transfert de chaleur et de masse nicolas laporte institut de recherche en astrophysique et...

118
Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / [email protected]

Upload: michelle-humbert

Post on 04-Apr-2015

112 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Transfert de chaleur et de masse

Nicolas LaporteInstitut de Recherche en Astrophysique et Planétologie

05 -61-33-28-60 / [email protected]

Page 2: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Préambule

• 10 séances de 2h le Vendredi de 15h30 à 17h30

• 4 séances de Travaux Pratiques en étroite relation avec ce cours.

• Examen de T.D. le 2 Mars 2012.• Examen final le 26 Mai 2011 à 09h15 en salle

d’examen (Samedi matin).

Page 3: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Bibliographie

• Manuel de Thermodynamique , Jean-Noël Foussard et al., Collection Science Sup, Edition Dunod

• Introduction aux transferts thermiques, Jean-Luc Battaglia et al., Collection Science Sup, Edition Dunod

• Thermodynamique, R. Teillet, édition De Boeck• Thermodynamique macroscopique, A. Watzky, edition De

Boeck• ….

Page 4: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Sommaire

• Introduction • Notions de thermodynamique, chaleur et

température• L’Homme et son environnement• La transmission de la chaleur• Conclusion

Page 5: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Qu’est-ce que la thermodynamique ?

• Définition du LAROUSSE 2010 : « Branche de la physique qui étudie les propriétés des systèmes où interviennent les notions de température et de chaleur. »

• Qu’est-ce qu’un système thermodynamique ? Portion de l’Univers que l’on isole par la pensée du reste de l’Univers. Le système sera toujours l’objet d’une étude thermodynamique et le reste de l’Univers sera appelé milieu extérieur .

• Quelle différence y a-t-il entre température et chaleur ? La chaleur correspond à un transfert d’énergie (pour passer d’un état à un autre), la température permet de mesurer l’état énergétique d’un corps à un instant donné.

Le choix du « reste de l’Univers » doit être raisonnable, ie qu’il n’est pas nécessaire de considérer l’émission thermique de Mars, pour étudier la fonte d’un glaçon dans un verre d’eau sur Terre !!!!

Page 6: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le système thermodynamique

• La séparation entre le système thermodynamique et le milieu extérieur est appelé paroi ou enceinte.

• Le système thermodynamique (ou système) peut-être dans 3 états différents :

• Système ouvert : échange de chaleur ET de matière avec le milieu extérieur• Système fermé : échange de chaleur UNIQUEMENT• Système isolé : aucun échange

Application : dans quel état sont chacun des systèmes suivants (le liquide est l’élément considéré) ?

Page 7: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Notions de thermodynamique, chaleur et température

1- Energie, chaleur et états de la matière2- La Température

3-La dilatation4-Calorimétrie

Page 8: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Energie, chaleur et états de la matière

• Travail d’une force : énergie fournie par une force lorsque son point d’application se déplace. Il s’exprime en Joules (unité J) et est généralement noté W (Work en anglais…). Il est dit moteur si W>0 (ie qu’il favorise le déplacement), et résistant si W<0 (ie qu’il s’oppose au déplacement)

• Un système thermodynamique peut aussi être définit comme un système capable de fournir un travail. Ce travail peut être répartie sous différentes formes d’énergie : cinétique, potentielle, calorifique, etc…. Mais la répartition de l’énergie totale n’est pas constante au cours du temps.

• Si aucune force extérieur n’est appliqué à un système (ie si la résultante des forces extérieures appliqués au système est nulle) et qu’il n’y a aucun frottement, alors l’énergie mécanique est conservé tout au long du déplacement.

uFW

Page 9: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Applications : travail du poids dans quelques systèmes

• Une bille de 10g qui tombe à la verticale de 1m dans un tube sous vide (Wpoids)

• Un boosteur d’Ariane V (m= 10 500kg) qui retombe sur Terre avec un angle α= 30° après le décollage (Wpoids). Pour info les booster se sépare de la charge utile d’Ariane 2mn après le décollage à une altitude de 70km.

• Dans le cas du boosteur d’Ariane V, celui-ci est freiné au cours de son entrée dans l’atmosphère. Que peut-on en déduire sur les forces qui s’appliquent sur ce boosteur et sur leur travail respectif ?

www.arianespace.com (09/02/2012)www.nasa.gov (courant Avril)

Page 10: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Température et chaleur

• On peut définir la « chaleur » comme la quantité d’énergie transférée d’un corps chaud vers un corps froid.

• Lorsqu’il n’y a pas conservation de l’énergie mécanique, une partie de l’énergie s’échappe sous forme de chaleur.

Page 11: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Expliquez ce phénomène

• vidéo

Page 12: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Température et chaleur

• La chaleur peut se propager de 3 manières différentes :

• Par conduction • Par convection• Par rayonnement

• Un calorimètre est un système thermodynamique isolé, c’est-à-dire qu’il n’y a aucun échange d’énergie (ie de chaleur) avec l’extérieur.

