présentation orange foncé avec photo - code aster génie civil | 24/05/2018 outline types of...

62
FORMATION ITech Code_Aster et Salomé- Méca module 4 : Génie Civil (ARN3960) Recherche & Développement 24-25 mai 2018 Copyright © EDF 2018 S. Michel-Ponnelle

Upload: nguyenkien

Post on 17-Mar-2019

226 views

Category:

Documents


0 download

TRANSCRIPT

FORMATION ITechCode_Aster et Salomé-

Méca –

module 4 : Génie Civil(ARN3960)

Recherche & Développement

24-25 mai 2018

Copyright © EDF 2018 – S. Michel-Ponnelle

| 2Aster Génie Civil | 24/05/2018

Part 1 –

Overview on civil

engineering

models

| 3Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 4Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 5Aster Génie Civil | 24/05/2018

« STATIC » ANALYSIS

Linear or non-linear thermal calculation (THER_LINEAIRE, 3D/PLAN/COQUE

or THER_NON_LINE, PLAN/3D only)

Thermo-hydration of the concrete (THER_NON_LINE, PLAN/3D only)

Drying of the concrete (THER_NON_LINE (diffusion only) / STAT_NON_LINE THH

calculations, PLAN/3D only)

Linear or non-linear static calculation (MECA_STATIQUE or STAT_NON_LINE)

Chained calculationsThermal + static analysis (including structural elements)

Thermal + thermo-hydration + static analysis

Thermal + drying analysis + static analysis (excluding structural elements)

Thermal + Thermo-hydration + drying analysis + static analysis

Coupled THHM calculations for porous media (STAT_NON_LINE, concrete

only, 2D/3D)

| 6Aster Génie Civil | 24/05/2018

SEISMIC ANALYSIS

Spectral method by modal synthesis COMB_SISM_MODAL

“Design“ method

Linear calculations only

Vibration dynamics DYNA_VIBRA

By Harmonic methods

By Transient methods

With modal basis

With physical basis

Localized nonlinearities : shock, friction

Transient dynamics DYNA_NON_LINE

Behavior nonlinearities : plasticity

Geometric nonlinearities : large displacements, friction

| 7Aster Génie Civil | 24/05/2018

OTHERS

Calculation of reinforcement by the

Capra and Maury method CALC_FERRAILLAGE

CODIFICATION =‘EC2’ or ‘BAEL’ or ‘UTILISATEUR’

Impact analysis in explicit dynamic

CALC_EUROPLEXUS (interface with EUROPLEXUS)

Flow of a fluid in a cracked concrete structure

in 2D MACR_ECREVISSE

Injection of a hot gaz in a cracked concrete :

temperature

Reinforcement map of a floor

2018

| 8Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 9

THE FINITE ELEMENTS MODELS (MECHANICS)

Several types of finite elements for describing concreteThe isoparametric finite elements : 2D (triangle or quadrangle, linear or quadratic)

or 3D (hexahedron, tetrahedron, pentahedron, pyramid, linear or quadratic)

Plates : DKT (triangle or quadrangle linear),

(DST or Q4G for elastic simulation)

Shells : COQUE_3D (quadrangle or triangle square) or SHB

Euler beams : POU_D_E

Timoshenko beams : POU_D_T

If you need help to choose the best formulation : cf. [U2.02.01]

Aster Génie Civil | 24/05/2018

| 10

THE FINITE ELEMENTS MODELS (MECHANICS)

Several types of finite elements for describing steel3D/2D

1D elements: BARRE (3D), 2D_BARRE (2D) or beam elements ( POU_D_T,

POU_D_E)

Plate elements: GRILLE_MEMBRANE (3D), MEMBRANE (3D), GRILLE_EXCENTREE

(DKT)

Models for reinforced concreteMulti-fiber beams (POU_D_EM, POU_D_TGM)

DKTG plates

Aster Génie Civil | 24/05/2018

| 11Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR CONCRETE

Elasticity with shrinkage optionally taken into account

Thermal strains

Drying shrinkage

Endogenous shrinkage

The temperature T, the water concentration C and the hydration x

are control variables.

