implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii résumé...

139
Implication du remodelage de l’unité neurovasculaire dans la maladie d’Alzheimer : L’hypoperfusion cérébrale et le système de l’activateur tissulaire du plasminogène Mémoire Maude Bordeleau Maîtrise en Neurobiologie Maître ès sciences (M.Sc.) Québec, Canada © Maude Bordeleau, 2016

Upload: others

Post on 23-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

Implication du remodelage de l’unité

neurovasculaire dans la maladie d’Alzheimer : L’hypoperfusion cérébrale et le système de l’activateur

tissulaire du plasminogène

Mémoire

Maude Bordeleau

Maîtrise en Neurobiologie

Maître ès sciences (M.Sc.)

Québec, Canada

© Maude Bordeleau, 2016

Page 2: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 3: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

iii

Résumé

L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amyloïde dont l’accumulation

promeut le développement de la maladie d’Alzheimer (AD). Suivant une perturbation vasculaire, le

bris ou l’altération de la barrière hématoencéphalique induit le remodelage de la NVU. Par exemple,

les cellules endothéliales sécrètent l’activateur tissulaire du plasminogène (t-PA), ce qui module les

cellules composant la NVU. C’est pourquoi, nous nous sommes intéressés à ce remodelage dans la

AD en étudiant l’effet de l’hypoperfusion cérébrale chronique sévère (SCCH) et de l’administration

du t-PA. Suite à la SCCH, les souris développant la AD, APPswe/PS1, démontrent un déclin

cognitif plus important causé par un dysfonctionnement des microglies. En contre partie, nous

avons observé une amélioration des fonctions cognitives des APPswe/PS1 suite à l’injection

systémique du t-PA qui induit l’activation des microglies via la protéine apparentée au récepteur des

protéines de faibles densité, LRP1, et promeut l’élimination de l’Aβ. Ainsi, nos résultats démontrent

que le remodelage de la NVU peut aggraver la pathogenèse, mais également fournir des pistes de

traitement.

Page 4: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 5: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

v

Abstract

Brain remodeling by the neurovascular unit (NVU) has gain interest in disease such as Alzheimer’s

disease (AD). Following vascular perturbation, NVU go through remodeling due to disruption or

alteration of brain-blood barrier. One of the molecule inducing remodeling is the tissue-

plasminogen activator (t-PA) released by endothelial cells. In fact, t-PA can act both as an enzyme

and a cytokine. Thus, we studied the effect of vascular perturbation and t-PA system in AD. By

developing a new model of a severe chronic cerebral hypoperfusion (SCCH), we demonstrate that

SCCH aggravates memory loss in AD mice, APPswe/PS1, due to microglia dysfunction. Indeed,

low glucose environment lowers microglia’s activity and phagocytosis capacity. On the other hand,

systemic administration of t-PA improves cognition as well as decreases amyloid burden in

APPswe/PS1. Acting as a cytokine, rt-PA binds LRP1 which induces microglia’s activation and

promotes amyloid elimination. These data suggest that NVU remodeling occurring in AD may

participate in the disease pathogenesis and provide new insight of treatment, such as rt-PA.

Page 6: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 7: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

vii

Table des matières

Résumé ....................................................................................................................................... iii

Abstract ....................................................................................................................................... v

Table des matières ..................................................................................................................... vii

Liste de tableaux ......................................................................................................................... xi

Liste de figures ......................................................................................................................... xiii

Abréviations .............................................................................................................................. xv

Remerciements ......................................................................................................................... xix

Avant-propos ............................................................................................................................ xxi

1. Introduction ......................................................................................................................... 1

1.1. Maladie d’Alzheimer ......................................................................................... 1

1.1.1. Tau ...................................................................................................................... 3

1.1.2. Amyloïde ............................................................................................................. 4

1.1.2.1. Formation, élimination et dégradation de l’amyloïde ..................................... 4

1.1.2.2. Agrégation de l’amyloïde ................................................................................ 7

1.1.2.3. Hypothèse de la cascade amyloïde .................................................................. 7

1.1.3. Hypothèse vasculaire .......................................................................................... 9

1.2. Facteurs de risque de la maladie d’Alzheimer ................................................... 9

1.2.1. Génétiques ........................................................................................................... 9

1.2.2. Obésité .............................................................................................................. 10

1.2.3. Diabète .............................................................................................................. 10

1.2.4. Troubles vasculaires .......................................................................................... 11

1.3. Hypoperfusion ................................................................................................. 11

1.3.1. Régulation du flux sanguine et maladie d’Alzheimer ....................................... 11

1.3.2. Oligémie versus ischémie ................................................................................. 12

1.4. Système de l’activateur tissulaire du plasminogène ........................................ 13

1.4.1. Fonction du système de l’activateur tissulaire du plasminogène ...................... 13

1.4.2. Système de l’activateur du plasminogène et maladie d’Alzheimer................... 15

1.5. Unité neurovasculaire ...................................................................................... 16

1.5.1. Fonction de l’unité neurovasculaire .................................................................. 17

1.5.2. Remodelage de l’unité neurovasculaire et maladie d’Alzheimer ...................... 19

1.6. Hypothèses et objectifs .................................................................................... 20

2. Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to memory

loss in APPswe/PS1 mice .................................................................................................. 23

2.1. Résumé ............................................................................................................ 24

2.2. Abstract ............................................................................................................ 24

Page 8: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

viii

2.3. Introduction ...................................................................................................... 25

2.4. Material and methods ....................................................................................... 26

2.4.1. Animals with severe chronic cerebral hypoperfusion ....................................... 26

2.4.2. Behavior analysis .............................................................................................. 28

2.4.2.2. Two-object novel object recognition ............................................................. 28

2.4.2.3. Asymmetry cylinder test ................................................................................ 29

2.4.2.4. Open field ...................................................................................................... 29

2.4.3. Soluble Aβ1-40 and soluble Aβ1-42 ELISA .......................................................... 29

2.4.4. Immunofluorescence staining ............................................................................ 30

2.4.5. Western blot analysis ......................................................................................... 30

2.4.6. Flow Cytometry ................................................................................................. 31

2.4.7. Immunohistochemistry ...................................................................................... 32

2.4.8. Nissl body staining ............................................................................................ 32

2.4.9. Fluoro-Jade B staining ....................................................................................... 33

2.4.10. In vitro experiments ........................................................................................... 33

2.4.10.1. Cell culture................................................................................................... 33

2.4.10.3. Griess assay ................................................................................................. 34

2.5. Results .............................................................................................................. 35

2.5.1. SCCH worsen memory impairment in APPswe/PS1 mice without affecting

motor capacity .................................................................................................. 35

2.5.2. Memory loss in SCCH mice is associated with an increased number of

parenchymal amyloid plaques .......................................................................... 37

2.5.3. SCCH-linked trend towards an increased in the patrolling monocyte population

......................................................................................................................... 37

2.5.4. SCCH disrupts plaque coverage by microglia and alters microglial activation 39

2.5.5. Alteration of microglial function is caused by an impaired glucose metabolism

......................................................................................................................... 40

2.5.6. ERK pathway-dependent decrease in cell survival contributes to memory

impairment in SCCH mice ............................................................................... 42

2.6. Discussion ........................................................................................................ 43

2.8. Acknowledgements ........................................................................................................ 46

2.9. Grant support .................................................................................................................. 46

3. Tissue-plasminogen activator attenuates Alzheimer’s disease-related pathology

development in APPswe/PS1 mice .................................................................................... 47

3.1. Résumé ............................................................................................................. 48

3.2. Abstract ............................................................................................................ 48

3.3. Introduction ...................................................................................................... 49

Page 9: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

ix

3.4. Materials and Methods .................................................................................... 50

3.4.1. Animal experiments .......................................................................................... 50

3.4.2. Chimeric mice generation ................................................................................. 51

3.4.3. Tissue collection ................................................................................................ 52

3.4.4. Immunofluorescence staining ........................................................................... 52

3.4.5. IgG and albumin extravasation ......................................................................... 53

3.4.6. Aβ plaques, microglia coverage and Aβ internalization by microglia

quantification ................................................................................................... 53

3.4.7. In situ Hybridization ......................................................................................... 54

3.4.8. Soluble Aβ1–42 Enzyme-Linked Immunosorbent Assay (ELISA) ..................... 54

3.4.9. Brain microvessel isolation ............................................................................... 54

3.4.10. Microglia’s isolation and analysis by flow cytometry ...................................... 55

3.4.11. Protein extraction .............................................................................................. 56

3.4.12. Caseinase and gelatinase activity assays ........................................................... 56

3.4.13. Western blot analysis ........................................................................................ 56

3.4.14. Flow cytometry ................................................................................................. 57

3.4.15. Behavior analysis .............................................................................................. 57

3.4.16. In vitro experiments .......................................................................................... 58

3.4.16.1. Cells culture ................................................................................................. 58

3.4.16.2. Cell stimulation ........................................................................................... 58

3.4.16.3. Cell migration assay .................................................................................... 58

3.4.16.4. Chemotaxis assay ........................................................................................ 59

3.4.16.5. Phagocytosis assay ...................................................................................... 59

3.4.16.6. Griess Assay ................................................................................................ 59

3.4.17. Statistics ............................................................................................................ 60

3.5. Results ............................................................................................................. 60

3.5.1. Activase® rt-PA regimen does not affect blood-brain barrier integrity and

function ............................................................................................................ 60

3.5.2. Activase® rt-PA slows the progression of AD-like pathology and behavioral

deficits in APPswe/PS1 ................................................................................... 62

3.5.3. The enzymatic activity is not responsible of rt-PA-induced clearance of Aβ ... 64

3.5.4. Activase® rt-PA modulates monocyte population phenotypes in a transient

manner ............................................................................................................. 66

3.5.5. The effects of Activase® rt-PA on resident microglia ...................................... 66

3.5.6. Activase® rt-PA enhances BV2 microglial cell mobility and acts as

chemoattractant molecule in a LRP1-dependent manner ................................ 69

Page 10: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

x

3.5.7. The effects of Activase® rt-PA on the phagocytic capacity and oxidative stress

cascade in BV2 microglial cells ....................................................................... 69

3.5.8. The effects of Activase® rt-PA on the mobility and the phagocytic capacity of

BV2 microglial cells is independent of its enzymatic activity. ........................ 71

3.6. Discussion ........................................................................................................ 71

3.7. Conclusion ....................................................................................................... 75

3.8. Acknowledgments ............................................................................................ 76

3.9. Funding ............................................................................................................ 76

4. Discussion .......................................................................................................................... 77

5. Conclusions et perspectives ............................................................................................... 87

Références ................................................................................................................................. 89

Annexe – Figures supplémentaires .......................................................................................... 109

Page 11: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xi

Liste de tableaux

Tableau I. Formes mutantes du gène APP découvertes dans les cas familiaux……………........…...2

Page 12: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 13: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xiii

Liste de figures

Figure 1.1. Voies de transformation de l’APP………………………………………………………..5

Figure 1.2. Voie d’entrée et d’élimination de la β-amyloïde………………………………..……..6

Figure 1.3. Schéma de l’hypothèse vasculaire de la maladie d’Alzheimer…………………………..8

Figure 1.4. Structure et fonction de l’activateur tissulaire du plasminogène (t-PA)……………….14

Figure 1.5. Représentation de l’unité neurovasculaire et de la microcirculation cérébrale…………17

Figure 2.1. Schema illustrating the SCCH surgery………………………………………………....27

Figure 2.2. SCCH aggravates APPswe/PS1 memory loss…………………………………………36

Figure 2.3. Number of amyloid plaques increase following SCCH without any change in amyloid

burden…………………………………………………………………………………...38

Figure 2.4. A tendency of increased patrolling monocytes is observed following SCCH................39

Figure 2.5.SCCH alters microglial function in APPswe/PS1………………………………………41

Figure 2.6. Low glucose environment alter the activity and the phagocytosis capacity of

microglia...... ……………………………………………………………………………42

Figure 2.7.SCCH lowers ERK1/2 activation………………………………………………………43

Figure. 3.1. Activase® rt-PA administration reduces Aβ aggregates and soluble Aβ1-42 levels in the

brain……………………………………………………………………………………61

Figure. 3.2. Activase® rt-PA administration improves APPswe/PS1 mice cognitive functions…..62

Figure. 3.3. t-PA-associated perivascular proteases are not induced by Activase® rt-PA regimen..63

Figure. 3.4. Chronic Activase® rt-PA administration modulates monocyte subpopulation

frequencies in the blood of APPswe/PS1 mice…………………………………………64

Figure. 3.5. Acute Activase® rt-PA administration modulates monocyte subpopulation frequencies

in the blood of wildtype mice…………………………………………………………65

Figure. 3.6. Chronic Activase® rt-PA administration increases the number of resident microglia-

associated to Aβ plaques and reduces the activation of stress-induced pathways……67

Figure. 3.7. Activase® rt-PA administration does not influence blood-derived monocyte infiltration

into the brain parenchyma of APPswe/PS1 mice………………………………………68

Figure. 3.8. Activase® rt-PA modulates BV2 microglial cell activation in vitro………………….70

Page 14: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xiv

Figure. 3.9. Activase® rt-PA decreases BV2 microglial cell intracellular stress and preserves their

phagocytic capacity……………………………………………………………………72

Figure 4.1. L’effet de l’hypoperfusion cérébrale chronique sévère (SCCH) sur le cerveau des

APPswe/PS1……………………………………………………………………………77

Figure 4.2. L’effet du traitement hebdomadaire de l’Activase ® rt-PA sur le cerveau des

APPswe/PS1……………………………………………………………………………82

Supplementary Figure 2.1. Motricity behavior in APPswe/PS1 after severe chronic cerebral

hypoperfusion (SCCH)………………………………………………109

Supplementary Figure 2.2. SCCH does not alter blood-brain barrier tightness…………………..110

Supplementary Figure 2.3. Absence of infiltred monocytes after SCCH…………………………110

Supplementary Figure 2.4. SCCH seems to atrophy CA3 without neuronal death………………111

Supplementary Figure. 3.1. BBB tightness is preserved after Activase® rt-PA administration…112

Supplementary Figure. 3.2. BBB integrity is preserved after Activase® rt-PA administration…..113

Supplementary Figure. 3.3. Endothelial transporters involved in Aβ transport across the BBB are

not affected following Activase® rt-PA administration……………114

Supplementary Figure. 3.4. Activase® rt-PA regimen does not modulate the brain levels of

synaptophysin………………………………………………………115

Supplementary Figure. 3.5. Acute Activase® rt-PA administration modulates total monocyte

frequency in the blood of APPswe/PS1 mice………………………116

Supplementary Figure. 3.6. Chronic Activase® rt-PA administration does not trigger a sustained

inflammation in the brain of chimeric APPswe/PS1 mice…………116

Figure supplémentaire 4.1. Changement de la déposition vasculaire de l’amyloïde……………117

Page 15: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xv

Abréviations

1VO: 1-vessel occlusion, Ligature unilatérale de l’artère carotide commune

Aβ: Amyloid β-peptide, Protéine β-amyloïde

ABCB1: ATP-binding cassette sub-family B1, Transporteur à cassette liant l’ATP de la sous-

famille B1

ACE: Angiotensin converting enzyme, Enzyme de conversion de l’angiotensine

AD: Alzheimer disease, Maladie d’Alzheimer

AMPA: α-amino-3-hydroxy-5-méthylisoazol-4-propionate

APH-1: Anterior pharynx 1, Protéine du pharynx antérieur défectueux 1

Apo: Apolipoprotéine

APP: Amyloid precursor protein, Protéine précurseure de l’amyloïde

APP-sα: APP-α soluble

APP-sβ: APP-β soluble

APPswe: Gène APP possédant la double mutation familiale Swedish (K670N, M671L)

APPswe/PS1: Souris transgénique double-mutante APP Swedish et PS1 A246E

ATP: Adénosine tri-phosphate

AVC: Accident vasculaire cérébral

BACE-1: β-site APP cleaving enzyme 1, Enzyme 1 de clivage du site β de l’APP

BBB: Blood-brain barrier, Barrière hémato-encéphalique

BCAO: Bilateral common carotid arthery occlusion, Ligature bilatérale des artères

carotides communes

BCAS: Bilateral common carotid arthery stenosis, Sténose bilatérale des artères carotides

communes

BDNF: Brain-derived neurotrophic factor

BSA: Bovin serum albumin, Albumine de serum bovin

CA: Cornu ammonis, Corne d’Ammon

CAA: Cerebral amyloid angiopathy, Angiopathie amyloïde cérébrale

CBF: Cerebral blood flux, Flux sanguin cérébral

CTFα: C-terminal fragment α, Fragment carboxy-terminal α

CTFβ: C-terminal fragment β, Fragment carboxy-terminal β

DAB: Diaminobenzidine

DAPI: 4,6-diamindino-2-phenylindone

Page 16: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xvi

DMEM: Dulbeco’s modified eagle medium, Milieu Eagle modifié de Dulbeco

DMEM High: DMEM contenant 4500mg/L de glucose

DMEM Low: DMEM contenant 1000mg/L de glucose

EDTA: Ethylenediaminetetraacetic acid, Acid éthylène diamine-tétraacétatique

ECL: Enhanced chimiluminescence solution

EGF: Epidermal growth factor, Facteur de croissance de l’épiderme

ERK: Extracellular signal-regulated kinase, Kinase régulée par les signaux

extracellulaires

ELISA: Enzyme-linked immunosorbent assay, Essai d’immuno absorption enzymatique

FACS: Fluorescent-activated cells sorting, Tri de cellules activées par fluorescence

FBS: Fetal bovine serum, Sérum de veau fœtal

FDA: Food and Drug Association

FJB: Fluoro-jade B

FTD: Frontotemporal dementia, Démence fronto-temporale

GFP: Green fluorescent protein, Protéine fluorescente verte

GLUT1: Glucose transporter 1, Transporteur du glucose 1

HBSS: Hank’s balanced salt solution, Solution saline équilibrée de Hank

HIF-1α: Hypoxia-inducible factor 1α, Facteur de transcription 1α induit par l’hypoxie

HRP: Horseradish peroxidase, Peroxidase de raifort

IDE: Insulin degrading enzyme, Enzyme de dégradation de l’insuline

IgG: Immunoglobuline G

IL: Interleukine

KPBS: Potassium phosphate buffered saline, Saline tamponée au potassium et phosphate

LDL: Low-density lipoprotein, Lipoprotéine à faible densité

LPS: Lipopolysaccharide

LRP: LDL receptor-related protein, Protéine apparentée au récepteur des LDLs

LTD: Long-term depression, Dépression à long-terme

LTP: Long-term potentiation, Potentialisation à long-terme

MAPK: Mitogen-activated protein kinase, Protéine kinase activée par mitose

MCI: Mild cognitif impairment, Trouble cognitif léger

mGluR5: Metabotropic glutamate receptor 5 Récepteur métabotropique du glutamate 5

MMP: Matrix metalloproteinase, Métalloprotéase matricielle

MPL: Monophosphoryle lipide A

MVs: Microvessels

Page 17: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xvii

ND: No cognitif deficit

NEP: Néprilysine

NGF: Nerve growth factor, Facteur de croissance des nerfs

NMDA: N-méthyl-D-aspartate

NVU: Neurovascular unit, Unité neurovasculaire

OMS: Organisation Mondiale de la Santé

PAI-1: Plasminogen activator inhibitor-1, Inhibiteur-1 des activateurs du plasminogène

PBS: Phosphate buffered saline, Saline tamponnée au phosphate

PDGF-CC: Platelet-derived growth factor-CC, Facteur de croissance CC dérivé des plaquettes.

PEN-2: Preseniline enhancer 2, Protéine activatrice de la préséniline 2

PET: Positron emission tomography, Tomographie à émission de positrons

PFA: Paraformaldéhyde

PgP: P-glycoprotéine

PrP: Prion protein, Protéine prionique

PS: Préséniline

RAGE: Receptor for advanced glycation endproducts, Récepteur des produits finaux de

glycosylation avancée

RT: Room temperature

rt-PA: Recombinant-tisssue-type plasminogen activator, Activateur tissulaire du

plasminogène recombinant

SAPK/JNK: Stress-activated protein kinases /Jun amino-terminal kinases, Protéine kinase active

par le stress / Kinase c-Jun N-terminal

SCCH: Severe chronic cerebral hypoperfusion, Hypoperfusion cérébrale chronique sévère

S.D.: Standard deviation, Écart-type

SD: Severe cognitif deficit

SDS-PAGE: SDS-polyacrylamide gel electrophoresis, Gel d’électrophorèse SDS-polyacrylamide

S.E.M.: Standard error of the mean, Écart-type de la moyenne

sLRP: LRP soluble

SNC: Système nerveux central

TLR: Toll-like receptor, Récepteur de type Toll

t-PA: Tissue-type plasminogen activator, Activateur tissulaire du plasminogène

Page 18: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 19: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xix

Remerciements

Au cours de ces deux dernières années, j’ai côtoyé un ensemble de gens qui m’ont offert le soutien

nécessaire pour réussir et aboutir dans mes projets entrepris. Je tiens donc à souligner leur

contribution qui a été très marquante.

Tout d’abord, je voudrais remercier Serge Rivest, Ph.D., qui m’a offert la chance de travailler au

sein de son équipe, ainsi que Frédérique Calon, Ph.D., et Denis Soulet, Ph.D., qui ont accepté de

faire partie de mon comité d’encadrement. Tous m’ont offert de précieux conseils en tant que

scientifique. Ils m’ont guidé pour l’avancement de mes projets vers la bonne direction. Surtout au

cours des derniers mois, Dr. Rivest a toujours été prêt pour discuter des derniers détails et ce,

malgré son horaire chargé. Je voudrais également souligner l’énorme contribution d’Ayman ElAli,

Ph.D., en tant superviseur de projet. Servant de guide et de collègue, Dr. ElAli m’a offert un soutien

continu pour que je retire la meilleure expérience qui soit de ma maîtrise. Il a été sans conteste un

mentor important qui a permis l’avancement de mes projets et stimulé ma curiosité scientifique.

Au cours de ma maîtrise, j’ai également eu la chance de profiter de l’expertise de plusieurs

personnes qui m’ont conseillé lorsque j’avais des interrogations. Nataly Laflamme, M.Sc., Marie-

Michèle Plante, M.Sc., Paul Préfontaine, M.Sc., Antoine Lampron, Ph.D., Jean-Philippe Michaud,

Ph.D., Peter Thériault, M.Sc., et Audrey LeBehot, Ph.D., m’ont tous offert leur avis lorsque je leur

posais une panoplie de questions. J’ai également eu l’opportunité de connaitre brièvement Marc-

André Bellavance, Ph.D., et Antoine Larochelle, M.Sc.

Sur un plan plus personnel, je voudrais remercier Yannick Tremblay, B.Sc., Édith Godbout-Miville,

B.Sc., Catherine Fontaine-Lavallée, B.Sc., Catherine Gilbert, B.Sc., André-Pascal Roy, B.Sc.,

Prenitha Innatious, M.Sc., avec qui j’ai discuté de science comme de tout et n’importe quoi.

Comparse dans l’acheminement de nos travails respectifs, discuter avec eux a toujours allégé la

morosité d’une série de résultats négatifs. Je dois également souligner le support de ma famille et

amis qui m’ont aidé à décrocher lorsque j’en avais besoin ce qui m’a permis d’être toujours positive

dans mon activité de recherche.

Finalement, un dernier merci pour toutes ces personnes qui, sans le savoir, m’ont permis d’avoir

une expérience dont je me souviendrai et de m’apprendre tant de choses autant sur le plan

scientifique que personnel. Merci.

Page 20: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 21: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

xxi

Avant-propos

L’article intitulé Severe chronic cerebral hypoperfusion induces microglial dysfunction leading to

memory loss in APPswe/PS1 mice est en revision pour le journal Oncotarget. Cet article représente

le second chapitre du mémoire. Lors de ce projet, j’ai effectué l’intégralité des expériences mise à

part le comportement qui a été réalisé par Mohammed Filali. J’ai également accompli l’analyse des

résultats, puis interprété ceux-ci en discutant avec Ayman ElAli. Suite à la discussion scientifique,

j’ai rédigé intégralement l’article scientifique qui a ensuite été corrigé par Ayman ElAli et Serge

Rivest. Le projet lui-même a été conçu et encadré par Ayman ElAli et Serge Rivest.

L’article intitulé Tissue-plasminogen activator attenuates Alzheimer’s disease-related pathology

development in APPswe/PS1 mice a été publié en ligne dans Neurospychopharmacology le 9

septembre 2015 (ElAli, A., Bordeleau, M., Thériault, P., Filali, M., Lampron, A. et Rivest, S.

Neuropsychopharmacology. doi:10.1038/npp.2015.279.). Celui-ci constitue le troisième chapitre de

ce mémoire. Dans ce projet, j’ai effectué l’ensemble de l’étude in vitro décrivant le mécanisme

d’action du t-PA, l’analyse et l’interprétation des résultats, en plus de la rédaction du matériel et

méthode correspondant. J’ai également coupé les tissus et effectué les marquages sur les tissus

(FJB, hybridation in situ, immunofluorescence). Peter Thériault a effectué l’expérience de FACS,

aider à l’analyse et rédiger la partie matériel et méthode correspondante. Mohammed Filali ont

effectué les tests de comportement, de même que la rédaction du matériel et méthode associée.

Ayman ElAli a effectué le reste des mannipulation in vivo, ainsi de l’analyse des résultats et

l’interprétation de l’ensemble des résultats in vivo. L’article a été principalement écrit par Ayman

ElAli, puis corrigé par l’ensemble des co-auteurs. Le projet lui-même a été conçu et encadré par

Ayman ElAli et Serge Rivest

Page 22: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 23: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

1

Chapitre 1

1. Introduction

1.1. Maladie d’Alzheimer

La maladie d’Alzheimer (AD) est un désordre neurodégénératif se développant au cours d’une vie

et représentant la forme de démence la plus répandue (1). Au cours des dernières années,

L’Organisation Mondiale de la Santé (OMS) a estimé que le nombre de gens atteints par la AD

s’élève à 30 millions ; nombre qui devrait tripler au cours des prochaines décennies (2,3). Chez la

population âgée de plus de 85 ans, 1 personne sur 3 développe des symptômes de la AD (3).

Celle-ci a été diagnostiquée pour la première fois, en 1907, par Aloïs Alzheimer. Il avait alors

observé la présence de plaques denses dans la parenchyme, appelé plaques séniles, et de

neurofibrilles (4). Il est maintenant connu que ces plaques et neurofibrilles sont respectivement

entraînées par la déposition du peptide β-amyloïde (Aβ) (5,6), dérivé de la protéine précurseure de

l’amyloïde (APP), et l’hyperphosphorylation de tau, une protéine associée aux microtubules, qui

forme des filaments (7,8). Ces phénomènes moléculaires entraînent principalement un

dysfonctionnement de la capacité mnésique qui s’instaure graduellement. Braak et Braak ont

distingué six paliers (I à VI) à cette progression selon les régions du cerveau touchées. Les premiers

changements neuropathologiques débutent dans le cortex entorhinal (I-II), puis s’étendent aux

régions limbiques (III-IV) et, aux aires associatives temporales, pariétales et frontales du néocortex

(V-VI) (9,10). Récemment, un stade préclinique de la AD a été identifié. Celui-ci se décrit par un

trouble cognitif léger (MCI) (11) se manifestant quelques années avant le diagnostic de démence et

étant notamment associés avec plusieurs problèmes causé par le remodelage du cerveau (Section

1.5.2 – Remodelage de l’unité neurovasculaire et maladie d’Alzheimer) (1). Durant cette

période, le patient présente des troubles cognitifs, mais trop légers pour interférer dans sa vie de

tous les jours (1). Les premières manifestations cliniques de la AD, soit post-diagnostic, démontrent

généralement une dysfonction de la mémoire de travail et de la mémoire sémantique, en plus de la

sensibilité aux distractions. Il a été également reporté que, lors de la phase initiale, les malades

d’Alzheimer peuvent être dépressifs ou apathiques. Dans un stade plus avancé, ceux-ci peuvent

devenir confus, désorientés et avoir des comportements anormaux (1) associés à une perturbation du

cycle circadien (12). Ils peuvent également présenter des symptômes atypiques tels des troubles

moteurs (1), du langage (1,13) et visuels (13).

Page 24: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

2

Il existe deux formes de la AD, soit la familiale (précoce) et la sporadique (tardive). La AD

familiale est observée lors de l’expression génomique de polymorphismes génétiques qui favorisent

l’expression de l’amyloïde ou altèrent le ratio entre les différentes formes d’Aβ, soit l’Aβ1-42, qui

tend à s’agréger, et l’Aβ1-40, qui est la forme plus commune (14,15). Ces variations génétiques ont

été observées au niveau des gènes codant l’APP, la préséniline (PS)-1 et la PS-2. Situés sur le

chromosome 21, 20 polymorphismes du gène APP (Tableau I) ont été identifiés, ce qui correspond

seulement à 5% des cas familiaux. Les cas précoces sont donc principalement causés par des

mutations au chromosome 14 au niveau des gènes PS-1 et PS-2. Quant à ceux-ci, 120 et 8 variations

génomiques ont respectivement été répertoriées (16). Les patients qui les possèdent présentent des

symptômes de la AD pour la première fois vers 40 ans (17). Toutefois, près de 95% des cas de la

AD sont observés dans la population âgée d’au moins 65 ans qui possède la forme tardive de cette

pathologie (18).

À partir des mutations identifiées chez les patients atteints de la forme familiale, des modèles

animaux ont été développés chez la drosophile, le poisson P. marinus, le ver C. elegans et la souris.

Ces modèles permettent de reproduire les aspects généraux de la pathogenèse tels la cascade de

progression, ainsi que les modulateurs et les gènes influencant la AD (16). Les premiers modèles

murins furent développés par l’insertion des gènes humains APP Dutch et APP Flemish. Ces

modèles présentèrent une amyloïdose cérébrale à un âge très avancé, vers 18 mois (14). Par la suite,

Nom Mutation Site de clivage à proximité Caractéristiques pathologiques

Swedish K670N, M671L β-sécrétase

AD, CAA

– A673V APP AD

Flemish A692G

α-sécrétase

AD, Hémorragie cérébrale

– E693G CAA

Dutch E693Q Hémorragie cérébrale

Italian E693K Hémorragie cérébrale

Japenese E693Δ AD

Iowa D694N AD, CAA

– L705V APP CAA

– A713T APP

γ-sécrétase

AD, Hémorragie cérébrale

Austrian T714I AD

French V715M AD

Florida I716V AD

London V717(I/F/G/L) AD, CAA

Tableau I. Formes mutantes du gène APP découvertes dans les cas familiaux. Les mutations du gène

APP sont réparties selon leur position de l’acide aminé muté. Pour chaque mutation, le site de clivage à

proximité de la mutation est indiqué de même que certaines caractéristiques pathologiques générales. AD:

Maladie d’Alzheimer, CAA: Angiopathie amyloïde cérébrale (16).

Page 25: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

3

Hsiao et ses collègues développèrent une souris «knock-in» où le gène APP Swedish (APPswe) est

inséré dans le génome par le vecteur de protéine prionique (PrP) du hamster. Cette lignée

transgénique murine fut appelée Tg2576. Contrairement aux modèles précédents, les souris Tg2576

possèdent de nombreuses plaques en plus d’un trouble cognitif dès 9 mois (19). La Tg2576, une

autre lignée transgénique, APP23, exprime le gène APPswe humain, mais sous le promoteur

mThy1.2 (16). Ces derniers modèles développent également des dépôts vasculaires d’amyloïde

caractéristiques de l’angiopathie amyloïde cérébrale (CAA) (14,16) qui est très commune chez les

malades d’Alzheimer (20).

Un autre modèle transgénique intéressant est la lignée double mutante APPswe/PS1 A246E

(APPswe/PS1). Plus précisément, les souris APPswe/PS1 expriment davantage d’Aβ1-42 que les

souris mutantes APPswe et PS1 A246E (21). De plus, dès 3-4 mois, les femelles APPswe/PS1

démontrent des dépôts d’amyloïde (22) alors que, chez les mâles, l’accumulation robuste est

évidente seulement à partir de 6 mois (23). Comparativement aux autres modèles de la AD, la

pathologie se développe plus rapidement chez les APPswe/PS1. Suivant l’accumulation de plaques

séniles, il a été observé que, dans ce modèle, il y a une diminution de l’expression de plusieurs

protéines synaptiques (e.g. AMPA, Arc, Erg1, NR2A/B, PSD95) et de facteurs neurotrophiques

(e.g. BDNF) (23). À un stade plus avancé, le nombre de plaques devient plus important et couvre

près de 80% de l’hippocampe chez certains animaux (21).

1.1.1. Tau

La AD est caractérisée par la formation de neurofibrilles (7,8) localisés dans le corps cellulaire, les

dentrites apicales et distales des neurones, ou encore associés à des plaques amyloïdes dans les

neurites anormaux (24,25). Ce type de lésions neurofibrillaires est également observé dans d’autres

troubles neurodégénératifs tels la maladie de Pick, la dégénération cortico basale, la paralysie

supranucléaire progressive et la démence fronto-temporale (FTD) (24,25). Parmi ces troubles

neurodégénératif, la maladie de Pick et la FTD décrivent la neurodégénération des lobes frontal et

temporal respectivement associé avec une démence progressive présentant des lésions

neurodégénérative riches en tau et des déficits moteurs pouvant contribuer au développement de la

maladie de Parkinson (16). Tout comme la FTD, la dégénération cortico-basale et la paralysie

supranucléaire sont également des troubles neurodégénératifs moteurs entrainant respectivement un

déficit moteur induit par la perte de neurones corticales et extrapyramidales, et une paralysie

occulaire (16)(24,25). Les premières mutations de tau ont été identifiés chez les patients ayant la

FTD (16).

Page 26: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

4

La protéine tau semble ainsi participer à la neurodégénération. Plusieurs modèles ont donc été

développés pour étudier son rôle lors de maladies. L’expression de l’isoforme de tau humain la plus

courte de 352 acides aminés (26) ou la plus longue de 441 acides aminés (27), chez des souris

Alzheimer, induit respectivement la formation tardive, vers 18-20 mois (26), ou précoce (27) de

neurofibrilles. Chez les Tg2576, l’intégration de tau muté, tau P301L, augmente massivement le

nombre de neurofibrilles notamment au niveau du cortex entorhinal et l’amygdale, les régions

vulnérables à la déposition d’amyloïde, et ce, sans modifier l’expression de tau (28). En ce sens,

Geula et al ont démontré la capacité de l’Aβ1-42 synthétique à induire la formation de neurofibrilles

chez le singe rhésus âgé (29). En effet, les oligomères d’Aβ sont capables d’indure la

phosphorylation de tau par l’activation de protéines kinases, soit GSK3β, CDK5, MARK et MAPK

(30). Lorsque hyperphosphorylé, tau est clivé à son domaine de liaison aux microtubules ce qui le

dissocie des microtubules. Il devient soluble et est sécrété par les cellules (31).

L’hyperphosphorylation de tau permet également son entrée dans les épines dendritiques où il se

localise anormalement (32). Une fois entré dans les neurones, la conformative native de tau soluble

favorise la formation de filament hélicoïdaux neurotoxiques, puis l’agrégation de ces filaments en

neurofibrilles ce qui contribue au dysfonctionnement synaptique (33,34). Outre l’amyloïde, la

phosphorylation de tau est également induite après un choc thermique, l’hypoxie ou la privation de

glucose (30). Bien que la phosphorylation de tau à des sites supplémentaires soit associée à un

déficit synaptique, le processus d’hyperphosphorylation reste à approfondir (35).

1.1.2. Amyloïde

1.1.2.1. Formation, élimination et dégradation de l’amyloïde

L’Aβ est dérivée de l’APP. Cette glycoprotéine associée à la membrane est transformée par deux

voies dont l’une génère l’amyloïde et l’autre non (Fig. 1.1). Lors de cette dernière, l’APP est clivée

par l’α-sécrétase au niveau de son domaine Aβ sécrétant la portion amino-terminale, le fragment

soluble APP-α (APP-sα), et prévenant la formation d’amyloïde. L’Aβ, quant à elle, provient du

clivage séquentiel de l’APP par la β-sécrétase et le complexe γ-sécrétase (36). La β-sécrétase,

BACE-1, clive l’APP libérant le fragment soluble APP-β (APP-sβ) du fragment carboxy-terminal β

(CTFβ) (36,37). Le CTFβ est alors clivé par le complexe γ-sécrétase qui est composé de la PS, la

nicastrine, protéine du pharynx antérieur défectueux 1 (APH-1) et la protéine activatrice de la

préséniline (PEN-2) (36,38). La longueur de fragment d’Aβ, variant entre 39 et 43 acides aminés

(6), est définie par le clivage via la γ-sécrétase (37). La forme la plus commune obtenue par ce

clivage est du peptide Aβ1-40 (36). L’Aβ est produite directement au cerveau, mais également à la

périphérie. L’Aβ circulante entre au cerveau grâce à l’action du récepteur des produits finaux de

Page 27: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

5

glycosylation avancée (RAGE) (Fig. 1.2) (39,40) et ce, uniquement au niveau du système nerveux

central (SNC) (41). En effet, Roberts et ses collègues (2014) détectèrent aucune fluctuation des

concentrations d’amyloïde au niveau des veines périphériques signifiant que l’entrée et la sortie de

l’Aβ s’effectue uniquement au niveau du système nerveux central (SNC) (41).