Page 13: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

Cas pratique : mise en évidence de la formule de la calorimétrie

1ére expérience : On chauffe un calorimètre contenant 400ml d’eau. On mesure la température toute les minutes.

t(s)

T(s)

Page 14: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• 2éme expérience : On chauffe un calorimètre contenant 800ml d’eau (2 fois plus que dans l’expérience précédente). On mesure la température toute les minutes.

t(s)

T(s)

Page 15: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• 3éme expérience : On chauffe un calorimètre contenant 400ml de sable. On mesure la température toute les minutes.

t(s)

T(s)

Page 16: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie• Bilan de la manip :

– 1ére experience : on chauffe 400ml d’eau l’augmentation de la température est proportionnelle à la durée

du chauffage la quantité d’énergie thermique, notée Q, est donc

proportionnelle à la durée du chauffageQ ∆T– 2éme experience : on chauffe 800ml d’eau l’augmentation de la température est plus rapide qu’avec 400 mlQ m pour un même ∆T– 3éme experience : on chauffe 400ml de sable l’augmentation de la température est plus rapide qu’avec 400

ml d’eauQ est alors fonction de la nature du corps pour une meme m et

un même ∆T

Page 17: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• Formule de calorimétrie : Q = c.m. ∆T

Q : chaleur thermique reçue par la substance chauffée ou refroidie. Unités : Joules

m : masse du corps. Unités : kg∆T : variation de température. Unités : °CC : chaleur massique de la substance. Unités : J/kg/°CChaleur massique : quantité d’énergie qu’il faut

fournir à 1kg d’un corps pour élever sa température de 1K sans modifier son état physique

Page 18: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• Unités : Joules et Calories• Joules : 1 J = 1 N.m = 1 kg.m².s-2 • Calorie : quantité d’énergie qu’il faut fournir à un

gramme d’eau pour élever sa température de 1°C sans modification de son état physique.

• Application : connaissant la chaleur massique de l’eau (c=4180 J/kg/K), déterminer la conversion entre Joules et Calorie.

Page 19: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• Chaleur de changement d’état d’une substanceLorsqu’une substance change d’état, il y a toujours échange de

chaleur avec le milieu extérieur même si aucun changement de température n’est observable.

Liquide GazeuxSolide

Fusion Vaporisation

LiquéfactionSolidification

Sublimation

Condensation

endothermique

exothermique

Page 20: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Mesure de la chaleur : calorimétrie

• Changement d’état d’une substanceL’énergie échangée au cours d’un changement d’état dépend de

la nature du corps et de sa masse uniquement. On peut alors réécrire la formule de la calorimétrie adaptée au changement d’état d’un corps :

Q = ccgt d’état m

La chaleur de changement d’état est la quantité d’énergie qu’il faut fournir pour qu’un corps, à sa température de changement d’état, passe entièrement dans un autre état.

Page 21: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Modèles des trois états de la matière

Forme propre

OUI NON NON

Volume propre

OUI OUI NON

Force de liaison

Fortes Faibles Quasi-nulle

Aspect moléculaire

Molécules très proches

Molécules espacées, elles roulent les unes sur les autres

Molécules très éloignées, elles se déplacent

Page 22: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Modèles des trois états de la matière

• Le mouvement d’agitation des molécules est appelé mouvement Brownien, l’énergie thermique fournie au niveau macroscopique se traduit au niveau microscopique par une augmentation de l’agitation des molécules.

• Vidéo

Page 23: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Ce qu’il faut retenir du cours précédent

• La température est la grandeur physique qui nous permet de connaitre l’état énergétique d’un système.

• La chaleur est la quantité d’énergie d’un système.• La formule de calorimétrie est donnée par :

Q = c.m.∆T• Dans le cas d’un changement d’état, la quantité

d’énergie nécessaire pour passer d’un état à un autre est donnée par :

Q = c.m

Page 24: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Notion de quantité de chaleur

Systéme 1 :Eau liquide à T1

Masse m1

Systéme 2:Eau liquide à T2

Masse m2

Page 25: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Si m1=m2 et que l’on mélange les deux systèmes, après mélange (et en supposant qu’il n’y a pas de perte de chaleur avec l’exterieur) la température du systéme final (1+2) sera :

• Si les deux systèmes n’avaient pas la même masse initiale, le bilan énergétique s’écrirait :

2' 21 TT

T

221121 ')( TmTmTmm

Page 26: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Cas d’étude général :Energie échangée par le système 1 :

Q1 = m1c1∆T= m1c1(T’-T1)

Energie échangée par le système 2 : Q2 = m2c2∆T= m2c2(T’-T2)

Dans le cas où il n’y a pas d’échange de chaleur avec l’exterieur (transformation adiabatique) :

Q1 = Q2

m1c1(T’-T1) = m2c2(T’-T2)

Page 27: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie• Si Q > 0 le système a reçu de l’énergie• Si Q < 0 le système a perdu de l’énergie

• Chaleur massique d’un corps : quantité de chaleur qu’il faut fournir à 1kg de ce corps pour que sa température augmente de 1 K. L’unité de la chaleur massique sera donc J.kg-1.K-1

Corps C (J.kg-1.K-1 )

Eau liquide 4.1855 103

Glace d’eau 2.1 103

Vapeur d’eau 1.9 103

Aluminium 0.92 103

Fer 0.75 103

Air 1000

Page 28: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Capacité thermique : La capacité thermique d’un corps est définit comme le produit de sa chaleur massique avec la masse de ce corps. Physiquement, elle correspond à la quantité de chaleur nécessaire pour augmenter la température de la totalité de ce corps de 1K.