Be careful ! T is the only control variable for the structural elements

)( refth TT

x

re

rd CC )( 0 K_DESSIC and/or B_ENDO

with DEFI_MATERIAU/ELAS_FO

ALPHA with

DEFI_MATERIAU/ELAS or

ELAS_FO

| 12

BETON_GRANGER(_V) [R7.01.01]

basic creep (+ aging effect & humidity effet )

group in series of Kelvin models (8) (linear viscoelasticity)

𝜺𝒇𝒍 𝒕 = 𝒌 𝒕𝒄 𝑱(𝒕, 𝒕𝒄) 1+ 𝝊𝒇 ℎ𝝈 − 𝝊𝒇 𝑡𝑟 ℎ𝝈 𝑰

𝑱 𝒕, 𝒕𝒄 =

𝒔=𝟏

𝟖

𝑱𝒔 𝟏− 𝒆𝒙𝒑 −𝒕 − 𝒕𝒄𝑻𝒔

BETON_UMLV [R7.01.06]

Basic creep + drying creep + shrinkage

Non-linear model based on the work of F. Bendboudjema in Marne-la-Vallée

+ Bazant model for drying creep

Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR CREEP OF

CONCRETE (1/2)

fle

fdfd

i

fd

r

fs

i

fs

r

rerdthe )()(

).( ss h ).( dd σh

| 13

BETON_BURGER [R7.01.35]

Basic creep + drying creep + shrinkage

Non-linear model developed by EDF+ Bazant model for drying creep

Better control of the 3D- effect and the long-term evolution of the creep

FLUA_PORO_BETON [R7.01.36]

Basic creep + drying creep + shrinkage

Non-linear model developed by A. Sellier, LMDC

Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR CREEP OF

CONCRETE (2/2)

fdfd

i

fd

r

fs

i

fs

r

rerdthe )()(

Plug-in Salomé

ARCADE for the

identification (in

Salome-

Meca2017)

).( ss h ).( dd σh

| 14

CONSTITUTIVE LAWS FOR CONCRETE :

CRACKING

Modeling damage or cracking of the concrete is not easy.

Problems of reliability, robustness and performance !

No universal model - choose your model according to the problem you

want to solve !

Aster Génie Civil | 24/05/2018

Biaxial strength envelop [Lee et al.] Cyclic response (1D)

| 15

CONSTITUTIVE LAWS FOR CONCRETE :

CRACKING

Non-linear elasticity

Cohesive zone model

Aster Génie Civil | 24/05/2018

Constitutive law Model Remarks

BETON_REGLE_PR

[R7.01.27]

2D (local) 2*1D variation of regulatory law

BAEL91

Constitutive law Model Remarks

CZM_EXP_MIX

[R7.02.11]

3D_INTERFACE,

PLAN_INTERFACE,

AXIS_INTERFACE

Paths of cracking are pre-defined

| 16

CONSTITUTIVE LAWS FOR CONCRETE :

CRACKING

Isotropic damage

Aster Génie Civil | 24/05/2018

Constitutive law Model Remarks

ENDO_FISS_EXP

[R5.03.18]

GRAD_VARI Isotropic damage tension /

compression + restoration of

stiffness in compression (V13)

ENDO_ISOT_BETON

[R7.01.04]

Local/GRAD_VARI Isotropic damage in tension +

restoration of stiffness in

compression

MAZARS [R7.01.08] Local

3D or D_PLAN or C_PLAN

Isotropic damage tension /

compression

MAZARS_GC [R5.03.09] Local

1D or C_PLAN

Isotropic damage tension /

compression

Restoration of stiffness in

compression for 1D

| 17

CONSTITUTIVE LAWS FOR CONCRETE :

CRACKING

Orthotropic damage

Plasticity

Aster Génie Civil | 24/05/2018

Constitutive law Model Remarks

ENDO_ORTH_BETON

[R7.01.09]

Local Orthotropic damage + restoration of

stiffness in compression

Constitutive law Model Remarks

BETON_DOUBLE_DP

[R7.01.03]

Local (regularization with the

Hillerborg method)

Plasticity

| 18

CONSTITUTIVE LAWS FOR CONCRETE :

