transmission radio.2p 2

Upload: zer0co0l

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Transmission Radio.2P 2

    1/35

    1

    Les transmissions radioLes transmissions radio

    Bernard Cousin

    Les pionniers du sans fil (1800Les pionniers du sans fil (1800--1900)1900)

    Claude Chappe, 1793 : Inventeur du premier systme de

    transmission base de smaphores(mcanique et visuel) et d'un code

    Samuel Morse, 1837 : Inventeur de l'alphabet deux

    signaux qui porte son nom et dutlgraphe lectrique

    Thomas Edison, 1878 : Pionnier de la transmission longue

    distance filaire et inventeur du

    18 novembre 2011 Rseaux de capteurs 2

    phonographe (Enregistrement etrestitution de la voix)

    Guglielmo Marconi, 1895 : Premire transmission par radio

  • 8/13/2019 Transmission Radio.2P 2

    2/35

    2

    L'histoireL'histoire du Wireless Networkingdu Wireless Networking

    1900 : Premire tlcommunication sans fil en France (Marconi

    partir de la tour Eiffel)

    1948 : Claude Shannon et la thorie de linformation

    1986 : Naissance de lInternet

    Large diffusion publique de linternet sans fil

    18 novembre 2011 Rseaux de capteurs 3

    Architecture d'interconnexionArchitecture d'interconnexion

    Le modle OSI Chaque couche met en uvre

    un (ou plusieurs) protocole(s)de communications entreentits distantes

    Afin de rendre un service lacouche suprieure

    En s'appuyant sur le service

    couche infrieure

    18 novembre 2011 Rseaux de capteurs 4

  • 8/13/2019 Transmission Radio.2P 2

    3/35

    3

    Les couches radiosLes couches radios

    Les couches Liaison de donnes Physique

    Exemples : Ethernet (IEEE 802.3), Wifi

    (IEEE 802.11), Bluetooth(IEEE 802.15.4), Zigbee,HDLC (ISO 3309), GSM,

    yper an Organismes de

    normalisation: IEEE, ITU-T, 3GPP, ETSI

    18 novembre 2011 Rseaux de capteurs 5

    Les couches radiosLes couches radios

    La couches Liaison de donnes Transmission de trames entre entits

    Identification et distribution Fragmentation

    Contrle d'erreur La couche Physique : Adaptation l'environnement Codage Modulation

    18 novembre 2011 Rseaux de capteurs 6

  • 8/13/2019 Transmission Radio.2P 2

    4/35

    4

    BibliographieBibliographie

    Wireless Communications and Networks. William Stallings.Prentice Hal, 2002 (traduit)

    , ,Guy Pujolle, Guillaume Vivier. Eyrolles, 2001.

    Wi-Fi par la pratique. Guy Pujolle, Davor Males. Eyrolles,2004.

    Le guide de Wi-Fi et du Bluetooth. Guy de Lussigny,Joanna Truffaut, Bertrand Grossier, Eska interactive, 2004.

    802.11 Rseaux sans fil : La rfrence. Matthew Gast' '

    18 novembre 2011 Rseaux de capteurs 7

    . , . Certaines figures sont issues de :

    Toufik AHMED (Universit de Bordeaux), Bndicte LEGRAND(Universit Pierre et Marie Curie), Yassine HADJADJ (Universit deRennes 1), Philippe JACQUET (INRIA), ou W. STALLINGS

    PlanPlan

    Introduction la transmission sans fil Prsentation des rseaux sans fil

    Le spectre

    Le multiplexage La transmission radio : les problmes

    L'attnuation

    18 novembre 2011 Rseaux de capteurs 8

    La propagation multi-trajet

    Les solutions La transmission par talement de spectre

  • 8/13/2019 Transmission Radio.2P 2

    5/35

    5

    Caractristiques des rseaux sans filCaractristiques des rseaux sans fil

    Avantages Trs flexibles (souplesse) dans la zone de rception Pas ou peu de planification ncessaire (c.--d. rseaux

    ad-hoc ) Presque pas de difficults de cblage (par ex. btiments

    historiques, ) Plus robuste en situation de dsastre et dconnexion

    de cble !