L’élimination de l’Aβ devient alors un phénomène intrinsèque à l’homéostasie. L’amyloïde est

éliminée du cerveau par divers mécanismes (Fig. 1.2) (42). Notamment, les cellules de l’unité

neurovasculaire (NVU) (Section 1.5 – Unité neurovasculaire) sécrètent des protéases contribuant

à sa dégradation (43), telles que la plasmine, la néprilysine (NEP), la NEP2, l’enzyme de

dégradation de l’insuline (IDE), l’enzyme de conversion de l’angiotensine (ACE), les

métalloprotéases matricielles (MMPs), etc. (44). De plus, certaines cellules de la NVU, astrocytes

(43,45), péricytes (46), et microglies (43,47), peuvent internaliser l’Aβ. Cette internalisation est

généralement dépendante de la protéine 1 apparentée au récepteur des lipoprotéines à faible densité

(LDLs), LRP1. Une fois lié, LRP1 promeut l’internalisation de son ligand et le dirige vers les

lysosomes où il sera dégradé (48,49). De plus, LRP1 et la p-glycoprotéine (PgP) contribuent à la

transcytose rapide de l’amyloïde soluble, de l’Aβ associée à l’α-macroglobuline (42,50) et de l’Aβ

associée à l’apolipoprotéine (Apo) E2 ou 3 (51) à travers la barrière hémato-encéphalique (BBB) au

Figure 1.1. Voies de transformation de l’APP. L’APP via deux cascades, l’une non-amyloïdogénique et

l’autre amyloïdogénique. L’APP est clivée par l’α-sécrétase formant deux fragments, APP-sα et CTFα.

l’APP peut également être endocyter, puis clivé par la β-sécrétase produisant le fragment APP-sβ et le

CTFβ. Celui-ci forme alors l’Aβ lorsque clivé par la γ-sécrétase. APP-sα: L’amyloïde est ensuite sécrétée

dans le milieu extracellulaire où son accumulation promeut la formation de plaques (44) [tiré

intégralement].

Page 28: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

6

sang veineux (48,49) et à travers le plexus choroïde au fluide cérébrospinal qui est ensuite

réabsorbée par les veines cérébrales (52). Une équipe en particulier , permirent entre-autre d’évaluer

l’importance de l’élimination de l’Aβ du CNS à travers la BBB à 25% et celle via les plexus

choroïdes également à 25% (41). En plus d’exprimer LRP1 (53,54), les cellules de la BBB

expriment ABCB1 (50,55) et LRP2 (56) modulant le transport de l’Aβ. Plus précisément, LRP2

orchestre l’influx et l’efflux du complexe formé par l’Aβ et la clusterine, également appelée ApoJ

(56). Tout comme LRP1, LRP2 est impliqué au niveau de la dégradation de l’Aβ par endocytose, de

même que son élimination par la BBB lorsque celle-ci est associée à l’ApoJ (57). L’Aβ peut former

un complexe avec l’ApoE. Celle-ci possède trois isoformes: ApoE2, ApoE3 et ApoE4 (58), dont

chacun module différemment l’élimination de l’Aβ. Comparativement à l’ApoE2 et l’ApoE3, le

complexe de l’Aβ avec l’ApoE4 est internalisé via le récepteur LRP1 et éliminé du cerveau

beaucoup plus lentement (51,59,60). Ainsi, l’ApoE4 a un effet de rétention de l’Aβ au cerveau.

Suite au passage à travers la BBB, l’Aβ se lie à LRP soluble (sLRP) qui est produit par le clivage de

LRP par la β-sécrétase (61). LRPs agit alors comme un «siphon périphérique» captant l’Aβ du

cerveau dans le sang et la transportant jusqu’au foie (62) où elle sera dégradée (62,63).

Figure 1.2. Voie d’entrée et d’élmination de la β-amyloïde. Les voies d’entrées et d’élimination de l’Aβ

démontre l’importance de l’unité neurovasculaire à son homéostasie. L’Aβ est produite à partir de l’APP

au cerveau et à la périphérie. L’Aβ est dégradée enzymatiquement par la néprylisine, l’IDE, les

métalloprotéinase et la plasmine. L’Aβ non-dégradée peut s’oligomériser et être dégradée par les

microglies et les astrocytes. L’efflux de l’Aβ est médiée par LRP1/2 alors que l’influx est modulé par

RAGE. L’Aβ s’associe à LRP1 soluble dans la circulation sanguine. L’élimination systémique de l’Aβ se

produit au niveau du foie. CLU: Clusterine. (42) [tiré intégralement].

Page 29: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

7

1.1.2.2. Agrégation de l’amyloïde

Toutefois, avec l’âge ou en condition pathologique, ces voies d’élimination de l’Aβ sont altérées

(64). Par exemple, l’activité enzymatique de l’IDE et de la NEP diminuent avec l’âge (65). De plus,

l’activité de la NEP2 (66) et l’expression de la NEP (67) diminuent chez les patients déments. Chez

les malades d’Alzheimer, il a également été observé que LRPs est oxydé (62) en plus d’une

expression accrue de RAGE à la surface des cellules endothéliales de la BBB (53). Ces deux

phénomènes contribuent respectivement à la réduction de la liaison de l’Aβ à LRPs oxydé (62) et

l’augmentation de l’entrée d’Aβ au cerveau (53). Avec l’âge et lors de la AD, la capacité des

microglies à dégrader l’Aβ décroît (68). L’ensemble de ces altérations contribue à l’accumulation

de l’Aβ et la formation d’agrégats (53). Grâce à une étude de spectrométrie de masse, la dynamique

de nucléation des plaques amyloïdes a pu être décrite. Bernstein et ses collègues ont déterminés que

l’Aβ1-40 formait un dimère puis un tétramère, alors que l’Aβ1-42 formait des dimères, tétramères,

hexamères, puis dodécamères. Cette structure de dodécamère constitue le noyau des agrégats

pouvant former, par un processus lent, des protofibrilles (69). Les plaques amyloïdes sont formées

principalement de ce nucléus, en plus d’autres protéines dont l’α1-antichymotrypsine (70), l’ApoE

(71), le protéoglycane à héparane sulfate (71) et la thrombospondine (72). Avec le temps, ces

plaques amyloïdes grossissent et s’organisent en feuillet-β jusqu’à se stabiliser tel que confirmé par

leur suivi longitudinal in vivo (73).

1.1.2.3. Hypothèse de la cascade amyloïde

Outre la AD, la déposition d’amyloïde est commune à plusieurs troubles neurodégénératifs tels le

syndrome de Down (74), la maladie de Parkinson, la maladie d’Huntington (75), la démence

vasculaire, la CAA et l’atrophie corticale postérieure (76), ce qui suggère une étroite relation entre

la neurodégénérescence et l’amyloïde. Cette théorie est d’ailleurs renforcie par plusieurs évidences

génétiques sur le gène APP identifiées chez des malades Alzheimer et dont, lorsqu’exprimé chez

des modèles animales, suffisent au développement de la AD (16). De ce fait, les scientifiques ont

émis l’hypothèse de la cascade amyloïde. Elle postule que l’Aβ initie une cascade cellulaire

provoquant la perte neuronale et des dommages neuronaux qui ont initialement été attribués au

nombre de plaques séniles (36). Toutefois, le déclin cognitif ne corrèle pas avec les dépôts

d’amyloïde et la perte synaptique (77). Dès lors, l’hypothèse de la cascade amyloïde a été révisée

(36,78). Il a alors été proposé que l’Aβ soluble, oligomère et dodécamère (69), serait à l’origine de

la neurotoxicité (79,80). Les oligomères d’Aβ induisent l’hyperphosphorylation de tau (Section

1.1.1 – Tau) (29,30). Certes, ils peuvent également interagir avec plusieurs protéines neuronales

dont: la neuroligine, les récepteurs nicotiniques-α7, les récepteurs adrénergiques, les canaux

Page 30: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

8

calciques (81), les récepteurs ionotropiques AMPA (82), les récepteurs ionotropiques NMDA (83)

et les récepteurs métabotropiques du glutamate 5 (mGluR5) (84). En se liant aux neurones,

l’amyloïde induit une signalisation aberrante (e.g .voie Wtn) un influx calcique anormal (81), en

plus d’une activité et d’une plasticité synaptique altérées (81,85). Dans leur ensemble, les effets

induits par les oligomères d’Aβ contribuent au déclin cognitif.

L’Aβ module également l’expression de gènes critiques à l’apprentissage, la mémoire et la

neuroprotection (86). Par exemple, les fibrilles amyloïdes inhibent l’expression de la neuroligine, ce

qui promeut la neurodégénération (87). Mis à part les oligomères et les fibrilles, l’amyloïde

intracellulaire contribue également à la toxicité au sein de la mitochondrie résultant en un

dysfonctionnement mitochondrial reconnu chez les malades d’Alzheimer (88). L’implication des

fibrilles, des oligomères insolubles et de l’amyloïde intracellulaire reste à explorer afin de préciser

cette hypothèse.

Figure 1.3. Schéma de l’hypothèse vasculaire de la maladie d’Alzheimer. Les facteurs vasculaires

provoquent le premier dommage: la dysfonction de la BBB et l’oligémie. La dysfonction de la BBB

provoque une accumulation de substances toxiques et une diminution de l’élimination de l’Aβ. L’oligémie

entraîne une hypoperfusion capillaire en plus d’une augmentation de l’expression et de la transformation

de l’APP. Cela provoque le deuxième dommage : l’augmentation du niveau d’Aβ. L’augmentation de

l’Aβ entraîne une hyperphosphorylation de tau et, favorise le dysfonctionnement neuronal conduisant à

long terme à la démence (42) [tiré intégralement].

Page 31: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

9

1.1.3. Hypothèse vasculaire

Récemment, une autre hypothèse, considérant les facteurs de risque de la AD, a vu le jour, soit

l’hypothèse vasculaire (Fig. 1.3). Elle suppose qu’un dommage initial de la microcirculation

cérébrale initie le dysfonctionnement neuronal non-amyloidogénique. Cette voie non-

amyloidogénique comporte une rupture de la BBB, induisant une perte d’étanchéité et la sécrétion

de molécules neurotoxiques. De plus, le dommage vasculaire occasionne une oligémie pouvant

provoquer des ischémies focales. Ces deux phénomènes provoquent une augmentation de l’Aβ

respectivement par la perte de l’élimination et par une élévation de la production de l’Aβ (42). En

effet, des études ont démontré qu’un contexte hypoxique ou ischémique favorisait la conversion de

l’APP en Aβ en induisant l’augmentation de l’activité de la β-sécrétase et de la γ-sécrétase, en plus

de l’expression de la β-sécrétase (89). Loin de contredire l’hypothèse de la cascade amyloïde,

l’hypothèse vasculaire considère la dynamique de la pathogenèse de la AD. Cependant, le processus

pathologique lui-même est encore peu connu. L’étude des comorbidités telles que les troubles

vasculaires permettent de dévoiler la cascade pathologique de la AD.

1.2. Facteurs de risque de la maladie d’Alzheimer

La AD possède une étiologie complexe qui progresse sur une vie. L’âge est le facteur ayant le plus

d’incidence sur la progression de la forme sporadique (90). De plus, la génétique (91,92), l’obésité,

le diabète (93,94), l’accident vasculaire cérébral (AVC) (93–96), l’hypertension (93–95),

l’hypotension (95), les maladies coronariennes (95,96), la fibrillation auriculaire (97),

l’athérosclérose (93,98) et l’hypercholestérolémie (93) représentent des facteurs de risque de la AD

tardive. Nous résumerons brièvement l’implication de la génétique, soit l’incidence des différents

isoformes d’ApoE, de l’obésité, du diabète et des troubles vasculaires dans la pathogenèse de la

AD.

1.2.1. Génétiques

ApoE4 constitue le facteur génétique principal de la AD tardive. Les personnes porteuses de l’allèle

ApoE4 présentent 4 à 10 fois plus de risque de développer la AD (91,92). Chez l’homme, le gène

ApoE se localise sur le chromosome 19 (92) pour lequel 3 allèles du même locus génétique ont été

identifiées, ApoE2, ApoE3 et ApoE4 (58,92). L’isoforme ApoE4 est la plus primitive (99) et la

moins prévalente (100). Au sein de la population, 30%, 60% et 10% de la population possède

respectivement l’isoforme ApoE2, ApoE3 ou ApoE4 (100). Ces isoformes varient d’une

substitution d’un seul acide aminé au niveau de deux résidus: ApoE2 (Cys112, Cys158), ApoE3

Page 32: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

10

(Cys112, Arg158) et ApoE4 (Arg112, Arg158) (101). Ces mutations ont des effets majeurs sur sa

structure et sa fonction (101).

L’ApoE est produite principalement par les astrocytes au cerveau (102) et par le foie à la périphérie.

Circulant dans le sang, elle est intégrée aux lipoprotéines de très faible densité et aux chylomicrons.

L’ApoE régule le transport du cholestérol et des lipides. Elle module également l’élimination des

lipoprotéines plasmiques par les récepteurs LDL (103). Tel qu’évoqué plus tôt, l’ApoE module le

transport de l’Aβ selon l’isoforme exprimée. L’ApoE2 et l’ApoE3 facilitent l’élimination de l’Aβ,

alors que l’ApoE4 favorise sa rétention (51). L’ApoE2 possède une structure plus stable due à la

substitution d’acides aminés, ce qui lui confère un effet protecteur contre la AD (101). L’ApoE2 et

l’ApoE3 contribuent également à la plasticité synaptique et la réparation neuronale (100). À

l’opposé, l’ApoE4 est étroitement associée au dysfonction de la BBB (104), à l’augmentation de

l’incidence des maladies vasculaires (105), de la CAA (106) et celle de la AD (91,92).

1.2.2. Obésité

Chez la personne obèse, les tissus adipeux, plus importants, produisent des cytokines qui seront

sécrétées dans la circulation sanguine (e.g. TNFα, IL-6). Ces cytokines circulantes peuvent altérer la

fonction endothéliale et contribuer à la résistance à l’insuline (107). En cours de vie, ce phénomène

résulte en une augmentation du risque de diabète de type 2 (108) et des maladies cardiovasculaires

dont l’hypertension artérielle (109). Ces maladies secondaires à l’obésité sont reconnues comme

ayant des effets nocifs sur le cerveau (94). De ce fait, il a été reporté que l’obésité à mi-vie est

associée à un déclin cognitif en fin de vie (93,94,110).

1.2.3. Diabète

Le diabète favorise le déclin cognitif, ce qui promeut la AD (93,94). Sonnen et ses collaborateurs

ont reporté une aggravation de la démence chez les malades d’Alzheimer diabétiques non contrôlés

par rapport à ceux qui sont traités (111). De ce fait, lors d’épisodes d’hyperinsulinémie, le niveau

d’insuline cérébrale augmente. L’insuline cérébrale compétionne alors avec l’Aβ extracellulaire en

tant que ligand de l’IDE, ainsi la dégradation de l’amyloïde par l’IDE est réduite (112).

L’hyperinsulinémie entraîne également une altération de la signalisation de l’insuline, du stress

oxydatif et des mécanismes inflammatoires pouvant notamment contribuer au déclin cognitif (113).

De plus, le diabète peut entraîner des complications dont les maladies vasculaires, les

néphropathies, les neuropathies et les rétinopathies (114). L’augmentation de l’incidence de

démence chez les diabétiques a été d’ailleurs attribuée aux maladies cardiovasculaires (115).

Page 33: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

11

1.2.4. Troubles vasculaires

En plus d’être des facteurs de risque de la AD, l’expression d’ApoE4, l’obésité et le diabète

accroient les risques de développer des troubles vasculaires (105,109,115). Plusieurs études

épidémiologiques, cliniques et animales ont démontré que les troubles vasculaires systémiques tout

comme les maladies cardiovasculaires en mi-vie contribuent à la défaillance cognitive (93,116).

Nous comptons parmi ces pathologies: l’AVC (93–96), l’athérosclérose (93,98), la fibrillation

artriale (97), l’hypercholestérolémie (93), l’hypertension (93–95,117,118), l’hypotension

(95,117,118) et les maladies coronariennes (95,96).

1.3. Hypoperfusion

Afin de bien fonctionner, le cerveau nécessite un approvisionnement constant et régulé de

nutriments et d’oxygène lequel est orchestré par le CBF. En fait, le cerveau est un des organes les

plus actif et consomme jusqu’à ~20% de l’oxygène et ~25% du glucose consommés par le corps ce

qui correspond à 20% du débit cardiaque (119). Qui plus ait, depuis la dernière décennie,

l’importance de la perfusion sanguine cérébrale a été à de nombreuses reprises démontrée et ce, par

les effets délétères qu’à une réduction du CBF. La cas échéant, nous observons une perturbation des

effecteurs de la mémoire (120) conduisant à une altération de l’apprentissage et de la mémoire

(121).

1.3.1. Régulation du flux sanguine et maladie d’Alzheimer

En condition physiologique, la NVU effectue des ajustements vasculaires afin de maintenir le CBF

stable. Elle régule égalment la distribution du sang selon les demandes énergétiques (121). Cette

régulation du CBF est appelée couplage neurovasculaire (119,121). En cas de troubles vasculaires,

des événements cellulaires et moléculaires sont déclenchés qui entraînent un dysfonctionnement de

la NVU (95) suivi d’une réduction du flux cérébral sanguin (CBF) (95,96,98,117,122). La NVU est

alors incapable de combler les demandes énergétiques des régions actives du cerveau (121) et de

contrôler le CBF (95). Cette perte de l’autorégulation s’observe par des fluctuations du flux saguin

chez les souris transgéniques Alzheimer (123), les malades d’Alzheimer (118,124) et ceux MCI

(124,125). Suite à ces évidences, plusieurs ont tenté de démontrer la relation entre l’hypoperfusion

et la démence. Une étude intéressante à grande échelle a permis de confirmer cette hypothèse (126).

D’autres études épidémiologiques suggèrent une contribution de l’hypoperfusion dans la

pathogenèse de la AD (127,128). Par la technique de tomographie à émission de positrons (PET),

Hunt et ses collègues ont également démontré une réduction du métabolisme du glucose cérébral

chez des individus MCI situant l’altération vasculaire antérieure à la démence (129). Selon

Page 34: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

12

l’hypoperfusion cérébrale, il a été observé une crise énergétique (95,130) où l’apport en glucose et

en oxygène est réduit aux régions vulnérables (131). La déficience en glucose, causée par

l’hypoperfusion, induit un stress oxydatif et réticulaire aux neurones hippocampaux et corticaux

restreignant leur production d’ATP (132). Ainsi, l’hypoperfusion induit un dysfonctionnement

neuronal (133) ce qui altère l’intégrité et la structure du cerveau (93,134) et, contribue à la

neurodégénérescence et au déclin cognitif (95,130) ; phénomènes qui aggravent la AD (42).

L’hypoperfusion induit également l’altération de l’élimination et/ou du transport de l’Aβ (93,121).

Par conséquent, l’hypoperfusion induite par les troubles vasculaires initierait ou accélèrerait la

cascade pathologique de la AD (42,135).

1.3.2. Oligémie versus ischémie

Il existe deux formes d’hypoperfusion cérébrale: l’oligémie et l’ischémie. L’oligémie décrit un

processus lent pouvant prendre des mois ou des années à s’intaller, alors que l’ischémie réfère à une

réduction assez rapide et soudaine du flux sanguin entraînant la mort de cellules au niveau d’une

lésion dite ischémique (136). Suite à l’oligémie induite par la ligature unilatérale de l’artère carotide

commune (1VO), le déclin cognitif est exacerbé chez les Tg2576 (137) et les APPswe/PS1 (138).

Le même effet synergique a été observé chez les J20/APP (139) soumises à une ischémie induite

par la sténose bilatérale des artères carotides communes (BCAS).

L’oligémie induit une réduction modérée du CBF associée à une diminution de la synthèse

protéique (121,140). Certaines anomalies de la NVU ont également été observées suite à l’oligémie,

dont l’altération de l’interaction intermodale axone-glie (141), l’épaississement de la membrane

basale et la déposition de collagène sur la BBB (142). L’altération de la capacité mnésique décrite

est causée par un dysfonctionnement neuronal (138,140), puisqu’aucune mort cellulaire n’est

observée. Quant à l’ischémie, la réduction du CBF est plus importante provoquant généralement

une hypoxie (42). L’hypoxie entraîne l’expression du facteur de transcription, HIF-1α, qui

augmente l’expression de BACE-1 (89) et diminue l’expression de la neprilysine (143). De ce fait,

les souris Tg swe/dutch/iowa soumises à la BCAS développent plus rapidement des dépôts

amyloïdes associés à un stress ischémique (144). Lorsque la réduction du CBF est supérieure à

50%, celle-ci promeut un dysfonctionnement de la synthèse de l’ATP et une altération de l’activité

neuronale (119). De surcroît, l’ischémie altère l’expression des protéines neurotrophiques et

neuronales (145–147). Suite à l’ischémie, l’expression de MMP-2 augmente (148) alors que

l’expression de claudine V et occludine diminuent (149), occasionnant une altération de la BBB. La

rupture de la BBB interrompt le transport membranaire normal des nutriments, des vitamines et des

Page 35: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

13

électrolytes, nuisant encore une fois au fonctionnement neuronal (150). Contrairement à l’oligémie,

plusieurs études, basées sur le modèle de l’occlusion bilatérale des artères carotides communes

(BCAO) ou de la BCAS, ont démontré que les dommages de la matière blanche et la perte

neuronale sont à l’origine du déclin cognitif (139,149,151–157). Ces évidences indiquent un rôle

central de l’hypoperfusion cérébrale, l’oligémie et l’ischémie, dans la pathogenèse de la AD. Bien

que davantage d’études portent sur l’ischémie, la relation entre la AD et l’oligémie représente un

sujet à approfondir, puisque les changements du CBF observés avec le vieillissement ressemble

davantage à l’oligémie (130,142).

1.4. Système de l’activateur tissulaire du plasminogène

Suite à un stress vasculaire, tel que la formation d’un caillot sanguin ou thrombus occludant un

vaisseau sanguin, l’activateur tissulaire du plasminogène (t-PA), une sérine protéase, est produit et

libéré par les cellules endothéliales afin de lyser le caillot (158). Il s’ensuit la conversion par clivage

protéolytique du plasminogène en plasmine par le t-PA (159–161). La plasmine contribue alors à

dégrader le thrombus en dégradant la fibrine (162) et la laminine (163). Ce système du

plasminogène est régulé à plusieurs niveaux. L’inhibiteur 1 des activateurs du plasminogène (PAI-

1) inhibe le t-PA (159,160,164), alors que la neuroserpine interagit uniquement avec le t-PA

(159,160,165,166). Quant à la plasmine, elle est inhibée par l’α2-anti-plasmine et l’α2-

macroglobuline (159,160). Le complexe formé avec les protéines inhibitrices est généralement

internalisé par les cellules via LRP1, puis dégradé (167). Dans la circulation, le t-PA possède une

demi-vie très courte, d’environ 5 minutes (168,169), suivant laquelle il est éliminé de la circulation

par LRP1 au niveau du foie pour y être dégradé (170). Jusqu’à ce jour, une forme recombinante du

t-PA (rt-PA) représente le seul traitement pour l’AVC ischémique (171), l’un des facteurs de risque

de la AD (93–96).

1.4.1. Fonction du système de l’activateur tissulaire du plasminogène

Présent endogéniquement dans la circulation comme enzyme thrombolytique (172), le t-PA est

également exprimé au SNC par les astrocytes, les microglies et les neurones, soit à l’amygdale

(173), au cervelet (174), au corps calleux (175), à l’hippocampe (165,173,174,176,177), à

l’hypothalamus (173,176), etc. Au niveau du SNC, la majorité du t-PA qui agit sur celui-ci est

produit endogéniquement et ce, par les cellules endothéliales de la BBB (158). Or, le t-PA circulant

et exogène au cerveau peut également agir au niveau de celui-ci directement en traversant la BBB

par transcytose médié par LRP1 (178). Plus précisément, le t-PA est une glycoprotéine de 69 kDa

formée d’une seule chaîne de polypeptide organisé en 5 domaines: Kringle 1, Kringle 2, epidermal

Page 36: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

14

growth factor(EGF)-like, en doigt et protéase (Figure 1.5) (179,180). Ce sont d’ailleurs ces

différents domaines qui lui confèrent son effet pléiotropique au sein du SNC. Le t-PA possède une

activité thrombolytique (162,163). Son activité enzymatique lui confère également des propriétés

neuroprotectrices. En effet, au SNC, cette sérine protéase contribue notamment à moduler la

plasticité synaptique (181–186), la potentialisation à long-terme (LTP) (170,173,187,188) et la

dépression à long-terme (LTD), mais également la perméabilité de la BBB (170,179,189,190) et la

réponse inflammatoire du cerveau (191–197).

Grâce à son activité enzymatique, le t-PA convertit des pro-neurotrophines en leur forme active

(e.g. BDNF, NGF) (198,199) et participe au remodelage neuronal par la production de vésicules

contenant la synaptophysine (183). Par la digestion des protéines de la matrice extracellulaire, le t-

PA module la pousse axonale et, donc, la plasticité synaptique (185). Certes, certains des effets

neurotrophiques du t-PA sont plutôt orchestrés par son action de cytokine qui est elle-même médiée

Figure 1.4. Structure et fonction de l’activateur tissulaire du plasminogène (t-PA). Le t-PA est composé

de 5 domaines: Kringle 1, Kringle 2, facteur de croissance, doigt de zinc et protéase. Le domaine Kringle 2

interagit avec l’unité NR1 du récepteur NMDA. Le domaine de facteur de croissance peut se lier au

récepteur d’EGF et le récepteur du mannose-6-phosphate. Le domaine Kringle 2 et le domaine en doigt

possèdent plusieurs ligands, soit la fibrine, le plasminogène, l’annexine II et les antagonistes du t-PA (PAI-1

et neuroserpine). Le domaine en doigt serait également le domaine liant LRP et potentiellement le domaine

du facteur de croissance. PDGF-CC: Facteur de croissance CC dérivé des plaquettes. (174) [tiré

intégralement].

Page 37: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

15

par LRP1 (200). Le t-PA promeut également l’élongation des neurites par l’induction de kinases

trophiques tel que ERK, la protéine kinase C et PI3K/Akt (201). La modulation de voie de

signalisation par le t-PA lui confère entre-autre un effet anti-apoptotique sur les oligodendrocytes

(175) et module l’apoptose neuronale (202,203). Toutefois, une activité excessive du t-PA a été

associée à l’induction de la mort neuronale (204). Kim et ses collègues ont démontré que le t-PA

empêche la mort par stress oxydatif des neurones par son action de cytokine, mais n’interrompt pas

l’apoptose et l’excitotoxicité de ceux-ci (205). D’autres travaux proposent plutôt que le t-PA même

induit l’excitotoxicité (163,175,206). Celle-ci peut être induite par le clivage du récepteur NMDA

(175,206) au niveau de sa sous-unité NR1 à laquelle le t-PA se lie (207). En plus, le t-PA se lie à

LRP (208) ce qui induit des signaux intracellulaires et promeut le flux calcique altèrant transmission

(209,210). Ces dernières actions par le t-PA contribue alors à la LTD (211).

De nombreuses études mettent en évidence la modulation de la perméabilité de la BBB par le t-PA

circulant (170,179,189,190). En se liant à LRP1 (170,212), le t-PA déclenche des signaux

intracellulaires menant également à l’activation de MMP2/9 (212–215). Le t-PA module la

perméabilité de la BBB suite à un stimulus (e.g. ischémie) qui, lorsque soutenu, s’avère nocif et

peut provoquer la rupture de la BBB (216,217) et l’extravasation de fluide dans l’espace

périvasculaire causant un œdème (217). En fait, lors de l’administration à l’extérieur de la fenêtre

d’intervention thérapeutique, 4,5 heures suivant l’AVC (218), ou la sur-administration (219) du rt-

PA suite à un AVC se produit, davantage d’effets néfastes que bénéfiques sont observés. En effet,

l’administration tardive et le sur-dosage du t-PA augmentent les risques d’hémorrhagies cérébrales

(219–221).

Par sa liaison avec LRP1 (222) ou l’annexine II (195), le t-PA est également apte à moduler

l’inflammation en induisant le recrutement des macrophages (196), l’activité microgliale (192–195),

en plus de la production de cytokines pro-inflammatoire (191–194). Une étude avait également

reporté un rôle de cytokine anti-inflammatoire au t-PA (197). Cette activation des microglies

s’avère nécessaire à la neurodégénération excitotoxique des neurones hippocampaux

quoiqu’insuffisante à l’initier (177). Par conséquent, le t-PA possède plusieurs rôles et

dépendemment du contexte son activité devient bénéfique ou néfaste pour le cerveau.

1.4.2. Système de l’activateur du plasminogène et maladie d’Alzheimer

Dans les modèles transgéniques murins, le t-PA est fortement exprimé autour des plaques denses

amyloïdes résultant en leur arrêt de croissance ou leur dégradation (162,223,224). Les agrégats

d’Aβ de type fibrilles stimulent l’expression du t-PA (225) ce qui entraîne la dégradation de

Page 38: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

16

l’amyloïde via la plasmine (225,226). Le t-PA contribue également à la dégradation de l’Aβ

indirectement par l’induction de l’activation de MMP2/9 (213–215). De plus, l’Aβ régule

positivement la neuroserpine (227) qui intéragit directement avec l’Aβ et limite la formation de

fibrilles (228). Des études avec des souris «knock-out» du PAI-1 (229) et de la neuroserpine (230)

révèlent une réduction de la quantité d’amyloïde soulignant l’importance du t-PA dans l’élimination

de l’Aβ. Cet effet du t-PA a également été observé suite à l’inhibition pharmacologique de

régulateur de la plasmine (231). Dans cet ordre d’idée, la déplétion du t-PA augmente le nombre de

plaques en plus d’aggraver les déficits cognitifs chez les Tg2576/t-PA+/– (232). Malheureusement,

avec le temps, le système du plasminogène devient inefficace à dégrader des dépôts d’amyloïde

(162). En effet, le t-PA réduit dramatiquement avec l’âge et la AD (162,175,198,233,234).

Quoiqu’une certaine étude n’a pas observé d’altération du système du t-PA (235), la majorité des

travaux effectués chez les patients et les souris transgéniques démontrent une diminution de

l’expression et de l’activité du t-PA (162,227,233,234) et de la plasmine (226,227), alors que celle

du PAI-1 (162,236) et de la neuroserpine (227) augmentent. Dans ces conditions, la déposition de

fibrine augmente (237,238). Il s’en suit alors des dommages neurovasculaires, en plus d’une

réaction inflammatoire (239). La dysfonction du t-PA entraîne également des déficits sévères de la

plasticité synaptique (211) ce qui contribue à la progression de la AD. Ainsi, le t-PA et les protéines

du système du plasminogène représentent des cibles thérapeutiques potentielles.

1.5. Unité neurovasculaire

Tel que brièvement mentionné plutôt, la NVU (Fig. 1.5) représente l’unité intrinsèque au sein de

laquelle les cellules de la BBB (cellules endothéliales et péricytes), les cellules gliales (astrocytes,

oligodendrocytes et microglies) et les neurones interagissent et communiquent étroitement entre eux

(119,121). Les cellules endothéliales composent l’endothélium des microvaisseaux où elles forment

des jonctions serrées et adhérentes qui limitent les échanges passifs (119,240). Les péricytes

entourent près de 80% de la surface de ces microvaisseaux (241) via un contact peg-socket essentiel

à leur maintien, qui constitue des projections cytoplasmiques entrelancées ancrant les péricytes sur

les cellules endothéliales (242). Les pieds astrocytaires entourent les cellules endothéliales

complétant la BBB et permettant la communication entre les neurones et les cellules de la BBB

(243), en plus de maintenir la fonction de la celle-ci (244). L’intégrité de cette unité fonctionnelle

est essentielle au bon fonctionnement du cerveau (121). La NVU contribue notamment à la

maintenance de l’homéostasie cérébrale, au couplage neurovasculaire (119,121,243,245,246), à la

perméabilité de la BBB (119,240,247), etc.

Page 39: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

17

1.5.1. Fonction de l’unité neurovasculaire

Par exemple, la BBB forme une barrière physique et sélective (247) régulant les échanges de

métabolites et de nutriments nécessaires au bon fonctionnement neuronal (119). La BBB est donc

cruciale à la maintenance de la composition du fluide interstitiel du cerveau, mais également à

l’élimination de macromolécules potentiellement toxiques (119) telles l’Aβ (68).

Les péricytes, quant à eux, sont des cellules contractiles modulant le CBF via la constriction de la

paroi des vaisseaux sanguins (246). Ils expriment d’ailleurs plusieurs protéines associées à la

contraction dont l’α-actine spécifique aux muscles lisses, la tropomyosine et la desmine (248). Ils

stabilisent également les capillaires nouvellement formés (249). En effet, ils jouent un rôle

important dans la régulation de la prolifération, la survie et la migration des cellules endothéliales,

en plus de moduler les connections des vaisseaux cérébraux (250). Ils prennent part à

l’inflammation du fait de l’expression de récepteur de l’immunité innée (251) et leur capacité de

recrutement de leucocytes au site d’inflammation (252,253). Qui plus est, les péricytes possèdent

une activité semblable aux macrophages induite par la signalisation de récepteurs tels le récepteur

de type Toll(TLR)-4 (254,255) et LRP1 (46). Cela leur permet d’ailleurs d’internaliser l’Aβ pour le

dégrader (46).

Figure 1.5. Représentation de l’unité neurovasculaire et de la microcirculation cérébrale. Les artères

piales, situées dans l’espace sous-arachnoïdie, se divisent en capillaires innervant le parenchyme. Les

cellules endothéliales entourées par les péricytes et en contact avec les pieds astrocytaires forment une

barrière étanche, la BBB. La BBB interagie avec les neurones et les microglies ce qui forme une unité

fonctionnelle, la NVU. SAS: Espace subarachnoïde, VSMC: Cellules vasculaires des muscles lisses. (42)

[tiré intégralement].

Page 40: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

18

Comme les péricytes, les astrocytes influencent le CBF (243,245) et aident à l’organisation des

nouveaux capillaires (256). Ils contribuent également à la réponse immunitaire par leur capacité à

internaliser des macromolécules neurotoxiques (43,45) et à recruter des cellules

immunocompétentes (253,257). De plus, ils participent au guidage neuronal, lors du

développement, en agissant telle une cellule d’échafaudage (258). Comme les neurones, les

astrocytes ont besoin pour fonctionner d’un apport continu en oxygène et en nutriments, ce qui

dépend de l’intégrité fonctionnelle de la NVU (259). Lors d’une demande énergétique par les

neurones, les astrocytes servent d’intermédiaires à la communication entre les neurones et les

cellules endothéliales (260).

Les microglies, quant à elles, sont les cellules immunes principales du SNC (261).

L’autoréplication, la division de progéniteurs du cerveau (261) ou l’infiltration de monocytes

circulants précurseurs, Ly6CHigh/CCR2+ (262), permettent de maintenir la population de microglies

constante. Elles constituent l’une des principales lignes de défense contre les pathogènes infiltrant le

cerveau. En condition physiologique, les microglies sont quiescentes et sondent dynamiquement

l’environnement pour détecter toutes molécules toxiques (263). Lorsque la microglie détecte une

menace potentielle, celle-ci s’active vers un profil inflammatoire, M1, ou alternatif, M2 (264). Par

exemple, lorsque la microglie détecte la présence d’Aβ, elle adopte un profil M1 et est recrutée au

site d’agrégation de l’amyloïde (265,266) où elle la phagocytera (43,47). Suite à son recrutement,

l’Aβ promeut également la sécrétion de cytokines et chimiokines pro-inflammatoires par la

microglie (267). Par la sécrétion de chimiokines et de cytokines, les microglies recrutent les

monocytes (253) induisant la réponse inflammatoire. À l’inverse, la microglie activée M2 est

associée à une fonction de maintenance ou de réparation tissulaire. Trois sous-types de la M2 ont

été décrits, nommés M2a, M2b et M2c. Ces sous-types remplissent des rôles distincts, soit la

réparation tissulaire (M2a), l’immunorégulation (M2b) et l’état endocytique (M2c) par lequel la

microglie élimine efficacement les débris et contribue à la réparation, malgré sa faible présentation

d’antigènes (268). La réponse immunitaire contribue à la maintenance et à la régénération axonale

(269). L’ensemble de ses fonctions est d’ailleurs modulé suivant un stress. Notons, toutefois, que

cette classification dogmatique est utilisée afin de simplifier les mécanismes complexes d’activation

des cellules microgliales. En effet, il n’existe pas deux immunophénotypes précis, mais plutôt un

ensemble de différents états de polarisation pouvant être plus ou moins extrêmes.

Page 41: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

19

1.5.2. Remodelage de l’unité neurovasculaire et maladie d’Alzheimer

Ainsi, la communication dynamique et le fonctionnement de l’ensemble des cellules de la NVU

sont nécessaires au bon fonctionnement du cerveau (119,121). Toutefois, en condition

pathologique, l’unité devient dysfonctionnelle ce qui a des répercutions détrimentaires sur le

fonctionnement du cerveau, soit la fonction cognitive.