• L’équivalent en eau : masse d’eau échangeant la même quantité de chaleur avec l’extérieur quand elle subit la même variation de température.

cmC

eau

corpssystéme

corpssystémeeau

systémeeau

c

cm

TcmTc

QQ

.

..

Page 29: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• La chaleur latente (notée L) : La chaleur latente d’un corps est la quantité de chaleur qu’il faut apporter à 1kg de ce corps pour qu’il change d’état en conservant sa température constante. Elle s’exprime en J.kg. Pour un corps de masse m, l’énergie nécéssaire pour le faire changer d’état à température constante est :

• La calorimétrie : Etude et mesure des quantités de chaleur. Elle est basée sur le principe qu’au cours d’un transfert de chaleur aucune énergie ne se perd. La calorimétrie est la science qui permet de déterminer où « passe » l’énergie au cours d’une réaction.

LmQ .

Page 30: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Le calorimètre : c’est un instrument qui supprime les pertes d’énergie avec le milieu extérieur. Toute l’énergie présente avant la réaction doit se retrouver complètement à l’intérieur du calorimètre à la fin du transfert de chaleur.

Page 31: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie• Etude d’un mélange dans un calorimètre : Pour

déterminer la chaleur massique d’un corps (cf T.P.) la méthode la plus couramment utilisée est celle des mélange.

• On verse une quantité meau d’eau à la température Teau dans un calorimètre

• On chauffe le corps étudié de masse mc à la température Tc • On mélange les deux corps dans le calorimètre, on mélange et on

attend que la température se stabilise

Il ne faut pas oublier que le calorimètre aussi va changer de température, il faudra donc prendre en compte son équivalent en eau.

Le Bilan thermodynamique de la réaction nous dit que :

Q

0 perdugagné QQ

Page 32: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Calorimétrie

• Exercice : Déterminez la chaleur massique c d’un corps de masse m par la méthode des mélanges. T.D.

• Méthode électrique : On plonge le corps directement dans l’eau, et l’ensemble est chauffé pendant un certain temps t par un courant d’intensité I sous une tension U. En fin d’expérience, on relève la température du mélange.

))((.. ifcorpscorpseeeau TTcmccmtIU

Page 33: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Evolution de la température d’un corps en fonction de l’énergie apportée.

Tcorps

Qapportée

Page 34: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Ce qu’il faut retenir du cours précédent

• L’équation bilan d’une réaction thermodynamique est toujours donnée par :

Qgagné + Qperdu = 0• Si le transfert a lieu dans un calorimètre, le calorimètre

intervient lui aussi dans la réaction.• La chaleur massique d’un corps (notée c) est la quantité

de chaleur qu’il faut fournir à 1kg de ce corps pour augmenter sa température de 1K.

• La capacité thermique d’un corps (notée C) est la quantité de chaleur qu’il faut apporter à un corps dans sa globalité pour augmenter la température de tout le corps de 1°C

Page 35: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Modèles des trois états de la matière

• Découverte de la Pression : Blaise Pascal au sommet du Puy-de-Dôme

• Pression d’un gaz : L’énergie d’une molécule influence sa vitesse, plus l’énergie est grande plus la vitesse de la molécule est grande et donc plus la force qu’elle exercera en frappant une paroi sera importante plus la pression exercée sur cette paroi sera importante.

Page 36: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Modèles des trois états de la matière

• 1ére expérience : bouteille chaude qui se refroidie.La pression est définit comme le rapport entre la

composante perpendiculaire d’une force et la surface sur laquelle s’exerce cette force.

P = N.m-² = Pascal• Unités de pression : Pascal, Bar, atmosphère

conversions entre chaque unité ?

S

FP

Page 37: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Modèles des trois états de la matière• 2éme expérience : Expliquez ce phénomène (

vidéo)• 3éme expérience : le baromètre

vide

mercurePatm h

Page 38: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température

• Equilibre ThermiqueUn système thermodynamique est dit en équilibre si il n’y a pas d’échange de chaleur entre différentes parties du système (l’espace entre deux galaxies). En revanche, si il y a échange de chaleur, le système est hors équilibre (un glaçon dans un verre).

• Notion de températureL’échelle celsius a été définit à partir des propriétés physique de l’eau. L’origine positive des température a été pris comme étant le moment où l’eau géle. La valeur 100 a été définit comme la température à laquelle l’eau bout.

Page 39: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température

• L’échelle Celsius est une échelle centésimale, ie que l’on définit deux points particuliers et on divise l’intervalle entre ces deux points en 100 intervalles égaux.

• Echelle Fahrenheit (1724): les deux extrémités de l’échelle ont été définit à partir de la température la plus basse relevé en Angleterre et la température du corps humain. Dans cette échelle l’eau géle à 32°F et le corps humain est à 90°F. L’eau bout à 212°F.

