y p o s s i b l e c au s e s

    m a n a g e m e n t p r a c ti c e s , w e a t h e r , i n h e r e n t s o il

    p r o p e r t i e s , b i o t i c s t r e s s e s , e t c . ) . D i r e c t o b s e r v a t i o n

    o f t h e p h o t o s y n t h e t i c s i z e o f t h e c a n o p i e s a n d t h e

    i n t e r p r e t a t i o n o f t h o s e o b s e r v a t i o n s w i t h in t h e

    f r a m e w o r k o f s p e c t r al c o m p o n e n t s a n a ly s is p e r -

    m i t s i n f e r e n c e s a b o u t t h e d e v e l o p m e n t , g r o w t h ,

    a n d y i e l d o f t h e p l a n t c o m m u n i t i e s t h a t c o n s t it u t e

    t h e c a n o p i e s o b s e r v e d . Y i e ld w a s e m p h a s i z e d i n

    t h e p a p e r b e c a u s e o f i ts e c o n o m i c i m p o r t a n c e t o

    p r o d u c e r s a n d i n w o r l d t r a d e .

    W e thank Dr. M elba C rawfi~rd, University of Texas, Austin,

    f i ) r providing the SPOT-1 scene; Dr . S tepha n Maas for des ign-

    ing the corn exper iment and get t ing i t in i t ia ted; Edgar Smi th

    for a l lowing us to use h i s cot ton fi e lc~ Ren e D avis for p i lo t ing

    the plane to acquire the v ideo data an d fo r pr int ing Plate I ;

    Noe l Garcia f i )r processing data on the im age analysis systems;

    Rom e o Rodr i gue z and A l v i n G e r be r m ann f o r a s si st anc e w i t h

    f ield work, d ata reduction, statistical analysis, an d fo r f igur e

    preparation; and Carol Harvil le and S aida Cardoza fo r

    manuscript preparation.

    R E F E R E N E S

    Aase, J. K., and Siddoway, F. H. 198 1), Spring wheat yield

    estimates from spectral reflectance measurements, I E E E

    Trans. Geosci . Remote Sens. 19:78-84.

    Baret, F., and Olio so, A. 19 89 ), Estimation ?a partir d e

    mesures de rbfleetance spectrale du rayo nnem ent photo-

    synthbtiquement actif absorbb par une c ulture de blb,

    Agr onom i e 9:885-895.

    Baret, F., Guyot, G., and M ajor , D. J. 198 9), TSAVI: A

    vegetation index which m inimizes so il brightness effects

    on L AI and APA R estimation, in Pr oc . I G AR SS 89 - - 12 th

    Canadian Symp. on Remote Sens .

    3:1355-1358.

    Carter, D. L., and Wiegand, C. L. 1965), Inters pers ed salt-

    affected and unaffected dryland soils of the Low er Rio

    Grande Valley: I. Chemical, physical, and mineralogical

    characteristics, Soil Sci. 99:256-260.

    Choudhury, B. J. 19 87) , Relationship betw een vegetation

    indices, radiation absorption, and net photosynthesis eval-

    uated by sensi t ivi ty analysis, Remote Sens . Environ.

    22:209-233.

    Curran, P . 1980 ), Mu ltispectral sensing of vegetation amo unt,

    Prog. Phys. Geog. 4:315-341.

    Evans, L. C. and Wardlaw, I. F. 1976), Aspects of compara-

    tive physiology of grain yield in cereals,

    Adv . Agr on .

    28:301-350.

    Everitt, J. H., Escobar, D. E., Villarreal, R., Noriega, J. B.,

    and D avis, M. R. 19 91) , Airborne video systems for

    agricultural assessment, pre sen ted at BAR C Syrup., Gre en-

    bel t , MD, 16-18 May 1990,

    Remote Sens . Environ.

    34:233-244.

    Gallo, K. P., Daughtry, C . S. T., and B auer, M. E. 1985),

    Spectral estimation of absorbed photosyn thetically active

    radiation in corn canopies, Rem ote Sens. Env iron.