CRACKING

Orthotropic damage + plasticity

Aster Génie Civil | 24/05/2018

Constitutive law Model Notes

BETON_RAG

[R7.01.26]

local Visco-elastoplastic damage model

under the effect of the alkali-

aggregate reaction

ENDO_PORO_BETON

[R7.01.36]

local + regularization with the

Hillerborg method

Visco-elastoplastic damage model

| 19Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR REINFORCED

CONCRETE

Constitutive law Model Remarks

GLRC_DM

[R7.01.32]

DKTG For a moderate damage,

Symetrical reinforcements

GLRC_DAMAGE

[R7.01.31]

DKTG For impacts

DHRC

[R7.01.33]

DKTG Damage + residual strains

Plug-in Salomé for the identification of DHRC

(in progress)

| 20Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR STEELS

Grid reinforcement of concreteGRILLE_CINE_LINE, GRILLE_ISOT_LINE, GRILLE_PINTO_MEN

and ... all the 1D constitutive laws

if 1D not possible : ALGO_1D =‘DEBORST’

1D elementsELAS, VMIS_ISOT_LINE, VMIS_CINE_LINE, PINTO_MENEGOTTO

[R5.03.09] (elasto-plasticity + Bauschinger effect), CORR_ACIER [R7.01.20]

(damageable elasto-plasticity with plastic deformation at fracture depending on the

rate of corrosion)

and ... all the constitutive laws through ALGO_1D =‘DEBORST’

Pinto-Menegotto behavior

| 21

HELP TO CHOOSE THE BEHAVIOR LAW ?

CF. [U2.03.07]

Aster Génie Civil | 24/05/2018

GRANGER_V[R7.01.01]

GRANGER[R7.01.01]

BETON_UMLV[R7.01.06]

BETON_BURGER[R7.01.35]

Fluage propreok ok ok ok

Fluage de

dessiccation nook nook ok ok

Dilatation

thermique/ Retrait

endogène/

Retrait de

dessiccation

nook nook ok ok

Activation

thermiqueok ok nook nook

Influence du

« vieillissement »(hy

dratation,

polymérisation,...)

ok nook nook nook

Influence de l'âge du

béton au moment du

chargementnook nook nook nook

Influence de la

teneur en eau ok ok v ok

Phénomènes

BE

TO

N_

DO

UB

LE

_D

P

[R7

.01

.03

]

MA

ZA

RS

[R7

.01

.08

]

EN

DO

_S

CA

LA

IRE

[R5

.03

.18

]

GR

AD

_V

AR

I

EN

DO

_IS

OT_

BE

TO

N

[R7

.01

.04

]

EN

DO

_O

RTH

_B

ETO

N

[R7

.01

.09

]

EL

AS

+Z

M_

OU

V_

MIX

[R7

.02

.11

]

BE

TO

N_

RA

G

[R7

.01

.26

]

BE

TO

N_

RE

GL

E_

PR

(X_

PL

AN

ou

DK

T)

[R7

.01

.27

]

MA

ZA

RS

_G

C

(1D

ou

C_

PL

AN

)

[R5

.03

.09

]

Grandeur représentant la

fissuration (et v ariable interne

associée) :

𝑝𝑡,𝑐: plasticité

𝐷𝑡 ,𝑐: endommagement scalaire

𝐵𝑡,𝑐 : endommagement tensoriel

dn : saut de déplacement

Elas: élasticité non-linéaire

𝑝𝑡et 𝑝𝑐(V1 et

V2)

𝐷 (V1) 𝐷𝑡 (V1) 𝐷𝑡 (V1)

𝐵𝑡(V1 à

V6)

et 𝐷𝑐 (V7)

𝛿𝑛 (V7)

𝐵𝑡(V15 à

V20)

et 𝐷𝑐 (V21)

Elas 𝐷 (V3)

Nombre de paramètres

(hors élasticité)6(+3) 6 3(+3) 3 6 4 31(+2) 4 6(+2)

Modélisations disponibles :

L : locale

GV : GRAD_VARI

L L GV L/GV L so L so L

Régularisation énergétique

incluseok nook so nook nook so ok nook nook

Endommagement en traction ok ok ok ok ok ok ok ok ok

Endommagement en

compressionok ok ok ok 7 ok

nook

(élastiq

ue)

ok ok ok

Comportement en cisaillement ok ok ok ok ok nook ok nook so / ok

Restauration de rigidité en

compressionok nook nook ok ok ok ok nook

ok(1D)/noo

k (2D)