Page 40: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Température sur la côte ouest des USA

Page 41: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température

• Echelle KelvinLe Kelvin est une unité absolue de température, il est définit à partir du point triple de l’eau tel que :

Par convention, on pose ∆T=∆K, et on peut alors relier facilement l’échelle Kelvin à l’échelle Celsius tel que :

t(°C) = T(K) – 273.16

tripleTK 16.273

11

Page 42: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température

• Mesures et repérages des températuresLe premier thermomètre fonctionnel a été inventé en 1654 par le Grand Duc de Toscane, Ferdinand II. Il s’agissait d’un thermomètre à dilatation.Parmi les plus utilisés : mercure, alcool, toluène et pentane.

La formule des thermomètres a dilatation de liquide est :

)1(0 aTVV Liquide a (°C-1)

Acetone 1,324 x 10-3

Benzéne 1,176 x 10-3

Toluéne 1,028 x 10-3

Page 43: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température

• Thermomètre à gaz

h

gaz

Liquide

La température du liquide est proportionnelle à h

Page 44: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température

• Le thermomètre à résistance Principe : La résistance électrique

d’un fil métallique augmente avec la température suivant :

où a, b et c sont des constantes dépendantes du métal.

...)1( 320 ctbtatRR

Page 45: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température

• Thermomètre à dilatation de solide Principe : Une tige métallique se dilate avec la

température.

ou a est le coefficient de dilatation du métal.Ce type d’appareil sert principalement à mesurer des températures élevées.

Exemple du pyromètre (ou dilatomètre) : quand le métal se dilate il exerce une force sur un tige reliée à un cadran. Le cadran permet de lire la température.

TLaLLL ..)( 00

Page 46: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température

• Les couples thermoélectriques Il s’agit de deux conducteurs reliés par un circuit

fermé. Ces deux conducteurs sont reliés par des soudures portées à des températures différentes. Ainsi une force électromotrice apparait entre les deux conducteurs.L’intensité de cette force dépend de la différence de température entre les deux points de soudures et de la nature des deux matériaux conducteurs.

Page 47: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température

Page 48: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température• Exemples de thermocouples

Constantan : alliage nickel + cuivre (45%)Chromel : alliage nickel + chrome (10%)Alumel : aliage nickel + aluminium (5%)Nicrosil : aliage nickel + chrome (14%) + silicium(1.4%)Nisil : aliage nickel + silicium (4.5%)

Type Nature tmin (°C) tmax (°C)

E Chromel - Constantan

0 800

J Fer – Constantan 0 750

K Chromel - Alumel -252 1372

N Nicrosil - Nisil -270 1300

T Cuivre - Constantan

-200 350

Page 49: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La dilatation

• Définition : augmentation du volume d’un corps quand la température de ce corps augmente. Au niveau microscopique, si la température augmente, l’agitation des molécules (agitation thermique) augmente.

Page 50: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La dilatation des solides

Selon les dimensions sur lesquelles se font la dilatation, on a :

• Dilatation volumique : soit V0 le volume à 0°C

• Dilatation surfacique : soit S0 le volume à 0°C

• Dilatation linéaire : Soit L0 le volume à 0°C

où k, σ et λ sont respectivement les coefficients de dilatation volumique, surfacique et linéaire exprimé en K-1 (ou en °C-1 ).

)1(0 kTVV

)1(0 TSS

)1(0 Tll

Page 51: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La dilatation des solidesCorps λ

Plomb 2.95. 10-5

Zinc 2.90.10-5

Aluminium 2.33.10-5

Cuivre 1.70.10-5

Fer 1.22.10-5

Laiton 1.85.10-5

Invar 1.00.10-6

Verre 7.00.10-6

Pyrex 3.00.10-6

Quartz 5.50.10-7

Qu’est-ce que c’est ?

Les relations entre les différents coefficients sont :k = 3λσ=2λ

Page 52: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Coefficient de dilatation de quelques revêtement multicouche

Type de RevêtementMulticouche

SensLongitudinal (K-1)

SensTransversal (K-1)

asphalte et feuilorganique 11 × 10-6 21 × 10-6

asphalte et feuild'amiante 8 × 10-6 20 × 10-6

asphalte et natte defibre de verre 18 × 10-6 26 × 10-6

goudron et feuilorganique 19 × 10-6 29 × 10-6

Page 53: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Dilatation des liquides

• Pour les liquides, la dilatation ne peut-être que volumique : V=V0(1+aT)

• Quelle comparaison peut-on faire par rapport à la dilatation des solides ?

Corps a (K-1)

Mercure 1.72.10-4

Alcool 1.10.10-3

Ether 1.60.10-3

Acétone 1.43.10-3

Page 54: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Dilatation des gaz

• Le volume d’un gaz dépend principalement de deux facteurs : sa température et sa pression.

• La dilatation d’un gaz intervient quand on augmente sa température en maintenant sa pression constante.

• Si on maintient le volume constant, on n’a pas de dilatation mais une augmentation de la pression.

• Pour les gaz, la dilatation ne peut-être que volumique :V=V0(1+αT)

où α est définit tel que :

TV

VV

0

0

Page 55: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Dilatation des gaz

• La Loi de Gay-Lussac :Le coefficient de dilatation volumique d’un gaz à pression constante est indépendant de la température, de la pression et de la nature du gaz et vaut :

• Comparaison avec les liquides ? Et les solides ?