    17:221-232.

    Goel, N. S. 198 8), Models o f vegetation canopy reflectance

    and th eir use in estimation o f biophysical parameters from

    reflectance data, Remote Sens . Rev . 4:1-212.

    Goel, N. S., and Thom pson, R. L. 1984), Inversion of vegeta-

    tion canopy reflectance models for estimating agronomic

    variables. III. Estimation using only canopy reflectance

    data as illustrated by the Suits model, Remote Sens . Envi -

    ron. 15:223-226.

    Hipps, L. E., and Kanem asu, E. T. 198 3), Asse ssing the

    interceptio n of photosynthetically active radiation in win-

    ter wheat, Agric. Meteor. 28:253-259.

    Holben , B. N., Tucker, C. J., and Fan , C. J. 1980), Assessing

    soybean lea f area and leaf biomass w ith spectral data,

    Photogramm. Eng. R emo te Sens .

    26:651-656.

    Howell, T. A. 1990), Grain-dry m atter yield relationships fo r

    winter wheat and grain sorghum, Southern High Plains,

    Agron. J .

    82:914-918.

    Jackson, R. D. 198 3), Spectral indices in n-space,

    R e m o t e

    Sens. Environ. 13:409-421.

    Jackson , R. D., Pinter, P. J., Jr., Reginato, R. J., and Idso, S. B.

    1980), Hand-held radiometry, USD A-SEA , Agric . Rev.

    and Manuals, ARM-W-19, 66 pp.

    Kauth, R. J., and Thomas, G. S. 1976), Th e tasseled ca p- -A

    graphic description o f the spectral temporal develo pm ent

    of agricultural crops as seen by LAND SAT, in Proc. Symp.

    Machine Proc . Remote ly Sensed Data, IEEE, New York ,

    pp. 41-49.

  • 8/18/2019 Wiegand et al. 1991

    14/15

    1 1 8 W i e g a n d e t a l.

    Ki m e s , D . S . , M a r k h a m , B . L . a n d T u c k e r , C . J. 1 9 81 ) ,

    T e m p o r a l r e l a t i o n s h i p s b e t w e e n s p e c t r a l r e s p o n s e a n d

    a g r o n o m i c v a r i a b l e s o f a c o r n c a n o p y , Rem ote Sens . Envi -

    ron. 1 1 : 4 0 1 - 4 1 1 .

    M o n t e i t h , J . L . 1 9 7 7) , C l i ma t e a n d t h e e f f i c ie n c y o f c r o p

    p r o d u c t i o n i n B r i t a i n , Phil . Trans. Ro y. Soc. Lo ndo n B

    2 8 1 : 2 7 7 - 2 9 4 .

    M oran , M . S . , J ackson , R . D. , Ha r t , G. F . , S la t e r , P . N. ,

    Bar te l l , R . J . , B igga r , S . F . , Ge l lman , D. I . , and San te r ,

    R . P. 1 9 9 0) , O b t a i n i n g s u r f a c e r e f l e c t a n c e f a c t o rs fr o m

    a t m o s p h e r i c a n d v i e w a n g l e c o r r e c t e d S P O T - 1 H R V d a t a ,

    Remote Sens . Environ. 3 2 : 2 0 3 - 2 1 4 .

    Pea r son , R . L . , M i l l e r , L . D. , and Tuc ke r , C . J . 1976),

    H a n d h e l d s p e c t r a l r a d i o m e t e r t o e s t i m a t e g r a m i n o u s

    b i o m a s s , Appl . Opt . 1 5 : 4 1 6 - 4 1 8 .

    Pe r ry , C . A. , J r . , and L au ten sch la ge r , L . P . 1984) , Func t iona l

    e q u i v a l e n c e o f s p e c t r a l v e g e t a t i o n i n d i c e s , Remote Sens .

    Environ. 1 4 : 1 6 9 - 1 8 2 .