Avec l’âge, des changements se produisent au sein de la NVU: diminution de l’expression de

protéines de jonctions serrées, perte de péricytes (242), défaillance du couplage neurovasculaire

(270), réduction du CBF (135) et diminution de la capacité phagocytique des microglies (68). La

perte de péricytes induit une dysfonction des microvaisseaux ce qui a été proposé comme

événement initiant la neurodégénérescence (Section 1.1.3 – Hypothèse vasculaire) (271). Cette

déficience de péricytes augmente la perméabilité de la BBB permettant l’entrée de molécules

toxiques (241). Ce phénomène est également observé suite à des troubles vasculaires tels que

l’AVC ischémique (179,272) et la AD. Chez les malades d’Alzheimer, ces altérations de la NVU

sont plus importantes résultant alors en une accumulation de l’amyloïde (93,119). L’élévation de

l’Aβ cérébrale est d’autant plus importante due à la réduction d’activité des protéines de

dégradation, dont la plasmine (Section 1.4 – Système de l’activateur du plasminogène) (227,230).

Avec la progression de la maladie, les niveaux de chimiokines et cytokines pro-inflammatoires, les

molécules d’adhésion et d’autres médiateurs inflammatoires augmentent considérablement (273).

Par conséquent, le cerveau devient un environnement inflammatoire ce qui pourrait permettre

d’éliminer les macromolécules neurotoxiques du cerveau. Cependant, les macrophages deviennent

avec l’âge moins efficace à éliminer l’Aβ (274), en plus d’avoir une présentation réduite des TLRs

(275). Une inflammation soutenue et une réduction de l’élimination de l’Aβ se produient alors et

contribuent à la neurodégénérescence (68). De plus, il a également été identifié chez des malades

d’Alzheimer qu’une diminution de l’expression du transporteur du glucose, GLUT1, survient

occasionnant une diminution de l’apport de nutriments et substrats essentiels (276). Ce phénomène

est d’ailleurs présent chez des individus asymptotiques susceptibles de développer la AD tel que

démontré par des études par PET utilisant un dérivé du glucose radioactif, le 18F-

fluorodéoxyglucose (129,277,278). Ainsi, plusieurs altération au niveau d cerveau orchestré par le

remodelage surviennent plusieurs années antérieurs au diagnostic.

Ces phénomènes représentent une forme de remodelage de la NVU commune à plusieurs

pathologies. Le remodelage de la NVU se traduit globalement par une réponse moléculaire et

cellulaire se produisant au sein de l’unité suite à un dommage (255). Toutefois, le rôle du

Page 42: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

20

remodelage demeure controversé. Ce remodelage essaie de compenser pour l’événement stresseur

ce qui peut résulté en une amélioration ou aggravation la cascade pathogénique selon le contexte

(150). Dans la phase initiant la AD, l’hypoperfusion s’instaure et induit l’altération de la NVU qui

peut contribuer à l’initiation de la pathogenèse via un mécanisme peu connu (Section 1.3 –

Hypoperfusion) (93). Par la suite, un profil inflammatoire s’installe afin de promouvoir

l’élimination de l’Aβ et autres macromolécules toxiques. Toutefois, cette élimination n’est pas

efficace et, par conséquent, se prolonge ce qui contribue au dysfonctionnement neuronal. Des

investigations supplémentaires, s’intéressant au remodelage de la NVU et son effet sur les

pathologies, sont nécessaires et pourraient démystifier la mécanistique derrière la pathogenèse, en

plus d’offrir de nouvelles voies de traitement (53).

1.6. Hypothèses et objectifs

Dans le cadre de mon projet de recherche, nous nous sommes d’ailleurs intéressés à la relation entre

la maladie et le remodelage de la NVU, plus particulièrement au remodelage de la NVU à la suite

de l’hypoperfusion (Section 1.3 – Hypoperfusion) et de l’activité du t-PA (Section 1.4 – Système

de l’activateur du plasminogène). Puisque l’hypoperfusion et l’altération du t-PA sont des

comorbidités lié à l’âge et à la AD, nous supposons que ces deux conditions induisent de profonds

changements au sein de la NVU ce qui pourrait influencer la progression de la maladie.

Tel que décrit précédemment, une altération de l’autorégulation du CBF est associée à la AD

(118,123,124) indiquant une hypoperfusion cérébrale. Elle induit notamment une altération du

métabolisme du glucose (95,129,130) et contribue à la neurodégénération et au déclin cognitif

(93,95,130,134). Pour ces raisons, nous supposons que l’hypoperfusion constitue un mécanisme

précoce capital de la cascade pathologique de la AD tel que proposé par l’hypothèse vasculaire de

Zlokovic (42). La fonction des microglies étant hautement énergétique (279), nous présumons que

celle-ci deviendrait dysfonctionelle à la suite d’une hypoperfusion cérébrale modérée et ce, en

l’absence de mort cellulaire. Ainsi, nous estimons que l’hypoperfusion chronique, soit la réduction

permanente ou à long terme du CBF, induirait l’accumulation de l’amyloïde et d’autres débris

toxiques. Nous tenterons de confirmer cette hypothèse en nous concentrant sur la modulation des

cellules de la NVU, dont la microglie, lors d’une hypoperfusion chronique modérée. Pour ce faire,

nous avons développé un nouveau modèle jumelant une BCAO transitoire avec une 1VO

permanente.

Avec l’âge, l’expression du t-PA diminue perturbant ainsi l’homéostasie cérébrale. En effet, le

système du t-PA participe à plusieurs fonctions de maintenance du cerveau. Par exemple, le t-PA

Page 43: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

21

contribue indirectement à la dégradation de l’amyloïde en convertissant le plasminogène en

plasmine (225,226) et en modulant, par son action de cytokine, l’activité des cellules

immunocompétentes (192–196). Le t-PA possède également un effet neuroprotecteur (185,197–

199,201) en plus d’un rôle anti-apoptotique chez les oligodendrocytes (175). De ce fait, nous

présumons qu’une compensation du t-PA retarderait la progression de la AD grâce à ces multiples

rôles (162,232). En effet, nous estimons que cette compensation favoriserait l’élimination de l’Aβ

ainsi que l’intégrité de la NVU. De plus, étant un ligand de LRP1 (222), nous estimons que le t-PA

peut moduler positivement l’ensemble des cellules de la NVU l’exprimant (cellules endothéliales,

microglies, péricytes, etc.). Ainsi, nous soupçonnons que l’injection d’une faible concentration du t-

PA en l’absence de bris de la BBB serait suffisante pour retarder la progression de la AD et ce, par

un mécanisme non enzymatique impliquant la voie LRP1. Nous tenterons alors de déterminer l’effet

de l’injection systémique faible et chronique (10 semaines) du t-PA sur la BBB, sur l’activité

microgliale, sur l’Aβ de même que sur les fonctions cognitives dans un contexte de la AD.

Nous cherchons, dans une première mesure, à déterminer comment l’altération de la NVU suite à

l’hypoperfusion peut influencer négativement la fonction cognitive et contribuer à la progression de

la AD. Par la suite, nous tentons de voir comment la modulation de la même unité par le système du

t-PA peut bénéficier et retarder la progression de la AD. Le présent projet décrit ainsi la

contribution du remodelage de la NVU dans la pathogenèse de la AD.

Page 44: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 45: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

23

Chapitre 2

2. Severe chronic cerebral hypoperfusion induces microglial dysfunction

leading to memory loss in APPswe/PS1 mice

Maude Bordeleau, BSc, Ayman ElAli, PhD, and Serge Rivest, PhD

Correspondence:

Dr. Serge Rivest

Neuroscience Laboratory

CHU de Québec Research Center (CHUL)

Department of Molecular Medicine, Faculty of Medicine, Laval University

2705 Laurier boulevard, Québec City

QC G1V 4G2, Canada.

Email: [email protected]

Page 46: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

24

2.1. Résumé

La composante vasculaire de la maladie d’Alzheimer (AD) est un sujet de plus en plus étudié, ainsi

il a été proposé qu’une perturbation vasculaire initierait la neurodégénération dans la AD. En ce

sens, nous supposons qu’une hypoperfusion cérébrale chronique sévère (SCCH) perturbe l’activité

de l’unité neurovasculaire ce qui nuirait à l’élimination de l’amyloïde. Des souris APPswe/PS1 âgés

de 4 mois furent soumises à la SCCH. Après 15 semaines, les souris hypoperfusées démontraient

une altération de leur mémoire aux tests du labyrinthe en T et du 2-objets-nouvel-objet. Le déclin

cognitif corrélait avec une augmentation du nombre de plaques amyloïdes suggérant l’altération de

l’une des voies d’élimination de l’amyloïde. De ce fait, nous avons observé une perte de la fonction

des microglies. In vitro, nous avons démontré que ce phénomène était induit en condition faible en

glucose qui diminue l’activité globale, l’activation et la capacité phagocytique. Cette dysfonction

semble alors induire une diminution de l’efficacité d’élimination de l’amyloïde et des débris

neurotoxiques. De plus, la SCCH altère également la voie de ERK, soit la survie neuronale. En

contexte de la AD, la dysfonction de ERK et des microglies contribuent toutes les deux au déclin

cognitif. Ainsi, le développement de traitement ciblant l’hypométabolisme des microglies pourrait

rétablir la fonction microgliale et retarder la progression de la AD.

2.2. Abstract

The vascular components of Alzheimer's disease (AD) are the object of mounting interest in

the field. More precisely, disruption of vascular integrity has been hypothesized to be involved in

initiating the neurodegenerative cascade in AD. Vascular alterations associated to cerebral

hypoperfusion, impairs brain homeostasis, thus oxygen and glucose intake. Herein we suggest that

severe chronic cerebral hypoperfusion (SCCH) alters brain homeostasis, resulting in the alteration

of amyloid precursor protein processing. SCCH was induced in APPswe/PS1 mice for 15 weeks

later. SCCH worsened mice cognitive functions that were assessed by water T-maze and 2-object-

novel-object tests. Cognitive decline correlated with increased amyloid plaque abundance,

suggesting a dysfunction in amyloid-beta (Aβ) elimination. Indeed, SCCH impaired microglial cell

function, which are implicated in Aβ elimination. In addition, SCCH altered extracellular signal-

regulated kinases 1/2 (ERK1/2) pathway activity. Moreover, in vitro investigations showed that

microglia exposed to a low-glucose environment display a decreased global activity and phagocytic

capacity. Microglial cell dysfunction correlated with a lower efficiency in eliminating Aβ. Our

study unravels new insights into the implication of cerebral hypoperfusion in AD pathogenesis by

altering microglial cell activity, which should be considered while developing new therapies.

Page 47: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

25

2.3. Introduction

The most common form of dementia is currently Alzheimer’s disease (AD). According to current

estimates, over 90 million people will be affected in 2025 worldwide (2). AD is characterized by

two main hallmarks, i.e. senile plaques and neurofibrillary tangles (4) which are respectively caused

by deposition of amyloid-beta (Aβ) and tau hyperphosphorylation. In the last decade, a number of

studies have provided accumulating evidence of a close relationship between vascular risk factors

and AD (53,94,95,127,280). It was proposed that vascular dysfunction associated to cerebral blood

flow (CBF) alterations might trigger downstream events that are implicated in the

neurodegenerative cascade observed in AD (93,95). For example, low CBF has been associated

with mild cognitive impairment (MCI), a possible precursor in AD etiology (124,137,142,157).

Importantly, impaired CBF and glucose metabolism have been reported in AD patients (42), and in

mouse models of AD (140). More interestingly, deregulations in cerebrovascular perfusion have

been suggested to take place even before cognitive decline (144).

Recently, Zlokovic (2011) proposed the two-hit vascular hypothesis, which incorporated

cerebrovascular dysfunction as a key mechanism involved in AD pathogenesis (42). The hypothesis

speculates that several risk factors affecting vascular functions, such as hypertension, diabetes, heart

disease and cerebrovascular diseases, trigger blood-brain barrier (BBB) dysfunction initiating the

neurodegenerative cascade observed in AD (42). Accordingly, many studies have demonstrated

higher Aβ levels after cerebral hypoperfusion (140,144). Once Aβ starts to accumulate, soluble

oligomers may trigger neurotoxic and excitotoxic events (69). Aβ has also been shown to

profoundly affect the function of cells that form the neurovascular unit (NVU) (121). The NVU

comprises vascular cells (endothelial cells, pericytes), glia cells (astrocytes, microglia and

oligodendrocytes) and neurons (119,121). Importantly, the NVU plays a crucial role in maintaining

brain homeostasis and CBF (119,121,243,245,246). Recent investigations have shown that chronic

cerebral hypoperfusion (i.e. oligemia) impairs NVU function. Upon oligemia-induced injury, both

basal membrane thickening of endothelial cells and fibrous deposition occur (142). Hypoperfusion

is also well known to induce BBB dysfunction (55,121,149). Recent investigations have also

demonstrated altered astrocyte function upon hypoperfusion, leading to abnormal axon-glia

connections (141), characterized by the infiltration of astrocyte branches in neuronal cell bodies

(156). Importantly, the latter phenomenon is known to promote neuronal apoptosis (156).

Furthermore, a few studies have observed altered numbers of astrocytes (157,281), neurons

(149,151,154–156), microglia (151,156,281) and peripheral monocytes (126) following either

chronic or acute hypoperfusion. Importantly, the brain possesses several sophisticated mechanisms

Page 48: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

26

involved in Aβ clearance, namely degradation by microglia (282,283). However, Aβ clearance by

microglia is impaired in the advanced stages of AD due to the formation of a stressful

microenvironment (284). Importantly, how chronic cerebral hypoperfusion may affect the function

of microglia remains totally unknown (53).

In the light of previous studies, we hypothesize that severe chronic cerebral hypoperfusion induces

NVU dysfunction, thereby impairing brain homeostasis, thus altering Aβ clearance and

exacerbating neurodegeneration. We have developed a new model of severe chronic cerebral

hypoperfusion (SCCH) (Fig. 2.1) to study the changes occurring within the NVU and the

mechanisms that contribute to the progression of AD pathogenesis. Interestingly, SCCH worsened

mouse spatial and non-spatial memory loss. In addition, we found that SCCH likely triggers the

formation of a low glucose environment, thus reducing microglial cell efficiency of in eliminating

Aβ. In addition, we also report that SCCH deactivates extracellular signal-regulated kinase (ERK)

pathway, which have been shown to play an important role in neuronal survival. Overall, SCCH

exacerbated AD-like pathology in APPswe/PS1 mice, thus confirming oligemia as an event that can

significantly contribute to neurodegeneration.

2.4. Material and methods

2.4.1. Animals with severe chronic cerebral hypoperfusion

All protocols were performed according to the Canadian Council on Animal Care guidelines, under

supervision by the Laval University Animal Welfare Committee. Mice were acclimatized to

standard laboratory cycles of 12 h light/dark (on at 7:00 h and off at 21:00 h). Adult male

APPswe/PS1 transgenic mice expressing a doubly mutated version of human amyloid precursor

protein (APPswe) as well as human presenilin 1 (A246E variant) were acquired from the Jackson

Laboratory (Bar Harbor, ME). All mice had a C57BL/6J background.

Four months-old APPswe/PS1 mice were subjected to either sham or SCCH surgery. Mice were

anesthetized for 5 min with 3.0% isoflurane (Abbvie, Chicago, IL), and anesthesia was further

maintained using 2.5% isoflurane for ~15 min. Lidocaine was injected locally before performing

incisions. Midline cervical incision was performed and both common carotid arteries were then

exposed. The right common carotid artery was permanently ligated with 6.0-mm non-absorbable

silk thread as described in Pimentel-Coelho et al. (2013) (138). After 2 min, a pressure of 15 g/mm2

was applied on the left common carotid artery with a vessel clamp (MORIA Inc, Doylestown, PA)

during 15 sec (Fig. 2.1). Midline incision was closed using 6.0-mm silk suture thread, and mice

were awakened using a heating pad. Buprenorphine was administered 12 h post operation. Body

Page 49: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

27

mass time course after surgery was monitored for eight weeks. Mice were kept for 17 weeks after

surgery.

At 7.5 months, mice were subjected to behavioral analysis. Three weeks later, they were

anesthetized with ketamine/xylazine, and total blood was collected followed by flush perfusion with

saline (0.9% (w/v) NaCl). Brain was split in two halves at the origin of the hippocampus ( -1.0 mm

from the bregma). The anterior part of the brain, along with the midbrain, was post-fixed with 4%

(w/v) paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA) in 0.1 M phosphate

buffer (pH = 7.6) for 48 h and immersed in 20% (w/v) sucrose/4% (w/v) PFA overnight. The

posterior part of the brain was frozen in dry ice and cut into 25-µm coronal sections with a

microtome (Leica SM 2000R, Leica Microsystems Inc., Concord, ON, Canada). Tissues were

stored at -20 °C in a cryoprotectant solution (0.052 M sodium phosphate buffer (pH = 7.3)

containing 5.37 M ethylene glycol and 2.71 M glycerol), which was used for immunofluorescence,

Fluoro Jade-B (FJB) staining, Nissl body staining and immunohistochemistry.

Immunohistochemistry and FJB staining were carried out in parallel in stroked animals as positive

controls for loss of BBB integrity and monocyte infiltration. The anterior part of the brain was used

for the molecular analyses (vide infra).

Figure 2.1. Schema illustrating the SCCH surgery. Permanent occlusion of the right common carotid

artery is performed on anesthised mice. After 2 minutes, a 15G pressure is exerted with a vessel clip on

the left common carotid artery during 15 seconds.

Page 50: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

28

2.4.2. Behavior analysis

Behavior analysis was carried out 14 weeks post surgery. All behavior tests were performed during

the lights-off phase of the day. The behavioral experimenter was blinded to the surgery status of the

animals.

2.4.2.1. Water T-maze

Hippocampal-dependent spatial learning and memory were determined via the water T-maze test as

previously described (285). The mouse’s ability to find a submerged platform in a water-filled

fiberglass pool (stem length, 64 cm; arm length, 30 cm; width, 12 cm; wall height, 16 cm) was

evaluated. Before the test, the escape platform (11 cm x 11 cm) was placed randomly at the end of

one of the arms and submerged to a 1-cm depth. Mice were put in the stem's enclosure and let to

explore the maze until the animal escaped to the platform. If the mouse did not find the submerged

platform after 60 sec, it was gently maneuvered towards it. The animals stayed on the platform for

20 sec. During the learning and reversal phase, the time and number of trials required to reach the

platform were noted. The criterion of positive learning was determined as successfully reaching the

platform upon 5 consecutive trials; otherwise, mice had 48 trials at their disposal to achieve

learning. Fourty-eight hours later, the reversal-learning phase was assessed by placing the

submerged platform at the opposite end of the maze

2.4.2.2. Two-object novel object recognition

The object recognition test consisted of training and testing phases in a rectangular open field of the

same size as their home cage (width, 18 cm; length, 28 cm; height, 12 cm) in clear plexiglas. The

experimenter could not be seen by animals while the test took place. During the training phase,

mice were presented with two identical objects and allowed to inspect both of them for 5 min.

Animals whose exploration period lasted < 10 sec per item were considered unsuitable and were not

used for further analysis. Between each trial, objects were thoroughly cleaned to minimize olfactory

cues. After 3 h, the retention test was performed. Mice were left in the experimental arena for 5 min

in the presence of a familiar object along with a new one of comparable size, texture and shape. For

half of the animals, the new object was presented on the right-hand side and for the remaining half,

on the left-hand side. A digital camera was mounted on the ceiling above the arena and connected to

a computer equipped with a video tracking system (ANY-maze, Stoelting Co., Wood Dale, IL),

which objectively monitored and quantified movements. Object exploration was defined as

touching the object or pointing the snout towards it at a distance < 2 cm. The recognition value

represents ratio of the time spent exploring the object on the total time allowed.

Page 51: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

29

2.4.2.3. Asymmetry cylinder test

Mice were subjected to a single 5-min session within a glass cylinder (diameter, 20 cm; height, 30

cm). An angled mirror was placed behind the cylinder in order to visualize limb use and movements

from all angles. During the session, forelimb asymmetry was assessed by scoring independent

weight-bearing contacts of the right or left paw on the cylinder wall. The percentage of right and

left touches was calculated relative to the total number of contacts.

2.4.2.4. Open field

Mice were placed in a rectangular open-field arena for 5 min as previously described (286) and

equipped with a video tracking system (side view). The distance traveled, the frequency and time of

the motionlessness episode, the frequency and direction of rotation (clockwise or counterclockwise)

as well as maximum speed reached were recorded. The time spent and entries in the different parts

of the arena (center, interspace and periphery) were also recorded. After each trial, fecal waste was

removed, and the floor of the arena was cleaned with a damp cloth and then dried.

2.4.3. Soluble Aβ1-40 and soluble Aβ1-42 ELISA

The soluble Aβ1-40 and soluble Aβ1-42 ELISAs were performed according to the manufacturer’s

protocol (EMD Millipore, Billerica, MA). Contralateral and ipsilateral hemispheres were split and

homogenized in 750 µL of lysis buffer containing a protease inhibitor cocktail (EMD Millipore)

and 1% (v/v) phosphatase inhibitor cocktail 3 (Sigma-Aldrich, St. Louis, MO) with a hand-held

homogenizer (Bio-Gep Series Pro200, Pro Scientific, Oxford, CT). A sample of the homogenized

brain solution was collected for western blot analysis. The remaining solution was mixed at 4 °C for

2 h. Brain homogenates were spun for 10 min x 1300 rpm at 4 °C and the supernatant was collected.

Fifty µL of the diluted samples (1:10) and standards (16-500 pg/mL) were loaded along with 50 µL

of antibody conjugate per well into ELISA plates. Samples were mixed for 5 min at 4 °C and then

stored overnight at 4 °C without agitation. The wells were rinsed five times with washing buffer

prior to incubation with conjugate-enzyme for 30 min at room temperature (RT). The wells were

rinsed again before substrate addition. ELISA plates were incubated for 30-35 min at RT and the

binding reaction was ended with stop solution containing 0.3 M HCl. Soluble Aβ1-40 and soluble

Aβ1-42 levels were measured by the A495 and A590 values using a microtiter plate reader (SpectraMax

340PC, Molecular Devices, Sunnyvale, CA) and analyzed using the SOFTmax Pro3.1.1 software

(Molecular Devices).

Page 52: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

30

2.4.4. Immunofluorescence staining

Brain sections were stained using a free-floating technique. Tissues were rinsed 3 times for 15 min

in potassium phosphate buffered saline (KPBS) containing 22 mM K2HPO4, 3.3 mM KH2PO4 and

140 mM NaCl. Sections were then permeabilized and blocked in 6.78 mM Triton X-100, 1% (w/v)

BSA (Sigma-Aldrich) and 4% (v/v) goat serum (Cedarlane, Burlington, ON, Canada) for 20-30

min. Tissues were incubated overnight at 4 °C with the primary antibody in 0.5X blocking solution.

We used mouse anti-Aβ monoclonal antibody (6E10) (Wako Chemicals, Richmond, VA), rabbit

anti-ionized calcium binding adaptor molecule 1 (Iba1) antibody (Wako Chemicals) and rat anti-

CD68 (AbD Serotec, Kidlington, UK) as primary antibodies. Free-floating slices were next rinsed

in KPBS and incubated with the secondary antibody for 2 h at RT. Tissues were incubated with

Cy3-conjugated goat anti-mouse antibody (Jackson ImmunoResearch, West Grove, PA), Alexa

488-conjugated goat anti-rabbit antibody (Life Technologies, Burlington, ON, Canada) or Cy3-

conjugated goat anti-rat antibody (Jackson ImmunoResearch). Brain sections were washed and

counterstained with 2 µg/mL DAPI (Life Technologies) for 20 min at RT. Sections were rinsed,

mounted onto SuperFrost slides and dried under vacuum for at least 3 h. Brain mounted slides were

hydrated and overlaid with coverslips using iFluoromount-G anti-fading medium (Electron

Microscopy Sciences).

For cellular stereological analysis, Iba1 was co-stained with either 6E10 or CD68, using the Iba1

antibody as the initial marker in the staining sequence, followed by the 6E10 or CD68 antibody.

Next, three sections for each Iba1/6E10- (-1.46 mm, -2.18 mm and -3.28 mm from the bregma) and

Iba1/CD68-stained tissue (-1.46 mm, -2.06 mm and -2.46 mm from the bregma) were analysed

using Stereo Investigator v. 9.10.6 (MBF Bioscience, MicroBrightField Inc., Williston, VT). For

each section, amyloid load (number and area), microglia number and CD68 marking (number and

area) were determined per hemisphere and expressed as ratios of the hippocampus area. Pictures

were taken with a Nikon C80i microscope (Nikon Instruments, Williston, VT) equipped with a

QImaging® color camera (MBF 2000 R, Quantitative Imaging, Surrey, BC, Canada) and QCapture

Version 2.98.2 software (Quantitative Imaging).

2.4.5. Western blot analysis

Whole brain homogenates were diluted 1:10 in NET lysis buffer (0.2 M NaCl, 0.1 M Tris, 5 mM

EDTA, 11.6 mg/L Tergitol® solution (232mg/L) type NP-40, pH = 7.5) containing 1% (v/v) of

phosphatase inhibitor mixture and 1% (v/v) of protease inhibitor cocktail (Sigma-Aldrich) and

sonicated for 40 sec on ice (Sonic Dismembrator, model 100, Fisher Scientific Ca., Ottawa, ON,

Canada). Total protein content for each sample was determined using the bicinchoninic acid method

Page 53: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

31

(QuantiPro assay kit, Sigma-Aldrich) (287). Protein samples (15 µg) were mixed with 2X SDS

loading buffer and heated for 5 min at 100°C. Samples were loaded on a precast 4-20%

polyacrylamide gradient gel (Bio-Rad, Hercules, CA) and subjected to electrophoresis for 10 min at

110 V followed by 90 min at 90 V. After migration, resolved protein bands were transferred onto a

0.45-mm polyvinylidene fluoride (PVDF) membrane (EMD Millipore) for one hour on ice under a

80 V potential. The PVDF membrane was rinsed three times with a 0.1 M Tris-buffered saline

containing 670 M Tween-20 (TBS-Tween; Sigma-Aldrich) and blocked in TBS-Tween with 5%

(w/v) skim milk for 30 min at RT. The PVDF membrane was then incubated overnight at 4 °C one

of the following primary antibodies: anti-phosphoERK1/2 (T202/Y204 for ERK1, T185/Y187 for

ERK2; Cell Signaling Technology, Danvers, MA), anti-total ERK1/2 (Cell Signaling Technology),

anti-phospho-p38 (New England Biolabs, Whitby, ON, Canada), anti-total p38 (New England

Biolabs), anti-phospho-stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK; New

England Biolabs), anti-total SAPK/JNK (New England Biolabs), anti-claudin-5 (Santa Cruz

Biotechnology, Dallas, TX) and anti-β-actin (EMD Millipore), the latter being used as an internal

standard for sample processing errors. The membrane was washed three times with TBS-tween,

incubated for two hours at 4 °C with the horseradish peroxidase-conjugated secondary antibody in

blocking solution, and re-washed three times with TBS-tween. Proteins were detected by enhanced

chemiluminescence (ECL; GE Healthcare Life Sciences, Mississauga, ON, Canada) (288) and

exposed on BioMax® MR film (Carestream, Rochester, NY). Blots were digitized and analyzed by

densitometry with ImageJ software (National Institutes of Health, Bethesda, MD). Specific protein

levels were expressed relative to the loading control (β-actin internal standard).

2.4.6. Flow Cytometry

During perfusion, cardiac puncture was performed to quantify monocytes in peripheral blood using

flow cytometry analysis. Blood was stored in EDTA-coated vials (Sarstedt, Newton, NC). Cells

were washed once with Ca2+/Mg2+-free Dulbecco’s PBS (DPBS; Sigma-Aldrich), and then

resuspended and incubated in DPBS supplemented with purified rat anti-mouse CD16/CD32

antibody (Mouse BD Fc Block; BD BioSciences) for 15 min at RT. Cells were then washed with

DPBS, resuspended in a mixture of V500-conjugated anti-CD45 antibody (BD BioSciences),

Alexa700-conjugated anti-CD11b antibody (eBioScience, San Diego, CA), allophycocyanin-

conjugated anti-CD115 antibody (eBioScience), phycoerythrin-conjugated anti-Ly6-G antibody

(BD Biosciences) and V450-conjugated anti-Ly6-C antibody (BD BioSciences). After a 40-min

incubation on ice, cells were rinsed with DPBS. Red blood cells were lysed with BD Pharm LyseTM

(BD Biosciences) for 30 min at RT. Labeled cells were washed, resuspended in DPBS, and then

Page 54: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

32

injected in a flow cytometer (BDTM LSR II, BD Biosciences). A minimum of 67,000 singlet events

were acquired and analyzed with BD FACSDivaTM software v.6.1.2 (BD Biosciences)

2.4.7. Immunohistochemistry

Free-floating brain sections were washed with KPBS three 10-min cycles and incubated for 2 h at

RT with the appropriate secondary antibody, i.e. either biotinylated anti-goat antibody (Vector

Laboratories, Burlingame, CA) or biotinylated anti-rat antibody (Vector Laboratories). Brain slices

were washed, treated with avidin/biotin complex reagent (Vector Laboratories) for one hour at RT

and washed again. Albumin and CD45 were stained in 0.5 g/L diaminobenzidine (DAB; Sigma-

Aldrich) solution supplemented with 1.11 mM H2O2 for 8 min and 15 min, respectively. Sections

were immediately washed, mounted onto SuperFrost slides, and dried overnight. Slides were

dehydrated using a sequential treatment with 10 dips in H2O, 50% (v/v) EtOH, 70% (v/v) EtOH,

twice in 95% (v/v) EtOH, thrice in 100% (v/v) EtOH, and finally twice in xylene. The dehydrated

sections on slides were overlaid with coverslips using distyrene plasticizer xylene (DPX) mounting

medium

IgG extravasation staining was performed as described above when used as a secondary antibody.

Free-floating brain slices were washed and treated with a blocking solution (6.78 mM Triton X-100,

1% (w/v) BSA and 4% (v/v) horse serum). Biotinylated anti-mouse IgG antibody was incubated

overnight at 4°C. Slices were rinsed with KPBS and immersed for 1 h with ABC mixture. Brain

sections were washed, stained in DAB solution for 10 min, and re-washed. Slices were mounted

onto slides, dried, dehydrated and overlaid with coverslips in DPX. Pictures were taken using a

Nikon C80i microscope equipped with a QImaging® color camera.

2.4.8. Nissl body staining

Brain sections were mounted on slides and dried overnight under vacuum. Slides were washed

(2x10 min) in KPBS, and then fixed for 20 min in 4% (w/v) PFA. They were then dehydrated

according to the following sequence: H2O, 50% (v/v) EtOH, 70% (v/v) EtOH, twice in 95% (v/v)

EtOH, and thrice in 100% (v/v) EtOH; each dip carried out for 3 min), transferred next into xylene

for 5, 30 and 2 min, and finally rehydrated using the reverse-order sequence (thrice in 100% (v/v)

EtOH, twice in 95% (v/v) EtOH, and then 70% (v/v) EtOH, 50% (v/v) EtOH and H2O; 2 min for

each dip). Slides were next dipped 20 times in 0.25% thionin (Sigma-Aldrich). Mounted brain

slides were dehydrated again (20 dips in each of H2O, 50% (v/v) EtOH, and 70% (v/v) EtOH, and

then 2 and 3 cycles of 3-min dips in 95% (v/v) and 100% (v/v) EtOH, respectively, and finally, 2

Page 55: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

33

cycles of 3-min dips in xylene) before overlaying with coverslips in DPX mounting medium

(Electron Microscopy Sciences).

For stereological analysis, 3 sections (-1.46, -2.06, and -2.46 mm from the bregma) were analyzed

using the Stereo Investigator software. For each section, the cornu ammonis 1 through 3 (CA1/CA2,

CA3) areas and the dentate gyrus area were defined and expressed as ratio of total hippocampus

area for both hemispheres. Photographs were obtained with a Nikon C80i microscope equipped

with a QImaging® color camera.

2.4.9. Fluoro-Jade B staining

FJB staining was used as an indicator of neuronal death as described in Turrin and Rivest (2006)

(289). After mounting brain sections onto slides and thorough overnight drying under vacuum,

slices were fixed with 4% PFA for 20 min. Fixed slides were then rinsed twice with KPBS for 5

min, before a cycle of dehydration/rehydration according to this sequence: 3 min in 50% (v/v)

EtOH, 1 min in 70% (v/v) EtOH, 3 min in 100% (v/v) EtOH, 1 min in 70% (v/v) EtOH, 1 min in

50% (v/v) EtOH and 1 min in H2O). Mounted slides were next treated for 10 min with 3.8 mM

potassium permanganate (MP Biomedicals, Santa Ana, CA), rinsed for 1 min with H2O and then

incubated in 6.05 µM FJB solution (EMD Millipore) containing 17.5 mM acetic acid and 2 µg/mL

DAPI. Then, slides were washed (3 x 1-min rinses in H2O) and dried overnight. Slides were

immersed in xylene (3 x 2-min dips) and overlaid with coverslips in Fluoromount-G anti-fading

mounting medium. Images were obtained with a Nikon C80i microscope equipped with a

QImaging® color camera.

2.4.10. In vitro experiments

2.4.10.1. Cell culture

Immortalized murine microglial cells (BV2) were cultured at 37 °C in a 5% CO2/95% air

atmosphere in DMEM containing 10% (v/v) FBS, 4.5 g/L glucose, 6 mM L-glutamine, 100 U/mL

penicillin and 100 µg/mL streptomycin. Cells were grown to 70-90% confluence and subjected to a

maximum of 20 passages. All cell culture reagents were from Sigma-Aldrich.

2.4.10.2. XTT assay

Cell viability was measured with the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-

carboxanilide (XTT) assay according to the manufacturer’s procedure (Cell Signaling Technology).

BV2 cells were plated at 1x104 cells/well in 96-well microplates in DMEM supplemented with 10%

(v/v) FBS and 4.5 g/L D-glucose. Cells were incubated overnight at 37°C before replacing medium

with DMEM containing 1% (v/v) FBS and either 4.5 g/L D-glucose (DMEM-High) or 1.0 g/L D-

Page 56: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

34

glucose (DMEM-Low; n=5 experiments, 4 replicates/treatment). For cell death controls, cells were

exposed for 24 h to DMEM-High containing 0.75 mM H2O2). Fifty µL of XTT detection solution

were added to each well and incubated for 3 h at 37 °C. Cell viability was determined from A450

using a microtiter plate reader and analyzed with the SOFTmax Pro3.1.1 software.

2.4.10.3. Griess assay

Global cell activity was evaluated by determining nitrite release into the cell culture medium using

the Griess assay according to the manufacturer’s protocol (Life Technologies). Cells (1.8 x

104/well) were plated in 24-well culture plates and incubated overnight at 37°C. BV2 cells were

incubated for 24 h in both DMEM-High or -Low medium plus or minus lipopolysaccharide (LPS)

(Sigma-Aldrich) (at either 0.1, 0.5 or 1 µg/mL; n=6 experiments, treatments in triplicate). Culture

medium was then collected, and 150 µL were transferred to 96-well microplates. Nitrite-containing

medium was mixed with 20 µL of Griess reagent and 130 µL of deionized water. Standards (1-100

µM) were added to the microplate, which was next incubated for 30 min at RT. Nitrite

concentration was determined by measuring A508 with a microtiter plate reader and analyzed with

the SOFTmax Pro3.1.1 software.

2.4.10.4. Flow cytometry analysis of CD68 expression

BV2 cells were plated (3x105 cells/well) in 24-well culture plates in DMEM containing 10% (v/v)

FBS and 4.5 g/L D-glucose. Cells were allowed to grow overnight at 37°C with 5% CO2 before

replacing medium with DMEM-High or -Low (n=5 for each group). After a 24-h incubation, cells

were harvested upon treatment with cell dissociation buffer (Sigma-Aldrich) and transferred to 5-

mL FACS tubes (BD Biosciences). Cells were spun down for 10 min at 300 x g and resuspended in

DPBS containing 4% rat serum (Jackson ImmunoResearch). Cell metabolism was stopped by

storage for 20 min on ice, and cells were then collected by centrifugation, washed and further

incubated in 0.5 g/L Fc Block CD16/CD32 on ice for 20 min. Cells were next washed once with

DPBS and suspended in 100 µL of DPBS containing 0.5 g/L Alexa 647-conjugated anti-CD68

antibody (AbD Serotec), and incubated on ice for 30 min. After one rinsing with DPBS, cells were

resuspended in DPBS. Data were acquired using a flow cytometer (at least 10,000 singlet events)

and analyzed with BD FACS Diva software.

2.4.10.5. Flow cytometric analysis of phagocytosis

BV2 cells were plated at 3x105 cells per well in DMEM containing 4.5 g/L D-glucose and 10%

(v/v) FBS, and incubated at 37°C overnight. DMEM was next replaced with DMEM-High or -Low

(n=6 for each group). Cells were acclimatized in the latter medium for 24 h before adding 5 mg/L of

Page 57: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

35

Vybrant E. coli beads (Life Technologies) in 1X Hank's balanced salts solution. Phagocytosis was

allowed to proceed for 2 h at 37 °C. As a control, phagocytosis was assessed on ice with viable

cells. Cells were then washed twice with ice-cold DPBS and harvested with non-enzymatic cell

dissociation buffer (Sigma-Aldrich). Non-internalized beads were quenched with 0.2% trypan blue

solution (Sigma-Aldrich). BV2 cells were washed and resuspended in DPBS, and then injected into

the flow cytometer. Data were acquired (at least 500 singlet events) and analyzed with the BD

FACS Diva software.