Déformations résiduelles

(plastiques)ok nook nook nook nook nook nook nook nook

Paramètres v ariables av ec la

températureok ok nook nook nook nook nook nook nook

Description de la Réaction

Alcali-Granulat (RAG)nook nook nook nook nook nook ok nook nook

Couplage avec d'autres lois via

KIT_DDI :

G : GRANGER_FP

UMLV : BETON_UMLV_FP

G UMLV nook UMLV nook nook ok nook nook

Type de chargement adapté :

M : monotone

C : cyclique

I: impact

M M M M/C M/C M M M C/M

Niv eau de dégradation

atteignable :

- M : Modéré

- R : Ruine

M M R R M R M M M

Type de Modèles :

- R : réglementaire

- I : ingénieur

- E : expertise

E E E E E E E R I/R

Robustesse (facilité de

conv ergence)NS NS M S/NS NS S NS S

M (1D)/NS

(2D)

Some examples from [U2.03.07]

| 22Aster Génie Civil | 24/05/2018

NOTE : JOINT FINITE ELEMENTS

Possibility of using joint (or interface) elements to represent

interfaces

Concrete-steel bond: constitutive law JOINT_BA (fine model) [R7.01.21] : D_PLAN or AXIS for steel and

concrete

constitutive law : CZM_LAB_MIX [R7.01.21] : (GRILLE_)MEMBRANE for steel and

3D for concrete

Joints between dams elements in 2D or 3D [R7.01.25] – in statics and dynamics :JOINT_MECA_RUPT laws based on a cohesive formulation of failure

JOINT_MECA_FROT : elastoplastic version of the Mohr-Coulomb friction law

| 23Aster Génie Civil | 24/05/2018

CONSTITUTIVE LAWS FOR SOILS : CONSISTENT

WITH THM MODELS

Behavior of soils/clayELAS_GONF

CAM_CLAY, BARCELONE

CJS, HUJEUX, MOHR_COULOMB

Elastoplastic behavior of rocksMOHR_COULOMB

DRUCK_PRAGER, DRUCK_PRAG_N_A

LAIGLE, HOEK_BROWN (_EFF) (_TOT)

Viscoplastic behavior of rocksVISC_DRUC_PRAG, LETK, LKR

Thermo-hydro-mechanical coupling (porous media)KIT_HM, KIT_HHM, KIT_THM, KIT_THHM (hyp : isotropy or orthotropy)

| 24

SOME REMARKS

Help for the identification of some behavior laws

Macro-command DEFI_MATER_GC for MAZARS and ENDO_FISS_EXP

Macro-command CALC_ESSAI_GEOMECA to easily simulate typical test (0D)

Plug-in for BETON_BURGER and DHRC (in progress)

V&V file for paraseismic computations : see [A4.01.04]

Behaviour laws concerned : GLRC_DM, MAZARS_GC and ENDO_ISOT_BETON (in

progress)

Structures : SMART model, benchmark SAFE, a fuel building, ….

Aster Génie Civil | 24/05/2018

| 25Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 26

SOIL-STRUCTURE / STRUCTURE-SOIL-STRUCTURE

INTERACTION

Meshing the soil ->behaviour : ELAS, MOHR-COULOMB, HUJEUX,…

Ground springs method : RIGI_PARASOL, to define with AFFE_CARA_ELEM (model

DIS_T or DIS_TR)

Coupling MISS3D / Code_Aster : RIGI_MISS_3D, to define with AFFE_CARA_ELEM

(model DIS_T)

Aster Génie Civil | 24/05/2018

If you need help to choose the best option : cf. [U2.03.07]

| 27

LOADINGS/BC WITH TO 0D ELEMENTS

contact with impact or friction :

model DIS_T or DIS_TR with the behaviour DIS_CHOC or DIS_CONTACT

To take into account some equipments on a surface through distribute masses :

model DIS_T with CARA_ELEM/MASS_REP

To connect 2 models with AFFE_CHAR_MECA :

- Keyword LIAISON_ELEM : 3D_POU, 2D_POU, COQ_POU, PLAQ_POU_ORTH,

LIAISON_DDL,

- Keyword LIAISON_MAIL : TYPE_RACCORD:’COQUE_MASSIF’, ‘MASSIF_COQUE’