273

1

Page 56: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Applications de la dilatation

Page 57: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

FIN DE LA PREMIERE PARTIE

• Prochain cours : 09 Mars

Examen de T.D. le 02 Mars 2012 de 15h30 à 17h30

Programme de l’examen : Toute la première partie (introduction, calorimétrie, température et dilatation) et les 2 T.D. sur la calorimétrie et la dilatation .

Durée : 1h30 – sans document

Page 58: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

L’HOMME ET SON ENVIRONNEMENT

Chapitre 2

Page 59: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Terre

• 3éme planète du Système Solaire à 150 millions de kilomètre du Soleil

• Rayon à l’équateur : 6378 km => Surface ?• La limite atmosphère – espace : 700km d’altitude• Apparition de la vie, il y a 3.8 milliards d’années• Apparition de l’homme il y a 7 millions d’années• Population mondiale : 7 030 244 038 (le 08/03/2012 à 19h,

source : http://www.populationmondiale.com)• En 2012, plus d’une centaine de satellite observeront la Terre

depuis l’espace.

Page 60: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Environnement climatique

• L’air atmosphérique : L’air est un mélange de différents gaz, il est présent sur toute la surface de la Terre en composition pratiquement identique. Elle varie fortement avec l’altitude.

2877m

Page 61: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Environnement climatique

• Les polluants : 2 principaux types :• Les gaz et vapeurs : rejetés par l’activité industrielle, la

circulation automobile, etc… Il s’agit principalement de l’Ozone, de l’oxyde de carbone, gaz carbonique, etc..• Les poussières : d’origine naturelle (pollen, graines, …)

ou humaine (sable, suie, charbon,…). Leur circulation dans l’atmosphère ne suit pas les lois de la gravitation (car trop légére). Leur vitesse de chûte est donnée par la Loi de Stockes : V = 3.104 ρd2

Page 62: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Environnement climatique

• Les dangers d’une surpollution :

Page 63: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Environnement climatique

• Le débat actuel sur l’effet de serre :• Les climatosceptiques : Ils se basent sur le principe que

l’effet de Serre est nécessaire sur Terre, et que l’environnement s’adaptera à l’Homme et à son activité. L’idée générale : il vaut mieux gagner 1°C que perdre 1°C. (lire Claude Allègre par exemple)• Les climatoresponsables : Ils se basent sur

l’augmentation importante de la température ces 30 dernières années, et prévoient un emballement irréversible de cette effet de serre. (lire Hubert Reeves par exemple)

Page 64: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Qu’est-ce que c’est ?

Page 65: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température de l’air

• Valeur moyenne de la température : La température moyenne d’un lieu varie au cours de la journée, du mois et de l’année. Ces variations sont principalement dues à la position de la Terre par rapport au Soleil

Page 66: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La température de l’air

• Estimation des températures moyennes :• Température moyenne journalière :

• Température moyenne hebdomadaire

• Température moyenne mensuelle

• Température moyenne annuelle

4

2 21147 ttttqm

7

7

1 i

qm

hm

it

t

N

tt

N

i

qm

mm

i 1

12

12

1 i

mm

am

it

t

Page 67: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température de l’air

• Evolution de la température annuelle au Pôle Nord :

Page 68: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

La Température de l’air

• Température maximale et minimale :– Maximum : +58°C (désert d’El Azizia en Lybie)– Minimum : -88°C (en Sibérie)

• Degrés-jours de chauffage : L’estimation de la demande en énergie (démarche préalable à toute construction) nécessite de connaitre l’écart entre la température extérieur et la température de confort intérieur. Ainsi le degré-jour correspond à la quantité de chaleur consommé par un bâtiment sur une période de chauffage. Il se calcul tel que :

)(1

em

n

iich ttDJ

Page 69: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

L’Humidité de l’air

• Air Humide : mélange d’air sec et de vapeur d’eau• Loi de Dalton : « La somme des pressions partielles d’un mélange de

gaz est égale à la pression totale P »La pression partielle d’un gaz composant un mélange de gaz est la pression qu’aurait ce gaz si il occupé à lui seul tout le volume.

• Dans le cas de l’air humide : Patm = Psec + Pvapeur

Page 70: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Humidité de l’air

On utilise principalement deux définitions complémentaires de l’humidité de l’air :

• L’Humidité spécifique : masse d’humidité contenue dans un volume contenant 1kg d’air sec. Elle est notée rs

• L’humidité relative : rapport entre la pression partielle de vapeur d’eau et la pression de saturation de la vapeur d’eau (pression maximal de la vapeur). Elle est notée ψ.

100.sat

V

P

P

as

hs

m

mr

Page 71: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

L’enthalpie

Si on fournit à un gaz une quantité de chaleur, dQ, à volume constant, cette chaleur apportée permettra d’augmenter l’énergie interne, dU, de ce gaz tel que :

où C est la capacité thermique massique du gaz. L’Energie Interne ne dépend que de la température.

Si on apporte de la chaleur à pression constante (mais pas a volume constant), la chaleur va dans un premier temps être convertie en énergie interne puis entrainera la dilatation du gaz, qui est en fait un travail contre la pression extérieure.