2.4.11. Statistical analysis

In vivo and in vitro data are expressed as the mean ± SEM and mean ± SD, respectively. For cellular

and molecular analyses, comparisons between groups were analyzed with standard two-tailed

unpaired t-tests. For weight variation through time, the intergroup differences were calculated by

two-way ANOVA. Differences were considered as significant with a P value < 0.05. All statistical

analyses were performed using GraphPad Prism v.6.0 for Windows (GraphPad Software Inc., La

Jolla, CA).

2.5. Results

2.5.1. SCCH worsen memory impairment in APPswe/PS1 mice without affecting motor

capacity

Weight variation in both groups was monitored for up to 7 weeks after surgery, which had no effect

per se on weight gain (Fig. 2.2A). Water T-maze and two-object novel object recognition tests were

performed 14 weeks after surgery to distinguish changes in hippocampal-dependent spatial memory

and learning (285) from alterations in non-spatial memory (290), respectively. The non-spatial

memory or recognition memory is based on the novelty paradigm which postulates a subject's

preference to explore a new object rather than a familiar one (290). For the water T-maze test,

SCCH-treated compared to sham-operated APPswe/PS1 performed likewise during the acquisition

phase (data not shown). Both groups displayed a latency of ~11 sec and tried approximately 7

times. However, 48 hours later, during the reversal phase, SCCH mice had significantly (P=0.0350)

higher latency (Fig. 2.2C) and needed more trials to complete the test (P=0.0681) (Fig. 2.2B). Both

groups performed likewise in the learning phase of the two-object novel object recognition test

(data not shown), while SCCH mice showed a significant loss of the novelty paradigm in the

retention phase compared with sham (P=0.0243) (Fig. 2.2D). Sham and SCCH mice explored the

objects 48.62-51.58% and 48.17-51.83% of the time, respectively.

Page 58: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

36

Motor performance was assessed with open-field and asymmetry tests, which respectively define

motor capacity and laterality tendency. Sham and SCCH mice behaved likewise for both tests

(Supplementary Fig. 2.1). During the open-field test, both groups showed equivalent distance

traveled (sham: 33.3 ± 1.3 cm, SCCH: 27.4 ± 2.4 cm), immobile time (sham: 27.1 ± 4.2 sec, SCCH:

49 ± 14 sec), immobile episodes (sham: 16.7 ± 3.1, SCCH: 23.9 ± 4.2), maximum speed (sham:

0.320 ± 0.015 cm/s; SCCH: 0.327 ± 0.021 cm/s), as well as the number of total rotations (sham:

19.5 ± 0.3; SCCH: 16.5 ± 2.5), clockwise rotations (sham: 9.3 ± 1.2, SCCH: 8.5 ± 1.7) and

anticlockwise rotations (sham: 10.2 ± 1.1, SCCH: 8.0 ± 1.5). (Supplementary Fig. 2.1A). In the

asymmetry cylinder test, sham and SCCH mice used their right forepaw 50.8 ± 2.1% and 45.5 ±

2.7% of the time, respectively (Supplementary Fig. 2.1B). Hence, chronic hypoperfusion did not

Figure 2.2. SCCH aggravates APPswe/PS1 memory loss. Water t-maze test (B,C) and 2-objects novel

object recognition task (D) respectively use to describe spatial memory and cognition. The surgery had no

significant effect on weight variation (A) between sham and SCCH group. SCCH mice present a tendency

(P = 0.0681) to increase trials number (B) and significant increase of latency (C) during water t-maze test.

SCCH group also exhibits significant loss of novel object recognition. Data are means ± SEM (n=6-8

animals per group) * P < 0.05 compared to sham group; #P < 0.05 compared with sham object 1. Pre-op:

Pre-operatory.

Page 59: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

37

elicit any significant asymmetry pattern. Taken together, these results show that SCCH specifically

affects spatial and non-spatial memory without altering motor abilities in APPswe/PS1.

2.5.2. Memory loss in SCCH mice is associated with an increased number of parenchymal

amyloid plaques

Aβ deposition in brain parenchyma and vasculature constitutes one of the main hallmarks of AD

(4). Soluble Aβ oligomers have been described as neurotoxic species whereas the role of senile

plaques in the progression of the disease is still debated (69,80). Therefore, we evaluated Aβ load in

the hippocampus by using 6E10 immunostaining (Fig. 2.3A-C) and measured soluble Aβ1-40 and

Aβ1-42 levels by ELISA (Fig. 2.3D-E) . Our main interest resided in the hippocampus since the latter

has been suggested to be especially vulnerable to chronic cerebral hypoperfusion (126).

Stereological analysis of 6E10 staining revealed a significantly increased number of Aβ plaques in

SCCH mice compared to sham mice (P= 0.0008) (Fig. 2.3A, B) without a significant change of

plaques load (Fig. 2.3A, C). There was no difference in soluble Aβ1-40 (Fig. 2.3D) and Aβ1-42 (Fig.

2.3E) levels between sham and SCCH group. Interestingly, these results suggest that SCCH

APPswe/PS1 mice develop more amyloid plaques in the parenchyma without altering levels of

soluble oligomers.

2.5.3. SCCH-linked trend towards an increased in the patrolling monocyte population

Monocytes are known to be recruited to vasculature following injury (282,283) and to participate in

Aβ elimination (284,285,290). Thus, we investigated the effect of SCCH on peripheral blood

monocytes by using flow cytometry analysis. Leukocyte populations were gated with CD45+ in

which CD11b+/CD115+ represented monocyte populations (Fig. 2.4A). Via a gating strategy that

uses Ly6C as a cell marker (Fig. 2.4B), monocyte subsets were sorted into Ly6CHigh (Fig. 2.4C) and

Ly6CLow (Fig. 2.4D), corresponding to inflammatory and patrolling monocytes, respectively. Both

sham and SCCH mice exhibited similar monocyte and Ly6CHigh population frequencies. However,

the frequency of Ly6CLow showed a slight increase upon SCCH (P < 0.0779). The latter trend

towards a small shift in the Ly6CLow monocyte population may be caused by the vascular

dysfunction associated to SCCH, as these cells have been reported to actively contribute to vascular

remodeling (291–294).

Next, we examined the effects of SCCH on BBB integrity.. The integrity of the BBB was evaluated

by the extravasation of IgG and albumin, as well as by tight junction protein expression, using

immunohistochemistry (Supplementary Fig. 2.2A, B) and Western blot analysis (Supplementary

Fig. 2.2C), respectively. We chose claudin-5 as it is a major tight junction protein at the BBB,

Page 60: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

38

which has been previously reported to decrease after bilateral carotid artery stenosis (BCAS)

(281,295). Unlike stroke brains, the brains of sham and SCCH mice showed no extravasation of

either IgG (Supplementary Fig. 2.2A) or albumin (Supplementary Fig. 2.2B) Likewise, no

significant change in claudin-5 protein levels was observed (Supplementary Fig. 2.2C). We next

examined whether SCCH might induce an infiltration of leukocytes into the brain. Neither sham nor

SCCH mice showed any evidence of leukocyte infiltration, as shown by CD45

Figure 2.3. Number of amyloid plaques increase following SCCH without any change in amyloid

burden. Amyloid burden in APPswe/PS1 is characterized by immunofluorescence staining (A-C) and

ELISA (D,E). SCCH group has more plaques than sham group (A,B) without significant changes in the

plaque load (C). Same levels of soluble Aβ1-40 (D) and soluble Aβ1-42 (E) are observed in both groups. Data

are means ± SEM (n=6-8 animals per group, 3 sections per animal’s brain for immunofluorescence staining)

*** P < 0.005 compared with sham. Images were acquired with 4X objective. Scale bar = 500µm.

Page 61: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

39

immunocytochemistry (Supplementary Fig. 2.3). In contrast, stroke injury showed monocyte

recruitment at the lesion site, as expected (Supplementary Fig. 2.3) . Thus, SCCH does not disrupt

BBB nor induce detectable immune cell infiltration, indicating that SCCH did not affect the

physical properties of the BBB.

2.5.4. SCCH disrupts plaque coverage by microglia and alters microglial activation

Being part of the NVU, we next assessed the implication of NVU dysfunction associated to SCCH

in affecting the function of microglia, which have been shown to be implicated in Aβ clearance

(284). Microglial coverage, immunoreactivity as well as CD68 expression that reflects microglial

cell activity state, were evaluated by stereological analysis of immunofluorescence staining (CD68,

Iba1 and 6E10; Fig. 2.5). Interestingly, SCCH mice exhibited significantly lower microglial Aβ

plaque coverage compared to sham mice (P=0.0108) (Fig. 2.5A). Following SCCH, microglia

throughout the brain also appeared to be less CD-68-immunoreactive, albeit at a weaker

significance threshold (P=0.1031) (Fig. 2.5B). However, in the vicinity of Aβ plaques, the number

of CD-68-immunoreactive microglia significantly decreased (P=0.0075) (Fig. 2.5C) and the area

Figure 2.4. Tendency of increased patrolling monocytes is observed following SCCH. Frequency of

total (A), inflammatory (C) and patrolling monocytes (D) were analysed by FACS on blood. Using a gating

strategy (B), inflammatory and patrolling were discriminated. SCCH does not influence monocyte frequency

in leukocytes (CD45+) (A), neither inflammatory monocyte (Ly6CHigh) frequency in total monocytes (C).

Patrolling monocyte (Ly6CLow) frequency seems (P = 0.0779) to increase (D). Data are means ± SEM (n=6-

8 animals per group). Data were analysed with standard two-tailed unpaired t- test’s.

Page 62: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

40

covered by CD68-immunoreative microglia slightly decreased in SCCH mice (P=0.0559) (Fig.

2.5D) . The latter data indicate that alteration in microglial coverage and activation pattern promotes

the accumulation of amyloid deposition.

2.5.5. Alteration of microglial function is caused by an impaired glucose metabolism

To understand the mechanism underlying the alterations observed in microglial function, we used

an in vitro approach by maintaining immortalized microglia cell line BV2 in a low-glucose

environment that reflects, to some level, glucose metabolism impairments in vivo. Using an XTT

assay, we demonstrated that the low-glucose medium (DMEM-Low) had no effect on cell viability

(Fig. 2.6A) or cell proliferation (DMEM-High, 3 h: 1.57 ± 0.05, DMEM-Low, 3 h: 1.59 ± 0.10,

DMEM-High, 24 h: 2.18 ± 0.15, DMEM-Low, 24, h: 2.28 ± 0.15; data not shown) compared to

normal medium (DMEM-High). Between 3 and 24 h, BV2 growth significantly increased in

DMEM-High (P=0.0046) and DMEM-Low (P=0.0057). Moreover, microglial proliferation was

similar in both media. Thus, a low-glucose environment has no effect on microglial viability and

proliferation.

Next, global activity, activation and phagocytic capacity of microglia were assessed. Global activity

was determined by nitrite production when BV2 were exposed to increasing concentrations of

lipopolysaccharide (LPS). No change in nitrite production was detected in the absence of LPS (Fig.

2.6B) . BV2 cells in DMEM-Low produced significantly less nitrites than in normal condition in the

presence of 0.1 µg/mL LPS (P = 0.0022; Fig. 2.6B), 0.5 µg/mL (P = 0.0112; Fig. 2.6B) and 1

µg/mL (P = 0.0321; Fig. 2.6B) . Activated microglia (CD68+) were evaluated by flow cytometry

(Fig. 2.6C). When compared to microglia incubated in DMEM-High, suboptimal glucose

concentrations significant decreased the activation of microglia (P=0.0003). Using fluorescent

beads, a flow cytometry-based phagocytosis assay was performed with BV2 cells previously

exposed to DMEM-High or -Low for 24 h. There was significant fluorescent bead intake under both

conditions compared to control (P< 0.0001). Bead phagocytosis by BV2 cells significantly

decreased when cells were incubated with low-glucose medium (P < 0.0001) (27.05 ± 1.511%; Fig.

2.6D) compared to incubation with a normal glucose concentration (53.73 ± 1.353%; Fig. 2.6D) . In

view of the altered microglial activation observed in vivo upon hypoperfusion, the latter results

suggest that a low-glucose environment may disrupt microglial functions such as activation and

phagocytic capacity.

Page 63: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

41

Figure 2.5. SCCH alters microglial function in APPswe/PS1. Microglial function is characterized by

immunofluorescence staining (A-E). SCCH significantly decreases microglial coverage (Iba+) (B) and

number of activated microglia (CD68+) in the vicinity of amyloid plaques (D). SCCH has a tendency (P =

0.0559) to decrease area of activated microglia locally to amyloid plaques (E). Microglial

immunoreactivity had no significant change (P = 0.1031) (A,C). Data are means ± SEM (n=6-8 animals

per group, 3 section per animal’s brain for immunofluorescence staining). * P < 0.05, ** P < 0.01

compared with sham group. Images were acquired with 4X objective. Scale bar = 500µm.

Page 64: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

42

2.5.6. ERK pathway-dependent decrease in cell survival contributes to memory impairment

in SCCH mice

We next investigated whether SCCH induced potential neuronal death and concomitant structural

changes in the hippocampus. In addition, we investigated the effects of SCHH on the activity of

ERK pathway and mitogen-activated protein kinase (MAPK) pathway, which are involved in cell

survival (138,139,296,297), apoptosis (152) and inflammation (153,298). FJB staining was used to

observe neuronal death, whereas Nissl staining allowed visualizing structural changes in

hippocampal regions. Stroke animals were used as a control for cellular death (Supplementary Fig.

Figure 2.6. Low glucose environment alters the activity and the phagocytosis capacity of microglia.

Viability (A), global activity, microglial activation and phagocytosis capacity are studied respectively by

XTT assay, Griess assay (B), FASC(C) and phagocytosis assay analysed by FACS (D). Low glucose

environment do not alter cell viability after 24 hours (A). Cells were exposed 24 hours to 750 µM of H2O2

for death control (A). Low glucose medium significantly decrease global activity (B), microglial

activation (C) and phagocytosis capacity (D). Negative control for phagocytosis assay was performed on

ice (D). DMEM High and DMEM Low respectively represent cells exposed 24 hours to DMEM with

4500mg/L glucose and DMEM with 1000mg/L glucose. Data are means ± S.D. (n=5 experiments per

condition, 4 replicates per experiment for viability assay; n = 6 experiments per condition, 3 replicates per

experiment for Griess assay; n = 5-6 samples per condition for flow cytometry). * P < 0.05, ** P < 0.01,

*** P < 0.005, **** P < 0.0001 compared with DMEM High group; #### P < 0.0001 compared with

control.

Page 65: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

43

2.4A) . Neither sham nor SCCH induced detectable neuronal death (Supplementary Fig. 2.4A).

However, structural analysis of the hippocampus revealed that the area of the CA3 region slightly

deceased (P=0.0739) in SCCH mice compared to sham mice (Supplementary Fig. 2.4B). The area

comprising the CA1-2 region and dentate gyrus remained similar for both groups (Supplementary

Fig. 2.4B) . This tendency towards an atrophy of the CA3 region might be linked to a disruption of

cell survival pathways such as MAPK signaling. The stress-activated protein kinases (SAPK)/Jun

amino-terminal kinases (JNK) and p38 MAPK pathways remained similar in both groups for the

duration of the experiment (data not shown). Interestingly, a highly significant (P=0.0161) decrease

in ERK1/2 phosphorylation was observed in SCCH mice (Fig. 2.7B) while total ERK1/2 protein

remained constant (Fig. 2.7A). The ERK pathway has been shown to inhibit neuronal apoptosis

(296,297,299) while promoting cell cycle progression (138) and cell proliferation (139,296). These

results suggest that SCCH alters in parallel the activity of pro-survival pathways, thus contributing

to cognitive decline.

2.6. Discussion

Investigating the impact of chronic hypoperfusion on the progression of AD could lead to a better

understanding of disease’s etiology. Using new model of severe chronic cerebral hypoperfusion (i.e

SCCH) in APPswe/PS1 mice, we found that chronic hypoperfusion affects microglial activation and

Figure 2.7. SCCH lowers ERK1/2 activation. Using Western blot analysis, ERK1/2 total (A) and

phosphorylated protein (B) were quantified and rationalised by β-actin’s level of expression. SCCH had

lower phosphorylation rate of ERK1/2 compared to sham (B) without any change of the total protein

expression (A). Data are means ± SEM (n=5-7 animals per group). * P < 0.050 compared with sham.

Page 66: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

44

phagocytosis, which was associated with an increased number of Aβ plaques and a significant

decline in cognitive function.

Here, we report that cerebral hypoperfusion exacerbates the decline in spatial learning as well as in

recognition memory observed of mice subjected to SCCH. Importantly, both sham and SCCH mice

did not exhibit any motor impairment following surgery. Although chronic hypoperfusion has been

correlated to cognitive decline (292), only few studies have examined this correlation in AD

experimental models. For instance, mild chromic cerebral hypoperfusion induced by one-vessel

occlusion (1VO) has been shown to exacerbate memory deficit in transgenic mice overexpressing

human APPswe(126,137). Studies using the BCAS model showed learning impairment in J20/APP

(139). By suing a new model of severe chronic cerebral hypoperfusion, our results are in line with

these previous reports, confirming the pathological association between CBF reduction and

cognitive decline. Our study shows that the detrimental effects of SCCH are not associated to BBB

breakdown or neuronal death, suggesting that the cognitive impairment is possibly associated to

exacerbated neuronal dysfunction. Accordingly, it has been shown that oligemia associated to

cerebral hypoperfusion triggers neuronal dysfunction without necessary inducing neuronal death

(121,126). In contrast with ischemia (139,149,151–155), SCCH model did not induce white matter

injury. Taken together, the latter observations suggest that SCCH affects brain homeostasis (i.e.

severe oligemia) leading to the exacerbation of AD-like pathology in APPswe/PS1 mice.

It has been reported that hypoperfusion affects Aβ processing. In our study, SCCH increased the

number of Aβ plaques in APPswe/PS1 mice without inducing significant changes in Aβ plaque size

and soluble Aβ levels. Consistent with our findings, previous studies have reported alterations in Aβ

processing and deposition in oligemic conditions. More precisely, upon sever oligemia induced by

hypoxia, Koike et al (2010) reported an enhancement of β-secretase protein expression, which

participates in Aβ processing and increases toxic soluble Aβ (140). In contrast with this hypoxic

model (140), our results did not show changes in soluble Aβ load. On the other hand, our data

suggest that Aβ deposits contribute to memory loss, which is in line with a previous study from our

groups, in which Pimentel et al (2013) found a correlation between the cognitive decline and Aβ

plaque number (126). Similar results were also obtained after stenosis in Tg-SwDI mice (144). Both

studies also attributed cognitive decline to significant increase in Aβ plaques.

Cerebral hypoperfusion also triggers vascular stress (300). Here, we report that SCCH induces a

slight increase in the frequency of circulating Ly6CLow, which might be caused by vascular stress.

Following ischemia, an increase in monocyte recruitment has been correlated with vascular

Page 67: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

45

remodeling (300) which promotes neuronal survival (301). Moreover, arteriogenesis correlates with

an alternative activation of monocytes (302). In ischemia, Ly6CHigh monocytes are recruited to

phagocyte debris due to acute inflammation (294,295,303), whereas Ly6CLow recruitment occurs

later to promote survival during prolonged injury (299). In the late phase, i.e. five days following

injury, the predominance of patrolling monocytes has been associated with healing, which involves

myofibroblast accumulation, angiogenesis and collagen deposition (295). In our study, although the

increase in patrolling monocytes is not slight, we nonetheless observed a strong tendency at the

10% level 15 weeks after SCCH induction. According to earlier investigations, the increase in

Ly6CLow abundance might be caused by undetectable molecular events that promote vascular

remodeling such as arteriogenesis, which is known to occur during the hypoperfusion-induced

compensation (302).

As mentioned, the efficacy of microglia in eliminating Aβ decreases over time in AD, which have

ben linked to the formation of a stressful environment that alters microglial function (284). These

results outline the impact of the microenvironment on microglial cell function. Here, we report that

SCCH deeply affected microglial cell function, by reducing their activation and recruitment toward

Aβ plaques, which might account for the higher number of plaques observed here. Microglial

glucose demand and consumption increase during activation and phagocytosis since glucose is

required for adenosine triphosphate (ATP) production (304). Moreover, ATP is essential to sustain

phagocytosis (304). Therefore, a glucose-poor environment cannot support the metabolic needs

necessary for microglial activation. Consequently, Aβ clearance through microglia is disrupted,

leading to amyloid deposition. As glucose is the main fuel for brain cells (305), deficiency in this

essential substrate resulting from cerebral hypoperfusion could also disturb the activity of

microglia. To address this point, we used an in vitro approach demonstrating that the low-glucose

microenvironment that is thought to result from the chronic cerebral hypoperfusion, significantly

decreased the metabolic activity of microglia, thereby decreasing microglial activation and

phagocytic capacity.

In addition, we observed a global reduction in ERK1/2 pathway activation as a result of SCCH.

Following phosphorylation ERK1/2 pathway is activated, consequently mediating important roles

in cell survival (300,302,306,307), apoptosis (297,301) and inflammation (295,296). ERK1/2

pathway activation is implicated in the neuroprotective effects of several growth factors, including

insulin-like growth factor 1 (IGF1) and brain-derived neurotrophic factor (BDNF) (297,300,307).

The pathway is also involved in vascular remodeling (308), neurite growth (306) and reactive

oxygen species suppression (303). As such, it is conceivable to speculate that ERK1/2 pathway

Page 68: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

46

deactivation following SCCH may be implicated in exacerbating neuronal dysfunction in the brain

of APPswe/PS1 mice, thus possibly contributing to the cognitive decline.

Taken together, our study unravels unknown mechanisms via which chronic cerebral hypoperfusion

affect AD pathogenesis. Importantly, we highlighted the implication of glucose metabolism

impairment in microglial dysfunction, which contributes to the exacerbation of the

neurodegenerative processes. As such, therapeutic strategies aiming to modulate microglial cell

activity should consider the impact of glucose metabolism.

2.8. Acknowledgements

We thank Mohammed Filali, Marie-Michèle Plante, Paul Préfontaine and Nataly Laflamme for their

technical assistance. We also thank Mr. Richard Poulin who contributed in editing the manuscript of

this article.

2.9. Grant support

This work was supported by the Canadian Institutes for Health Research (CIHR).

Page 69: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

47

Chapitre 3

3. Tissue-plasminogen activator attenuates Alzheimer’s disease-related

pathology development in APPswe/PS1 mice

Ayman ElAli, PhD, Maude Bordeleau, BSc, Peter Thériault, MSc, Mohammed Filali, PhD, Antoine

Lampron, PhD, and Serge Rivest, PhD

Correspondence:

Dr. Serge Rivest

Neuroscience Laboratory

CHU de Québec Research Center (CHUL)

Department of Molecular Medicine, Faculty of Medicine, Laval University

2705 Laurier boulevard, Québec City

QC G1V 4G2, Canada.

Email: [email protected]

Page 70: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

48

3.1. Résumé

La maladie d’Alzheimer (AD) est la première cause de démence chez les personnes âgées. Celle-ci

est caractérisée par l’accumulation du peptide bêta-amyloïde (Aβ) qui s’agrège au fil du temps pour

former des plaques au cerveau. La réduction du niveau d’amyloïde est alors une voie thérapeutique

intéressante. Le cerveau possède plusieurs mécanismes afin de contrôler le niveau de l’Aβ cérébrale

parmi lesquels figurent le système de l’activateur tissulaire du plasminogène (t-PA) / plasmine et les

microglies. Toutefois, ces mécanismes sont défaillants et ineffectifs dans la AD. Dans la présente

étude, nous démontrons que l’administration systémique du t-PA recombinant (Activase® rt-PA)

atténue la pathologie associée à la AD chez des souris transgéniques APPswe/PS1 en réduisant le

niveau d’Aβ cérébrale et en améliorant les fonctions cognitives. Il s’agit d’effets indépendants de

l’activité protéase de rt-PA. Nous observons que rt-PA induit essentiellement une légère

augmentation transitoire de la fréquence des monocytes patrouilleurs dans la circulation en plus

d’une stimulation soutenue des microglies vers un phénotype neuroprotecteur contribuant à

l’élimination de l’Aβ. Notre étude dévoile un rôle pour t-PA dans la maintenance de la capacité de

phagocytose des microglies sans exacerber la réponse inflammatoire. Donc, t-PA constitue une

approche intéressante pour stimuler la population des cellules éliminant de l’Aβ du cerveau.

3.2. Abstract

Alzheimer's disease (AD) is the leading cause of dementia among elderly population. AD is

characterized by the accumulation of beta-amyloid (Aβ) peptides, which aggregate over time to

form amyloid plaques in the brain. Reducing soluble Aβ levels and consequently amyloid plaques

constitute an attractive therapeutic avenue to, at least, stabilize AD pathogenesis. The brain

possesses several mechanisms involved in controlling cerebral Aβ levels, among which are the

tissue-plasminogen activator (t-PA)/plasmin system and microglia. However, these mechanisms are

impaired and ineffective in AD. Here we show that systemic administration of recombinant t-PA

(Activase® rt-PA) attenuates AD-related pathology in APPswe/PS1 transgenic mice by reducing

cerebral Aβ levels and improving cognitive function. Interestingly, these effects were rt-PA

protease activity independent. We observed that rt-PA essentially mediated a slight transient

increase in the frequency of patrolling monocytes together with a sustained stimulation of resident

microglia towards a neuroprotective phenotype, both of which contribute to Aβ elimination. Our

study unraveled a new role of t-PA in maintaining the phagocytic capacity of microglia without

exacerbating the inflammatory response and therefore constitutes an interesting approach to

stimulate the key populations of cells involved in Aβ clearance from the brain.

Page 71: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

49

3.3. Introduction

Amyloid deposits and neurofibrillary tangle formation are the core pathological hallmarks of AD

(309). Clinically, AD manifests with early mild memory deficits that evolve with time to reach

severe cognitive impairment and consequently the loss of executive functions (310). Despite all

efforts, no efficient treatment exists for AD. However, strategies targeting amyloid deposition seem

promising.

The brain possesses several sophisticated mechanisms that tightly control Aβ processing and

clearance. Importantly, BBB dysfunction has been reported at the early stages of AD pathogenesis

(42), which impairs brain microenvironment, thus deeply impacting brain resident microglia

activity (42). Activated microglia adopt diverse phenotypes ranging from a “classical activation”

(i.e. pro-inflammatory) phenotype that exacerbates inflammation, to an “alternative activation” (i.e.

anti-inflammatory) phenotype that helps in tissue repair (311,312). Microglia have been

demonstrated to contribute to Aβ clearance (47). However, Aβ clearance by resident microglial

cells is extremely slow and ineffective in AD brain (68). Besides microglia, monocytes play

important roles in AD (284,313). Monocytes are mononuclear phagocytic cells and constitute a

population of circulating leukocytes that are central cells of the innate immune system (23). In

rodents, monocytes are regrouped into two main subsets based on chemokine receptors and Ly6C

expression levels, the pro-inflammatory subset (CX3CR1LowCCR2+Ly6CHigh), which is actively

recruited to inflamed tissues and contributes in inflammatory responses, and the anti-inflammatory

subset (CX3CR1HighCCR2-Ly6CLow) that constitutes the resident patrolling monocyte population,

which patrols the lumen of blood vessel and promote tissue repair (23). Our group has recently

demonstrated that the patrolling anti-inflammatory monocyte subset, have the capacity to eliminate

Aβ within the brain vasculature, thus reducing overall cerebral Aβ levels (284). Importantly, the

expansion and the phagocytic capacity of monocytes decrease with age and in AD patients (23).

T-PA is a serine protease that converts plasminogen into plasmin, an enzyme involved in fibrin

degradation, which has been reported to be also involved in Aβ microaggregate degradation (162).

In parallel, t-PA has been proposed to act as an anti-inflammatory cytokine, independently from its

protease activity (197). Interestingly, similar to microglia spatial localization, t-PA expression and

activity have been reported to localize around Aβ plaques in the brain of a mouse model of AD,

suggesting its implication in Aβ processing (162). Unfortunately, over time, the t-PA/plasmin

system gets inefficacious in degrading Aβ microaggregates (162).

Page 72: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

50

In the present study, we investigated the therapeutic potential of Activase®, a rt-PA that is approved

by the Food and Drug Administration (FDA) for ischemic stroke treatment, in modulating AD

pathology. For this purpose, we used four months old APPswe/PS1 mice that were intravenously

treated with low doses of Activase® r-tPA (5mg/kg/week for 10 weeks). Here we report that rt-PA

significantly delayed the progression of AD pathology, which was mediated by its anti-

inflammatory characteristics. More precisely, rt-PA reduced soluble Aβ levels and Aβ plaque

number and size and improved cognitive function without affecting BBB function and integrity.

Interestingly, rt-PA treatment enhanced the coverage of Aβ plaques by microglia and triggered their

“alternative activation” via LRP1. Moreover, rt-PA specifically increased the subset of patrolling

monocytes, which are involved in the clearance of vascular Aβ. Taken together, our study

demonstrates that rt-PA may constitute a novel approach to treat AD by enhancing the anti-

inflammatory reparative phenotype of microglia and monocytes.

3.4. Materials and Methods

3.4.1. Animal experiments

Experiments were performed according to the Canadian Council on Animal Care guidelines, as

administered by the Laval University Animal Welfare Committee. All efforts were made to reduce

the number of animals used and to avoid their suffering. Four month old APPswe/PS1 transgenic

mice harboring the human presenilin I (A246E variant) and the chimeric mouse/human Aβ

precursor protein (APPswe) under the control of independent mouse PrP promoter elements [B6C3-

Tg(APP695)3Dbo Tg(PSEN1)5Dbo/J] (Jackson ImmunoResearch Laboratories Inc., West Grove,

PA, USA) maintained in a C57BL/6J background. C57BL6/J mice (wildtype) littermates were used

as controls. Additional set of green fluorescent protein (GFP)+/- mice were used to generate chimeric

mice. Mice were housed and acclimated to standard laboratory conditions (12-hour light/dark cycle

/ lights on at 7:00 AM and off at 7:00 PM) with free access to chow and water. Only males were

used at the age of 4 months. Four months old mice were used as around this stage the plaques begin

to develop in the mouse line used in the laboratory. APPswe/PS1 mice were treated intravenously

with a single dose of 5 mg/kg per week of Activase® rt-PA (Roche, Mississauga, ON, Canada) over

a total period of ten weeks. As rt-PA has a short half-life in circulation and could trigger BBB

breakdown following administration in stroke, a regimen of chronic low doses that represent half

the dose usually used for ischemic stroke thrombolysis, has been chosen. Twenty-four hours after

last rt-PA injection, blood was collected from awaken mice via the facial vein for further analysis.

Additional group of APPswe/PS1 mice were used to collect blood 3 hours following rt-PA injection

for further analysis. The week that followed blood collection, behavioral analysis was performed,

Page 73: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

51

mice were then sacrificed and tissues were collected as described here below. In another set of

experiments, wildtype mice were treated intravenously with a single 5 mg/kg dose of Activase® rt-

PA, 3 and 24 hours after injection blood was collected from awaken mice via the facial vein for

further analysis, mice were then sacrificed and tissues were collected as described here below. A

group of APPswe/PS1 chimeric mice, in which the original bone marrow-derived cells were

replaced by bone marrow-derived cells of GFP+/- mice, were generated by a myeloablative

chemotherapy regimen that preserves the BBB, which were treated with Activase® rt-PA and killed

24 hours following injection. Another group of APPswe/PS1 chimeric mice were generated by

total-body irradiation that alters the BBB, which were used as positive controls for GFP-positive

blood-borne cell infiltration into the brain. Brain tissues were collected as described here below.

Finally, two groups of APPswe/PS1 mice were treated with a single 5mg/kg dose of Activase® rt-

PA, 3 and 24 hours following injection mice were sacrified and brains removed and directly

processed to isolate microglia for flow cytometry analysis.

3.4.2. Chimeric mice generation

APPswe/PS1 chimeric mice were generated by transplanting bone marrow-derived cells of GFP+/-

mice in myeloablated APPswe/PS mice, as described previously (314). Briefly, APPswe/PS1

recipient mice were given water containing a commercially available mix of antibiotics (SEPTRA;

GlaxoSmith Kline, Mississauga, Ontario, Canada) for 1 week before starting a myeloablative

chemotherapy regimen consisting of twice-daily injections (morning and evening) of 10 mg/kg

busulfan for 4 days (a total of 80 mg/kg), followed by daily injections of 100 mg/kg

cyclophosphamide for 2 days (a total of 200 mg/kg). The injections were performed in a total

volume of 150 μl intraperitoneally, alternating sides between each injection. To counter

chemotherapy-induced dehydration, mice received a daily 1 ml injection of saline subcutaneously

for 1 week. Mice were then transferred to sterile cages and given previously irradiated food.

Antibiotic treatment continued for 1 week following treatment. On the day following the last

injection of cyclophosphamide, GFP+/− donor mice were killed by cervical dislocation with

isoflurane anesthesia. Their femurs and tibias were dissected, and their bone marrow was flushed

with phosphate-buffered saline (PBS) containing 5% FBS (Sigma-Aldrich, St. Louis, MO, USA).

The cells were filtered through 35-μm nylon mesh (BD Bioscience, San Jose, CA, USA), washed

three times in FBS-free PBS (centrifuging at 300g for 5 minutes between washes), and counted with

a hematocytometer. Cells (1.5 × 107) were then injected into the tail vein of recipient mice. They

were followed for 4-6 weeks before they received any other treatment or surgeries to allow the

injected cells to repopulate the hematopoietic system. Another group of APPswe/PS1 chimeric mice

Page 74: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

52

were generated by exposition to a 10 gray total-body irradiation using a cobalt-60 source

(Theratron-780 model, MDS Nordion, Ottawa, ON, Canada), instead of chemotherapy.

3.4.3. Tissue collection

For molecular analysis, mice were deeply anesthetized via an intraperitoneal injection of a mixture

of ketamine hydrochloride/ xylazine (100/10 mg/kg) and then transcardially perfused with ice-cold

0.9% saline solution (0.9% NaCl) (Sigma-Aldrich) by using a peristaltic pump, brains were

removed and immediately processed for microglia islation or frozen in dry ice for subsequent

molecular analysis. For immunofluorescence and histochemical analysis, mice were anesthetized as

above and then transcardially perfused with ice-cold 0.9% saline solution, followed by 4%

paraformaldehyde (PFA, Sigma-Aldrich) in 0.1 M PBS, brains were removed and postfixed in 4%

PFA (pH 7.4) at 4 °C and then immersed in a PFA solution containing 20% sucrose overnight at 4

°C. Fixed brains were frozen with dry ice/ethanol mixture, mounted on a microtome (Leica,

Concord, ON, Canada) and cut into 25 μm coronal sections. The collected slices were placed in

tissue cryoprotectant solution containing 0.05 M sodium phosphate buffer (pH 7.3), 30% ethylene

glycol, and 20% glycerol, and stored at −20 °C until analysis. Blood samples were collected in

ethylenediaminetetraacetic acid (EDTA) coated tubes during the protocol via the facial veins, and

mice were allowed to rest one week after bleeding.

3.4.4. Immunofluorescence staining

Free-floating sections were washed with KPBS (Sigma-Aldrich) (3x, 10 minutes) and then

incubated for 20 minutes in a permeabilization/blocking solution containing 4% goat serum, 1%

bovine serum albumin (BSA) (Sigma-Aldrich), and 0.4% Triton X-100 (Sigma-Aldrich) in KPBS.

Sections were incubated overnight at 4 °C with different primary antibodies diluted in the same

permeabilization/blocking solution. The following primary antibodies were used; mouse anti-human

Aβ monoclonal antibody (6E10) (1/1500) (SIG-39320, Covance Inc., Princeton, NJ, USA), rabbit

anti-Iba1 (1/1500) (019-19741; Wako Chemicals, Richmond, VA, USA), rat anti-mouse CD31

antibody (BD Bioscience). Afterwards, the sections were rinsed in KPBS (3x, 10 minutes),

followed by a 2 hours incubation with either Cy3-conjugated goat anti-mouse secondary antibody

(115-165-003; Jackson ImmunoResearch Laboratories, West Grove, PA, USA), or Alexa Fluor

488-conjugated goat anti-rabbit secondary antibody (A11008; Life Technologies Inc., Burlington,

ON, Canada). Sections were incubated overnight under light protected vacuum to allow an optimal

fixation of brain sections on slides. The next day, sections were rinsed in KPBS (3x, 10 minutes),

stained with 0.0002% DAPI for 5 minutes, rinsed again in KPBS (3x, 10 minutes), mounted onto

SuperFrost slides (Fisher Scientific, Ottawa, ON, Canada), and coverslipped with antifade medium

Page 75: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

53

composed of 96 mM Tris-HCl, pH 8.0, 24% glycerol, 9.6% polyvinyl alcohol, and 2.5%

diazabicyclooctane (Sigma-Aldrich). Epifluorescence images were taken using a Nikon C80i

microscope equipped with both a motorized stage (Ludl, Hawthorne, NY, USA) and a Microfire

CCD color camera (Optronics, Goleta, CA, USA). Confocal laser scanning microscopy was

performed with a BX-61 microscope equipped with the Fluoview SV500 imaging software 4.3

(Olympus America Inc., Melville, NY, USA).