- Keyword LIAISON_COQUE

Aster Génie Civil | 24/05/2018

| 28

Possibility of "automated" treatment of the tendons

especially for the tensioning phase (phasing possible) for 1D

elements thanks to :

DEFI_CABLE_BP / CALC_PRECONT

BARRE modeling

For describing grouted tendons (perfect cable-concrete bond)

Tension to be applied in tendons calculated by BPEL91 or ETCC-2010

formula

CABLE_GAINE modeling

For describing slipping tendons (with or without friction)

Tension obtained by the simulation of the tensioning procedure

Aster Génie Civil | 24/05/2018

TENSIONING PRESTRESSING TENDONS

| 29Aster Génie Civil | 24/05/2018

Tension profil for a « circular » tendon :

Comparison of different modelings

More details in the slides « Modeling of the

prestressed reinforced concrete »

| 30Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 31Aster Génie Civil | 24/05/2018

PRE/POST-PROCESSING TOOLS

Visualization of some characteristics of the structural elements :

section, material, etc. see [U7.05.21]

Command IMPR_RESU(FORMAT=‘MED’,

CONCEPT=_F(CARA_ELEM=cara),

_F(CHAM_MATER=champmat),

_F(CHARGE = charg1) )

+ open with Paravis

| 32

PRE/POST-PROCESSING TOOLS

Vizualisation of the stress field or strain field with Paravis for

multi-fiber elements (POU_D_EM) and multi-layer elements (DKT)

Command IMPR_RESU_SP

-> archive tar.tgz

- open with Paravis the file .pvd

Example : crossarm of a lattice tower

SSNL135A/SV1.01.01 §7

Aster Génie Civil | 24/05/2018

| 33

PRE/POST-PROCESSING TOOLS

Vizualisation of the orientation of structural elements

Command IMPR_RESU(FORMAT=‘MED’,

CONCEPT=_F(CARA_ELEM=cara, REPERE_LOCAL=‘OUI’, MODELE=MO) )

->resu.med

open with Paravis :

- CellCenter Filter

- Glyph Filter for REPLO_1,

REPLO_2,

REPLO_3

Aster Génie Civil | 24/05/2018

| 34

PRE/POST-PROCESSING TOOLS

Vizualisation of (Fint,Mint) for structural elements; see [U7.05.21], §6

IMPR_RESU(FORMAT=‘MED’, CONCEPT=_F(CARA_ELEM=cara,

REPERE_LOCAL=‘ELNO’, MODELE=‘MO’))

+ IMPR_RESU(FORMAT=‘MED..) of the field EFGE_ELNO

open with Paravis

Aster Génie Civil | 24/05/2018

| 35Aster Génie Civil | 24/05/2018

PRE/POST-PROCESSING TOOLS

Calculation of strains (CALC_CHAMP), see [U2.01.05]

EPSI_ELGA / EPSI_ELNO : total strains

EPME_ELGA / EPME_ELNO : mechanical strains

EPVC_ELNO or EPVC_ELGA : strains due to control variables (hydration,

drying, temperature)

EPFP_ELGA / EPFP_ELNO : creep strains (BETON_UMLV, BETON_BURGER

or BETON_GRANGER laws)

EPFD_ELNO / EPFD_ELGA : drying creep strains (BETON_UMLV,

BETON_BURGER laws)

DEGE_ELNO : generalized strains (linear elasticity)

| 36Aster Génie Civil | 24/05/2018

PRE/POST-PROCESSING TOOLS

For stresses calculation, see [U2.01.05]

SIEF_ELGA / SIEF_ELNO : stresses

EFGE_ELGA / EFGE_ELNO : generalized forces

SIPO_ELNO : Computation of the stresses in the section of beam broken

up into contributions of each generalized force.