CdTdUdQ

Page 72: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

L’enthalpie

• Par définition l’enthalpie pour un gaz est la somme de l’énergie interne et du travail s’opposant à la pression extérieure :

• Cas particulier de l’air atmosphérique : si notre système d’étude est l’air atmosphérique, il n’y a pas de pression extérieur qui s’exerce sur notre système, le terme de travail δW =0, alors l’enthalpie est donnée par dH=dU, ie est l’énergie interne du système.

• Par convention : dH = 0 à 0°C

WdUdH

Page 73: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Diagramme de l’air humide

• Pour de l’air humide, l’enthalpie spécifique rapportée au kg d’air sec est donnée par :

• Les caractéristiques de l’air humide précédentes sont toutes reliées entre elles. Pour des raisons pratiques, il existe des tables reliant chaque grandeur : diagramme psychométrique.

Rem: ces tables ont été établies pour une pression donnée, il faudra donc apporter les corrections nécessaires en fonction de la pression du système.

ss rtH .250002.1

Page 74: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Diagramme de l’air humide

• Lecture d’un diagramme psychrométrique :– construit pour une pression donnée– 1 point (et un seul !!!) décrit l’état de l’air considérée– Les données portées sur ce diagramme sont toujours :

• La température ambiante• La température de rosée (ie la température minimale

que peut atteindre l’air considérée sans condensation)

• La température humide (ie la température minimale que peut atteindre l’air sans dépense d’énergie)

• L’humidité relative• L’humidité spécifique• L’enthalpie spécifique

Page 75: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Température de rosée

Page 76: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Utilisation du diagramme psychrométrique

Pour chaque ville ci-dessous déterminer le point décrivant l’état de l’air ainsi que l’humidité spécifique, la température de rosée et l’enthalpie spécifique :

• Arcachon : T=13°C et Humidité = 93%• Marseille : T=11°C et Humidité = 58%• Rio de Janeiro : T= 25°C et Humidité = 78 %• New-York : T=-1°C et Humidité = 47%

Page 77: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Température de l’air• Température et Humidité

Page 78: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire

• Le rayonnement solaire est une source de chaleur pour l’habitat. Elle est cependant instable car fonction de l’heure de la journée et de l’époque.

• Le Soleil émet en continu (depuis 5 millairds d’années) une quantité de chaleur sous forme de rayonnement de 1.39kW/m² (constante solaire)

• Le Soleil émet dans différentes longueur d’onde. L’énergie solaire est répartie comme suit :

• 6% de rayons UV• 50% de rayons visibles• 44% de rayons infra-rouges

Page 79: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire

• Les différents aspects du Soleil en fonction de la longueur d’onde d’observation :

Page 80: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire

• Les éruptions solaires sont en réalité un flux de particules très énergétiques (protons par exemple) .

• Lorsque ces particules arrivent au niveau de la Terre, le champ magnétique terrestre les dévie aux pôles.

• Une fois en contact avec notre atmosphère, les particules solaires vont ioniser les atomes de l’air.

• Conséquences observables ?

Page 81: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire

• L’atmosphère atténue le rayonnement solaire d’autant plus que la couche traversée est épaisse

• Facteur de trouble : nombre d’atmosphère pure qui donnerait la même atténuation du rayonnement solaire

• Pour une atmosphère pure le facteur de trouble est donc de 1

Lieu Janvier Juillet

Zone industrielle 4.1 5.8

Grande Ville 3.0 4.0

Campagne 2.1 3.5

Page 82: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire• Rayonnement solaire direct sur une surface

quelconque

IH

i

h

I= IH sin hCe qui arrive sur la surface (ie la projection de Ih sur la surface) : I(α,γ)=IH cos(i)Donc I(α,γ) = I cos(i) / sin h

Page 83: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le rayonnement solaire

• Le rayonnement solaire diffusLa partie du rayonnement solaire qui entre en contact avec des molécules de l’atmosphère est appelé rayonnement diffus.

Sa valeur reste cependant plus faible que celle du rayonnement solaire direct : 200W/m²

La somme des rayonnements solaires direct et diffus constitue le rayonnement solaire global

Page 84: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Le Vent

• Le positionnement d’une habitation par rapport au couloir de vent est important dans l’évaluation de l’isolement thermique de l’habitation.

• En effet une mauvaise isolation des fenêtres et portes peut entrainer des courants d’air, et donc une diminution de la température intérieur.

• La vitesse du vent varie au cours de l’année et de l’altitude.

• En France les vents dominants nous viennent de l’Atlantique : ce sont les vents d’Ouest.

Page 85: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

LA TRANSMISSION DE LA CHALEURChapitre 3

Page 86: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Généralités

• Conduction : la conduction est définit comme un transport de

chaleur avec un support matériel et sans transport de matière. Il y a donc transfert d’énergie cinétique d’une molécule à une autre.

• Convection : la convection est définit comme un transport de chaleur d’une partie d’un fluide vers une autre partie de ce même fluide. Il s’agit donc d’un transfert avec support matériel et transport de matière.