    P in te r , P . J . , J r . , J ackson , R . D. , Id so , S . B . , and Reg ina to , R . J .

    1 9 81 ) , M u l t i d a t e s p e c t r a l r e f l e c t a n c e a s p r e d i c t o r s o f y i e l d

    i n w a t e r s t r e s s e d w h e a t a n d b a r l e y , Int . J. Remote Sens.

    2 : 4 3 - 4 8 .

    R i c h a r d s o n , A . J . 1 9 8 1) , M e a s u r e m e n t o f r e f l e c t a n c e f a c to r s

    u n d e r d a i l y a n d i n t e r m i t t e n t i r r a d i a n c e v a r i a t io n s , App .

    Op t . 2 0 : 3 3 3 6 - 3 3 4 0 .

    R i c h a r d s o n , A . J ., a n d W i e g a n d , C . L . 1 9 7 7) , D i s t i n g u i s h i n g

    v e g e t a t i o n f r o m s o i l b a c k g r o u n d i n f o r ma t i o n , Photogramm.

    Eng . 4 3 : 1 5 4 1 - 1 5 5 2 .

    R icha rdson , A. J . , Gau t reaux , M. R . , Tor l ine , R . J . , and

    W i e g a n d , C . L . 1 9 7 4) , L a n d u s e c l a s s if i c a ti o n a n d g r o u n d

    t r u t h c o r r e l a t i o n s f r o m s i mu l t a n e o u s l y a c q u i r e d a i r c r a f t

    a n d E R T S - 1 M S S d a t a , i n Proc. N inth In t . Symp. on

    Remote Sens . Environ. Un i v . o f Mi c h i g a n , An n A r b o r , Vo l.

    I I , p p . 1 4 2 3 - 1 4 4 0 .

    R icha rdson , A. J . , Wiegand , C . L . , Ark in , G. F . , Nixon , P . R . ,

    a n d G e r b e r m a n n , A . H . 1 9 82 ), R e m o t e l y s e n s e d s p e c tr a l

    i n d ic a t o rs o f s o r g h u m d e v e l o p m e n t a n d t h e i r u s e i n g r o w t h

    mo d e l i n g , Agric. Meteorol. 2 6 : 1 1 - 2 3 .

    Ros en tha l , W . D. , Ark in , G. F . , and H ow el l , T . A. 1985),

    T r a n s mi t t e d a n d a b s o r b e d p h o t o s y n t h e t i c a l l y a c t i v e r a d i a -

    t i o n i n g r a i n s o r g h u m. Agron. J . 7 7 : 8 4 1 - 8 4 5 .

    Rouse , J . W. , J r . , Haas , R . H. , Sche l l , J . A. , and Deer ing ,

    D . W . 1 9 7 3) , M o n i t o r i n g v e g e t a t i o n s y s t e m s i n t h e Gr e a t

    P l a i n s w i t h E R T S , i n Th i r d ERTS Sy m p . , NAS A S P - 3 5 1 ,

    U . S . Go v . P r i n t i n g Of fi ce , W a s h i n g t o n , DC , Vo l . I , p p .

    3 0 9 - 3 1 7 .

    S e l l er s , P . J . 1 9 85 ) , C a n o p y r e f le c t a n c e , p h o t o s y n t h e s i s a n d

    t r a n s p i r a t i o n , In t . J . Remote Sens . 6 : 1 3 3 5 - 1 3 7 2 .

    S e l l er s , P . J . 1 9 8 7) , C a n o p y r e f le c t a n c e , p h o t o s y n t h e s i s , a n d

    t r a n s p i r a t io n . I I . T h e r o l e o f b i o p h y s i c s i n t h e l i n e a r i t y o f

    t h e i r i n t e r d e p e n d e n c e , Remote Sens . Environ. 2 1 : 1 4 3 - 1 8 3 .

    S inc la i r, T . R . , and H or ie , T . 1989), Le a f n i t rogen , pho tos yn-

    t h e s i s , a n d c r o p r a d i a t i o n u s e e f f i c i e n c y : a r e v i e w , Crop

    Sci. 2 9 : 9 0 - 9 8 .