SIRO_ELEM : the normal and tangential stresses to the faces of the

elements, calculated at the center of faces (SIG_N, SIG_T1,SIG_T2)

Visualization of stresses

| 37Aster Génie Civil | 24/05/2018

PRE/POST-PROCESSING TOOLS

For the calculation of stresses in structural elements, see

[U2.01.05]

SIGM_ELNO

EFGE_ELNO : structural efforts

EFCA_ELNO : structural efforts in the global coordinate

SIPO_ELNO : stresses in the beam section decomposed into contribution

of each structural effort in the local coordinate system (SN, SMFY, SMFZ,

SVY, SVZ, SMT)

SIPM_ELNO : stresses min and max in the beam section (linear elasticity))

SICO_ELNO : stresses in a layer of shell elements

A commandPOST_COQUE : to extract the efforts at any point of a shell (SSLS126B)

| 38Aster Génie Civil | 24/05/2018

PRE/POST-PROCESSING TOOLS

Energy calculations (total energy, kinetic energy, ...)

Work in progress

Dissipation (DISS_ELNO / DISS_ELGA) for the GLRC_DM law

Calculation of masses (POST_ELEM / MASSE )

For dynamic calculations :Keyword OBSERVATION to accurately track the evolution of a quantity in the

calculation without storing all time steps

| 39Aster Génie Civil | 24/05/2018

HOW-TO DOCUMENTS

Panorama of the tools available to carry out civil engineering analysisU2.03.07

General tips for using the operator STAT_NON_LINE/DYNA_NON_LINEU2.04.01 / U2.06.13

General tips for structural elementsU2.02.01 (plates,shells,…), U2.02.03 (discrete elements)

Strains, stresses, generalized forces,…U2.01.05

A civil engineering study with tendonsU2.03.06

A civil engineering study with seismic loadingU2.06.10

Several documents for modeling the Soil-structure interaction (SSI) U2.06.05, U2.06.07, U2.06.08 [restricted access], U2.06.12 [restricted access]

Performing damage calculations in quasi-static analysisU2.05.06

Etc …

| 40Aster Génie Civil | 24/05/2018

OUTLINE

Types of analysis

Modeling and constitutive laws

Special Loadings/Boundary conditions

Pre/Post Processing tools

Some examples

| 41

AGEING OF A CONTAINMENT VESSEL

Aster Génie Civil | 24/05/2018

| 42Aster Génie Civil | 24/05/2018

SIMULATE THE AGING OF A REINFORCED

CONCRETE STRUCTURE OVER 60 YEARS

3D concrete

Reinforcing steel

Prestressing tendons

| 43Aster Génie Civil | 24/05/2018

SIMULATE THE AGING OF A REINFORCED

CONCRETE STRUCTURE OVER 60 YEARS

Applied loads over time

Tension CH

Dome

Tension CV

VC1

VD1

VD2

VD3

VD4

VD5

VD6

7000 400 949058402190760 2044013140 16790 24090

Building (6 years) Operation (60 years)

Thermal dilatation

Drying shrinkage

Creep / drying creep (BETON_UMLV_FP)

Endogenous shrinkage

| 44Aster Génie Civil | 24/05/2018

SIMULATE THE AGING OF A REINFORCED

CONCRETE STRUCTURE OVER 60 YEARS

Evolution de la concentration en eau dans l'épaisseur, au cours du temps

40

50

60

70

80

90

100

110

120

130

0,00 0,20 0,40 0,60 0,80 1,00 1,20

épaisseur (m)

co

ncen

trati

on

(l/m

3)

0

29

182,25

400

758

1474

2190

4035

5840

7687,5

9490

11337,5

13140

14987,5

16790

18637,5

20440

24090

Perte de tension dans les câbles

0,00E+00

1,00E+06

2,00E+06

3,00E+06

4,00E+06

5,00E+06

6,00E+06

7,00E+06

8,00E+06

9,00E+06

0 5000 10000 15000 20000 25000

temps (jour)

ten

sio

n N

(N)

câble horizontal (H3) câble vertical (V1)

déformation orthoradiale à coeur

-3,00E-03

-2,50E-03

-2,00E-03

-1,50E-03

-1,00E-03

-5,00E-04

0,00E+00

5,00E-04

0 5000 10000 15000 20000 25000

temps (jour)

EP

Stt

déformation totale déformation fluage propre déformation fluage dessiccation

Evolution of the water content

Evolution of the tension in the tendons

Evolution of the strains

| 45

SIMULATE THE AGING OF A REINFORCED

CONCRETE STRUCTURE: VERCORS MOCK-UP

Ø ~ 15 m

H ~

20

m

Geometry and mesh via Salomé : concrete (3D), tendons (1D)