• Le rayonnement : Un corps chaud émet de l’énergie dans toute les directions. Lorsque cette énergie rayonne arrive à un autre corps, celle-ci peut être réfléchie, transmise à travers le corps ou absorbée par celui-ci (et transformée en chaleur).

Page 87: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

• Régime établi et régime transitoireL’évolution de la température en un point d’un matériau chauffé en fonction du temps donne :

T(K)

t(s)

TA

T0

t0

Pour un temps infini, la température atteint une asymptote : on dit que le régime est établi.

Avant ce temps, c’est un régime transitoire.

Page 88: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

• La conductivité thermique d’un materiau est sa capacité à propager la chaleur. C’est la quantité d’énergie qu’il faut fournir à 1m² de ce matériau pour élever sa température de 1K.

• Elle est notée λ et s’exprime en W/m/K.Matériaux λ (W/m/K)

Acier 46

Air 0.0262

Bois de chêne 0.16

Verre 1.2

Plomb 35

Ardoise 2.5

Paille 0.04

Applications : parmi les matériaux ci-contre lesquels sont les plus conducteurs de chaleurs ? Les plus résistants à la chaleur ?

Page 89: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

• Cas d’un mur

Ti Te

e

λ

intérieur extérieur

• On note φ la densité de flux thermique (exprimée en W/m²), c’est-à-dire l’énergie perdue par m² de surface.• La loi de Fourier définit le flux tel que :

• Le Flux thermique, noté φ, est l’énergie perdu, et est définit tel que :

dx

dT

dx

dTS..

Page 90: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur• Le flux thermique est constant pendant la

propagation de la chaleur dans un mur.• La densité de flux thermique est donc donnée par :

• Le flux thermique est lui donné par :

• Ou Rth=e/λ est appelé résistance thermique.

/e

TT

e

TT eiie

/..

e

TTS

e

TTS eiie

Page 91: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

• Pour connaitre l’évolution de la température à l’intérieur du mur, on peut utiliser l’équation de Laplace :

• Une solution de cette équation est T(x) =Ax+Bà x=0 T(0) = Ti B= Ti

à x=e T(e) = Te A = (Te –Ti)/e

Alors T(x) = [(Te –Ti)/e] x + Ti

²

xd

Td

Page 92: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

x xT

Ti

dTdx0

)(

..

D’où : ))((. iTxTx

Or :e

TT ie

Donc : ))(().( iie TxT

e

TTx

Alors :

e

xTTTxT iei )()(

Page 93: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Conduction de la chaleur

• Analogie électrique : L’analogie électrique permet de ramener l’étude thermique d’un mur à celui d’un système électrique. Ainsi le mur monocouche (1seul matériau) étudié précédemment, sera considéré dans le cas de l’analogie électrique comme :

Ou le flux est donné par :

Ti Te

φ Rth

th

ei

R

TT )(

Page 94: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas d’un mur multi-couches

• Dans le cas où un mur est composé de plusieurs planche de matériaux différents de conductivité thermique différentes et d’épaisseur différentes, la densité de flux thermique est donnée par :

N

i i

i

ei

eTT

1

Ti Te

e1 e2 e3

λ1 λ2 λ3

Page 95: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas d’un mur multi-couches

• Dans ce cas, la résistance thermique est donnée par :

• On peut définir le coefficient de transmission thermique surfacique (exprimé en W.m-2.K-1) par :

N

i i

ith

eR

1

thRU

1

Page 96: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas d’un mur multi-couches

• Analogie électrique : Le schéma électrique équivalent au mur multi-couche précédent est :

φ φ φRth

1

Rth

2

Rth

3

321

)(

ththth

ei

RRR

TT

Page 97: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du mur composé de 4 couches parallèles

1

23

4

• Dans ce cas, il faut considérer la représentation ci-contre comme étant un mur vu de face (et non plus par la tranche)• Le mur est composé de 4 matériaux différents.• Dans ce cas, les surfaces sont différentes et nous ne pouvons plus considérer la densité de flux. on devra plutôt considérer le flux total traversant le mur.

•Pour chaque élément du mur, le flux s’écrit :

i

i

eiii e

TTS

)(

Page 98: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

• Alors le flux total sera donné par :

• D’après l’expression du flux pour chaque élément, on a :

Cas du mur composé de 4 couches parallèles

4

1ii

4

14

1

4

1

1)(

)(

ii

i i

iei

i

i

i

eii S

eTT

eTT

S

Page 99: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Or on sait que :

donc le flux total peut s’écrire :

De plus, on sait que le coefficient thermique de surface est définit par :

Cas du mur composé de 4 couches parallèles

N

i i

ith

eR

1

4

1

)(

ii

th

ei SR

TT

thRU

1

Page 100: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

• Le flux devient donc :

• Si on souhaite écrire la résistance thermique en fonction de la surface de l’élément :

Cas du mur composé de 4 couches parallèles

4

1

)..(i

iei STTU

n

i

ii

i

n

ii

th

Se

S

UR

1

1

11

Page 101: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

• L’analogie électrique du mur composé de 4 couches parallèles :

Cas du mur composé de 4 couches parallèles

R1

R2

R3

R4

φtotal

φ4

φ3

φ2

φ1

Page 102: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

• Dans ce cas, ce n’est plus la densité de flux qui est indiquée mais le flux réelle.