    uppor e a mo

    18 novembre 2011 Rseaux de capteurs 9

    Caractristiques des rseaux sans filCaractristiques des rseaux sans fil

    Dsavantages Faible bande passante (c.--d. 1-54 Mbit/s)

    bande passante partage

    Beaucoup de solutions propritaires tablissement de normes lent (voir IEEE 802.11, et encore plus

    Hiperlan) Contraintes nationales (agence de rgulation des

    tlcoms)

    difficiles e.g., IMT-2000 (technologies d'accs radio des systmes

    cellulaires de la troisime gnration de lITU-T incluantWIMAX)

    18 novembre 2011 Rseaux de capteurs 10

  • 8/13/2019 Transmission Radio.2P 2

    6/35

    6

    Objectifs des rseaux locauxObjectifs des rseaux locaux

    sans filsans fil Communication de donnes numriques sans fil entre

    entits adjacentes :

    Itinrance naturelle Coopration spontane dans les runions (rseaux ad-hoc) Technologie de transmission doit tre adapte et robuste Faible consommation de puissance (dure de batterie) Pas de licence dutilisation (pas toujours le cas ) Scurit (des donnes), respect de la vie prive (pas de collectes

    ' ' ,faible)

    Possibilit de localisation (services lis lendroit o on se trouve) Transparence vis--vis des applications et des couches suprieures

    18 novembre 2011 Rseaux de capteurs 11

    Exemples dapplication desExemples dapplication desrseaux sans filrseaux sans fil

    Mise en place dun rseau dans un btiment historique Mise en place dun rseau de courte dure (chantiers,

    expos ons, ocaux empora res, zones vas es

    Interconnexion automatique et constante de tous lesparticipants dune runion

    Accs sans fil aux infos enregistres sur chaque patientpendant les visites mdicales au lit des patients

    Vhicules souvrant lapproche de leur propritaire, ou

    Porte dentre se dverrouillant automatiquement, systmedalarme se mettant en veille et les lumires sallumant

    18 novembre 2011 Rseaux de capteurs 12

  • 8/13/2019 Transmission Radio.2P 2

    7/35

    7

    General Frequency RangesGeneral Frequency Ranges

    Ondes lumineuses Infrared frequency range

    Rou hl 3x1011 to 2x1014 Hz Useful in local point-to-point multipoint applications within

    confined areas Microwave frequency range

    1 GHz to 40 GHz Directional beams possible Suitable for point-to-point transmission Used for satellite communications

    Radio fre uenc ran e

    30 MHz to 1 GHz Suitable for omnidirectional applications Ondes sonores

    18 novembre 2011 13Rseaux de capteurs

    Spectre lectromagntiqueSpectre lectromagntique

    18 novembre 2011 Rseaux de capteurs 14

  • 8/13/2019 Transmission Radio.2P 2

    8/35

    8

    Terrestrial MicrowaveTerrestrial Microwave

    Description of common microwave antenna Parabolic dish (3 m in diameter) Fixed rigidly and focuses a narrow beamAchieves line-of-sight transmission to receiving antenna Located at substantial heights above ground level

    Applications Long haul telecommunications service - -

    18 novembre 2011 15Rseaux de capteurs

    Satellite MicrowaveSatellite Microwave

    Description of communication satellite Microwave relay station Used to link two or more ground-based microwave

    transmitter/receivers Receives transmissions on one frequency band (uplink),

    amplifies or repeats the signal, and transmits it onanother frequency (downlink)

    Applications Television distribution Long-distance telephone transmission Private business networks

    18 novembre 2011 16Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    9/35

    9

    Broadcast RadioBroadcast Radio

    Description of broadcast radio antennas Omnidirectional Antennas not required to be dish-shapedAntennas need not be rigidly mounted to a precise

    alignment

    Applications Broadcast radio

    VHF and part of the UHF band; 30 MHZ to 1GHz

    Covers FM radio and UHF and VHF television

    18 novembre 2011 17Rseaux de capteurs

    MultiplexingMultiplexing

    Capacity of transmission medium usually exceedscapacity required for transmission of a singles gna

    Multiplexing - carrying multiple signals on a single

    medium More efficient use of transmission medium

    18 novembre 2011 18Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    10/35