3.4.5. IgG and albumin extravasation

Free-floating sections were washed with KPBS (3x, 10 minutes) and then incubated for 20 minutes

in the permeabilization/blocking solution containing 4% goat serum, 1% bovine serum albumin

(BSA) (Sigma-Aldrich), and 0.4% Triton X-100 (Sigma-Aldrich) in KPBS. For IgG detection,

sections were incubated for 2 hours with biotin-conjugated goat anti-mouse secondary antibody

(1/1000) (BA9200; Vector Laboratories, Burlingame, CA, USA). For albumin detection, sections

were incubated overnight at 4 °C with anti-mouse serum albumin (1/1000) (ab19194; Abcam Inc.,

Toronto, ON, Canada) diluted in the same permeabilization/blocking solution. The Biotin-

conjugated secondary antibodies were detected using the avidin peroxidase kit (Vectastain ABC kit,

Vector Laboratories) and diaminobenzidine (Sigma-Aldrich), following the manufacturer's

instructions. Sections were then mounted onto SuperFrost slides (Fisher Scientific), dehydrated and

coverslipped with DPX mounting medium (Electron Microscopy Sciences, Hatfield, PA, USA).

Bright light images were taken using the Nikon C80i microscope equipped with the motorized stage

(Ludl) and a Microfire CCD color camera (Optronics).

3.4.6. Aβ plaques, microglia coverage and Aβ internalization by microglia quantification

Aβ plaques were stained with an anti-human Aβ monoclonal antibody (6E10) as described

previously (313). Aβ plaque number and size were assessed in the hippocampus and the overlaying

cortex separately using a stereological apparatus as described (315). Briefly, real-time images (1600

× 1200 pixels) were obtained using the Nikon C80i microscope equipped with the motorized stage

(Ludl) and a Microfire CCD color camera (Optronics). Both cortex and hippocampus areas were

traced using a Cintiq 18S interactive pen display (Wacom, Ontone, Saitama, Japan). The contours

of the cortex or hippocampus areas were traced as virtual overlay on the steamed images. Aβ plaque

number and area occupied by Aβ immunostained plaques within these traced virtual regions were

determined. In order to assess microglia coverage of Aβ plaques, immunostained brain sections

(sections through the hippocampus region) were analysed using the stereological apparatus as

described previously (315). Briefly, four brain sections per animal stained for microglia (Iba1), Aβ

(6E10) and nuclei (DAPI) were blindly assessed. Aβ plaques were traced and microglia counted for

Page 76: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

54

each frame using the pen display, a 40× Plan Apochromat objective (NA 0.95). In order to

investigate Aβ internalization by microglia in vivo following rt-PA chronic treatment, Aβ-

immunoreative microglia were assessed by quantifying Aβ positive immunosignals in microglial

cell body. These methods generate semi-quantitative data highly representative of the general state

of the animal (313). Moreover, this method was designed to ensure that this type of quantification

was representative of the total amount of plaques and microglia determined by unbiased

stereological quantification (313). Additional brain sections were double stained for CD45

(infiltrating leukocytes) and Iba1 (differentiated microglia) in order to investigate the infiltration of

blood-derived monocytes into the brain and their differentiation into macrophages.

3.4.7. In situ Hybridization

Brain sections were mounted on Colorfrost/Plus microscope slides (Fisher Scientific). In situ

hybridization histochemical localization of inhibitor of kappa B alpha (IκBα), which is used as an

index of nuclear factor-kappa B (NF-kB) activity was performed using 35S-labeled cRNA probes.

Plasmids were linearized and sense/ antisense cRNA probes were synthesized with an appropriate

RNA polymerase. All plasmids were analysed for sequence confirmation and orientation.

Riboprobe synthesis and preparation as well as in situ hybridization were performed according to a

protocol described previously (316). All slides were developed on the same films that were scanned

and densitometrically analysed using ImageJ image analysis software (NIH).

3.4.8. Soluble Aβ1–42 Enzyme-Linked Immunosorbent Assay (ELISA)

Brain levels of soluble Aβ1–42 were quantified using the Human Amyloid β42 Brain ELISA kit

(Millipore, Billerica, MA, USA). The experimental procedure for Aβ1–42 detection was performed

according to the manufacturer's instructions. Briefly, brains were homogenized in ice cold lysis

buffer, and centrifuged at 2500xg for 10 minutes at 4 °C. Supernatant was diluted and loaded into

96 wells microplate. Absorbance was acquired using a microtiter plate reader (SpectraMax 340PC,

Molecular Devices, San Diego, CA, USA), and analysed using SOFTmax Pro3.1.1 software

(Molecular Devices).

3.4.9. Brain microvessel isolation

Brain capillaries were isolated on dextran gradient as described previously (317), with slight

modification. Briefly, the cerebellum, meninges, brainstem and large superficial blood vessels were

removed and the remaining cortices were gently homogenized in a Teflon glass homogenizer in ice-

cold microvessel (MVs) (i.e. capillaries) isolation buffer (MIB; 15 mM HEPES, 147 mM NaCl, 4

mM KCl, 3 mM CaCl2, and 12 mM MgCl2) supplemented with 5% Protease Inhibitor Cocktail

Page 77: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

55

(P8340; Sigma-Aldrich) and 1% Phosphatase Inhibitor Cocktail 2 (P5726; Sigma-Aldrich).

Homogenates were centrifuged at 1000xg for 10 min at 4°C. The resulting pellets were resuspended

in 30% dextran (molecular weight, 64,000 to 76,000; D4751, Sigma) in MIB. Suspensions were

centrifuged at 4400xg for 20 min at 4°C. The resulting crude brain capillaries-rich pellets were

resuspended in MIB and filtered through two nylon filters of 100- and 60-μm mesh size (Millipore).

The quality of trapped brain in the final filtrates was checked with a bright-field microscopy

(Supplementary Fig. 1a). Filtrates were centrifuged at 1000xg, and the resulting pellets that

contain the pure brain capillaries were stored at −80°C until further use.

3.4.10. Microglia’s isolation and analysis by flow cytometry

Mice were sacrified as described previously. Brains were removed and homogenized in 1 ml ice

cold Dulbecco's PBS (DPBS) without calcium (Ca²+)/ magnesium (Mg²+). Homogenized brain

samples were washed for 10 minutes at 300xg at 4°C, and resuspended in 3 ml digestion buffer

containing a cocktail of enzymes, TLCK (0,5 µg/ml) (Sigma), DNAse1 (25 ng/ml) (Roche),

Liberase (8,125pg/ml) (Roche), HEPES 20mM (Sigma) in 0.1 M DPBS, and incubated for 40

minutes at 37°C. Afterwards, the volume was completed to 10 ml by adding 7 ml of flow cytometry

buffer containing 5% FBS, EDTA (20 mM), HEPES (2 mM) in flow cytometry buffer. The digested

samples were filtered through a 70 µm sterile nylon filter, washed once with flow cytometry buffer,

and centrifuged for 10 minutes at 300xg at 4°C. The resulting pellet was raised in 8 ml 30% Percoll

(GE Healthcare Life Sciences, Baie d’Urfe, QC, Canada), which was diluted in a solution

containing EDTA (2 mM), HEPES (20 mM), phenol red, 1X Hank's balanced salt solution (HBSS).

4 ml of the 30% Percoll containing samples were loading carefully at the bottom of a 15 ml falcon

tube containing 4 ml 80% Percoll solution, which was diluted in a solution containing EDTA (2

mM), HEPES (20 mM) (Sigma) and 1X HBSS. The remaining 4 ml of the 30% Percoll containing

samples were carefully added at the surface of the 80% Percoll solution. Afterwards, the gradient

column was centrifuged for 40 minutes at 1000xg at 18°C with low acceleration and no brake.

Microglial cell enriched fractions were collected from the inter-phase, resuspended in 10 ml of flow

cytometry buffer, and centrifuged for 10 minutes at 300xg. The resulting pellet, which contains the

pure fraction of microglia, was resuspended in 250 µl of flow cytometry buffer, and transferred to a

96-wells conical plate. Cells were incubated for 15 min on ice with rat anti-mouse CD16/CD32

antibody (Mouse BD Fc Block; BD Bioscience) diluted in flow cytometry buffer. Afterwards, cells

were centrifuged for 3 min at 300xg at 4°C, and incubated for 30 minutes with PE (phycoerythrin)-

Cy5-conjugated anti-CD45 antibody (BD Bioscience), Alexa Fluor® 700-conjugated anti-CD11b

antibody (eBioscience, San Diego, CA, USA), and LIVE/DEAD® blue fluorescent dye (Life

Page 78: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

56

technologies). Cells were incubated with the antibody mixture for 30 minutes at 4°C. Cells were

washed for 10 minutes at 300xg with DPBS without Ca²+/Mg2+, and resuspended in flow cytometry

buffer. Finally, the cells were analysed using a LSR II flow cytometer and data acquisition was

done with BD FACS Diva software (Version 6.1.2, BD Bioscience). The results were analysed

using FlowJo software (Version 7.6.1, Tree Star Inc., Ashland, OR, USA).

3.4.11. Protein extraction

Isolated brain capillaries or brain tissues were homogenized and lysed in NP-40 lysis buffer

supplemented with 5% Protease Inhibitor Cocktail and 1% Phosphatase Inhibitor Cocktail 2

(Sigma-Aldrich). Lysate samples were sonicated over two cycles lasting 20 s each at 4°C at 40%

power. Protein concentrations were measured by means of the Quantipro BCA assay kit (Sigma-

Aldrich) according to the manufacturer’s protocol. Absorbance was acquired using a microtiter

plate reader (SpectraMax 340PC, Molecular Devices), and analysed using SOFTmax Pro3.1.1

software (Molecular Devices).

3.4.12. Caseinase and gelatinase activity assays

In order to investigate the enzymatic activity of plasmin (caseinase), we used a highly sensitive

fluorescent based assay “Sensolyte® AFC Plasmin Activity Assay Kit” (AnaSpec, Fremont, CA,

USA). In order to investigate the enzymatic activity of MMP-2/9 (gelatinase) we used a highly

sensitive fluorescent based assay “EnzCheck® Gelatinase/ Collagenase Assay Kit” (Molecular

Probes, Eugene, OR, USA). The caseinase and gelatinase assays were performed according to

manufacturer’s protocols, respectively.

3.4.13. Western blot analysis

For total and phosphorylated protein analyses, 2X SDS loading buffer was added to lysate samples

containing equal amounts of protein (10 µg). These samples were heated for all protein analysis

studies except for those involving ABCB1, for which samples were loaded without heating to avoid

aggregation of these highly glycosylated transmembrane proteins. Samples were subjected to SDS–

polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis, with primary

antibodies diluted 1:1000 in 5% skim milk (Sigma-Aldrich) and 0.1 M tris-buffered saline–Triton

X-100 (TBS-T). The following antibodies were used: Rabbit anti-ABCB1 (sc-8313) and rabbit anti-

claudin 5 (sc-28670) were purchased from Santa Cruz Biotechnology, Dallas, TX, USA. Rabbit

anti-total SAPK/JNK (9252), anti-phopho SAPK/JNK (9251), anti-total p38 MAPK(9212) and anti-

phospho-p38 MAPK (9211) were purchased from Cell Signaling Technology, Danvers, MA USA.

Rabbit anti-LRP1 (ab92544) and anti-RAGE (ab37647) were obtained from Abcam Inc. Rabbit

Page 79: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

57

anti-occludin (71-1500) was purchased from Life Technologies Inc., and anti-β-actin (MAB1501)

was purchased from EMD Millipore, Billerica, MA, USA. Primary antibodies were detected with

HRP–conjugated secondary IgG that were diluted 1:5000 in 5% skim milk and TBS-T and revealed

by ECL solution (GE Healthcare Life Sciences). Blots were digitized, densitometrically analysed

with ImageJ image analysis software (NIH), corrected for protein loading by means of β-actin, and

expressed as relative values comparing control groups with treated groups.

3.4.14. Flow cytometry

Flow cytometry -analysis was used to determine the population of monocytes in the circulation.

Facial vein blood was collected in EDTA coated vials (Sarstedt, Newton, NC, USA). Flow

cytometry analysis was performed as described (314). Briefly, 50 µl of total blood was incubated on

ice for 15 minutes with 4 µl purified rat anti-mouse CD16/CD32 antibody (BD Bioscience) diluted

in 35 µl DPBS. Always on ice, the mixture of cells and anti-mouse CD16/CD32 was incubated with

PE-Cy7-conjugated anti-CD11b antibody (eBioscience), APC (allophycocyanin)-conjugated anti-

CD115 antibody (eBioscience), PE-conjugated anti-CD45 antibody (BD BioScience) and

fluorescein isothiocyanate-conjugated anti-Ly6-C antibody (BD BioScience) for 45 minutes. Red

blood cells were lysed with 1.5 ml Pharm Lyse buffer, according to manufacturer's protocol (BD

BioScience). After hemolysis, remaining cells were washed with DPBS and resuspended in equal

volumes of DPBS. Finally, the cells were analysed using a LSR II flow cytometer and data

acquisition was done with BD FACS Diva software (Version 6.1.2, BD Bioscience). The results

were analysed using FlowJo software (Version 7.6.1, Tree Star Inc.).

3.4.15. Behavior analysis

The T-water maze paradigm was used to assess mice spatial learning and memory, in the weeks

following the last injection (318). This paradigm evaluates the ability of mouse to remember the

spatial location of a submerged platform. The T-maze apparatus (length of stem, 64 cm; length of

arms, 30 cm; width, 12 cm; height of walls, 16 cm) was made of clear fiberglass and filled with

water (23 ± 1 °C) at a height of 12 cm. An escape platform (11 × 11 cm) was placed at the end of

the target arm and was submerged 1 cm below the surface. The position of the platform was chosen

randomly for each animal prior to testing. In the acquisition-learning phase, which allows the

evaluation of left/ right spatial learning, the mice were placed in the stem of the T-maze and swam

freely until they found the submerged platform (located either in the right or in the left arm of the T-

maze apparatus) and escaped to it. After reaching the platform, the mice remained on it for 20

seconds and then placed back in the maze for up to a maximum of 24 trials, except for a 10 minutes

rest period after each 10 trial block. If the animals did not find the platform within 60 seconds, they

Page 80: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

58

were gently guided onto it. During the rest period, mice were dried with towels and provided with

heating pads to prevent hypothermia. All trials were performed on one single day. A mouse was

considered to have achieved criterion after 5 consecutive errorless trials. The reversal-learning

phase was then conducted 2 days later, with the protocol repeated except that the mice were trained

to find the escape platform on the opposite side. During the acquisition/reversal phase the platform

was located in the same position for the entire stage. The number of trials to reach the criterion (5 of

5 correct choices made on consecutive trials) and the average of swimming speeds were recorded

and analysed.

Based on their scores during the reversal phase, the animals were subdivided in 3 subgroups (no

cognitive deficit = as defined by values below 10 trials; mild cognitive deficit = as defined by

values between 10-16 trials; severe cognitive decline = as defined by values above 16 trials).

3.4.16. In vitro experiments

3.4.16.1. Cells culture

The immortalized murine microglial cell line (BV2) were cultured at 37°C in 5% CO2, 95% air in

DMEM (Life Technologies Inc.) containing 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin and

100 µg/mL streptomycin. In all experiments, cells were grown to 70-90% confluence and subjected

to a maximum of 20 cell passages.

3.4.16.2. Cell stimulation

BV2 (6x105 cells) were stimulated with 0,1 nM rt-PA (Roche), 2 µg/ml LPS or 5 ng/ml mIL-4 for

30 minutes at 37°C. Afterwards, cells were dissociated using a non-enzymatic cell dissociation

buffer (Sigma-Aldrich), washed twice with PBS, and lysed in 1% NP-40 lysis buffer supplemented

with 5% Protease Inhibitor Cocktail and 1% Phosphatase Inhibitor Cocktail 2 (Sigma-Aldrich).

Lysates were gently sonicated using the Sonic dismembrator model 100 (Fisher Scientific). Protein

levels were quantified using the Quantipro BCA assay kit (Sigma-Aldrich). Cell lysates were used

to investigate intracellular signaling pathways using Western blot or enzymatic activity using

fluorescent based assay kits.

3.4.16.3. Cell migration assay

BV2 cells were seeded at 4x104 (cells/ well) in a 24-well plate (BD Falcon®, BD, Mississauga, ON,

Canada). Cell growth was stop by changing the media to DMEM / 1% FBS when the density was

about 80 to 100%. Using a sterile tip, a wound was made in the middle of the well, directly

afterwards cells were stimulated with 0,1 nM rt-PA (Roche), 0,1 nM rt-PA (S478A) (Abcam Inc.), 2

µg/ml LPS, 5 ng/ml mIL-4 and 0,1 nM rt-PA + 200 nM recombinant receptor-associated protein

Page 81: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

59

(RAP) (LRP1 inhibitor) (EMD Millipore). Pictures were acquired at 0 and 24 hours post-treatment

using Olympus IX81 inverted research confocal microscope (Olympus America, Center Valley, PA,

USA). Acquired images were analysed using ImageJ image analysis software (NIH), where the

number of infiltrated cells into the scratch was assessed.

3.4.16.4. Chemotaxis assay

Transwell polycarbonate 8 µm inserts (Corning, Lowell, MA) were coated with 2 µg/ml laminin

(Sigma-Aldrich) overnight at 4°C. Inserts were equilibrated in DMEM / 1% FBS at least for 1 hour.

BV2 cells were harvested and seeded at 4-5x104 (cells/ well) with or without 200 nM RAP (EMD

Millipore) that were added to the upper chamber. The lower chamber contained DMEM / 1% FBS

with or without 0,1 nM rt-PA (Roche). The microplate was placed 24 hours in a humidified

incubator at 37°C. Cells were dissociated using a non-enzymatic dissociation buffer, collected from

both compartments and counted with a hemacytometer.

3.4.16.5. Phagocytosis assay

BV2 cells 1x105 (cells/ well) in 96-well microplate were stimulated with 0,1 nM rt-PA (Roche), 0,1

nM rt-PA (S478A) (Abcam Inc.), 1 µg/ml LPS or 5 ng/ml mIL-4 for 1 hour at 37°C. Stimulated

cells were incubated with 1mg/ml fluorescein-labeled E. coli beads (Molecular Probes) for 2 hours

at 37°C. Afterwards, cells were incubated with 250 µg/ml blue trypan (Molecular Probes) at room

temperature for 1 minute. Phagocytosis rate was determined by measuring fluorescence emission at

520 nm following an excitation at 480 nm with a fluorescent plate reader SpectraMAX Gemini

(Molecular Devices).

3.4.16.6. Griess Assay

Oxidative stress was quantified by measuring nitrite release in cell culture medium by using the

Griess Assay according to manufacturer’s protocol (Life Technologies Inc.). Briefly, BV2 cells

were incubated for 24 hours with rt-PA (0,1 nM), LPS (1 μg/ml), IL-4 (5 ng/ml) or kept without

stimulation. The cell culture medium was then transferred into a 96-well plate and mixed with 20

μL of Griess reagent and 130 μL of deionized water. In parallel, a standard curve was created

ranging from 1 µM to 100 µM. The samples and standards were incubated for 30 minutes at room

temperature. The nitrite concentrations was determined by measuring the absorbance at 548 nm by

using a microtiter plate reader (SpectraMax 340PC, Molecular Devices), and analysed using

SOFTmax Pro3.1.1 software (Molecular Devices).

Page 82: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

60

3.4.17. Statistics

Results are expressed as mean ± SEM. For the cellular and molecular analysis, the comparison

between two group data was analysed using standard two-tailed unpaired t-test. For the behavioral

analysis, the intergroup differences were evaluated by ANOVA followed by the Bonferroni’s post

hoc test or Kruskal–Wallis followed by the Mann–Whitney test. The two-sided Chi2-square was

used to compare cognitive performances in the T-maze. A P value < 0.05 was considered

statistically significant. All analyses were performed using GraphPad Prism Version 6 for Windows

(GraphPad Software, San Diego, CA, USA).

3.5. Results

3.5.1. Activase® rt-PA regimen does not affect blood-brain barrier integrity and function

Endogenous t-PA is localized mainly at the abluminal side of the BBB, where it modulates the

permeability of the latter (170) and the microvascular tone (319). Several reports demonstrated that

excess of t-PA at the abuminal side of the BBB and the parenchyma mediates BBB breakdown and

neuronal death by excitotoxicity (189,320). However, in different contexts, other studies showed

that t-PA is implicated in neuronal synaptic plasticity (186) and is neuroprotective (200). We first

tested the effects of Activase® rt-PA regimen on BBB physical integrity in APPswe/PS1 mice. rt-

PA did not compromise BBB tightness after chronic weekly injections of rt-PA for a period of 10

weeks, which was translated by the absence of albumin (Supplementary Fig. 3.1b) and IgG

(Supplementary Fig. 3.1c) extravasation within brain parenchyma. In order to fully address the

effects of rt-PA on the BBB, the expression levels of proteins involved in BBB physical integrity

and function in wildtype mice were investigated 3 and 24 hours after injection. Interestingly, rt-PA

did not change the expression levels of the tight junction protein, Occludin (Supplementary Fig.

3.2a, b) and Claudin 5 (Supplementary Fig. 3.2c, d). In addition, rt-PA did not change the

expression levels of ABCB1 (Supplementary Fig. 3.2e, f), a transporter involved in brain

detoxification (317,321) and possibly involved in Aβ elimination across the BBB (50). In parallel

rt-PA did not change LRP1 protein levels, a t-PA receptor that is also involved in the clearance of

cerebral Aβ across the BBB (54,322) (Supplementary Fig. 3.3a, b), and RAGE that is involved in

peripheral Aβ entry into the brain via the BBB (Supplementary Fig. 3.3c, d) (40). These results

clearly demonstrate that the Activase® rt-PA regimen did not induce BBB breakdown, and did not

change the expression levels of some key proteins involved in Aβ elimination across the BBB.

Page 83: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

61

Figure. 3.1. Activase® rt-PA administration reduces Aβ aggregates and soluble Aβ1-42 levels in the

brain. Immunofluorescence staining (a-d) and ELISA (e,f) analyses examining the deposition of Aβ

aggregates and Aβ1-42 / Aβ1-40 soluble levels in the brain of APPswe/PS1 mice, 10 weeks after Activase® rt-

PA weekly systemic administration. The 6E10 immunofluorescence staining shows a decrease in Aβ plaque

number in the cortex (a) and the hippocampus (b) of treated animals. Moreover, 6E10 immunofluorescence

staining shows a reduction in Aβ plaque size in the cortex (c) and the hippocampus (d) of treated animals.

Finally, ELISA analysis shows reduced levels of soluble Aβ1-42 (e) and unchanged levels of soluble Aβ1-40

(f). Data are means ± SEM (n = 8-10 animals per group for both experiments, 3 sections representing the

rostral, middle and caudal levels of the hippocampus and overlaying cortex per animal’s brain for

immunofluorescence staining). * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 compared with

saline treated group. Images were acquired with a 4X objective. Scale bar = 100 µm

Page 84: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

62

3.5.2. Activase® rt-PA slows the progression of AD-like pathology and behavioral deficits in

APPswe/PS1

It has been proposed that the endogenous t-PA system is involved in cerebral Aβ processing.

Therefore, the impact of Activase® rt-PA regimen on plaque number and size was investigated.

Interestingly, rt-PA systemic administration significantly reduced Aβ plaque number and size in the

cortex (Fig. 3.1a, c) and hippocampus (Fig. 3.1b, d). The toxicity of soluble Aβ in the brain of AD

patients (80) and mouse models of AD (79) has been clearly demonstrated. Interestingly, rt-PA

significantly reduced soluble Aβ1-42 levels (Fig. 3.1e) without affecting the levels of soluble Aβ1-40

(Fig. 3.1f). In order to investigate the physiological relevance of rt-PA-induced Aβ clearance on

mice cognition, we used a T-water maze behavioral paradigm that assesses specifically

hippocampus-based spatial learning and memory (Fig. 3.2). No intergroup difference was seen

during the acquisition phase of the water T-maze behavioural analysis (Kruskal-Wallis = 0.78, p

Figure. 3.2. Activase® rt-PA administration improves APPswe/PS1 mice cognitive functions. T-water

maze behavioral test was used to examine spatial learning and memory (a,b) and to classify the cognitive

performance of mice as a function of treatment (c). Activase® rt-PA treatment does not change the number

of trials to reach criterion in the acquisition phase of the test (a), but significantly enhances the cognitive

functions of APPswe/PS1 mice (b) as shown by their lower number of trials to reach the criterion in the

reversal phase of the test. In addition, the cognitive deficit was highly similar between rt-PA-treated

APPswe/PS1 mice and wildtype mice, which was significantly lower than saline-treated APPswe/PS1 mice

(c). Each point represents an animal and the horizontal bars are the mean for each group. MD: Mild

Cognitive Deficit, ND: No Cognitive Deficit, SD: Severe Cognitive Deficit, WT: wildtype. Data are means

± SEM (n = 13-16 animals per group). * P < 0.05, ** P < 0.001 compared with saline treated group (a,b), *

P < 0.05 compared with saline treated group (c).

Page 85: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

63

0.05). The three groups of mice took a similar number of trials before reaching criterion

performance (Fig. 3.2a). However, during the reversal phase, the analysis of the trials to criterion

revealed a significant effect (Kruskal-Wallis = 9.52, p < 0.01) (Fig. 3.2b). Moreover, the Mann–

Whitney multiples comparisons revealed that rt-PA-treated APPswe/PS1 mice and wildtype mice

have both lower trials to criterion than saline-treated APPswe/PS1 mice (p < 0.05 and p < 0.01,

respectively) (Fig. 3.2b). During the reversal phase, the three groups of mice did not exhibit any

(Fig. 3.2c), the number of mice exhibiting severe cognitive deficit (SD) was lower in rt-PA-treated

APPswe/PS1 mice and wildtype mice compared to saline-treated APPswe/PS1 mice (Chi2 test, p <

0.05) (Fig. 3.2c). In addition, the number of mice exhibiting no deficit (ND) was higher in rt-PA-

treated APPswe/PS1 mice and wildtype mice compared to saline-treated APPswe/PS1 mice (Chi2

test, p < 0.05) (Fig. 3.2c). These results reveal that the rt-PA-treated APPswe/PS1 and wildtype

mice were largely similar in performance and exhibiting similar cognitive profiles.

Figure. 3.3. t-PA-associated perivascular proteases are not induced by Activase® rt-PA regimen.

Caseinase (a,b), gelatinase (c,d) activity assays examining plasmin (caseinase) and MMP2/9 (gelatinase)

enzymatic activities the brain and microvasculature of APPswe/PS1 mice and their wildtype littermates.

Chronic systemic Activase® rt-PA administration does not change plasmin (a) and MMP2/9 (c) activities in

the brain and the microvasculature of APPswe/PS1 treated mice. In addition, the acute systemic Activase®

rt-PA treatment does not change the plasmin (b) and MMP2/9 (d) activities in the brain and the

microvasculature of wildtyp mice. TBH: Total brain homogenates, WT: Wildtype.

Page 86: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

64

3.5.3. The enzymatic activity is not responsible of rt-PA-induced clearance of Aβ

In order to shed light on the mechanisms that might be involved in the protective effects of rt-PA,

we first investigated the implication of the enzymatic activity of rt-PA. It has been reported that t-

PA is indirectly involved in Aβ processing. More precisely, t-PA converts plasminogen into

plasmin, which is involved in Aβ degradation (162). Moreover, t-PA has the ability to activate

MMP2/9 (213), two enzymes involved in vascular remodeling (323) and Aβ degradation (214,215).

The Activase® rt-PA regimen used in this study did not modulate the basal enzymatic activity of

both plasmin (Fig. 3.3a) and MMP2/9 (Fig. 3.3c) in the brain and the microvasculature of

APPswe/PS1 treated mice. To verify whether these unexpected results were due to the chronic

systemic rt-PA administration in APPswe/PS1 mice and/or the presence of Aβ in the brain of these

mice, we tested the effect of an acute bolus of rt-PA in wildtype mice. Similarly, the single systemic

administration of rt-PA did not modulate the basal enzymatic activities of both plasmin (Fig. 3.3b)

and MMP2/9 (Fig. 3.3d) in the brain and the microvasculature of wildtype mice. It has been

reported that t-PA is also involved in neuronal remodeling and synaptic plasticity and mediates

Figure. 3.4. Chronic Activase® rt-PA administration modulates monocyte subpopulations frequencies

in the blood of APPswe/PS1 mice. Flow cytometry analysis (a-c) was performed to examine total

monocyte population frequency and subset frequencies in the blood of APPswe/PS1 mice. Activase® rt-PA

does not change total monocyte frequency in leukocytes (CD45+ cells) in the blood 24 hours after last

injection (a). A gating strategy (b) was thereafter used to discriminate inflammatory monocyte (Ly6CHigh)

and patrolling monocyte (Ly6CLow) subset frequencies in the total population of monocytes. Activase® rt-

PA significantly decreases Ly6CHigh monocyte subset frequency (c), without modulating Ly6CLow subset

frequency (d) in the blood 24 hours after last injection. Data are means ± SEM (n = 8-10 animals per group).

* P < 0.05 compared with saline treated group.

Page 87: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

65

neuronal adaptation to metabolic stress via its proteolytic activity, by enhancing the levels of

synaptophysin, a major synaptic vesicle protein (183). Therefore, we next tested whether the rt-PA

enhanced the synaptic plasticity by enhancing synaptophysin levels. We first confirm that indeed

the protein expression level of synaptophysin has significantly decreased in the brain of

APPswe/PS1 mice compared to wildtype mice (Supplementary Fig. 3.4b). However, the

Activase® rt-PA regimen used in this study did not seem to affect synaptophysin levels

(Supplementary Fig. 3.4a, b) in the brain of APPswe/PS1 treated mice. These results indicate that

the mechanism underlying rt-PA-induced cerebral Aβ reduction and cognitive enhancement are

Figure. 3.5. Acute Activase® rt-PA administration modulates monocyte subpopulation frequencies in

the blood of wildtype mice. Flow cytometry analysis (a-f) examining total monocyte population frequency

and subset frequencies in the blood of wildtype mice 3 (a,c,e) and 24 hours (b,d,f). Activase® rt-PA does

not change the total monocyte frequency in circulating leukocytes (CD45+ cells) 3 (a) and 24 hours (b) after

a single systemic injection in wildtype mice. This treatment also failed to affect Ly6CHigh monocyte subset

frequency in the blood 3 (c) and 24 hours (d) after a single systemic injection. However, it significantly

increases Ly6CLow subset frequency 3 hours (e), but not 24 hours after last injection (f). Data are means ±

SEM (n = 8-10 animals per group) * P < 0.05 compared with saline treated group.

Page 88: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

66

probably independent of the enzymatic activity of rt-PA, more precisely rt-PA-induced plasmin/

MMP2/9 activation.

3.5.4. Activase® rt-PA modulates monocyte population phenotypes in a transient manner

We next investigated the anti-inflammatory effects of rt-PA by analysing its possible role in

modulating monocyte populations. Three hours following the systemic administration of rt-PA,

total monocyte frequency significantly increased (Supplementary Fig. 3.5) without altering the

distribution of monocyte subpopulation in APPswe/PS1 mice. However, rt-PA did not alter total

monocyte frequency in the blood of APPswe/PS1 mice 24 hours following last injection (Fig. 3.4a),

but it induced a shift in monocyte phenotypes by reducing the frequency of Ly6CHigh inflammatory

subset (Fig. 3.4b,c) and by slightly increasing that of Ly6CLow patrolling subset (Fig. 3.4b,d). In

order to clearly address the direct effect of rt-PA on the population of monocytes in an Aβ-free

context, which has been shown to influence monocyte response (23), we used wildtype mice that

were injected with rt-PA. The injection of rt-PA was without effects on the total monocyte and

Ly6CHigh subset frequencies at 3 hours (Fig. 3.5a,c) or 24 hours (Fig. 3.5b,d), respectively, in

wildtype animals, although it significantly increased Ly6CLow subset frequency at 3 hours (Fig.

3.5e), but not at 24 hours (Fig. 3.5f).

3.5.5. The effects of Activase® rt-PA on resident microglia

Chronic rt-PA administration increased the number of resident microglia surrounding Aβ plaques

(Fig. 3.6a,b) as well as the number of Aβ-immunoreative resident microglia surrounding Aβ

plaques (Fig. 3.6a,c), which translates Aβ internalization (i.e phagocytosis) in vivo by these cells.

Interestingly, this phenomenon was associated with a significant global decrease in activation of the

stress kinases SAPK/JNK phosphorylation (Fig. 3.6d), without affecting p38 MAPK

phosphorylation (Fig. 3.6e). The enhanced microglial coverage of Aβ plaques was not due to an

increased infiltration of circulating monocytes and their subsequent differentiation into mature

microglia, as we did not detect any CD45High (blood-derived leukocytes)/ Iba1 (differentiated

microglia) double positive staining (i.e. blood-derived macrophages) within the cells surrounding

Aβ plaques (Fig. 3.7a). In addition, we did not detect any changes in the frequency of

CD11bHigh/CD45High (blood-derived macrophages) in the brain of APPswe/PS1 mice 3 and 24 hours

following rt-PA administration (Fig. 3.7b). Finally, these results were confirmed when we did not

detect GFP-positive cells in the brain of chimeric APPswe/PS mice treated with rt-PA (Fig. 3.7c).

Moreover, chronic rt-PA administration did not alter NF-κB signaling pathway activity that is

involved in microglial pro-inflammatory activation, which was unraveled by the unchanged gene

Page 89: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

67

transcript expression levels of IκBα (316) (Supplementary Fig. 3.6c). These data suggest that rt-PA

Figure. 3.6. Chronic Activase® rt-PA administration increases the number of resident microglia-

associated to Aβ plaques and reduces the activation of stress-induced pathways. Immunofluorescence

staining (a-d) and western blot (e,f) analyses examining microglia association to Aβ plaques, Aβ

internalization by microglia and the activation of stress-related kinases in the brain of APPswe/PS1 mice,

10 weeks after systemic Activase® rt-PA administration. Triple 6E10/Iba1/DAPI immunofluorescence

staining shows an increased number of microglia (Iba1; green / DAPI; blue) surrounding Aβ plaques

(6E10; red) (a,b) and an increased number of Aβ-immunoreactive resident microglia (microglia

internalizing Aβ) (a,c). Moreover, Activase® rt-PA treatment decreases the phosphorylation levels of

SAPK/JNK (e) without affecting the phosphorylation levels of p38 MAPK (f). Optical densities were

corrected with β-actin levels. Data are means ± SEM (n = 4-6 animals per group, 4 sections representing

the rostral, middle and caudal levels of the hippocampus and overlaying cortex per animal’s). * P < 0.05,

** P < 0.01 compared with saline-treated group. Laser scan confocal images were acquired with a 60X

objective. Scale bar = 10 µm.

Page 90: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

68

might modulate resident microglia activity by enhancing their mobilization towards Aβ plaques, by

increasing their capacity to internalize Aβ, and by decreasing the stress associated to inflammation

without altering their phagocytic capacities.

Figure. 3.7. Activase® rt-PA administration does not influence blood-derived monocyte infiltration

into the brain parenchyma of APPswe/PS1 mice. Immunofluorescence staining (a,c) and flow cytometry

analysis (b) examining blood-derived monocyte infiltration into the brain parenchyma of APPswe/PS1.

Double Iba1/CD45 immunofluorescence staining shows the absence of CD45High/Iba1 positive cells (blood-

derived macrophages) (a) surrounding Aβ plaques in the brain of APPswe/PS1 mice, 10 weeks after

systemic Activase® rt-PA administration. Flow cytometry analysis shows that the frequencies of

CD11bHigh/CD45High cells (blood-derived macrophages) remain unchanged in the brain of APPswe/PS1

mice, 3 and 24 hours following a single Activase® rt-PA administration (b). Finally, Activase® rt-PA does

not trigger the infiltration of blood-borne GFP-positive cells into the brain of APPswe/PS1 chimeric mice

24 hours after a single Activase® rt-PA administration (c). In contrast, irradiation is triggers the infiltration

and differentiation (ramification) of blood-borne GFP-positive cells in the brain of APPswe/PS1 mice

(positive control) (c). Data are means ± SEM (n = 7-8 animals per group, 4 sections representing the rostral,

middle and caudal levels of the hippocampus and overlaying cortex per animal’s). Scale bar = 50 µm (a),

250 µm (c).

Page 91: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

69

3.5.6. Activase® rt-PA enhances BV2 microglial cell mobility and acts as chemoattractant

molecule in a LRP1-dependent manner

In order to fully address and decipher the effect of Activase® rt-PA on microglia, we performed a

series of experiments using the immortalized murine microglial cell line (BV2). The strategy

consisted on comparing BV2 cell stimulation with rt-PA along with two other molecules LPS and

interleukin (IL)-4, known to trigger the activation of these cells towards a pro-inflammatory

phenotype (LPS) or anti-inflammatory one (IL-4). rt-PA (0,1 nM) and IL-4 (5 ng/ml) exposure

enhanced microglial cell mobility in a similar manner (Fig. 3.8a), whereas they failed to induce

change in MMP2/9 (Fig. 3.8b) and LRP1, a receptor for t-PA (Fig. 3.8c). However rt-PA-induced

microglial cell mobility was LRP1 dependent, because LRP1 inhibition by RAP essentially

abolished rt-PA-induced cell mobility (Fig. 3.8d). We then verified the possible role of rt-PA as a

chemoattractant molecule that triggers microglial cell mobility and migration using a two chambers

transwell experimental setting (Fig. 3.8e) and found that rt-PA acted as a chemoattractant molecule

that mobilized microglial cells to the lower chamber that contains the molecule (Fig. 3.8f). This role

was mediated by LRP1 expressed on microglial cells since LRP1 inhibition by recombinant RAP

prevented these effects (Fig. 3.8f). Taken together these results underlie a key chemoattractant role

of rt-PA on microglial cells via LRP1. Activase® rt-PA dampers intracellular stress in BV2

microglial cells

The effects of Activase® r-tPA on the regulation of SAPK/JNK and p38 MPAK signalling pathway

were investigated in BV2 cells. In contrast to LPS (2 µg/ml), IL-4 and rt-PA failed to induce

SAPK/JNK phosphorylation (Fig. 3.9a), but they slightly increased p38 MAPK phosphorylation

(Fig. 3.9b). These effects of rt-PA were in contrast with the effect of LPS that causes a robust p38

signaling induction.