    S P O T U s e r s H a n d b o o k , Rev . 01 1989) , Vo l . 1 , Re fe re nce

    M a n u a l , S P O T I m a g e C o r p o r a t io n , R e s t on , V A .

    T h o m a s , J . R . , a n d Ga u s m a n , H . W . 1 9 7 7) , L e a f r e f l e c t a n c e

    v s . l e a f c h l o r o p h y l l a n d c a r o t e n o i d c o n c e n t r a t i o n s f o r e i g h t

    c r o p s , Agron. J . 6 9 : 7 9 9 - 8 0 2 .

    T u c k e r , C . J . 1 9 7 7) , S p e c t r a l e s t i ma t i o n o f g r a s s c a n o p y

    v a r i a b l e s , Remote Sens . Environ. 6 : 1 1 - 1 6 .

    T u c k e r , C . J . 1 9 79 ) , R e d a n d p h o t o g r a p h i c i n f r a r e d l in e a r

    c o mb i n a t i o n s f o r mo n i t o r i n g v e g e t a t i o n , Remote Sens , En-

    viron. 8 : 1 2 7 - 1 5 0 .

    T u c k e r , C . J ., E l g i n , J. H . , J r ., M c M u r t r e y , J . E . , I I I , a n d F a n ,

    C . J . 1 9 7 9) , M o n i t o r i n g c o r n a n d s o y b e a n c r o p d e v e l o p -

    m e n t w i t h h a n d - h e l d r a d i o m e t e r s p e c t r a l d a t a , R e m o t e

    Sens. Environ. 1 3 : 4 6 1 - 4 7 4 .

    T u c k e r , C . J . , J o n e s , W . H . , K l e y , W . A . , a n d S u n d s t r o m, G . T .

    1 9 81 ) , A t h r e e - b a n d h a n d - h e l d r a d i o m e t e r f o r f i e ld u s e ,

    Science 2 1 1 : 2 8 1 - 2 8 3 .

    T u c k e r , C . J . , Va n p r a e t , C . , B o e r wi n k e l , E . , a n d Ga s t o n , A .

    1 9 83 ) , S a t e l li t e r e m o t e s e n s i n g o f t o t a l d r y m a t t e r p r o d u c -

    t i o n i n t h e S e n e g a l e s e S a h e l , Remote Sens . Environ.

    1 3 : 4 6 1 - 4 7 4 .

    Tuc ke r , C . J . , Tow nsh end , J . R . G. , and Gof f , T . E . 1985),

    Af r i can l and-cove r c l a s s i f i ca t ion us ing sa te l l i t e da ta , Sci-

    e nc e 2 2 7 : 3 6 9 - 3 7 5 .

    Ve r h o e f , W . 1 9 84 ) , L i g h t s c a t t e r i n g b y le a f l a y e r s w i t h

    a p p l i c a t i o n t o c a n o p y r e f l e c t a n c e mo d e l i n g : t h e S AI L

    m o d e l , Rem ote Sens . Environ. 1 6 : 1 2 5 - 1 4 1 .

    W a l b u r g , G . , B a u e r , M. E . , Da u g h t r y , C . S . T . , a n d Ho u s l e y ,

    T . L . 1 9 8 2) , E f f e c ts o f n i t r o g e n n u t r i t io n o n t h e g r o w t h ,

    y i e l d , a n d r e f l e c t a n c e c h a r a c t e r i s t ic s o f c o r n c a n o p i e s ,

    Agron. J . 7 4 : 6 7 7 - 6 8 3 .

    W a r r e n W i l so n , J. 1 9 8 1) , An a l y s i s o f g r o wt h , p h o t o s y n t h e s i s

    a n d l i g h t i n t e r c e p t i o n f o r s i n g l e p l a n t s a n d s t a n d s , A n n .

    Bot. 4 8 : 5 0 7 - 5 1 2 .