    10

    Reasons for Widespread Use ofReasons for Widespread Use of

    MultiplexingMultiplexing Cost per kbps of transmission facility declines with

    an increase in the data rate Cost of transmission and receiving equipment

    declines with increased data rate Most individual data communicating devices

    require relatively modest data rate support

    18 novembre 2011 19Rseaux de capteurs

    Multiplexing TechniquesMultiplexing Techniques

    Frequency-division multiplexing (FDM) Takes advantage of the fact that the useful bandwidth of

    the medium exceeds the required bandwidth of a givens gna

    Time-division multiplexing (TDM)

    Takes advantage of the fact that the achievable bit rateof the medium exceeds the required data rate of a digitalsignal

    18 novembre 2011 20Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    11/35

    11

    AttnuationAttnuation

    Attnuation : 4 ( d/ )^2

    Distance : d Longueur d'onde :

    18 novembre 2011 Rseaux de capteurs 21

    Categories of NoiseCategories of Noise

    Thermal noise Intermodulation noise Crosstalk Impulse noise

    18 novembre 2011 22Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    12/35

    12

    Thermal NoiseThermal Noise

    Thermal noise due to agitation of electrons Present in all electronic devices and transmission

    media Cannot be eliminated Function of temperature Particularly significant for satellite communication

    Amount of thermal noise to be found in a bandwidth of 1 Hzin any device or conductor is:

    N0 = noise power density in watts per 1 Hz of bandwidth k = Boltzmann's constant = 1.3803 * 10-23 J/K T = temperature, in kelvins (absolute temperature)

    W/Hzk0 TN

    18 novembre 2011 23Rseaux de capteurs

    Thermal NoiseThermal Noise

    Noise is assumed to be independent of frequency Thermal noise present in a bandwidth of B Hertz

    (in watts):

    or, in decibel-watt

    TBN k

    BTN log10log10klog10

    BT log10log10dBW6.228

    18 novembre 2011 24Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    13/35

    13

    Noise TerminologyNoise Terminology

    Intermodulation noise occurs if signals withdifferent frequencies share the same medium Interference caused by a signal produced at a

    frequency that is the sum or difference of originalfrequencies

    Crosstalk unwanted coupling betweensignal paths

    Impulse noise irregular pulses or noise

    spikes Short duration and of relatively high amplitude Caused by external electromagnetic disturbances,

    or faults and flaws in the communications system

    18 novembre 2011 25Rseaux de capteurs

    ExpressionExpression EEbb//NN00

    Ratio of signal energy per bit to noise powerdensity per Hertz

    The bit error rate for digital data is a function ofEb/N0 Given a value for Eb/N0 to achieve a desired error rate,

    TR

    S

    N

    RS

    N

    b

    k

    /

    00

    As bit rate R increases, transmitted signal power must

    increase to maintain required Eb/N0

    18 novembre 2011 26Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    14/35

    14

    Other ImpairmentsOther Impairments

    Atmospheric absorption water vapor and oxygen contribute to attenuation

    Multipath obstacles reflect signals so that multiple copies with

    varying delays are received

    Refraction bending of radio waves as they propagate through the

    atmos here

    18 novembre 2011 27Rseaux de capteurs

    Propagations des ondesPropagations des ondes

    Par ondes de surface < 2 Mhz

    Ionosphrique [2-30] Mhz

    En vue directe > 30 Mhz

    18 novembre 2011 Rseaux de capteurs 28

  • 8/13/2019 Transmission Radio.2P 2

    15/35

    15

    Cause of MultipathCause of Multipath PropagationPropagation

    Reflection occurs when signal

    encounters a surface thats arge re a ve o ewavelength of the signal

    Diffraction occurs at the edge of an

    impenetrable body that islarge compared towavelength of radio wave

    Scattering

    signal hits an objectwhose size in the order ofthe wavelength of thesignal or less

    18 novembre 2011 29Rseaux de capteurs

    EffectsEffects of Multipath Propagationof Multipath Propagation

    Multiple copies of a signal may arrive at differentphases If phases add destructively, the signal level relative to noise

    declines, making detection more difficult Intersymbol interference (ISI)

    One or more delayed copies of a pulse may arrive at the

    same time as the primary pulse for a subsequent bit

    18 novembre 2011 30Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    16/35