3.5.7. The effects of Activase® rt-PA on the phagocytic capacity and oxidative stress cascade

in BV2 microglial cells

Nitrite production and release by activated microglia is involved in microglial-derived oxidative

stress (324). Interestingly, rt-PA and LPS potently enhanced microglial cell phagocytic capacity 1

hour after stimulation (Fig. 3.9c). However, in contrast to LPS stimulation, rt-PA stimulation did

not trigger nitrite production and release by activated microglial cells (Fig. 3.9d). These results

suggest that rt-PA was able to enhance and preserve microglial cell phagocytic capacity without

triggering microglial-derived oxidative stress.

Page 92: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

70

Figure. 3.8. Activase® rt-PA modulates BV2 microglial cell activation in vitro. Cell migration assay

(a,d), gelatinase activity assay (b), western blot (c) and chemotaxis assay (e,f) analyses examining the

behavior of microglial cells after stimulation with Activase® rt-PA (0,1 nM), LPS (2 µg/ml), IL-4 (5 ng/ml)

and RAP (200 nM). Cell migration assay shows an enhanced migration of microglial cells 24 hours after

stimulation with rt-PA or IL-4 compared to control or LPS exposure (a). Gelatin activity assay shows that

Activase® rt-PA does not induce MMP2/9 activation in any conditions (b). Western blot analysis confirms

the unchanged expression levels of LRP1 (c). Cell migration assay shows that rt-PA-induced mobility is

LRP1-dependent, as LRP1 inhibition with RAP, decreases cell migration (d). The two chamber chemotaxis

assay provided evidence that rt-PA induces microglial mobilization towards a gradient of rt-PA present in

the lower chamber (e). Microglia cellsare mobilized by Activase® rt-PA in a LPR1-dependent manner 3

hours after stimulation (f). Optical densities were corrected with β-actin levels. Dark spheres represent BV2

cells. Data are means ± SEM (n = 3-4 independent experiments). * P < 0.05, ** P < 0.01, **** P < 0.0001

compared with control group. The descending arrow illustrates cell mobilization from the upper chamber

toward the lower chamber. Scale bar = 250 µm.

Page 93: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

71

3.5.8. The effects of Activase® rt-PA on the mobility and the phagocytic capacity of BV2

microglial cells is independent of its enzymatic activity.

In order to verify whether the observed effects of rt-PA are not associated to the its enzymatic

activity, we stimulated BV2 microglial cells with a full length mutated form of rt-PA that is

deprived of any enzymatic activity, rt-PA (S478A), in which alanine has been substituted for the

active-site serine. Interestingly, rt-PA (S478A) still potently enhanced microglial cell mobility (Fig.

3.9e) and phagocytic capacity (Fig. 3.9f). These results confirm once again the important role of rt-

PA as a cytokine in modulating microglial cell activity independently of its enzymatic activity.

3.6. Discussion

This study unravels a novel role for Activase® r-tPA in counteracting the progression of AD-like

pathology in APPswe/PS1 mice. These effects include Aβ clearance together with a slight increase

in the frequency of anti-inflammatory patrolling monocytes and a preserved phagocytic capacity of

resident microglia. It is noteworthy to mention that the Activase® r-tPA regimen used in this study

did not induce BBB breakdown, which was evaluated by albumin and IgG extravasation and the

expression levels of the tight junction protein Occludin. Moreover, Activase® r-tPA regimen did

not alter BBB function, which was evaluated by the expression levels of several transporters and

receptors involved in Aβ transport across the BBB, such as ABCB1 (50,55), LRP1 (54) and RAGE

(40). This study also shows that the systemic chronic administration of Activase® r-tPA decreased

Aβ plaque load and size, decreased the levels of soluble Aβ1-42 but not Aβ1-40 in the brain of

APPswe/PS1, and ameliorated the cognitive function of these mice. It is noteworthy to mention here

that memory retrieval in the T-water maze of rt-PA-treated APPswe/PS1 mice was significantly

improved indicating that rt-PA exerted beneficial effects on mice cognitive flexibility, which has

been shown to be impaired in AD (325,326).

The t-PA/plasmin system has been proposed to be involved in soluble and Aβ microaggregate

degradation either directly through the enzymatic activity of plasmin (162) or indirectly through the

enzymatic activity of t-PA-induced MMP2/9 activation (213–215). In parallel, several studies

outlined the role of the enzymatic activity of t-PA in promoting neuronal remodeling and synaptic

plasticity, consequently enhancing neuronal adaptation to metabolic stress, mainly by enhancing the

production of the synaptic vesicle protein synaptophysin (183). The Activase® r-tPA regimen used

in this study did not induce the activation of plasmin and MMP2/9, suggesting a rt-PA enzymatic-

independent mechanism involved in the clearance of soluble and insoluble Aβ. In line with other

reports(327), synaptophysin levels were significantly reduced in the brain of APPswe/PS1 mice

compared to wildtype littermates. However, rt-PA-enhanced cognitive function was not

Page 94: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

72

accompanied by, at least, detectable enhanced expression of synaptophysin in the brain of

APPswe/PS1 mice. This might be due to several factors, such as the differential expression of

synaptophysin in an age and brain region-dependent manner (328). Besides, several studies have

shown that some treatments enhanced the cognitive function of rodents, without modifying

synaptophysin levels (329). Finally, a recent study showed that Aβ disrupts the interaction between

synaptophysin and VAMP2 affecting the synaptic transmission (330). Our study indicates that the

enhanced cognitive functions of treated mice is, at least, independent of the enzymatic activity of t-

Figure. 3.9. Activase® rt-PA decreases BV2 microglial cell intracellular stress and preserves their

phagocytic capacity. Western blot (a, b), phagocytosis assay (c, f), ,Griess assay (d), cell migration assay

(e) analyses examining the microglia intracellular stress responses microglial mobilization and phagocytic

capacity after stimulation with Activase® r-tPA (0,1 nM), rt-PA (S478A) (0,1 nM), LPS (1 µg/ml) and IL-4

(5 ng/ml). Western blot analysis shows that rt-PA and IL-4 do not increase the phosphorylation of

SAPK/JNK, which was strongly increased in presence of LPS (a). The endotoxin also caused higher

phosphorylation levels of p38 MAPK than rt-PA and IL-4 (b) while the phagocytic capacity of microglial

cells remained similar between rt-PA and LPS (c). This response to LPS was associated with nitrite

production and release by microglial cells, which was absent in the presence of rt-PA (d). Cell migration

assay shows an enhanced migration of microglial cells 24 hours after stimulation with the mutated form of

rt-PA that is deprived of any enzymatic activity rt-PA (S478A) (e), Finally, the phagocytosis assay shows

that rt-PA (S478A) still enhances phagocytic capacity of microglial cells (f). Data are means ± SEM (n = 3

independent experiments). **** P < 0.0001 compared with control group.

Page 95: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

73

PA in promoting neuronal remodeling and adaptation to metabolic stress, but rather probably linked

to the decreased levels of soluble and insoluble Aβ.

The relevance of t-PA system in AD has been outlined in some studies, suggesting it as a potential

therapeutic target (162,232). In the brain, t-PA is produced by brain endothelial cells and

throughout the brain parenchyma, namely by microglia (173). However, all experimental studies

have investigated endogenous t-PA with a focus of its well characterized proteolytic function. In

our study, Activase® r-tPA administration did not alter BBB function, thus suggesting that the rate

of Aβ transport across the BBB by specialized endothelial transporters were not affected. Therefore,

it is conceivable to propose that cerebral Aβ reduction following systemic rt-PA administration is

due to a dynamic and synergistic interaction between blood circulation and the brain. Importantly, t-

PA has been shown to act as an anti-inflammatory cytokine, independently from its proteolytic

activity (197). Therefore, Activase® r-tPA anti-inflammatory characteristics on circulating

monocytes were firstly investigated. In rodents, monocyte population is divided into two subsets,

the pro-inflammatory subset (i.e. Ly6CHigh) and the patrolling subset (i.e. Ly6CLow) (331). Both

monocyte subsets have been demonstrated to be involved in Aβ processing and play key roles in

AD pathogenesis and treatment strategies (23). Consistent with its anti-inflammatory

characteristics, rt-PA transiently decreased the frequency of pro-inflammatory monocyte subset and

induced a slight increase in the frequency of anti-inflammatory monocyte subset in blood

circulation. Although, rt-PA administration had little effects on key endothelial transporters and

receptors involved in specialized Aβ transport and elimination across the BBB, this does not

eliminate the fact that circulating monocytes are always capable to adhere to brain vasculature and

contribute in Aβ clearance. Indeed, very recently, our group demonstrated, by using a novel two-

photon intravital imaging approach to investigate the role of monocytes in the brain of live

APPswe/PS1 mice, that the anti-inflammatory monocyte subset adhered in a specific manner to Aβ

microaggregate-rich brain vasculature and efficaciously eliminated these microaggregates by

internalizing and transporting them from brain microvasculature to blood circulation (284). The

specific depletion of the anti-inflammatory monocyte subset in APPswe/PS1 mice increased overall

cerebral Aβ levels and worsened the cognitive function of these mice (284). Taken together, these

results demonstrate that rt-PA has to potential to specifically increase, although modestly, the

frequency of the anti-inflammatory monocyte subset that is involved in Aβ elimination from brain

vasculature, thus partly contributing in rt-PA-induced Aβ clearance.

Some reports showed that neuronal and microglial-derived endogenous t-PA triggers microglial cell

activation with diverse inflammatory responses (194,195,197,332). Importantly, intravenously

Page 96: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

74

administered rt-PA has been shown to reach the brain parenchyma without altering the intact BBB

(322). However, little is known about the cytokine actions of exogenously administered rt-PA,

which imitates vascular-derived rt-PA production, on brain resident microglial cells in

neurodegenerative disorders, namely AD. Therefore, the effects of Activase® r-tPA on brain

resident microglia were also investigated. Activase® r-tPA chronic administration significantly

increased the number of resident microglia covering Aβ plaques, which translates an enhanced

mobility, invasion and mobilization of these cells towards Aβ aggregates. In parallel, Activase® r-

tPA administration significantly decreased the phosphorylation levels of SAPK/JNK in the brain of

treated mice. SAPK/JNK is potently activated by a variety of environmental stresses, including Aβ

(333). As such, these results outline a reduction in the environmental stresses in the brain of

APPswe/PS1 mice following rt-PA treatment. In parallel, NF-κB signaling pathway has been shown

to mediate the pro-inflammatory actions of microglia (334). Importantly, Activase® r-tPA did not

modulate IκBα gene transcript expression, which is an adaptor protein involved in controlling NF-

κB signaling pathway widely used as an indicator of NF-κB activity (316). These results indicate

that Activase® r-tPA administration mediated essentially a less pro-inflammatory phenotype of

resident microglia, which is consistent with t-PA anti-inflammatory characteristics (197).

The molecular mechanisms involved in Activase® r-tPA effects on microglial cells were next

investigated in vitro by using the BV2 microglial cell line. The BV2 cell line was chosen as it has

been reported to be a valid substitute for primary microglial cell culture in several experimental

settings (335). Activase® r-tPA stimulation enhanced microglial cell mobility and invasion in a

similar manner as IL-4 but in contrast to LPS. This effect was dependent on the interaction between

rt-PA and its receptor on microglial cells, LRP1, as the inhibition of the latter with recombinant

RAP essentially abolished the effects of rt-PA. Moreover, this invasion did not depend on the

enzymatic activity of MMP2/9. The diffuse nature of endogenous t-PA and exogenously

administered rt-PA within the brain parenchyma prompted us to test its chemoattractant properties

(332). Indeed, by using the two chambers transwell experiment, Activase® r-tPA triggered

microglia cell mobilization into the chamber containing the molecule, which was LRP1-dependent,

as microglial cell incubation in the upper chamber with RAP totally abolished the chemoattractant

characteristics of rt-PA. In parallel, microglial cell stimulation with rt-PA and IL-4 did not induce

SAPK/JNK phosphorylation, a kinase involved in mediating the pro-inflammatory actions of

microglia (336), whereas LPS potently induced it. Moreover, rt-PA and IL-4 slightly increased p38

MAPK phosphorylation, another kinase that is also associated to microglial stress (337), whereas

LPS induced a robust increase in p38 MAPK phosphorylation. Finally, Activase® r-tPA stimulation

Page 97: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

75

enhanced and preserved the phagocytic capacity of microglial cells, without mediating nitrite

production that is involved in microglial-derived oxidative stress (324). These results clearly

demonstrate that rt-PA enhanced the phagocytic capacity of microglial cells without generating

nitrite production. It has been demonstrated that a pronounced production of nitrites by activated

microglial cells exacerbates the pro-inflammatory microenvironment that occurs in AD, thus

contributing to the decreased efficiency of resident microglia to clear Aβ (312,338). Taken together

these results suggest that Activase® r-tPA reduces microglia pro-inflammatory actions and

enhances their phagocytic capacity in the brain of APPswe/PS1 mice. Some in vivo experimental

studies have investigated the implication of the t-PA/plasmin system in AD pathogenesis and

treatment. However, all these studies focused essentially on the implication of the enzymatic

activity of t-PA. For example, it has been shown that the depletion of endogenous t-PA accelerates

and aggravates the pathogenesis of AD in Tg2576 mice (319). In addition, when synthetic Aβ was

injected into the brain of transgenic mice lacking t-PA or plasminogen, Aβ deposits persisted longer

and resulted in an exacerbated neuronal damage compared to wildtype littermates (162). In line

with thoses previous reports, our study provides new insights regarding the potential of this system

in AD treatment, by outlining a new proteolytic-independent mechanism of exogenously

administered rt-PA. On the other hand, some ex vivo and in vitro data reported that endogenous t-

PA mediates Aβ-induced neurotoxicity (224), and triggers the pro-inflammatory activation of

microglial cells in a glial cell culture (339) in the context of AD. Taken together, these

contradictory reports outline a very complex interaction between the t-PA/plasmin system and Aβ,

which seem to be dependent on the context under which this system is investigated in AD. As such,

we believe that more studies should be performed in order to better elucidate the contribution of this

system in AD and its potential as a therapeutic target.

3.7. Conclusion

It has been shown that a defective production of monocytes was accompanied by an increased

accumulation of soluble Aβ in the brain of APPswe/PS1 mice, which was closely associated to the

onset of cognitive decline (23). Macrophage-colony stimulating factor (m-CSF) treatment prevented

and restored the cognitive decline of mice by increasing monocyte production in blood circulation

(23). In parallel, microglia have been shown to be recruited to Aβ plaques, and to internalize and

degrade Aβ microaggegates (313). However, over time, the capacity of resident microglia to clear

Aβ decreases and becomes inefficacious due to the presence of an exacerbated pro-inflammatory

microenvironment (68). Nonetheless, the immunostimulation of resident microglial cells by

exogenous agents, such as the detoxified ligand monophosphoryl lipid A (MPL), reinforced Aβ

Page 98: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

76

clearance by microglial cells and improved the cognitive functions of APPswe/PS1 mice (340).

These observations suggest that the therapeutic strategies that aim at boosting monocyte production

and microglial cell activity with moderate inflammatory responses are very promising, and

constitute attractive avenues in combating AD progression. Therefore, our study suggests that the

FDA approved drug Activase® rt-PA might constitute a new potential treatment for AD with all

these very interesting features.

3.8. Acknowledgments

We specially thank Mr. Mohammed Filali for his technical expertise in beahavior test. We thank,

Mrs. Nataly Laflamme, Mrs. Marie-Michèle Plante and Mr. Paul Préfontaine for their technical

support.

3.9. Funding

This work was supported by the Canadian Institutes in Health Research (CIHR) and Canadian

Stroke Network.

Page 99: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

77

Chapitre 4

4. Discussion

Lors du chapitre 2, nous avons reporté un déclin cognitif plus important chez les souris

hypoperfusées comparé aux souris de la même portée non-hypoperfusées. Nos résultats démontrent

que, suite à la SCCH, l’apport en glucose diminue ce qui induit un dysfonctionnement microglial,

soit une réduction du recrutement et de l’activité des microglies autour des plaques. L’altération de

l’activité microgliale compromet la dégradation de l’Aβ et donc, contribue à l’augmentation du

nombre de plaques amyloïdes. L’hypoperfusion entraîne également une diminution de l’activation

de la voie ERK, impliquée dans la survie (297,306,307) et la croissance cellulaire (300,306). Ces

phénomènes contribuent indirectement et directement au déclin cognitif (Fig. 4.1).

Après une période de 15 semaines, les souris soumises à la SCCH démontraient une dysfonction de

leur mémoire spatiale et non spatiale sans présenter de déficits moteurs. En ce sens, l’altération de

la mémoire induite par l’hypoperfusion est un phénomène qui a été décrit à maintes reprises chez

des modèles animales non-mutants (147,149,151,153,154,156,341). Utilisant le modèle du 1VO

(137,138) et du BCAS (139,144), plusieurs ont décrit une aggravation du déclin cognitif des souris

transgéniques sur-exprimant l’APP humaine. En accord avec ces récents travaux menés chez les

souris Alzheimer (137–139,144), nos résultats confirment la participation de l’hypoperfusion dans

Figure 4.1. L’effet de l’hypoperfusion cérébrale chronique sévère (SCCH) sur le cerveau des

APPswe/PS1. Suivant l’hypoperfusion, le CBF et le glucose diminuent (1). L’environnement faible en

glucose créé induit une dysfonction microgliale (2) laquelle entraîne une augmentation du nombre de

plaques amyloïdes (3). La SCCH induit également une réduction de l’activité de la voie ERK1/2 qui est

associée avec la survie cellulaire et la croissance des neurites (4). La hausse de la déposition de l’amyloïde

pourrait également contribuer à l’altération de ERK (4). L’augmentation du nombre de plaques séniles et

l’altération de ERK contribuent au déclin de la mémoire spatiale et non spatiale. Afin de simplifier la

figure, l’amyloïde n’est pas représentée.

Page 100: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

78

la progression de la AD (42). De plus, notre étude indique que les souris transgéniques soumises à

la SCCH ne présentent pas de mort neuronale ou de rupture de la BBB. Ainsi, le déclin cognitif des

souris hypoperfusées n’est pas induit par des dommages de la matière blanche ce qui indique qu’il

ne s’agit pas d’une ischémie (139,149,151–157). De ce fait, nos résultats suggèrent que la SCCH

promeut une oligémie qui, tel que décrit par des travaux antérieurs, entraîne un dysfonctionnement

neuronal (138,140). Par conséquent, ce nouveau modèle, jumelant une BCAO transitoire de courte

durée et une 1VO permanente, modéliserait une oligémie qui serait plus sévère que le modèle 1VO.

Toutefois, cette théorie devrait être confirmée par la caractérisation des changements du CBF, soit

par l’imagerie par résonance magnétique ou par vélocimérie laser. En effet, ces deux tehniques

d’imagerie, qui ne nous était pas disponible pour cause de coûts et/ou de disponibilité,

permetteraient de quantifier et monitorer le changement du CBF suivant la SCCH. De plus,

l’imagerie par résonance magnétique permettrait également d’identifier les régions plus atteintes par

le changement du CBF. Ces régions cérébrales s’avèrent alors intéressante d’étudier plus

amplement par immunofluorescence ou immunohistochimie et ce, selon leur hémisphère.

De plus, le type d’hypoperfusion module l’accumulation et la déposition de l’Aβ. Selon notre

modèle de SCCH, le déclin cognitif était également accompagné par une augmentation significative

du nombre de plaques séniles à l’hippocampe sans changer la concentration d’amyloïde soluble

cérébrale. Cette corrélation a précédemment été établie par Pimentel et al suivant l’oligémie légère,

la 1VO, chez les APPswe/PS1 (138). Une autre étude a également décrit cette corrélation suite à

une sténose provoquant un stress ischémique chez les Tg swe/dutch/iowa (144). En contraste, Koike

et al ont effectué une BCAO transitoire de 4 minutes sur des souris transgéniques 3xTg-AD. Après

48 heures, ils ont observé l’augmentation de l’expression de BACE-1 qui induit la production de

l’Aβ et l’accumulation significative de l’Aβ soluble (140). L’induction de l’expression de la β-

sécrétase se produit habituellement suite à l’hypoxie qui accompagne généralement l’ischémie (89).

Cependant, ces changements n’ont pas été accompagnés de dommages de la matière blanche

suggérant une oligémie hypoxique (140). Au contraire, notre modèle n’induit pas de changement de

la concentration de l’amyloïde soluble, mais une élévation du nombre de plaques. Bien que

globalement notre étude et la leur démontrent l’altération de l’amyloïde, ces deux phénomènes

impliqueraient des mécanismes différents. Étant donné l’absence de changement de la quantité

d’amyloïde soluble, la SCCH ne semble pas moduler directement l’expression de l’Aβ suggérant

que l’accumulation de l’amyloïde s’effectue, soit par son entrée de la périphérie (55) ou l’altération

de son élimination (64). En effet, lors de travaux récents menés par notre laboratoire, ElAli et al ont

démontré que l’oligémie, provoquée par la 1VO chez des souris sauvages, promeut l’entrée de

Page 101: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

79

l’amyloïde périphérique (injectée par voie intrapéritonéale) au cerveau contribuant à sa déposition

(55). Par conséquent, dans le modèle de la SCCH sur les APPswe/PS1, l’augmentation de la

déposition de l’Aβ pourrait provenir de la périphérie. Cependant, puisqu’il ne s’agissait pas de l’un

des objectifs initiaux de ce projet, nous n’avons pas visualisé le transport de l’amyloïde par

microscopie intravitale (55). Ainsi, nous ne pouvons pas confirmer l’entrée de l’Aβ au cerveau.

Nous aurions également pu confirmer l’implication de l’augmentation du nombre d’agrégats

d’amyloïde sur les changements mnésiques observés en comparant par des tests de comportement

des souris non-mutantes hypoperfusées et APPswe/PS1 hypoperfusées. Considérant les

changements d’amyloïde suivant la SCCH, la comparaison entre ces deux groupes permettraient de

vérifier si l’altération de la mémoire et de l’apprentissage est accentué chez les APPswe/PS1 et si

celle-ci implique un mécanisme dépendant de l’amyloïde. Toutefois, pour des raisons éthiques,

nous avions exclus le groupe contrôle non-mutant afin de réduire au maximum le nombre

d’animaux inclus dans le protocole, puisque l’hypoperfusion est reconnue comme causant des

problèmes de mémoire (147,149,151,153,154,156,341).

L’accumulation de l’amyloïde peut également provenir de l’altération de l’une des voies

d’élimination. Par conséquent, nous nous sommes intéressés particulièrement à l’effet de la SCCH

sur l’une des voies de dégradation de l’Aβ, soit la phagocytose par les cellules immunitaires. Nous

avons donc déterminé la fréquence des populations de monocytes par cytométrie en flux. Comparé

aux souris non-hypoperfusées, les souris hypoperfusées semblent posséder davantage de monocytes

patrouilleurs, sans changement de la fréquence des monocytes totaux et inflammatoires. Plusieurs

travaux ont constaté que l’hypoperfusion déclenche un stress vasculaire qui induit le recrutement

des monocytes contribuant au remodelage vasculaire (292) et à la survie neuronale (293). Durant la

phase aiguë de l’ischémie, les monocytes inflammatoires sont recrutés afin d’éliminer les débris

produits (283,294,298). Plus tard, lors de la phase chronique de l’hypoperfusion, les monocytes

patrouilleurs (Ly6CLow) sont, à leur tour, recrutés (299). Nahrendorf et al décrivirent l’implication

de ces derniers dans les processus réparateurs lors de l’infarctus du myocarde (294). En ce sens, la

tendance de l’augmentation de la fréquence des Ly6CLow suivant la SCCH pourrait être promue par

des évènements moléculaires et cellulaires induits par le stress vasculaire. De manière intéressante,

des résultats non-publiés de cette étude (Fig. supplémentaire 4.1) ont démontré une réduction

significative de l’amyloïde vasculaire suggérant l’élimination de l’Aβ par les Ly6CLow. Cette

élimination serait limitée à leur interaction de l’Aβ, puisqu’aucune infiltration des monocytes n’a

été reportée. En ce sens, Michaud et al ont démontré que la 1VO augmente l’adhésion et le

rampement des Ly6CLow ce qui contribue à l’élimination de l’amyloïde vasculaire chez les

Page 102: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

80

APPswe/PS1 (284). Ils ont également prouvé que la déplétion du facteur de différenciation des

Ly6CLow (Nur77–/–), Nr4a1, augmente l’aire et le nombre des plaques amyloïdes (284). De plus, des

travaux chez les APPswe/PS1/CCR2–/–, déficiente en monocytes inflammatoire, ont reporté

l’importance des Ly6CHigh dans l’élimination de l’Aβ en observant une progression accélérée de la

pathologie (285,290). Toutefois, nos résultats suggèrent aucune implication des monocytes

inflammatoires. Bien que cette tendance ne soit pas significative, il s’agit d’une tendance forte,

considérant que l’échantillonnage était limité et que la fréquence des monocytes varie d’un individu

à l’autre. Le suivi longitudinal de la variation des populations des monocytes aurait pu permettre

d’évaluer plus exactement ces changements. Nous supposons que l’augmentation des monocytes

patrouilleurs à la suite de la SCCH contribue à la maintenance de la BBB en réponse au stress

vasculaire, en plus de contribuer à l’élimination de l’amyloïde vasculaire. Toutefois, d’autres

investigations complémentaires sont nécessaires afin de confirmer l’implication des monocytes

patrouilleurs dans l’élimination de l’amyloïde vasculaire. L’étude de souris APPswe/PS1 «knock-

out» Nur77–/– ou chimériques (Nur77–/–→APP/PS1) hypoperfusées permettraient d’évaluer l’impact

de la déplétion des Ly6CLow sur l’élimination de l’amyloïde vasculaire (342).

Outre les monocytes, les microglies contribuent également l’élimination de l’Aβ cérébrale. Nous

avons observé, chez les souris soumises à la SCCH, une réduction significative du nombre de

microglies recrutées aux agrégats et du nombre activées (CD68+) suggérant un dysfonctionnement

microglial. En ce sens, Hefendeh et al ont décrit des changements morphologiques chez les

microglies âgées, attribués un état dysfonctionnel (343). Au cours du vieillissement normal, le CBF

se réduit (95) ce qui limite l’apport en glucose et en oxygène (129,131). Dans ce contexte, la

réduction du glucose peut induire un dysfonctionnement métabolique des cellules exigeantes

énergétiquement (95,130) dont les microglies font partie (279). Limitant la production d’ATP (132),

la déficience en glucose pourrait compromettre la phagocytose (304). Le cas échéant, les microglies

entreraient dans un état dysfonctionnel, puisque celles-ci sont incapables de subvenir à leur besoins

énergétiques. Afin de confirmer ce mécanisme, l’effet de la déficience en glucose a été étudié in

vitro chez les BV2, une lignée cellulaire murine. Tel que présumé, nos résultats ont démontré qu’un

microenvironnement appauvri en glucose altère l’activité globale, l’activation et la capacité

phagocytique des microglies. Cet hypométabolisme microglial confirme le dysfonctionnement des

microglies observé in vivo, en plus de favoriser la déposition de l’amyloïde par la perte de capacité

phagocytique. Ainsi, la SCCH dévoile un nouvel effet de l’hypoperfusion sur la fonction des

microglies. En effet, les travaux antérieurs ont reporté l’altération du comportement microglial 3

mois suivant l’ischémie. Toutefois, ils y ont observé une activitée accrue des microglies dans la

Page 103: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

81

région CA1 de l’hippocampe corrélant avec la phagocytose de neurones apoptotiques (151,156). Au

contraire, l’oligémie, causée par la SCCH, induit ni la mort neuronale, ni l’activation microgliale,

mais promeut un dysfonctionnement de ces cellules immunitaires. Considérant l’augmentation du

nombre de plaques, nos résultats démontrent, pour la première fois, l’hypoactivité des microglies ce

qui contribue à l’accumulation et à la déposition de l’amyloïde.

D’autre part, la SCCH induit la réduction de la phosphorylation de ERK globale au cerveau pouvant

indiquer un dysfonctionnement neuronal. En effet, la voie de ERK module entre-autres les effets

neuroprotecteurs de plusieurs facteurs neurotrophiques (297,300,307). Son altération est reconnue

pour induire une altération neuronale, soit de la survie (297,300–302,306,307), de la prolifération

(344) et de la croissance des neurites (306). Chez des souris sauvages hypoperfusées, l’altération

des protéines impliquées dans la fonction neuronale a été reporté à maintes reprises pour les

neurotrophines (145,147) la voie PI3K/Akt (147,153), la synaptophysine, GAP-43 et MAP-2 (146).

La réduction de l’activité de ERK pourrait également influencer l’inflammation (295,296) et

augmenter la production des dérivés réactifs de l’oxygène (303). Toutefois, l’évaluation de

l’expression de ERK étant faite sur des homogénats de cerveau, il est davantage probable que la

réduction d’activation de ERK contribue au dysfonctionnement neuronal. Dans le contexte de la

AD, cela aggrave le déclin cognitif.

Par la suite, dans le chapitre 3, nous avons décrit un nouvel effet de l’Activase® rt-PA sur les souris

APPswe/PS1. Lorsqu’administré hebdomadairement avant le développement des premiers

symptômes de la AD, le rt-PA retarde la progression de la maladie. En effet, sans altèrer l’intégrité

ou la fonction de la BBB, le rt-PA améliore la fonction cognitive et réduit l’accumulation de

l’amyloïde. Par son action de cytokine, le rt-PA module le phénotype des monocytes et des

microglies résidentes vers un phénotype anti-inflammatoire. In vivo, les microglies sont davantage

recrutées au niveau des plaques, ce qui indique un gain de mobilité induit par rt-PA confirmé par

l’étude in vitro. Outre l’augmentation de leur mobilité, l’étude in vitro de rt-PA sur les microglies,

les BV2, a permis de démontrer que le rt-PA se lie à LRP1 et induit l’activation de la voie de

signalisation MAPK p38 ce qui favorise la phagocytose sans induire de stress oxydatif (nitrite,

SAPK/JNK). Cet effet est également préservé lors de la stimulation des BV2 avec le rt-PA muté au

niveau de son site enzymatique (rt-PA S478A) confirmant l’absence de l’implication de la fonction

enzymatique du t-PA (Fig. 4.2).

Avec l’âge et la AD, l’expression du t-PA diminue drastiquement (162,226,231,233,234). À

maintes reprises, des travaux ont suggéré l’importance d’explorer le système de t-PA en tant que

Page 104: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

82

cible thérapeutique potentielle (162,229,231,232). Dans cette étude, nous nous sommes intéressés à

l’effet du rt-PA sur le cerveau des souris transgéniques APPswe/PS1. Pour ce faire, nous avons

administré 5mg/kg de l’Activase® rt-PA à chaque semaine pendant 10 semaines à des souris

APPswe/PS1 âgées de 4 mois. Comparées aux souris traitées avec du salin, l’administration

chronique de rt-PA chez les APPswe/PS1 induit une amélioration des facultés cognitives au test du

Water-T maze. Le rt-PA entraîne également la réduction de la taille et du nombre de plaques

amyloïdes du cortex et de l’hippocampe, en plus de réduire la concentration d’Aβ1-42 soluble. En ce

sens, des études antérieures ont également établi que l’activation de t-PA par l’invalidation génique

des inhibiteurs endogènes de t-PA réduit l’accumulation de l’Aβ cérébrale des souris transgéniques

Alzheimer (229,230). De plus, Oh et al ont récemment démontré que la déplétion de t-PA chez des

souris Tg2576 aggrave le déclin cognitif et promeut l’accumulation de l’Aβ (232). Suite à

l’administration du rt-PA, aucune rupture de la BBB n’a été observée. Le rt-PA a également eu

aucun effet sur l’expression de transporteurs et récepteurs impliqués dans le transport de l’Aβ, soit

ABCB1 (50,55), LRP1 (54) et RAGE (40). De ce fait, le délai de la progression de la AD n’est pas

induit par un changement de la BBB, mais par un mécanisme impliquant la fonction enzymatique

ou cytokine de t-PA.

Dans la présente étude, l’administration de rt-PA (5mg/kg) n’induit pas l’activation de la plasmine

ou des MMP2/9 suggérant l’élimination de l’Aβ par un mécanisme indépendant de son activité

Figure 4.2. L’effet de l’administration hebdomadaire de l’Activase® rt-PA sur le cerveau des

APPswe/PS1. Suite à l’administration du rt-PA chronique, aucun changement de la BBB n’est observé

(1). Le rt-PA induit la diminution de la fréquence des monocytes inflammatoires (1), en plus d’un gain

de la mobilité et de la phagocytose des microglies (2). L’augmentation de la fonction microgliale

contribue à réduire l’aire et le nombre de plaques amyloïdes, de même que la quantité d’Aβ1-42 soluble

(3). Le rt-PA active les microglies qui élimine efficacement l’Aβ et ce, sans promouvoir

d’augmentation de la production des dérivés réactifs à l’oxygène (2). Ainsi, le rt-PA retarde la

progression de la AD. Afin de simplifier la figure, l’amyloïde n’est pas représentée.

Page 105: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

83

enzymatique de t-PA. Exprimé et activé à proximité des plaques d’amyloïde (162,223), le t-PA est

impliqué dans la dégradation de l’Aβ (162). En effet, le t-PA la stimule directement par la plasmine

(225) et indirectement par les MMP2/9 (213–215) la dégradation de l’amyloïde. Or, nous n’avons

pas observé leur activation à la suite de l’administration de la dose de rt-PA. De plus, l’action

protéase de t-PA ne contribue pas à l’amélioration des fonctions cognitives, puisqu’aucun

changement de l’expression de la synaptophysine n’est observé. Tout comme les APPswe/PS1 non-

traitées, celles traitées avec t-PA présentent une diminution de l’expression de la synaptophysine.

En contraste, plusieurs travaux ont mis en évidence la contribution de t-PA à la plasticité synaptique

et à la LTP (183,198,199). En effet, la fonction protéolytique de t-PA promeut la sécrétion de

vésicules contenant la synaptophysine (183) de même que la conversion de proBDNF et proNGF en

leur forme active (198,199). Cependant, malgré l’amélioration des fonctions cognitives, plusieures

études ont démontré l’absence de changement des niveaux de synaptophysine suggérant qu’un autre

mécanisme soit impliqué (329). Ainsi, l’effet bénéfique de rt-PA sur la faculté cognitive serait

promu par la réduction de l’Aβ soluble et insoluble plutôt que par l’activité protéolytique. Cette

théorie devra être confirmer par l’emploi de souris témoins non-mutantes non-traitées et traitées

avec rt-PA (5 mg/kg). Ainsi, l’absence de changement de la capacité d’apprentissage et de

mémorisation indiquerait que l’amélioration cognitive observée chez les APPswe/PS1 est

principalement reliée à la diminution d’Aβ.

Indépendamment de son activité enzymatique, le t-PA peut également agir en tant que cytokine

parfois anti-inflammatoire (197) ou inflammatoire (191–194). Ainsi, nous avons étudié l’effet du rt-

PA sur les cellules immunocompétentes. Nous avons d’abord défini l’effet du rt-PA sur les

monocytes par cytométrie en flux. À la suite de l’administration chronique de l’Activase® rt-PA,

celui-ci induit un profil anti-inflammatoire des monocytes circulants induisant l’augmentation de la

fréquence des Ly6CLow. L’effet anti-inflammatoire du rt-PA est également observé suivant

l’administration d’une dose unique. En effet, la diminution des monocytes Ly6CHigh est observée 3

heures plus tard, mais ne perdure pas au-delà de 24 heures. L’analyse de marquage

d’immunofluorescence et de cytométrie sur le cerveau des souris APPswe/PS1 traitées et non-

traitées a permis de constater l’absence d’infiltration des monocytes au cerveau. Précédemment, il a

été reporté que l’action cytokine de rt-PA module le recrutement des macrophages (196). Malgré

l’absence de recrutement des monocytes au cerveau, les monocytes circulants peuvent contribuer à

l’élimination de l’amyloïde (284,285,290). Tel que reporté par Michaud et al, les monocytes

Ly6CLow adhèrent la BBB ce qui leur permet d’internaliser et de dégrader des micro-agrégats

d’amyloïdes (284). De plus, l’invalidation génique de cette population de monocytes chez des

Page 106: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

84

souris transgéniques (APPswe/PS1/Nur77–/–) aggrave les troubles cognitifs et augmente

l’accumulation de l’Aβ (284). Par conséquent, l’Activase® rt-PA promeut un profil anti-

inflammatoire des monocytes circulants qui peuvent contribuer à l’élimination de l’amyloïde.