    W a t s o n , D . J. 1 9 5 2) , T h e p h y s i o l o g i c a l b a s i s o f v a r i a t i o n i n

    y ie ld , Adv . Agr on . 4 : 1 0 1 - 1 4 6 .

    W i e g a n d , C . L . , a n d R i c h a r d s o n , A . J . 1 9 8 4) , L e a f a r e a , li g h t

    i n t e r c e p t i o n , a n d y i e l d e s t i ma t e s f r o m s p e c t r a l c o mp o n e n t s

    ana lys i s , Agron. J . 7 6 : 5 4 3 - 5 4 8 .

    W i e g a n d , C . L ., a n d R i c h a r d s o n , A . J . 1 9 87 ) , S p e c t r a l c o mp o -

    n e n t s a n a l y s i s . R a t i o n a l e , a n d r e s u l t s f o r t h r e e c r o p s , Int .

    J . Remote Sens . 8 : 1 0 1 1 - 1 0 3 2 .

    W i e g a n d , C . L . , a n d R i c h a r d s o n , A . J . 1 9 9 0) , Us e o f s p e c t r a l

    v e g e t a t i o n i n d i c e s t o i n f e r l e a f a r e a , e v a p o t r a n s p i r a t i o n

    and y ie ld : I . Ra t iona le , Agron. J . 8 2 : 6 2 3 - 6 2 9 .

    W i e g a n d , C . L . , Ga u s m a n , H . W . , C u e l l a r , A . J . , Ge r b e r r n a n n ,

    A . H . , a n d R i c h a r d s o n , A . J . 1 9 7 3) , V e g e t a t i o n d e n s i t y a s

    d e d u c e d f r o m E R T S - 1 M S S r e s p o n s e , i n T h i r d E R T S

    Symp. , NAS A S P - 3 5 1 , U . S . Go v . P r i n t i n g Of f i c e , W a s h i n g -

    t o n , DC , Vo l . I , p p . 9 3 - 1 1 6 .

    W i e g a n d , C . L . , R i c h a r d s o n , A . J . , a n d K a n e m a s u , E . T .

    1 97 9 ), L e a f a r e a in d e x e s t i m a t e s f o r w h e a t f r o m L A N D -

    S AT a n d t h e i r i mp l i c a t i o n s f o r e v a p o t r a n s p i r a t i o n a n d c r o p

    mo d e l i n g , Agron. J . 7 1 : 3 3 6 - 3 4 2 .

  • 8/18/2019 Wiegand et al. 1991

    15/15

    V e g e t a t i o n I n d i c e s i n C r o p A s s e s s m e n t s 9

    W iegan d, C . L . , R ichardson , A . J . , and Nixon , P . R . 1986a) ,

    S pec t r a l com ponen t s ana lys i s : a b r idge be tw een spec t r a l

    obse rva t i ons and ag rom eteoro log i ca l c rop m ode l s ,

    I E E E

    Trans G oesci Rem ote Sens

    G E - 2 4 : 8 3 - 8 9 .

    Wiegand, C . L . , R ichardson, A . J . , Jackson, R . D . , P inter , P . J . ,

    J r . , Aase, J . K . , Smika, D . E . , Lautensehlager , L . F . , and

    M e M u r t r e y , J . E . , I I I 1 9 8 6 b ) , D e v e l o p m e n t o f a g r o m e t e o -

    r o l gi c a l c r o p m o d e l i n p u t s f r o m r e m o t e l y s e n s e d i n f o rm a -

    t ion,

    IEE E Trans Geosci Rem ote Sens

    G E - 2 4 : 9 0 - 9 8 .

    W iega nd, C . , Shibayam a, M. , Yamagata , Y ., and A kiyama, T .

    1989), S pec t r a l obse rva t i ons fb r e s t im a t ing t he g row th

    and y i e ld o f r ice ,

    Jpn J C rop Sci

    5 8 : 6 7 3 - 6 8 3 .