    16

    Types of FadingTypes of Fading

    Evanouissement de la longueur d'onde (m) Fast fading (plus petit/rapide que la longueur d'onde)

    ' 1 Ghz =/= 30 cm

    Flat fading Indpendant de la longueur d'onde

    Selective fading Fonction de la longueur d'onde

    Evanouissement de canal

    Additive White Gaussian Noise (AWGN) Rayleigh fading

    Plusieurs chemins mais pas de chemin prpondrant

    Rician fading Plusieurs chemins et un chemin prprondrant (d'un facteur K)

    18 novembre 2011 31Rseaux de capteurs

    Solutions: ErrorSolutions: Error CompensationCompensationMechanismsMechanisms

    Forward error correction Adaptive equalization Diversity techniques

    18 novembre 2011 32Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    17/35

    17

    Forward Error CorrectionForward Error Correction

    Transmitter adds error-correcting code to datablock Code is a function of the data bits

    Receiver calculates error-correcting code fromincoming data bits If calculated code matches incoming code, no error

    occurred If error-correctin codes dont match, receiver attem ts

    to determine bits in error and correct

    18 novembre 2011 33Rseaux de capteurs

    Adaptive EqualizationAdaptive Equalization

    Can be applied to transmissions that carry analogor digital information Analog voice or video Digital data, digitized voice or video

    Used to combat intersymbol interference Involves gathering dispersed symbol energy backinto its original time interval

    Lumped analog circuits Sophisticated digital signal processing algorithms

    18 novembre 2011 34Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    18/35

    18

    Diversity TechniquesDiversity Techniques

    Diversity is based on the fact that individualchannels experience independent fading events

    Space diversity Techniques involving physical transmission path Antennes multiples (et directives)

    Frequency diversity Techniques where the signal is spread out over a larger

    carriers Time diversity

    Techniques aimed at spreading the data out over time

    18 novembre 2011 35Rseaux de capteurs

    Spread SpectrumSpread Spectrum

    Input is fed into a channel encoder Produces analog signal with narrow bandwidth

    Signal is further modulated using sequence of digits Spreading code or spreading sequence Generated by pseudonoise, or pseudo-random number

    generator Effect of modulation is to increase bandwidth of signal to be

    transmitted

    ,demodulate the spread spectrum signal

    Signal is fed into a channel decoder to recover data

    18 novembre 2011 36Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    19/35

    19

    Spread SpectrumSpread Spectrum

    18 novembre 2011 37Rseaux de capteurs

    Spread SpectrumSpread Spectrum

    What can be gained from apparent waste ofspectrum? Immunity from various kinds of noise and multipath

    distortion Can be used for hiding and encrypting signals Several users can independently use the same higher

    bandwidth with very little interference

    18 novembre 2011 38Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    20/35

    20

    Frequency Hoping Spread SpectrumFrequency Hoping Spread Spectrum

    (FHSS)(FHSS) Signal is broadcast over seemingly random series

    of radio frequencies A number of channels allocated for the FH signal Width of each channel corresponds to bandwidth of

    input signal

    Signal hops from frequency to frequency at fixedintervals Transmitter o erates in one channel at a time

    Bits are transmitted using some encoding schemeAt each successive interval, a new carrier frequency is

    selected

    18 novembre 2011 39Rseaux de capteurs

    Frequency Hoping Spread SpectrumFrequency Hoping Spread Spectrum

    Channel sequence dictated by spreading code Receiver, hopping between frequencies in

    synchronization with transmitter, picks up message Advantages

    Eavesdroppers hear only unintelligible blips Attempts to jam signal on one frequency succeed only

    at knocking out a few bits

    18 novembre 2011 40Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    21/35

    21

    Frequency Hoping Spread SpectrumFrequency Hoping Spread Spectrum

    18 novembre 2011 41Rseaux de capteurs

    Frequency Hoping Spread SpectrumFrequency Hoping Spread Spectrum

    vitement d'uneinterfrence avec unep age e r quencesbruite

    v emen une au retransmission"orthogonale"

    18 novembre 2011 42Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    22/35