• Les résistances sont reliées à la résistance thermique par :

• De même, la résistance totale du système sera donc :

Cas du mur composé de 4 couches parallèles

ii

i

i

i

i

i

thi S

e

S

e

S

RR i

n

i i

iitotal

eS

R

1

1

Page 103: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• On considère un cylindre creux de rayon intérieur R1 et de rayon extérieur R2.

R1

R2

L

Page 104: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• Si on écrit le bilan thermique d’un élement de longueur L (ie sur toute la longueur du cylindre) compris entre r et r+dr (avec R1 < r < R2) on montre que le flux thermique est constant.Alors : φ(r) - φ(r+dr) = 0 φ(r) = φ(r+dr) = cste = φ

• Le flux thermique est alors donnée par (d’après la définition) :

Dans le cas d’un cylindre, la surface est donnée par :dr

dTS..

LrS ...2

Page 105: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• Le flux devient donc :

• En séparant les variables de chaque côté de l’égalité, il vient :

dr

dTLr )...2(

dTLr

dr)..2(

Page 106: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• L’intégrale sur tout le volume du cylindre, s’écrit donc :

• La résolution de cette intégrale donne donc :

2

1

2

1

)..2(1 T

T

R

R

dTLdrr

1

212 ln.).(.2.

R

RTTL

Page 107: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• Le flux thermique traversant ce cylindre creux s’écrira donc :

• De l’expression ci-dessus, on en déduit que la résistance thermique est donnée par :

L

RR

TT

...2

ln

)(

1

2

21

L

RR

Rth ...2

ln1

2

Page 108: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• Si on veut connaitre la température à n’importe quel point du matériau, il suffit de changer les bornes d’intégrations :

• Après intégration (à faire…) on montre que :

)(

11

)..2(1 rT

T

r

R

dTLdrr

1

1

2

21 ln

ln

)()(

R

r

RR

TTrT

Page 109: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Cas du cylindre creux

• L’analogie électrique dans le cas du cylindre creux est représentée par :

Ou et

T1T2

φ

R

L

RR

R...2

ln1

2

R

TT ei )(

Page 110: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Convection

• Le transfert par convection correspond à un transfert d’énergie entre un fluide et un solide. Pour faciliter l’étude, on ne s’intéressera ici qu’au phénomène de convection en régime permanent.

• Le flux thermique correspondant à l’échange de chaleur entre le fluide et un solide (une paroi par ex.) est donnée en Watt par :

ou h est un coefficient d’échange par convection• On définit la densité de flux thermique (ie le flux par

unité de surface) tel que :

)(. fS TTSh

)( fS TTh

Page 111: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Rayonnement

• Tout solide chauffé émet un rayonnement électromagnétique (ex : filament d’une ampoule).

• Ce rayonnement peut être :– Totalement absorbé (Corps noir)– Partiellement absorbé (corps réfléchissant, semi-transparents)– Pas absorbé (corps parfaitement réfléchissant, totalement transparents)

• L’énergie absorbée est convertie en énergie interne (dU)

• Le spectre (flux en fonction de la longueur d’onde) dépend de la température de la surface du corps qui émet ce rayonnement.

Page 112: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Rayonnement

• A l’équilibre, l’aptitude à absorber un rayonnement est identique a son aptitude à émettre. Cette caractéristique est donnée par l’émissivité ε (0< ε<1)

• La densité de flux énergétique émise par un corps est donnée par la Loi de Stefan :

ou σ = 5,67.10-8 W.m-2.K-4

• ε = 1 pour un corps noir, ε =0 pour un corps complètement transparent.

4.. T

Page 113: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Rayonnement

• On peut montrer (le faire …)que la densité de flux de chaleur échangée par rayonnement peut-être linéarisé par :

)( 21 TThrr

Page 114: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Transfert thermique mixte

• Un transfert thermique mixte est un système dans lequel de l’énergie est transférée de plusieurs façon différentes.

• Si les deux moyens d’échange sont le transfert par convection et le rayonnement, on peut définir un coefficient radioconvectif h

Page 115: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Transfert thermique mixte

• Si on considère une paroi de surface S, d’émissivité ε et à la température TS, dans un milieu extérieur à la température Ta.

• On note hc le coefficient d’échange par convection entre la paroi et le milieu extérieur.

Page 116: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Transfert thermique mixte

• Le flux thermique total est donné par :

Avec

Et

On peut aussi écrire le flux thermique dû aux échanges par rayonnement :

Avec

rcv )( aSccv TTSh

))()(()( 2244asasasasr TTTTTTSTTS

)( aSrr TTSh ))(( 22

asasr TTTTh

Page 117: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Transfert thermique mixte

• Alors le flux total s’écrit :

Ou h est le coefficient d’échange radioconvectif.

)()()( asasrc TTShTTShh

Page 118: Transfert de chaleur et de masse Nicolas Laporte Institut de Recherche en Astrophysique et Planétologie 05 -61-33-28-60 / nicolas.laporte@ast.obs-mip.fr

Fin du cours de P4

• Examen le 29 Mai 2011 de 10h15 à 12h15 en Salle d’examen