Thermic + Drying (SECH_GRANGER) + delayed strains (BETON_BURGER)

>300 000 noeuds

Version 12.4 Code_Aster®

Duration : ~13h (ther) ~4j (meca)

Aster Génie Civil | 24/05/2018

| 46

Creep overestimated with

actual parameters before the

heating inside the mock-up

Interest

Zone

CIRCONFERENTIAL STRAINS = F(TIME)

Aster Génie Civil | 24/05/2018

| 47Aster Génie Civil | 24/05/2018

BEHAVIOR IN CASE OF SEVERE ACCIDENT

First step : strain at 60 years

(creep)

Second step : stress with high pressure (~0,5 MPa)

and high temperature (150°C)

| 48

DAMAGE AND FRACTURE

Aster Génie Civil | 24/05/2018

| 49Aster Génie Civil | 24/05/2018

SIMULATION OF A BEAM AT EARLY AGE

+ 4-POINTS FLEXION TEST

Free shrinkage beam : 4-point flexion test

48 days after casting

The results are satisfying for

temperature at early age

Results obtained with Code_Aster

(local isotropic damage model)

| 50

Mean opening for cracks: 234 µm

SIMULATION OF A 3 - POINTS BENDING TEST

ON A REINFORCED BEAM WITH CZM

Aster Génie Civil | 24/05/2018

| 51Aster Génie Civil | 24/05/2018

MECHANICAL BEHAVIOR OF CONCRETE PIPES

WITH METAL WEB

Cracking

Plastification of reinforcement bars

Corrosion of the metal pipe web

(CORR_ACIER)

Impact of corrosion on the mechanical resistance

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18

Flexion (mm)

Force (

ton

nes)

Tuyau 5 - Partiellement corrodée

Tuyau 5 - exp. - Partiellement corrodée

Tuyau 5 - Corrosion variable

Map of damage + deformations

force / bending curve (tests / calculation)

Test device

| 52

UNDERGROUND EXCAVATION

2D modeling using convergence-confinement method

Mechanical law : specific elasto-visco-plastic law (LKR)

Coupling or not with hydraulic (HM simulation)

Using of a regularization modelPlastic strain hardening

Aster Génie Civil | 24/05/2018

| 53Aster Génie Civil | 24/05/2018

SIMULATION OF THE ALKALI-AGGREGATE

REACTION (RAG)

Validation on an industrial case : an existing dam segment (BETON_RAG)

| 54Aster Génie Civil | 24/05/2018

SIMULATION OF A CONCRETE DAM

Modeling of the joining up(*) and the friction between arch dam

segments

Hydromechanical modeling of the joint between the rock and the

dam foundation

* The joining up consists to fill the joints between the blocks at the end of construction of dam by grouting, to ensure the transmission of forces to the rock

| 55

DYNAMIC ANALYSIS

Aster Génie Civil | 24/05/2018

| 56Aster Génie Civil | 24/05/2018

STUDY OF COOLING TOWERS

Amplified displacement of a

cooling tower under wind load

(shell)

| 57Aster Génie Civil | 24/05/2018

A TGV ON AN AGING PRESTRESSED

CONCRETE BRIDGEVertical accelerations at ballast

multifiber beam

cracking

dynamic

rolling load

| 58Aster Génie Civil | 24/05/2018

BENCHMARK SMART

Reinforced concrete structuresnonlinear GLRC_DM constitutive law

| 59Aster Génie Civil | 24/05/2018

SEISMIC CALCULATION OF DAMS

Taking into account the energy dissipated in the soil and dam

waters : Soil-Structure Interaction, Soil-Fluid-Structure Interaction

Mode of an arch damStresses in a dam under seismic loading

| 60Aster Génie Civil | 24/05/2018

EARTH-FILLED DAM SIMULATION

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

TIME [S]

ACC [M/S/S]

ACCELERO

N36

N109

N237

N1099

N950N36

N109

N237

N1144

Layered construction Watering Seismic loading

| 61Aster Génie Civil | 24/05/2018

Thanks

| 62Aster Génie Civil | 24/05/2018

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about Code_Aster training materials.

Do not hesitate to share with us your comments on the Code_Aster forum

dedicated thread.