    22

    Schma FHSSSchma FHSS

    18 novembre 2011 Rseaux de capteurs 43

    FHSSFHSS usingusing MFSKMFSK

    MFSK signal is translated to a new frequencyevery Tc seconds by modulating the MFSK signalw e carr er s gna

    For data rate of R:

    duration of a bit: T = 1/R seconds duration of signal element: Ts = LT seconds

    Tc Ts - slow-frequency-hop spread spectrum c s - - -

    18 novembre 2011 44Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    23/35

    23

    FHSSFHSS usingusing MFSKMFSK

    18 novembre 2011 45Rseaux de capteurs

    FHSSFHSS usingusing MFSKMFSK

    18 novembre 2011 46Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    24/35

    24

    FHSS Performance ConsiderationsFHSS Performance Considerations

    Large number of frequencies used Results in a system that is quite resistant to

    jamming Jammer must jam all frequencies With fixed power, this reduces the jamming power in any

    one frequency band

    18 novembre 2011 47Rseaux de capteurs

    Direct Sequence Spread SpectrumDirect Sequence Spread Spectrum(DSSS)(DSSS)

    Each bit in original signal is represented bymultiple bits in the transmitted signal

    Spreading code spreads signal across a widerfrequency band

    Spread is in direct proportion to number of bits used One technique combines digital information stream

    with the spreading code bit stream using-

    See next Figure

    18 novembre 2011 48Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    25/35

    25

    Direct Sequence Spread SpectrumDirect Sequence Spread Spectrum

    (DSSS)(DSSS)

    18 novembre 2011 49Rseaux de capteurs

    DSSSDSSS usingusing BPSKBPSK

    Multiply BPSK signal,sd(t) =A d(t) cos(2 fct)

    by c(t) [takes values +1, -1] to gets(t) =A d(t)c(t) cos(2 fct)

    A = amplitude of signal fc = carrier frequency d(t) = discrete function [+1, -1]

    At receiver, incoming signal multiplied by c(t) Since, c(t) * c(t) = 1, incoming signal is recovered

    See next Figure

    18 novembre 2011 50Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    26/35

    26

    DSSSDSSS usingusing BPSKBPSK

    18 novembre 2011 51Rseaux de capteurs

    DSSSDSSS usingusing BPSKBPSK

    18 novembre 2011 52Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    27/35

    27

    CodeCode--Division Multiple Access (CDMA)Division Multiple Access (CDMA)

    Basic principles of CDMA D = rate of data si nal

    Break each bit into k chips Chips are a channel-specific fixed pattern

    Chip data rate of new channel = k * D

    See next Figure

    18 novembre 2011 53Rseaux de capteurs

    CodeCode--Division Multiple Access (CDMA)Division Multiple Access (CDMA)

    18 novembre 2011 54Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    28/35

    28

    CDMA ExampleCDMA Example

    If k=6 and channel code is a sequence of '1's and '-1's For a 1 bit, A sends code as chip pattern

    For a 0 bit, A sends complement of code

    Receiver shares the sender's channel code and performselectronic decoding function

    = received chip pattern

    = user u's channel code

    u

    18 novembre 2011 55Rseaux de capteurs

    CDMA ExampleCDMA Example User A's channel code =

    To send a 1 bit = < 1, 1, 1, 1, 1, 1> To send a 0 bit =

    User B's channel code = User C's channel code =

    Receiver X receiving A's chip code for '1' (Xs channel code) x (received chip pattern)

    SA (< 1, 1, 1, 1, 1, 1>) = 6 => "1" SB (< 1, 1, 1, 1, 1, 1>) = 0 => "signal ignored"

    (A and B channel codes are orthogonal)

    SC(< 1, 1, 1, 1, 1, 1>) = 2 => "signal ignored"

    18 novembre 2011 56Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    29/35

    29

    Categories of Spreading SequencesCategories of Spreading Sequences

    Spreading Sequence Categories PN sequences

    Orthogonal codes

    For FHSS systems PN sequences most common

    For DSSS systems not employing CDMA

    sequences mos common For DSSS CDMA systems

    Orthogonal codes (or PN sequences)

    18 novembre 2011 57Rseaux de capteurs

    PN SequencesPN Sequences

    Pseudo-random generator produces periodic sequencethat appears to be random

    PN Sequences Generated by an algorithm using initial seed

    Sequence isnt statistically random but will pass many test ofrandomness

    Unless algorithm and seed are known, the sequence isimpractical to predict

    Sequences referred to as pseudorandom numbers orpseudonoise sequences

    18 novembre 2011 58Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    30/35

    30

    Important PN PropertiesImportant PN Properties

    Randomness Uniform distribution

    Balance property: P("1") =

    Run property : P("111") = 1/8

    Independence

    Correlation property

    Unpredictability

    18 novembre 2011 59Rseaux de capteurs

    Linear Feedback Shift RegisterLinear Feedback Shift Register

    ImplementationImplementation

    18 novembre 2011 60Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    31/35

    31

    Properties of MProperties of M--SequencesSequences

    Property 1: Has 2n-1 ones and 2n-1-1 zeros

    For a window of length n slid along output forN(=2n-1)

    shifts, each n-tuple appears once, except for the all zerossequence

    Property 3: Sequence contains one run of ones, length n

    One run of zeros, length n-1

    One run of ones and one run of zeros, length n-2 Two runs of ones and two runs of zeros, length n-3

    2n-3 runs of ones and 2n-3 runs of zeros, length 1

    18 novembre 2011 61Rseaux de capteurs

    Properties of MProperties of M--SequencesSequences

    Property 4: The periodic autocorrelation of a 1 m-sequence is

    otherwise

    ...2N,N,0,1

    1

    R

    18 novembre 2011 62Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    32/35

    32

    DefinitionsDefinitions

    Correlation The concept of determining how much similarity one set of

    data has with another

    Range between 1 and 1 1 The second sequence matches the first sequence

    0 There is no relation at all between the two sequences

    -1 The two sequences are mirror images

    Auto correlation

    e compar son etween a s te copy o a sequence w t tse Cross correlation

    The comparison between two sequences from different sources, one ofthem being shifted

    18 novembre 2011 63Rseaux de capteurs

    Advantages of Cross CorrelationAdvantages of Cross Correlation

    The cross correlation between an m-sequence and noiseis low This property is useful to the receiver in filtering out noise

    The cross correlation between two different m-

    sequences is low This property is useful for CDMA applications

    Enables a receiver to discriminate among spread spectrumsi nals enerated b different m-se uences

    18 novembre 2011 64Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    33/35

    33

    Gold SequencesGold Sequences

    Gold sequences constructed by the XOR of two m-sequences with the same clocking

    Codes have well-defined cross correlation ro erties Only simple circuitry needed to generate large number of

    unique codes Plus performant que les M-sequences pour DSSS avec

    CDMA

    18 novembre 2011 65Rseaux de capteurs

    Orthogonal CodesOrthogonal Codes

    Orthogonal codes All pairwise cross correlations are zero

    Fixed- and variable-length codes used in CDMA systems

    For CDMA application, each mobile user uses one sequencein the set as a spreading code

    Provides zero cross correlation among all users

    Types of Orthogonal codes Walsh codes (fixed length)

    Variable-Length Orthogonal codes Permet de gnrer des dbits diffrents

    18 novembre 2011 66Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    34/35

    34

    Walsh CodesWalsh Codes

    Set of Walsh codes of length n consists of the nrows of an n n Walsh matrix:

    W1 = (0)

    n = dimension of the matrix

    Every row is orthogonal to every other row and tothe lo ical not of ever other row

    nn

    nn

    nWW

    WWW

    2

    2

    Requires tight synchronization Cross correlation between different shifts of Walsh

    sequences is not zero

    18 novembre 2011 67Rseaux de capteurs

    Typical Multiple Spreading ApproachTypical Multiple Spreading Approach

    Spread data rate by an orthogonal code (channelizationcode) Provides mutual orthogonality among all users in the same

    cell

    Further spread result by a PN sequence (scramblingcode) Provides mutual randomness (low cross correlation) between

    users in different cells

    18 novembre 2011 68Rseaux de capteurs

  • 8/13/2019 Transmission Radio.2P 2

    35/35

    ConclusionConclusion

    Les rseaux sans fil offrent une communicationflexible

    L'environnement n'est pas sre Les techniques d'talement de spectre permettent

    une adaptation efficace

    18 novembre 2011 Rseaux de capteurs 69