Nous avons également reporté cet effet anti-inflammatoire chez les microglies. Lors de

l’administration chronique de rt-PA, l’immunoréactivité et le recrutement des microglies aux

plaques amyloïdes augmentent significativement et ce, en absence d’inflammation. En effet,

l’administration de rt-PA ne module pas l’expression de l’ARNm d’IκBα, l’inhibiteur de NFκB

(316) impliqué dans la réponse inflammatoire (334). Qui plus est, rt-PA induit une réduction

significative de l’activation globale de la voie SAPK/JNK au cerveau, une kinase qui module la

réponse pro-inflammatoire (336). Grâce à l’étude in vitro avec les BV2, nous avons pu déterminer

que le rt-PA augmente la mobilité cellulaire ce qui correspond à l’augmentation du recrutement des

microglies aux plaques observée in vivo. Par la suite, nous avons mis en évidence l’absence

d’activation des MMP2/9 suivant l’exposition des BV2 au t-PA. Exprimant fortement LRP1 par les

microglies, le t-PA peut les moduler par ce récepteur (322). Nous avons donc déterminé si son

action sur la mobilité de t-PA est dépendente de LRP1 par la co-stimulation de t-PA et RAP, un

ligand de LRP1 (345). Ainsi, nous avons confirmé l’implication de LRP1 qui induit la mobilité

microgliale. De plus, rt-PA agit également comme molécule chimio-attractante sur les microglies

selon un mécanisme impliquant LRP1. Mise à part cet effet moléculaire, nos résultats décrivent

l’activation de la voie MAPK p38, une kinase associée au stress microglial (337), suivant

l’exposition à rt-PA. Cette activation a d’ailleurs été associée à un gain de la capacité phagocytique

des microglies, sans augmenter de la production des nitrites. Globalement, le comportement des

microglies stimulées par le rt-PA se rapproche de celui des microglies stimulées par l’IL-4,

représentant un profil anti-inflammatoire. Comme l’IL-4, le rt-PA n’induit pas la phosphorylation

de SAPK/JNK. À l’inverse, le LPS induit la phosphorylation robuste de SAPK/JNK et de MAPK

p38, en plus d’induire de la production de nitrites, soit l’indicateur du stress oxydatif chez les

microglies (324). De plus, le rt-PA S478A, muté à son site enzymatique, possède le même effet que

rt-PA non-muté sur la mobilité et la phagocytose des microglies, réaffirmant l’absence

d’implication de l’activité protéolytique du t-PA. Par conséquent, nos résultats démontrent que le rt-

PA induit un profil anti-inflammatoire des microglies ce qui augmente leur mobilité et leur capacité

phagocytique selon un mécanisme LRP1 dépendant. Ce gain de la capacité phagocytique permet

notamment aux microglies d’éliminer plus efficacement l’Aβ du cerveau et ce, sans induire la

production de nitrites qui aggrave le déclin cognitif lorsqu’elle est importante (312,338). En accord

avec les travaux de Stringer (197), nous décrivons l’action de cytokine anti-inflammatoire du rt-PA.

Page 107: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

85

Cependant, plusieurs travaux ont décrit l’induction d’un profil pro-inflammatoire suivant

l’administration du t-PA (191–194). Dans le contexte de la AD, d’autres études ex vivo et in vivo

ont également démontré que le t-PA endogène module la toxicité de l’Aβ (224), en plus d’induire

l’activation pro-inflammatoire des microglies (339). Ainsi, ces résultats contradictoires suggèrent

un mécanisme d’action complexe de t-PA possiblement modulé par la dose administrée. Il serait

alors nécessaires d’étudier plus en profondeur l’effet de l’administration de l’Activase® rt-PA chez

les souris APPswe/PS1 dans une optique pharmacologique. En s’inspirant des travaux de Benchane

et al. (2005), nous pourrions étudier la pharmacocinétique de rt-PA administré, soit la

biodisponibilité de t-PA biotinylé au cerveau par immunohistochimie contre la biotine. Il serait

également pertinent de caractériser l’effet de la dose (Ex. 0 à 10 mg/kg) et la fréquence

d’administration (Ex. 1 à 7 injections/semaine) ce qui permettrait de déterminer les conditions

minimales recquise pour induire les effets bénéfiques que nous avons caractérisé et la dose

maximale administrable sans effets secondaires, soit définir la fenêtre thérapeutique du rt-PA chez

les souris APPswe/PS1. Dans une optique plus mécanistique, nous devrions confirmer et quantifier

l’interaction entre rt-PA marqué avec un fluorochrome ou biotinylé et son récepteur, LRP1, selon la

dose administrée par co-localisation des marqueurs en immunofluorescence ou par le transfert

d’énergie entre molécules fluorescente mesuré à l’aide de la cytométrie en flux. De plus, agissant

par l’entremise de LRP1, l’effet de l’Activase® rt-PA ne se limite toutefois pas aux monocytes et

aux microglies. L’évaluation de l’effet de l’administration de rt-PA sur les astrocytes et les

péricytes devront être effectuées afin de confirmer l’intérêt de rt-PA comme cible thérapeutique.

Page 108: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode
Page 109: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

87

Chapitre 5

5. Conclusions et perspectives

Tout d’abord, nous avons démontré que le remodelage de la NVU, soit l’altération de l’activité

microgliale et de la voie ERK, provoqué par la SCCH aggrave le déclin cognitif des souris

transgéniques Alzheimer (Chapitre 2). Par la suite, nous avons observé les bénéfices accompagnés

de la compensation à faible dose du t-PA sur la NVU et sur la fonction cognitive des souris

APPswe/PS1. Par son action de cytokine, le t-PA active les microglies vers un profil anti-

inflammatoire (Chapitre 3). Considérés ensemble, nos résultats illustrent la dualité du remodelage

de la NVU ; pouvant prendre part à la cascade pathogénique de la AD, mais également servir de

cible thérapeutique pour retarder sa progression.

Cette dualité souligne l’importance de comprendre les processus cellulaires et moléculaires induits

dans la NVU lors de la AD. Cette compréhension s’avère nécessaire au développement de

traitement efficace considérant la complexité de la AD. L’étude parallèle des troubles vasculaires et

de la AD constitue une première approche efficace en cette direction. Le nouveau modèle, la SCCH,

que nous avons développé, est d’autant plus intéressant qu’il se rapproche davantage des troubles

vasculaires observés avec la MCI que l’ischémie (124). Ce modèle est également facile à illustrer in

vitro par l’exposition des cellules à un milieu faible en glucose. Bien qu’à présent, aucune altération

des astrocytes et des péricytes n’a été observée suivant l’oligémie (346), l’étude approfondie de

l’impact de la SCCH sur ces cellules devra être effectuée, puisqu’il s’agit d’une oligémie plus

sévère. Celle-ci permettrait de déterminer si un hypométabolisme des cellules de la NVU, autres

que les microglies, se développe. Étant observé avec l’âge (162,175,198,233,234), l’altération de

l’expression et/ou l’activité du t-PA pourrait se produire après la SCCH, puisqu’il est reconnu que

l’hypoperfusion cérébrale se développe également avec le vieillissement (130,142).

D’autre part, la combinaison de la SCCH et de l’administration du t-PA ou du glucose sur des

APPswe/PS1 constituent également des pistes à explorer pour le développement de traitement

transposable chez l’humain. En traitant les souris transgéniques hypoperfusées avec le t-PA ou du

glucose (55), nous nous attendons à amoindrir ou même renverser l’effet de l’hypoperfusion en,

respectivement, stimulant l’activation alternative des microglies et amoindrissant leur

hypométabolisme. De plus, il a été proposé que, lors de l’ischémie, rt-PA protège les neurones par

un mécanisme indépendant de la conversion de la plasmine (200,347). Une récente étude, menée

Page 110: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

88

par An et al, a démontré l’effet protecteur de t-PA contre le stress métabolique et l’excitoxicité par

un mécanisme indépendant de son activité enzymatique (348). En effet, suivant le stress

métabolique, ils ont reporté la sécrétion de t-PA par les neurones et les astrocytes ce qui induit le

recrutement de GLUT1, le transporteur du glucose, et module la prise de glucose par les astrocytes

et les cellules endothéliales (348). Ainsi, ce nouvel effet de t-PA décrit par An et ses collaborateurs

pourrait permettre de restaurer la balance énergétique suivant la SCCH par le recrutement de

GLUT1.

Plusieurs traitements de la AD développés ciblent les cellules immuno-compétentes lesquelles

peuvent éliminer efficacement l’Aβ. Toutefois, l’activité immune peut agir comme une épée à

double tranchant ; apte à éliminer l’Aβ, mais nuisible lorsque sur-stimulé (349). Par conséquent,

certains scientifiques ont tenté de supprimer la réaction inflammatoire, ce qui ne contribue pas

nécessairement à l’arrêt de l’inflammation-même (350). Pour cette raison, notre équipe a suggéré de

s’intéresser à la mobilisation des monocytes comme voie thérapeutique (313,314,351), par exemple

par le traitement de M-CSF ou G-CSF. L’administration du M-CSF à des souris transgéniques

Alzheimer, n’ayant pas encore de symptômes, induit l’amélioration des fonctions cognitives, la

réduction d’Aβ et l’augmentation du nombre de microglies (315). Lorsqu’administré après le

développement de plaques amyloïdes, le traitement au M-CSF stabilise le déclin cognitif sans le

renverser (23,315). De plus, le M-CSF induit l’acidification des lysosomes, ce qui favorise la

phagocytose (352). Semblable au M-CSF, le G-CSF diminue l’accumulation et la déposition de

l’Aβ en activant les microglies et promouvant le recrutement des macrophages circulants (353). De

manière intéressante, le traitement des souris APPswe/PS1 avec t-PA induit des effets semblables

au M-CSF et G-CSF. Ainsi, t-PA constitue un traitement intéressant à développer. Pour ce faire, des

études additionnelles sur l’effet de t-PA sur les cellules exprimant LRP1, les péricytes et les

astrocytes, doivent être faites, puisque comprendre l’ensemble des mécanismes induits par rt-PA est

crucial. L’application de ce traitement chez des souris plus âgées, vers 6-7 mois, permettrait de

définir l’étendue de l’effet de t-PA sur la fonction cognitive plutôt que son effet préventif.

L’administration de l’Activase® rt-PA chez des souris plus vieilles permettrait également de

s’assurer qu’aucun effet néfaste n’est induit avec la perméabilisation de la BBB associé à l’âge

(241). En effet, avec la rupture de la BBB, l’incidence d’hémorrhagies cérébrales risque

d’augmenter (219–221). Le cas échéant, le traitement des patients par le t-PA serait restreint ceux

sans trouble vasculaire.

Page 111: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

89

Références

1. Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimer’s Dement.

2011;7(2):208–44.

2. Wimo A, Jonsson L, Winbald B. An estimate of the worldwide prevalence and direct loss costs of

dementia in 2003. Dement Geriatr Cogn Disord. 2006;21:175–81.

3. Hebert LE, Scherr PA, Bienias JL, Bennett DD, Evans DA. Alzheimer disease in the US population:

Prevalence estimates using the 2000 census. Arch Neurol. 2003;60(8):1119–22.

4. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An english translation of Alzheimer’s

1907 paper, “Uber eine eigenartige erkankaung der hirnrinde.” Clin Anat. 1995;8(6):429–31.

5. Glenner GG, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of

a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun. 1984;120(3):885–90.

6. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque

core protein in Alzheimer’s disease and Down’s syndrome. Proc Natl Acad Sci USA.

1985;82(12):4245–9.

7. Lee VMY, Balin BJ, Otvros LJ, Trojanowski JQ. A major subunit of paired helical filaments and

derivatized forms of normal tau. Science. 1991;251(4994):675–8.

8. Greenberg SG, Davies P. A preparation of Alzheimer paired helical filaments that displays distinct

Tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA. 1990;87(15):5827–31.

9. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol.

1991;82(4):239–59.

10. Braak H, Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging.

1995;16(3):271–84.

11. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment:

Clinical characterization and outcome. Arch Neurol. 1999;7(3):303–8.

12. Moran M, Lynch CA, Walsh C, Coen R, Coakley D, Lawlor BA. Sleep disturbance in mild to

moderate Alsheimer’s disease. Sleep Med. 2005;6(4):347–52.

13. Braak H, Del Trecidi K, Schultz C, Braak E. Vulnerability of select neuronal types to Alzeimer’s

disease. Ann N Y Acad Sci. 2000;924:53–61.

14. Kumar-Singh S. Hereditary and sporadic forms of Aβ-cerebrovascular amyloidosis and relevant

transgenic mouse models. Int J Mol Sci. 2009;10(4):1872–95.

15. Jarrett JT, Berger E, Lansbury P. The carboxy terminus of the β-amyloid protein is critical for the

seeding of amyloid formation: Implication for the pathogenesis of Alzheimer’s disease. Biochemistry.

1993;32(18):4693–7.

16. Götz J, Streffer JR, David D, Schild A, Hoerndli F, Pennanen L, et al. Transgenic animal models of

Alzheimer’s disease and related disorders: histopathology, behavior therapy. Mol Psychiatry.

2004;9(7):664–83.

17. Betram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: The implications of systematic

meta-analyses. Nat Rev Neurosci. 2008;9(10):768–78.

18. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.

19. Hsiao K, Chapman P, Nilsen S, Eckman CB, Harigaya Y, Younkin S, et al. Correlative memory

deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996;274(5284):99–102.

Page 112: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

90

20. Vinters HV, Wang ZZ, Secor DL. Brain parenchymal and microvascular amyloid in Alzheimer’s

disease. Brain Pathol. 1996;6(2):179–95.

21. Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial

Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1-42/Aβ1-40 ratio in vitro and in vivo.

Neuron. 1996;17(5):1005–13.

22. van Groen T, Kiliaan AJ, Kadish I. Deposition of mouse amyloid β in human APP/PS1 double and

single AD model transgenic mouse. Neurobiol Dis. 2006;23(3):653–62.

23. Naert G, Rivest S. Age-related changes in synaptic markers and monocyte subsets link the cognitive

decline of APPSwe/PS1 mice. Front Cell Neurosci. 2012;6:51.

24. Götz J. Tau and transgenic animal models. Brain Res Rev. 2001;35(3):266–86.

25. Lee VM-Y, Goedert M, Trojanowski JQ. Neurodegenerative tauopathies. Annu Rev Neurosci.

2001;24:1121–59.

26. Ishihara T, Zhang B, Higuchi M, Yoshiyama Y, Trojanowski JQ, Lee VM-Y. Age-dependent

induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol.

2001;158(2):555–62.

27. Götz J, Probst A, Spillantini MG, Schäfer T, Jakes R, Bürki T, et al. Somatodendritic localization and

hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau

isoform. EMBO J. 1995;14(7):1304–13.

28. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, et al.

Neurofribrilllary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant

(P301L) tau protein. Nat Genet. 2000;25(4):402–5.

29. Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA. Aging renders the brain vulnerable to

amyloid beta-protein neurotoxicity. Nat Med. 1998;4(7):827–31.

30. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70(3):410–26.

31. Plouffe V, Mohamed N-V, Rivest-McGraw J, Bertrand J, Lauzon M, Leclerc N.

Hyperphosphorylation and cleavage at D421 enhance tau Secretion. PLoS One. 2012;7(5):e36873.

32. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to

dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron.

2010;68(6):1067–81.

33. Lichtenberg B, Mandelkow EM, Hagestedt T, Mandelkow E. Structure and elasticity of microtubule-

associated protein tau. Nature. 1988;334(6180):359–62.

34. Schweers O, Schonbrunn-Hanebeck E, Marx A, Mandelkow E. Structural studies of tau protein and

Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem.

1994;269(39):24290–7.

35. Liao D, Miller EC, Teravskis PJ. Tau acts as a mediator for Alzheimer’s disease-related synaptic

deficits. Eur J Neurosci. 2014;39(7):1202–13.

36. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the

road to therapeutics. Science. 2002;297(5580):353–6.

37. Vassar R, Bennett BD, Babu-Khan S, Khan S, Mendiaz EA, Denis P, et al. Beta-secretase cleavage of

Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science.

1999;286(5440):735–41.

38. Edbauer D, Winkler E, Regula JT, Pesold B, Steiner H, Haass G. Reconstitution of gamma-secretase

activity. Nat Cell Biol. 2003;5(5):486–8.

Page 113: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

91

39. Deane R, Du Yan S, Submamaryan RK, LaRue B, Jovanovic S, Hogg E, et al. RAGE mediates

amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med.

2003;9(7):907–13.

40. Donahue JE, Flaherty SL, Johanson CE, Duncan JA 3rd, Silverderg GD, Miller MC, et al. RAGE,

LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathol. 2006;112(4):405–15.

41. Roberts KF, Elbert DL, Kasten TP, Patterson BW, Sigurdson WC, Connors RE, et al. Amyloid-β

efflux from the CNS ino the plasma. Ann Neurol. 2014;76(6):837–44.

42. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other

disorders. Nature Rev. 2011;12(12):723–38.

43. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, et al. Adult mouse astrocytes

degrade amyloid-beta in vitro and in situ. Nat Med. 2003;9(4):453–7.

44. Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. Are amyloid-degrading enzymes viable

therapeutic targets in Alzheimer’s disease? J Neurochem. 2012;120 Suppl 1:167–85.

45. Nielsen HM, Mulder SD, Belliën JA, Musters RJ, Eikelenboom P, Veerhuis R. Astrocytic Abeta1-42

uptake is determined by Abeta aggregation state and the presence of amyloid-associated proteins.

Glia. 2010;58(10):1235–46.

46. Kovac A, Erickson MA, Banks WA. Brain microvascular pericytes are immunoactive in culture:

Cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J

Neuroinflammation. 2011;8:139.

47. Rivest S. Regulation of innate immune responses in the brain. Nat Rev Immunol. 2009;9(6):429–39.

48. Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, et al. Clearance of Alzheimer’s

amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J

Clin Invest. 2000;106(12):1489–99.

49. Deane R, Wu Z, Sagare AP, Davis J, Du Yan S, Hamm K, et al. LRP/amyloid β-peptide interaction

mediates differential brain efflux of Aβ isosoforms. Neuron. 2004;43(3):333–44.

50. Cirrito JR, Deane R, Fagan AM, Spinner ML, Parsadanian M, Finn MB, et al. P-glycoprotein

deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse

model. J Clin Invest. 2005;115(11):3285–90.

51. Deane R, Sagare AP, Hamm K, Parisi M, Lane S, Finn MB, et al. ApoE isoform-specific disruption of

amyloid beta peptide clearance form mouse brain. J Clin Invest. 2008;118(12):4002–13.

52. Behl M, Zang Y, Shi Y, Cheng J, Du Y, Zheng W. Lead-induced accumulation of β-amyloid in the

choroid plexus: Role of low density lipoprotein receptor protein-1 and protein kinase C.

Neurotoxicology. 2010;31(5):524–32.

53. Sagare AP, Bell RD, Zlokovic BV. Neurovascular dysfunction and faulty amyloid β-peptide clearance

in Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(10):a011452.

54. Deane R, Bell RD, Sagare AP, Zlokovic BV. Clearance of amyloid-beta peptide across the blood-

brain barrier: Implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets.

2009;8(1):6–30.

55. ElAli A, Thériault P, Préfontaine P, Rivest S. Mild chronic cerebral hypoperfusion induces

neurovascular dysfunction, triggering peripheral beta-amyloid brain entry and aggregation. Acta

Neuropathol. 2013;1:75.

56. Christensen EI, Birn H. Megalin and cubilin: Multifunctional endocytic receptor. Nat Rev Mol Cell

Biol. 2002;3(4):256–66.

Page 114: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

92

57. Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, et al. Transport pathways for

clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse

central nervous system. J Cereb Blood Flow Metab. 2007;27(5):909–18.

58. Strittmatter WJ, Weisgraber KH, Dong L-M, Salvesen GS, Pericak-Vance M, Schmechel D, et al.

Binding of human apolipoprotein E to synthetic amyloid β peptide: Isoform-specific effects and

implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA. 1993;90(17):8098–102.

59. Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, et al. Human apoE

isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med.

2011;3(89):89ra57.

60. Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein

E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s

disease. Proc Natl Acad Sci USA. 2000;97(6):2892–7.

61. von Arnim CA, Kinoshita A, Peltan ID, Tangredi MM, Herl L, Lee BM, et al. The low density

lipoprotein receptor-related protein (LRP) is a novel beta-secretase (BACE1) substrate.

2005;280(18):17777–85.

62. Tamaki C, Ohtsuki S, Iwatsubo T, Hashimoto T, Yamada K, Yabuki C, et al. Major involvement of

low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide

by the liver. Pharm Res. 2006;23(7):1407–16.

63. Tamaki C, Ohtsuki S, Terasaki T. Insulin facilitates the hepatic clearance of plasma amyloid β-peptide

(1-40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP1) to

the plasma membrane in hepatocytes. Mol Pharm. 2007;72(4):850–5.

64. van Groen T, Liu L, Ikonen S, Kadish I. Diffuse amyloid deposition, but not plaque number, is

reduced in amyloid precursor protein/presenilin 1 double-transgenic mice by pathway lesions.

Neuroscience. 2003;119(4):1185–97.

65. Cook DG, Leverenz JB, McMillan PJ, Kulstad JJ, Ericksen S, Roth RA, et al. Reduced hippocampal

insulin-degrading enzyme in late-onset Alzheimer’s disease is associated with the apolipoprotein E-ε4

allele. Am J Pathol. 2003;162(1):313–9.

66. Marr RA, Hafez DM. Amyloid-beta and Alzheimer’s disease: The role of neprilysin-2 in amyloid-

beta clearance. Front Aging Neurosci. 2014;6:187.

67. Mulder SD, Veerhuis R, Blankenstein MA, Nielsen HM. Effect of amyloid associated proteins on the

expression of genes involved in amyloid-β clearance by adult human astrocytes. Exp Neurol.

2012;233(1):373–9.

68. Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance

pathways in aging Alzheimer’s disease mice. J Neurosci. 2008;28(33):8354–60.

69. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, et al. Amyloid-β protein

oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s

disease. Nat Chem. 2009;1(4):326–31.

70. Abraham CR, Selkoe DJ, Potter H. Immunochemical identification of the serine protease inhibitor,

alpha-1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell. 1988;52(4):487–

501.

71. Permanne B, Buée L, David J-P, Fallet-Bianco C, Di Menza C, Delacourte A. Quantitation of

Alzheimer’s amyloid peptide and identification of related amyloid proteins by dot blot immunoassay.

Brain Res. 1995;685(1-2):154–62.

72. Buée L, Hof PR, Roberts DD, Delacourte A, Morrison JH, Fillit HM. Immunohistochemical

identification of thrombospondin in normal human brain and Alzheimer’s disease. Am J Pathol.

1992;141(4):783–8.

Page 115: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

93

73. Christie RH, Bacskai BJ, Zipfel WR, Williams RM, Kahdasz ST, Webb WW, et al. Growth arrest of

individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton

microscopy. J Neurosci. 2001;21(3):858–64.

74. Glenner GG, Wong CW. Alzheimer’s disease and Down’s syndrome: Sharing a unique

cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984;122(3):1131–5.

75. Mann DM, Jones D. Deposition of amyloid (A4) protein within the brains of persons with dementing

disorders other than Alzheimer’s disease and Down’s syndrome. Neurosci Lett. 1990;109(1-2):68–75.

76. Risacher SL, Saykin AJ. Neuroimaging biomarkers of neurodegenerative diseases and dementia.

Semin Neurol. 2013;33(4):386–416.

77. Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlation of synaptic and

pathological markers with cognition of the elderly. Neurobiol Aging. 1995;16(3):285–304.

78. Hardy J. The amyloid hypothesis for Alzheimer’s disease: A critical reappraisal. J Neurochem.

2009;110(4):1129–34.

79. Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, et al. Accelerating amyloid-

beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models.

J Biol Chem. 2007;282(33):23818–28.

80. Lue LF, Kuo Y, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide

concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol.

1999;155(3):853–62.

81. Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotxins

leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci. 2015;9:191.

82. Zhao WQ, Santini F, Breese R, Ross D, Zhang XD, Stone DJ, et al. Inhibition of calcineurin-mediated

endocytosis and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents

amyloid beta oligomer-induced synaptic disruption. J Biol Chem. 2010;285(10):7619–32.

83. Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-D-

aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-beta peptide

oligomers. J Neurochem. 2010;115(6):1520–9.

84. Renner M, Lacor PN, Velasco PT, Xu J, Contractor A, Klein WL, et al. Deleterious effects of amyloid

beta oligomers acting as an extracellular scaffold for mGluR5. Neuron. 2010;66(5):739–54.

85. Ma T, Klann E. Amyloid beta: Linking synaptic plasticity failure to memory disruption in

Alzheimer’s disease. J Neurochem. 2011;120 Suppl 1:140–8.

86. Dickey CA, Loring JE, Montgomery J, Gordon MN, Eastman PS, Morgan D. Selectively reduced

expression of synaptic plasticity related genes in amyloid precursor protein + presenilin 1 transgenic

mice. J Neurosci. 2003;23(12):5219–26.

87. Bie B, Wu J, Yang H, Xu JJ, Brown DL, Naguib M. Epigenetic suppression of neuroligin 1 underlies

amyloid-induced memory deficiency. Nat Neurosci. 2014;17(2):223–31.

88. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, et al. ABAD directly links Aβ to

mitochondrial toxicity in Alzheimer’s disease. Science. 2004;304(5669):448–52.

89. Zhang X, Zhou K, Wang R, Cui J, Lipton SA, Liao FF, et al. Hypoxia-inducible factor α (HIF-1α)

mediated hypoxia increases BACE1 expression and β-amyloid generation. J Biol Chem.

2007;282(15):10873–80.

90. LaFerla FM, Oddo S. Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med.

2005;11(4):170–6.

Page 116: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

94

91. Mayeux R. Gene-environment interaction in late-onset Alzheimer disease: The role of apolipoprotein-

epsilon 4. Alzheimer Dis Assoc Disord. 1998;12(suppl3):S10–5.

92. Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012;2(10):a006296.

93. Kalaria RN, Akinyemi R, Ihara M. Does vascular pathology contribute to Alzheimer changes? J

Neurol Sci. 2012;322(1-2):141–7.

94. Knopman DS, Roberts R. Vascular risk factors: Imaging and Neuropathologic correlates. J

Alzheimers Dis. 2010;20(3):699–709.

95. de la Torre JC. Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline

and dementia. Cardiovasc Psychiatric Neurol. 2012;2012(367516):1–15.

96. Sparks DL, Hunsaker JC, Scheff SW, Kryscio RJ, Henson JL, Markesbery WR. Cortical senile

plaques in coronary artery disease, aging and Alzheimer’s disease. Neurobiol Aging. 1990;11(6):601–

7.

97. Kilander L, Andrén B, Nyman H, Lind L, Boberg B, Lithell H. Atrial fibrillation is an independent

determinant of low cognitive function: A cross-sectional strudy in elderly men. Stroke.

1998;29(9):1816–20.

98. van Oijen M, de Jong FJ, Witteman JC, Hofman A, Koudstaal PJ, Breteler MM. Atherosclerosis and

risk for dementia. Ann Neurol. 2007;61(5):403–10.

99. Fullerton SM, Clark AG, Weiss KM, Nickerson DA, Taylor SL, Stengård JH, et al. Apolipoprotein E

variation at the sequence haplotype level: Implications for the origin and maintenance of a major

human polymorphism. Am J Hum Genet. 2000;67(4):881–900.

100. Bufill E, Carbonell E. Apolipoprotein E polymorphism and neuronal plasticity. Am J Hum Biol.

2006;18(4):556–8.

101. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other

neurological disorders. Lancet Neurol. 2011;10(3):241–52.

102. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron.

2009;63(3):287–303.

103. Mahley RW, Weisgraber KH, Huang Y. Apolipoprotein E: Structure determines function, from

atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009;50 Suppl:S183–8.

104. Zipser BD, Johanson CE, Gonzalez L, Berzin TM, Tavares R, Hulette CM, et al. Microvascular injury

and blood-brain barrier leakage in Alzheimer’s disease. Neurobiol Aging. 2007;28(7):977–86.

105. Kotze MJ, Rensburg SJV. Pathology supported genetic testing and treatment of cardiovasculaar

disease in middle age for prevention of Alzheimer’s disease. Metab Brain Dis. 2012;27(3):255–6.

106. Thal DR, Ghebremedin E, Rub U, Yamaguchi H, Del Trecidi K, Braak H. Two types of sporadic

cerebral amyloid angiopathy. 2002;61(3):282–93.

107. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2

diabetes mellitus. JAMA. 2004;291(16):1978–86.

108. Bonadonna RC, Groop L, Kraemer N, Ferrannini E, Del Prato S, DeFronzo RA. Obesity and insulin

resistance in humans: A dose-response study. Metabolism. 1990;39(5):452–9.

109. Rexrode KM, Manson JE, Hennekens CH. Obesity and cardiovascular disease. Curr Opin Cardiol.

1996;11(5):490–5.

110. Gustafson DR, Rothenberg E, Blennow K, Steen B, Skoog I. An 18-year follow-up of overweight and

risk of Alzheimer disease. Arch Intern Med. 2003;163(13):1524–8.

Page 117: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

95

111. Sonnen JA, Larson EB, Brickell K, Crane PK, Woltjer R, Montine TJ, et al. Different patterns of

cerebral injury in dementia with or without diabetes. Arch Neurol. 2009;66(3):315–22.

112. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF

Abeta42 levels in normal older aldults. Neurology. 2003;60(12):1899–903.

113. Luchsinger JA, Gustafson DR. Adiposity, type 2 diabete, and Alzheimer’s disease. J Alzheimers Dis.

2009;16(4):693–704.

114. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 2000;133(1):73–

4.

115. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, et al. Diabetes,

Alzheimer disease, and casular dementia: A population-based neuropathologic study. Neurology.

2010;75(13):1195–202.

116. Gorelick PB, Scuteri A, Black SE, Decari C, Greenberg SM, Iadecola C, et al. Vascular contributions

to cognitive impairment and dementia: A statement for healthcare professionals from the American

Heart Association/American Stroke Associate. Stroke. 2011;42(9):2672–713.

117. Feldstein CA. Association between chronic blood pressure changes and development of Alzheimer’s

disease. J Alzheimers Dis. 2012;32(3):753–63.

118. Power MC, Weuve J, Gagne JJ, McQueen MB, Viswanathan A, Blacker D. The association between

blood pressure and incident Alzheimer disease: A systematic review and meta-analysis.

Epidemiology. 2011;22(5):646–59.

119. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron.

2008;57(2):178–201.

120. Yoshida T, Ha-Kawa S, Yoshimura M, Nobuhara K, Kinoshita T, Sawada S. Effectiveness of

treatment with donepezil hydrochloride and changes in regional cerebral blood flow in patients with

Alzheimer’s disease. Ann Nucl Med. 2007;21(5):257–65.

121. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev

Neurosci. 2004;5(5):347–60.

122. Qiu C, von Strauss E, Fastbom J, Winblad B, Fratiglioni L. Low blood pressure and risk of dementia

in the Kungsholmen project: A 6-year follow-up study. 2003;60(2):223–8.

123. Niwa K, Kazama K, Younkin L, Younkin SG, Carlson GA, Iadecola C. Cerebrovascular

autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am J

Physiol Heart Circ Physiol. 2002;283(1):H315–23.

124. Luckhaus C, Flüß MO, Wittsack H-J, Grass-Kapanke B, Jänner M, Khalili-Amiri R, et al. Detection

of changed regional cerebral blood flow in mild cognitive impairment and early Alzheimer’s dementia

by perfusion-weighted magnetic resonance imaging. NeuroImage. 2008;40(2):495–503.

125. Reed BR, Jagust WJ, Seab JP, Ober BA. Memory and regional cerebral blood flow in mildly

symptomatic Alzheimer’s disease. Neurology. 1989;39(11):1537–9.

126. Ruitenberg A, den Heijer T, Bakker SLM, van Swieten JC, Koudstaal PJ, Hofman A, et al. Cerebral

hypoperfusion and clinical onset of dementia: The Rotterdam study. Ann Neurol. 2005;57(6):789–94.

127. Marchesi VT. Alzheimer’s dementia begins as a disease of small blood vessels, damaged by

oxidative-induced inflammation and dysregulated amyloid metabolism: Implication for early

detection and therapy. FASEB J. 2011;25(1):5–13.

128. de la Torre JC. Vascular risk factor detection and control may prevent Alzheimer’s disease. Aging

Res Rev. 2010;9(3):218–25.

Page 118: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

96

129. Hunt A, Schönknecht P, Henze M, Seidl U, Haberkorn U, Schroder J. Reduced cerebral glucose

metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res. 2007;155(2):147–54.

130. de la Torre JC. A turning point for Azheimer’s disease? Biofactors. 2012;38(2):78–83.

131. de la Torre JC. Critically attained threshold of cerebral hypoperfusion: The CATCH hypothesis of

Alzheimer’s pathogenesis. Neurobiol Aging. 2000;21(2):331–42.

132. de la Torre JC. Critical threshold cerebral hypoperfusion causes Alzheimer’s disease? Acta

Neuropathol. 1999;98(1):1–8.

133. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. β-Amyloid-mediated vasoactivity and

vascular endothelial damage. Nature. 1996;380(6570):168–71.

134. Imai Y, Ohkubo T, Tsuji I, Satoh H, Hisamichi S. Clinical significance of nocturnal blood pressure

monitoring. Clin Exp Hypertens. 1999;21(5-6):717–27.

135. Kalaria RN. The role of cerebral ischemia in Alzheimer’s disease. Neurobiol Aging. 2000;21(2):321–

30.

136. de la Torre JC, Mussivand T. Can disturbed brain microcirculation cause Alzheimer’s disease? Neurol

Res. 1993;15(3):146–53.

137. Lee JS, Im DS, An YS, Hong JM, Gwag BJ, Joo IS. Chronic cerebral hypoperfusion in a mouse

model of Alzheimer’s disease: An additional contribting factor of cognitive impairments. Neurosci

Lett. 2011;489(2):84–8.

138. Pimentel-Coelho PM, Michaud J-P, Rivest S. Effects of mild chronic cerebral hypoperfusion and

early amyloid pathology on spatial learning and the cellular innate immune response in mice.

Neurobiol Aging. 2013;34(3):679–93.

139. Yamada M, Ihara M, Okamoto Y, Maki T, Washida K, Kitamura A, et al. The influence of chronic

cerebral hypoperfusion on cognitive function and amyloid β metabolism in APP overexpressing mice.

PLoS One. 2011;6(1):e16567.

140. Koike MA, Green KN, Blurton-Jones M, LaFerla FM. Oligemic hypoperfusion differentially affects

tau and amyloid-β. Am J Pathol. 2010;177(1):300–10.

141. Reimer MM, McQueen J, Searcy L, Scullion G, Zonta B, Desmazieres A, et al. Rapid disruption of

axon-glial integrity in response to mild cerebral hypoperfusion. J Neurosci. 2011;31(49):18185–94.

142. Farkas E, Luiten PG. Cerebral microvascular pathology in aging and Alzheimer’s disease. Prog

Neurobiol. 2001;64(6):575–611.

143. Wang Z, Yang D, Zhang X, Li T, Li J, Tang Y, et al. Hypoxia-induced down-regulation of neprilysin

by histone modification in mouse primary cortical and hippocampal neurons. PLoS One.

2011;6(4):e19229.

144. Okamoto Y, Yamamoto T, Kalaria RN, Senzaki H, Maki T, Hase Y, et al. Cerebral hypoperfusion

accelerates cerebral amyloid angiopathy and promoter cortical microinfarcts. Acta Neuropathol.

2012;123:381–94.

145. Zheng P, Zhang J, Liu H, Xu X, Zhang X. Angelica injection reduces cognitive impairment during

chronic cerebral hypoperfusion through brain-derived neurotrophic factor and nerve growth factor.

Curr Neurovasc Res. 2008;5(1):13–20.

146. Liu H, Zhang J, Zheng P, Zhang Y. Altered expression of MAP-2, GAP-43, and synaptophysin in the

hippocampus of rats with chronic cerebral hypoperfusion correlates with cognitive impairment. Mol

Brain Res. 2005;139(1):169–77.

147. Gong X, Ma M, Fan X, Li M, Liu Q, Liu X. Down-regulation of IGF-1/IGF-1R in hippocampus of

rats with vascular dementia. Neurosci Lett. 2012;513(1):20–4.

Page 119: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

97

148. Ihara M, Tomimoto H, Kinoshita M, Oh J, Noda M, Wakita H, et al. Chronic cerebral hypoperfusion

induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white

matter. J Cereb Blood Flow Metab. 2001;21(7):828–34.

149. Toyama K, Koibuchi N, Uekawa K, Hasegawa Y, Kataoka K, Katayama T, et al. Apoptosis signal-

regulating kinase 1 is a novel target molecule for cognitive impairment induced by chronic cerebral

hypoperfusion. Arterioscler Thromb Vasc Biol. 2014;34(3):616–25.

150. Bell RD, Zlokovic BV. Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s

disease. Acta Neuropathol. 2009;118(1):103–13.

151. Farkas E, Institóris Á, Domoki F, Mihály A, Luiten PGM, Bari F. Diazoxide and dimethyl sulphoxide

prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery

occlusion. Brain Res. 2004;1008(2):252–8.

152. Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, et al. Selective impairment of

working memory in a mouse model of chronic cerebral hypoperfusion. Stroke. 2007;38(10):2826–32.

153. Shu Y, Zhang H, Kang T, Zhang J, Yang Y, Liu H, et al. PI3K/Akt signal pathway involved in the

cognitive impairment caused by chronic cerebral hypoperfusion in rats. PLoS One.

2013;8(12):e81901.

154. Liu J, Jin DZ, Xiao L, Zhu XZ. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced

learning dysfunction and brain damage in rats. Brain Res. 2006;1089(1):162–70.

155. Ni J, Matsumoto K, Li HB, Murakami Y, Watanabe H. Neuronal damage and decrease of central

acetylcholine level following permanent occlusion of bilateral common carotid arteries in rat. Brain

Res. 1995;673(2):290–6.

156. Lana D, Melani A, Pugliese AM, Cipriani S, Nosi D, Pedata F. The neuron-astrocyte-microglia triad

in a rat model of chronic cerebral hypoperfusion: Protective effect of dipyridamole. Front Aging

Neurosci. 2014;6:322.

157. Cechetti F, Pagnussat AS, Worm PV, Elsner VR, Ben J, da Costa MS, et al. Chronic brain

hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory

impairment. Brain Res Bull. 2012;87(1):109–16.

158. Zlokovic BV, Wang L, Sun N, Haffke S, Verrall S, Seeds NW, et al. Expression of tissue

plasminogen activator in cerebral capillaries: Possible fibrinolytic function of the blood-brain barrier.

Neurosurgery. 1995;37(5):955–61.

159. Irigoyen JP, Muñoz-Cánoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator

system: Biology and regulation. Cell Mol Life Sci. 1999;56(1-2):104–32.

160. Castellino FJ, Ploplis VA. Structure and function of the plasminogen/plasmin system. Thromb

Haemost. 2005;93(4):647–54.

161. Rijken DC, Sakharov DV. Basic principles in thrombolysis: Regulatory role of plasminogen. Thromb

Res. 2001;103(Suppl 1):S41–9.

162. Melchor JP, Pawlak R, Strickland S. The tissue plasminogen activator-plasminogen proteolytic

cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration.

J Neurosci. 2003;23(26):8867–71.

163. Chen ZL, Strickland S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed

degradation of laminin. Cell. 1997;91(7):917–25.

164. Dellas C, Loskutoff DJ. Historical analysis of of PAI-1 from its discovery to its potential role in cell

motility and disease. Thromb Haemost. 2005;93(4):631–40.

Page 120: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

98

165. Teesalu T, Kulla A, Simisker A, Siren V, Lawrence DA, Asser T, et al. Tissue plasminogen activator

and neuroserpin are widely expressed in the human central nervous system. Thromb Haemost.

2004;92(2):358–68.

166. Yepes M, Lawrence DA. Neuroserpin: A selective inhibitor of tissue-type plasminogen activator in

the central nervous system. Thromb Haemost. 2004;91(3):457–64.

167. Makarova A, Mikhailenko I, Bugge TH, List K, Lawrence DA, Strickland DK. The low density

lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular

internalization of both neuroserpin and neurosepin-tissue-type plasminogen activator complexes. J

Biol Chem. 2003;278(50):50250–8.

168. Narita M, Bu G, Herz J, Schwartz AL. Two receptor systems are involved in the plasma clearance of

tissue-type plasminogen activator (t-PA) in vivo. J Clin Invest. 1995;96(2):1164–8.

169. Tanswell P, Seifreid E, Stang E, Krause J. Pharmacokinetics and hepatic catabolism of tissue-type

plasminogen activator. Arzneimittelforschung. 1991;41(12):1310–9.

170. Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA. Tissue-type

plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related

protein. J Clin Invest. 2003;112(10):1533–40.

171. IST-3 collaborative group, Sandercock P, Wardlaw JM, Lindley RI, Dennis M, Cohen G, et al. The

benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within

6 h of acute ischaemic stroke (the third international stroke trial [IST-3]): A randomised controlled

trial. Lancet. 2012;379(9834):2352–63.

172. Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL. Loss or fibrinogen

rescues mice from the pleiotropic effects of plasminogen deficiency. Cell. 1996;87(4):709–19.

173. Salles FJ, Strickland S. Localization and regulation of the tissue plasminogen activator-plasmin

system in the hippocampus. J Neurosci. 2002;22(6):2125–34.

174. Docagne F, Nicole O, Marti HH, MacKenzie ET, Buisson A, Vivien D. Transforming growth factor-

beta 1 as a regulator of the serpins/t-PA axis in cerebral ischemia. FASEB J. 1999;13(11):1315–24.

175. Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, et al. Tissue plasminogen activator

prevents white matter damage following stroke. J Exp Med. 2011;208(6):1229–42.

176. Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, et al. Extracellular proteolysis in

the adult murine brain. J Clin Invest. 1993;92(2):679–85.

177. Rogove AD, Tsirka SE. Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse

hippocampus. Curr Biol. 1998;8(1):19–25.

178. Benchenane K, Berezowski V, Ali C, Fernández-Monreal M, Lopez-Atalaya JP, Brillault J, et al.

Tissue-type plasminogen activator crosses the intact blood-brain barier by low-density lipoprotein

receptor-related protein-mediated transcytosis. Circulation. 2005;111(17):2241–9.

179. Vivien D, Gauberti M, Montagne A, Defer G, Touzé E. Impact of tissue plasminogen activator on the

neurovascular unit: From clinical data to experimental evidence. J Cereb Blood Flow Metab.

2011;31(11):2119–34.

180. Yepes M, Roussel BD, Ali C, Vivien D. Tissue-type plasminogen activator in the ischemic brain:

More than a thrombolytic. Trends Neurosci. 2009;32(1):48–55.

181. Frey U, Müller M, Kuhl D. A different form of long-lasting potentiation revealed in tissue

plasminogen activator mutant mice. J Neurosci. 1996;16(6):2057–63.

182. Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER. Tissue plasminogen activator

contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway.

Neuron. 1998;21(4):813–25.

Page 121: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

99

183. Wu F, Nicholson AD, Haile WB, Torre E, An J, Chen C, et al. Tissue-type plasminogen activator

mediated neuronal detection and adaptation to metabolic stress. J Cereb Blood Flow Metab.

2013;33(11):1761–9.

184. Mataga N, Nagai N, Hensch TK. Permissive proteolytic activity for visual cortical plasticity. Proc

Natl Acad Sci USA. 2002;99(11):7717–21.

185. Seeds NW, Siconolfi LB, Haffke S. Neuronal extracellular proteases facilitate cell migration, axonal

growth, and pathfinding. Cell Tissue Res. 1997;290(2):367–70.

186. Seeds NW, Williams BL, Bickford PC. Tissue plasminogen activator induction in Purkinje neurons

after cerebellar motor learning. Science. 1995;270(5244):1992–4.

187. Nakagami Y, Abe K, Nishiyama N, Matsuki N. Laminin degradation by plasmin regulates long-term

potentiation. J Neurosci. 2000;20(5):2003–10.

188. Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, et al. Enhanced hippocampal long-term

potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in

transgenic mice. EMBO J. 1999;18(11):3007–12.

189. Polavarapu R, Gongora MC, Yi H, Ranganthan S, Lawrence DA, Strickland D, et al. Tissue-type

plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related

protein increases the permeability of the neurovascular unit. Blood. 2007;109(8):3270–8.

190. Lo EH, Wang X, Cuzner ML. Extracellular proteolysis in brain injury and inflammation: Role for

plasminogen activators and matrix metalloproteinases. J Neurosci Res. 2002;69(1):1–9.

191. Zhang X, Polavarapu R, She H, Mao Z, Yepes M. Tissue-type plasminogen activator and the low-

density lipoprotein receptor-related protein mediate cerebral ischemia-induced nuclear factor-kappaB

pathway activation. Am J Pathol. 2007;171(4):1281–90.

192. Zhang C, An J, Strickland DK, Yepes M. The low-density lipoprotein receptor-related protein 1

mediates tissue-type plasminogen activator-induced microglial activation in the ischemic brain. Am J

Pathol. 2009;174(2):586–94.

193. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal

cell death. Brain Res. 1992;587(2):250–6.

194. Rogove AD, Siao C, Keyt B, Strickland S, Tsirka SE. Activation of microglia reveals a non-

proteolytic cytokine function for tissue plasminogen activator in the central nervous system. J Cell

Sci. 1999;112(Pt 22):4007–16.

195. Siao CJ, Tsirka SE. Tissue plasminogen activator mediates microglial activation via its finger domain

through annexin II. J Neurosci. 2002;22(9):3352–8.

196. Cao C, Lawrence DA, Li Y, von Arnim CA, Herz J, Su EJ, et al. Endocytic receptor LRP together

with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO J.

2006;25(9):1860–70.

197. Stringer KA. Tissue plasminogen activator inhibits reactive oxygen species production by

macrophages. Pharmacotherapy. 2000;20(4):375–9.

198. Obiang P, Maubert E, Bardou I, Nicole O, Launay S, Bezine L, et al. Enriched-housing reverses age-

associated impairment of cognitive functions and tPA-dependent maturation of BNDF. Neurobiol

Learn Mem. 2011;96(2):121–9.

199. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, et al. Cleavage of proBDNF by

tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;206(5695):487–91.

200. Echeverry R, Wu J, Haile WB, Guzman J, Yepes M. Tissue-type plasminogen activator is a

neuroprotectant in the mouse hippocampus. J Clin Invest. 2010;120(6):2194–205.

Page 122: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

100

201. Lee HY, Hwang IY, Im H, Koh JY, Kim HY. Non-proteolytic neurotrophic effects of tissue

plasminogen activator on cultred mouse cerebrocortical neurons. J Neurochem. 2007;101(5):1236–47.

202. Liot G, Roussel BD, Lebeurrier N, Benchenane K, López-Atalaya JP, Vivien D, et al. Tissue-type

plasminogen activator rescues neurons from serum deprivation-induced apoptosis through a

mechanism independent of its proteolytic activity. J Neurochem. 2006;98(5):1458–64.

203. Flavin MP, Zhao G, Ho LT. Micoglial tissue plasminogen activator (tPA) triggers neuronal apoptosis

in vitro. Glia. 2000;29(4):347–54.

204. Wang YF, Tsirka SE, Strickland S, Stieg PE, Soriano SG, Lipton SA. Tissue plasminogen activator

(tPA) increases neuronal damage after focal cerebral ischemia in wild-type tPA deficient mice. Nat

Med. 1998;4(2):228–31.

205. Kim Y-H, Park J-H, Hong SH, Koh J-Y. Nonproteolytic neuroprotection by human recombinant

tissue plasminogen activator. 1999;284(5414):647–50.

206. Gaberel T, Macrez R, Gauberti M, Montagne A, Hebert M, Petersen K-U, et al. Immunotherapy

blocking the tissue plasminogen activator-dependent activation of N-methyl-D-aspartate glutamate

receptors improves hemorrhagic stroke outcome. Neuropharmacology. 2013;67:267–71.

207. Fernández-Monreal M, López-Atalaya JP, Benchenane K, Cacquevel M, Dulin F, Le Caer JP, et al.

Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen

activator mediated enhancement of N-methyl-D-aspartate receptor signaling. J Biol Chem.

2004;279(49):50850–6.

208. Samson AL, Nevin ST, Croucher D, Niego B ’eri, Daniel PB, Weiss TW, et al. Tissue-type

plasminogen activator requires a co-receptor to enhance N-Methyl-D-Aspartate receptor function. J

Neurochem. 2008;107(4):1091–101.

209. Martin AM, Kuhlmann C, Trossbach S, Jaeger S, Waldron E, Roebroek A, et al. The functional role

of the second NPXY motif of the lRP1 beta-chain in tissue-type plasminogen activator-mediated

activation of N-methyl-D-aspartate receptors. J Biol Chem. 2008;283(18):12004–13.

210. Nicole O, Ali C, Docagne F, Plawinski L, MacKenzie ET, Vivien D. Neuroprotection mediated by

glial cel line-derived neurotrophic factor: Involvement of a reduction of NMDA-induced calcium

influx by the mitogen-activated protein kinase pathway. J Neurosci. 2001;21(9):3024–33.

211. Calabresi P, Napolitano M, Centonze D, Marfia GA, Gubellini P, Teule MA, et al. Tissue

plasminogen activator controls multiple forms of synaptic plasticity and memory. Eur J Neurosci.

2000;12(3):1002–12.

212. Hu K, Yang J, Tanaka S, Gonias SL, Mars WM, Liu Y. Tissue-type plasminogen activator acts as a

cytokine that triggers intracellular signal transduction and induces matrix metalloproteinase-9 gene

expression. J Biol Chem. 2006;281(4):2120–7.

213. Adibhatla RM, Hatcher JF. Tissue plasminogen activator (tPA) and matrix metalloproteinases in the

pathogenesis of stroke: Therapeutic strategies. CNS Neurol Disord Drug Targets. 2008;7(3):243–53.

214. Hernandez-Guillamon M, Mawhirt S, Fossati S, Blais S, Pares M, Penalba A, et al. Matrix

metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-beta E22Q and L34V mutants,

delaying their toxicity for human brain microvascular endothelial cells. J Biol Chem.

2010;285(35):27144–58.

215. Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, et al. Matrix metalloproteinase-9 degrades

amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem. 2006;281(34):24566–74.

216. Hernandez-Guillamon M, Garcia-Bonilla L, Solé M, Sosti V, Parés M, Campos M, et al. Plasma

VAP-1/SSAO activity predicts intracranial hemorrhages and adverse neurological outcome after

tissue plasminogen activator treatment in stroke. Stroke. 2010;41(7):1528–35.

Page 123: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

101

217. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA. Neuronal ischemic injury: Light microscopy,

ultrastructure and biochemistry. Acta Neuropathol. 1978;43(1-2):85–95.

218. Saver JL, Gombein J, Grotta J, Liebeskind D, Lutsep H, Schwamm L, et al. Number needed to treat to

benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-hour window:

joint outcome table analysis of the ECASS 3 trial. Stroke. 2009;40(7):2344–7.

219. Sahlas DJ, Gould L, Swartz RH, Mohammed N, McNicoll-Whiteman R, Naufal F, et al. Tissue

plasminogen activator overdose in acute ischemic stroke patients linked to poorer functional

outcomes. J Stroke Cerebrovasc Dis. 2014;23(1):155–9.

220. García-Yébenes I, Sobrado M, Zarruk JG, Castellanos M, Pérez de la Ossa N, Dávalos A, et al. A

mouse model of hemorrhagic transformation by delayed tissue plasminogen activator administration

after in situ thromboembolic. Stroke. 2011;42(1):196–203.

221. Benchenane K, López-Atalaya JP, Fernández-Monreal M, Touzani O, Vivien D. Equivocal roles of

tissue-type plasminogen activator in stroke-induced injury. Trends Neurosci. 2004;27(3):155–60.

222. Zhang C, An J, Haile WB, Echeverry R, Strickland DK, Yepes M. Microglia low-density lipoprotein

receptor-related protein 1 mediates the effect of tissue-type plasminogen activator on matrix

metalloproteinase-9 activity in the ischemic brain. J Cereb Blood Flow Metab. 2009;29(12):1946–54.

223. Lee JY, Kweon HS, Cho E, Byun HR, Kim DH, Kim YH, et al. Upregulation of tPA/plasminogen

proteolytic system in the periphery of amyloid deposits in the Tg2576 mouse model of Alzheimer’s

disease. Neurosci Lett. 2007;423(1):82–7.

224. Medina MG, Ledesma MD, Domínguez JE, Medina M, Zafra D, Alameda F, et al. Tissue

plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J.

2005;24(9):1706–16.

225. Tucker HM, Kihiko M, Caldwell JN, Wright S, Kawarabayashi T, Price D, et al. The plasmin system

is induced by and degrades amyloid-beta aggregates. J Neurosci. 2000;20(11):3937–46.

226. Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG. Brain plasmin

enhances APP alpha-cleavages and Abeta degradation and is reduced in Alzheimer’s disease brains.

EMBO Rep. 2000;1(6):530–5.

227. Fabbro S, Seeds NW. Plasminogen activator activity is inhibited while neuroserpin is up-regulated in

te Alzheimer’s disease brain. J Neurochem. 2009;109(2):303–15.

228. Kinghorn KJ, Crowther DC, Sharp LK, Nerelius C, Davis RL, Chang HT, et al. Neuroserpin binds A

beta and is a neuroprotective component of amyloid plaques in Alzheimer disease. J Biol Chem.

2006;281(39):29268–77.

229. Liu R-M, van Groen T, Katre A, Cao D, Kadisha I, Ballinger C, et al. Knockout of plasminogen

activator inhibitor 1 gene reduces amyloid beta peptide burden in a mouse model of Alzheimer’s

disease. Neurobiol Aging. 2011;32(6):1079–89.

230. Fabbro S, Schaller K, Seeds NW. Amyloid-β levels are significantly reduced and spatial memory

defects are rescued in a novel neuroserpin-deficient Alzheimer’s disease transgenic mouse model. J

Neurochem. 2011;118(5):928–38.

231. Jacobsen JS, Comery TA, Martone RL, Elokdah H, Crandall DL, Oganesian A, et al. Enhanced

clearance of Aβ in brain by sustaining the plasmin proteolysis cascade. Proc Natl Acad Sci USA.

2008;105(25):8754–9.

232. Oh SB, Byun CJ, Yun JH, Jo DG, Carmeliet P, Koh JY, et al. Tissue plasminogen activator arrests

Alzheimer’s disease pathogenesis. Neurobiol Aging. 2014;35(3):511–9.

Page 124: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

102

233. Roussel BD, Macrez R, Jullienne A, Agin V, Maubert E, Dauphinot L, et al. Age and albumin D site-

binding protein control tissue plasminogen activator levels: Neurotoxic impact. Brain.

2009;132(P18):2219–30.

234. Cacquevel M, Launay S, Castel H, Benchenane K, Chéenne S, Buée L, et al. Ageing and amyloid-

beta peptide deposition contribute to an impaired brain tissue plasminogen activator activity by

different mechanisms. Neurobiol Dis. 2007;27(2):164–73.

235. Martorana A, Sancesario GM, Esposito Z, Nuccetelli M, Sorge R, Formosa A, et al. Plasmin system

of Alzheimer’s disease patients: CSF analysis. J Neural Transm. 2012;119(7):763–9.

236. Sutton R, Keohane ME, VanderBerg SR, Gonias SL. Plasminogen activator inhibitor-1 in the

cerebrospinal fluid as an index of neurological disease. Blood Coagul Fibrinolysis. 1994;5(2):167–71.

237. Tabrizi P, Wang L, Seeds N, McComb JG, Yamada S, Griffin JH, et al. Tissue plasminogen activator

(tPA) deficiency exacerbates cerebrovascular fibrin deposition and brain injury in a murin stroke

model: Studies in tPA-deficient mice and wild-type mice on a matched genetic background.

Arterioscler Thromb Vasc Biol. 1999;19:2801–6.

238. Fiala M, Liu QN, Sayre J, Pop V, Brahmandam V, Graves MC, et al. Cyclooxygenase-2-positive

macrophages infiltrate the Alzheimer’s disease brain and damage the blood-brain barrier. Eur J Clin

Invest. 2002;32(5):360–71.

239. Paul J, Strickland S, Melchor JP. Fibrin deposition accelerates neurovascular damage and

neuroinflammation in mouse models of Alzheimer’s disease. J Exp Med. 2007;204(8):1999–2008.

240. Hermann DM, ElAli A. The abluminal endothelial membrane in neurovascular remodeling in health

and disease. Sci Signal. 2012;5(236):re4.

241. Winkler EA, Sengillo JD, Bell RD, Wang J, Zlokovic BV. Blood-spinal cord barrier pericyte

reductions contribute to increased capillary permeability. J Cereb Blood Flow Metab.

2012;32(10):1841–52.

242. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes control key

neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron.

2010;68(3):409–27.

243. Takano T, Han X, Deane R, Zlokovic BV, Nedergaard M. Two-Photon Imaging of Astrocytic Ca2+

Signaling and the Microvasculature in Experimental Mice Models of Alzheimer’s Disease. Ann N Y

Acad Sci. 2007;1097:40–50.

244. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat

Rev Neurosci. 2006;7(1):41–53.

245. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ. Synchronous hyperactivity and intercellular

calsium waves in astrocytes in Alzheimer mice. Science. 2009;323(5918):1211–5.

246. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by

pericytes. Nature. 2006;443(7112):700–4.

247. Lampron A, ElAli A, Rivest S. Innate immunity in the CNS: Redefining the relationship between the

CNS and its environment. Neuron. 2013;78(2):11560.

248. Yemisci M, Gursoy-Ozdemir Y, Vural A, Can A, Topalkara K, Dalkara T. Pericyte contraction

induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an

occluded cerebral artery. Nat Med. 2009;15(9):1031–7.

249. Chan-Ling T, Page MP, Gardiner T, Baxter L, Rosinova E, Hughes S. Desmin ensheathment ratio as

an indicator of vessel stability: Evidence in normal development and in retinopathy of prematurity.

Am J Pathol. 2004;165(4):1301–13.

Page 125: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

103

250. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson Y, Wolburg H, et al. Lack of pericytes leads to

endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53.

251. Edelman DA, Jiang Y, Tyburski JG, Wilson RF, Steffes CP. Lipopolysaccharide activation of

pericytes’s Toll-like receptor-4 regulates co-culture permeability. Am J Surg;193(6):730–5.

252. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Brühl ML, et al. Capillary and arteriolar

pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-

recognition and motility programs. Nat Immunol. 2013;14(1):41–51.

253. Takeshita Y, Ransohoff RM. Inflammatory cell trafficking across the blood-brain barrier: Chemokine

regulation and in vitro models. Immunol Rev. 2012;248(1):228–39.

254. Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW. New expression of myelomonocytic

antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol.

1990;27(2-3):121–32.

255. ElAli A, Thériault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain

disorders. Int J Mol Sci. 2014;15(4):6453–74.

256. Bozoyan L, Khighatyan J, Saghatelyan A. Astrocytes control the development of the migration-

promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci.

2012;32(5):1687–704.

257. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, et al. Leukocyte

infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive

astrocytes in adult transgenic mice. Neuron. 1999;23(2):297–308.

258. Jacobs S, Doering LC. Astrocytes prevent abnormal neuronal development in the fragile x mouse. J

Neurosci. 2010;30(12):4508–14.

259. Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier

models: Physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127.

260. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, et al. Neuron-to-astrocyte

signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;6(1):43–50.

261. Soulet D, Rivest S. Microglia. Curr Biol. 2008;18(12):R506.

262. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult

brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci.

2007;10(12):1544–53.

263. Hines DJ, Hines RM, Mulligan SJ, Macvicar BA. Microglia processes block the spread of damage in

the brain and require functional chloride channels. Glia. 2009;57(15):1610–8.

264. Michelucci A, Heurtaux T, Grandbarbe L, Morga E, Heuschling P. Characterization of the microglial

phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric

and fibrillar amyloid-beta. J Neuroimmunol. 209AD;210(1-2):3–12.

265. Wegiel J, Wisniewski HM. The complex of microglial cells and amyloid star in three-dimensional

reconstruction. Acta Neuropathol. 1990;81(12):116–24.

266. Davis JB, McMurray HF, Schubert D. The amyloid beta protein of Alzheimer’s disease is chemotactic

for mononuclear phagocytes. Biochem Biophys Res Commun. 1992;189(2):1096–100.

267. Ledo JH, Azevedo EP, Clarke JR, Ribeiro FC, Figueiredo CP, Foguel D, et al. Amyloid-β oligomers

link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry. 2013;18(10):1053–4.

268. Cassol E, Cassetta L, Alfano M, Poli G. Macrophage polarization and HIV-1 infection. J Leukoc Biol.

2010;87(4):599–608.

Page 126: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

104

269. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, et al. Oncomodulin is a macrophage-

derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006;9(6):843–52.

270. Brown WD, Frackowiak RSJ. Cerebral blood flow and metabolism studies in multi-infarct dementia.

Alzheimer Dis Assoc Disord. 1991;5(2):131–43.

271. Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat

Neurosci. 2011;14:1398–405.

272. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes

regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55–60.

273. Grammas P. Neurovascular dysfunction, inflammation and endothelial activation: Implications for the

pathogenesis of Alzheimer’s disease. J Neuroinflammation. 2011;8:26.

274. Fiala M, Lin J, Ringman J, Kermani-Arab V, Tsao G, Patel A, et al. Ineffective phagocytosis of

amyloid-beta by macrophages of Alzheimer’s disease patients. J Alzheimers Dis. 2005;7(3):221–32.

275. Fiala M, Liu PT, Espinosa-Jeffrey A, Rosenthal MJ, Bernard G, Ringman JM, et al. Innate immunity

and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved

by bisdemethoxycurcumin. Proc Natl Acad Sci USA. 2007;104(31):12849–54.

276. Mooradian AD, Chung HC, Shah GN. GLUT-1 expression in the cerebra of patients with Alzheimer’s

disease. Neurobiol Aging. 1997;18(5):469–74.

277. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds

atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nuc Med. 2006;47(11):1778–

86.

278. Herholz K. Cerebral glucose metabolism in preclinical and prodromal Alzheimer’s disease. Expert

Rev Neurother. 2010;10(11):1667–73.

279. Shintani T, Klionsky DJ. Autophagy in health and disease: A double-edged sword. Science.

2004;305(5698):990–5.

280. Iadecola C, Gorelick PB. Converging pathogenic mechanisms in vascular and neurodegenerative

dementia. Stroke. 2003;34(2):335–7.

281. Jing Z, Shi C, Zhu L, Xiang Y, Chen P, Xiong Z, et al. Chronic cerebral hypoperfusion induces

vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J

Cereb Blood Flow Metab. 2015;35(8):1–11.

282. Lehmann J, Härtig W, Seidel A, Füldner C, Hobohm C, Grosche J, et al. Inflammatory cell

recruitment after experimental thromboembolic stroke in rats. Neuroscience. 2014;279:139–54.

283. Urra X, Villamor N, Amaro S, Gómez-Choco M, Obach V, Oleaga L, et al. Monocyte subtypes

predict clinical course and prognosis in human stroke. J Cereb Blood Flow Metab. 2009;29(5):994–

1002.

284. Michaud J-P, Bellavance M-A, Préfontaine P, Rivest S. Real-time in vivo imaging reveals the ability

of monocytes to clear vascular amyloid beta. Cell Reports. 2013;5(3):646–53.

285. Naert G, Rivest S. Hematopoietic CC-chemokine receptor 2 (CC2) competent cells are protective for

the cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer’s

disease. Mol Med. 2012;18:297–313.

286. Filali M, Lalonde R, Rivest S. Anomalies in social behaviors and exploratory activities in an

APPswe/PS1 mouse model of Alzheimer’s disease. 2011;104(5):880–5.

287. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement

of protein using: bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.

Page 127: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

105

288. Thorpe GH, Kricka LJ. Enhanced chemiluminescent reactions catalyzed by horseradish perodish

peroxidase. Methods Enzymol. 1986;133:331–53.

289. Turrin NP, Rivest S. Tumor necrosis factor alpha but not interleukin 1 beta mediates neuroprotection

in response to acute nitric oxide excitotoxicity. J Neurosci. 2006;26(1):143–51.

290. Naert G, Rivest S. CC chemokine receptor 2 deficiency aggravates cognitive impairments and

amyloid pathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci.

2011;31(16):6208–20.

291. Takeda Y, Costa S, Delamarre E, Roncal C, Leite de Oliveira R, Squadrito ML, et al. Macrophage

skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature.

2011;479(7371):122–6.

292. Sugiyama Y, Yagita Y, Oyama N, Terasaki Y, Omura-Matsuoka E, Sasaki T, et al. Granulocyte

colony-stimulating factor enhances arteriogenesis and ameliorates cerebral damage in a mouse model

of ischemic stroke. Stroke. 2011;42(3):770–5.

293. Michael OO, Gbolahan BW, Ansa CE, Abdulbasitand A. Endothelial proliferation modulates neuron-

glia survival and differentiation in ischemic stress. Ann Neurosci. 2015;22(3):150–61.

294. Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo J-L, et al. The

healing myocardium sequentially mobilizes two monocytes subsets with divergent and

complementary functions. J Exp Med. 2007;204(12):3037–47.

295. Rao KMK. MAP kinase activation in macrophages. J Leukoc Biol. 2001;69(1):3–10.

296. Yang Y, Kim SC, Yu T, Yi Y-S, Rhee MH, Sung G-H, et al. Functional roles of p38 mitogen-

activated protein kinase in macrophage-mediated inflammatory responses. Med Inflamm.

2014;2014:352371.

297. Anderson CNG, Tolkovsky AM. A role for MAPK/ERK in sympathetic neuron survival: Protection

against a p53-dependent, JNK-indenpendent induction of apoptosis by cytosine arabinoside. J

Neurosci. 1999;19(2):664–73.

298. Gliem M, Mausberg AK, Lee J-I, Simiantonakis I, van Rooijen N, Hartung H-P, et al. Macrophages

prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol. 2012;71(6):743–52.

299. Michaud J-P, Pimentel-Coelho PM, Tremblay Y, Rivest S. The impact of Ly6Clow monocytes after

cerebral hypoxia-ischemia in adult mice. J Cereb Blood Flow Metab. 2014;34(7):e1–9.

300. Ma DK, Ponnusamy K, Song M-R, Ming G, Song H. Molecular genetic analysis of FGFR1 signalling

reveals distinct roles of MAPK and PLCγ1 activation for self-renewal of adult neural stem cells. Mol

Brain. 2009;2(1):16.

301. Nishima H, Wada T, Katada T. Physiological roles of SAPK/JNK signaling pathway. J Biochem.

2004;136(2):123–6.

302. Gaiano N, Fishell G. The role of notch in promoting glial and neural stem cell fates. Annu Rev

Neurosci. 2002;25:471–90.

303. Dugan LL, Creedon DJ, Johnson EM, Holtzman DM. Rapid suppression of free radical formation by

nerve growth factor involves the mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA.

1997;94(8):4086–91.

304. Gimeno-Bayón J, López-López A, Rodríguez MJ, Mahy N. Glucose pathways adaptation supports

acquisition of activated microglia phenotype. J Neurosci Res. 2014;92(6):723–31.

305. Erecińska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab. 1989;9(1):2–19.

306. Xifró X, Miñano-Molina AJ, Saura CA, Rodríguez-Álvarez J. Ras protein activation is a key event in

activity-dependent survival of cerebellar granule neurons. J Biol Chem. 2014;289(12):8462–72.

Page 128: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

106

307. Johnson-Farley NN, Patel K, Kim D, Cowen DS. Interaction of FGF-2 with IGF-1 and BDNF in

stimulating Akt, ERK, and neuronal survival in hippocampal cultures. Brain Res. 2007;1154:40–9.

308. Koelemay MJ, Nederkoorn PJ, Reitsma JB, Majoie CB. Systematic review of computed tomographic

angiography for assessment of carotid artery disease. Stroke. 2004;35(10):2306–12.

309. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):798–791.

310. De Souza LC, Sarazin M, Goetz C, Dubois B. Clinical Investigations in Primary Care. Front Neurol

Neurosci. 2009;24:1–11.

311. Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol.

2011;11(11):775–87.

312. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, et al. NLRP3 is

activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature.

2013;493(7434):674–8.

313. Simard AR, Soulet D, Gowing G, Julien J-P, Rivest S. Bone marrow-derived microglia play a critical

role in restricting senile plaque formation in Alzheimer’s disease. Neuron. 2006;49(4):489–502.

314. Lampron A, Pimentel-Coelho PM, Rivest S. Migration of bone marrow-derived cells into the central

nervous system in models of neurodegeneration. J Comp Neurol. 2013;521(17):3863–76.

315. Boissonneault V, Filali M, Lessard M, Relton J, Wong G, Rivest S. Powerful beneficial effects of

macrophage colony-stimulating factor on beta-amyloid deposition and cognitive impairment in

Alzheimer’s disease. Brain. 2009;132(Pt 4):1078–92.

316. Laflamme N, Lacroix S, Rivest S. An essential role of interleukin-1beta in mediating NF-kappaB

activity and COX-2 transcription in cells of the blood-brain barrier in response to a systemic and

localized inflammation but not during endotoxemia. J Neurosci. 1999;19(24):10923–30.

317. ElAli A, Hermann DM. Apolipoprotein E controls ATP-binding cassette transporters in the ischemic

brain. Sci Signal. 2010;3(142):ra72.

318. Filali M, Lalonde R. Age-related cognitive decline and nesting behavior in an APPswe/PS1 bigenic

model of Alzheimer’s disease. Brain Res. 2009;1292:93–9.

319. Nassar T, Akkawi S, Shina A, Haj-Yehia A, Bdeir K, Tarshis M, et al. In vitro and in vivo effects of

tPA and PAI-1 on blood vessel tone. Blood. 2004;103(3):897–902.

320. Tsirka SE, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and

seizure are mediated by tissue plasminogen activator. Nature. 1995;377(6547):340–4.

321. ElAli A, Hermann DM. Liver X receptor activation enhances blood-brain barrier integrity in the

ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1

on brain capillary cells. Brain Pathol. 2012;22(2):175–87.

322. Benchenane K, Berezowski V, Fernández-Monreal M, Brillault J, Valable S, Dehouck MP, et al.

Oxygen glucose deprivation switches the transport of tPA across the blood-brain barrier from an LRP-

dependent to an increased LRP-independent process. Stroke. 2005;36(5):1059–64.

323. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix

metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5.

324. Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in a new model of the

stroke penumbra. J Neurosci. 2008;28(9):2221–30.

325. Middei S, Geracitano R, Caprioli A, Mercuri N, Ammassari-Teule M. Preserved fronto-striatal

plasticity and enhanced procedural learning in a transgenic mouse model of Alzheimer’s disease

overexpressing mutant hAPPswe. Learn Mem. 2004;11(4):447–52.

Page 129: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

107

326. Rouleau I, Salmon DP, Butters N, Kennedy C, McGuire K. Quantitative and qualitative analyses of

clock drawings in Alzheimer’s and Huntington’s disease. Brain Cogn. 1992;18(1):70–87.

327. Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, et al. High-level neuronal

expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice:

Synaptotoxicity without plaque formation. J Neurosci. 2000;20(11):4050–8.

328. Faivre E, Hölscher C. Neuroprotective effects of D-Ala(2)GIP on Alzheimer’s disease biomarkers in

an APP/PS1 mouse model. Alzheimers Res Ther. 2013;5(2):20.

329. Xu ZP, Li LP, Bao J, Wang ZH, Zeng J, Liu EJ, et al. Magnesium protects cognitive functions and

synaptic plasticity in streptozotocin-induced sporadic Alzheimer’s model. PLoS One.

2014;9(9):e108645.

330. Russell CL, Semerdjieva S, Empson RM, Austen BM, Beesley PW, Alifragis P. Amyloid-β acts as a

regulator of neurotransmitter release disrupting the interaction between synaptophysin and VAMP2.

PLoS One. 2012;7(8):e43201.

331. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct

migratory properties. Immunity. 2003;19(1):71–82.

332. Siao CJ, Fernandez SR, Tsirka SE. Cell type-specific roles for tissue plasminogen activator released

by neurons or microglia after excitotoxic injury. J Neurosci. 2003;23:3234–42.

333. Tare M, Modi RM, Nainaparampil JJ, Puli OR, Bedi S, Fernandez-Funez P, et al. Activation of JNK

signaling mediates amyloid-ß-dependent cell death. PLoS One. 2011;6(9):e24361.

334. O’Neill LA, Kaltschmidt C. NF-kappa B: A crucial transcription factor for glial and neuronal cell

function. Trends Neurosci. 1997;20(6):252–8.

335. Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M. The suitability of BV2 cells as

alternative model system for primary microglia cultures or for animal experiments examining brain

inflammation. ALTEX. 2009;26(2):83–94.

336. Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, et al. c-Jun N-terminal kinases

(JNKs) mediate pro-inflammatory actions of microglia. Glia. 2005;50(3):235–46.

337. Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, et al. Microglial activation and

amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 2002;16(6):601–3.

338. Jantzen PT, Connor KE, DiCarlo G, Wenk GL, Wallace JL, Rojiani AM, et al. Microglial activation

and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory

drug in amyloid precursor protein plus presenilin-1 transgenic mice. J Neurosci. 2002;22(6):2246–54.

339. Pineda D, Ampurdanés C, Medina MG, Serratosa J, Tusell JM, Saura J, et al. Tissue plasminogen

activator induces microglial inflammation via a noncatalytic molecular mechanism involving

activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and

Galectin-1 receptors. Glia. 2012;60:526–40.

340. Michaud J-P, Hallé M, Lampron A, Thériault P, Préfontaine P, Filali M, et al. Toll-like receptor 4

stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer’s disease-related

pathology. Proc Natl Acad Sci USA. 2013;110(5):1941–6.

341. Zhang Q, Zhang J, Han Z-M. Efficacy of Rho kinase inhibitor on cognitive impairment induced by

chronic cerebral hypoperfusion in rats. Int J Clin Exp Med. 2015;8(2):2435–40.

342. Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, et al. The transcription

factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes.

Nat Immunol. 2011;12(8):778–85.

343. Hefendeh IJK, Neher JJ, Süshs RB, Kohsaka S, Skodras A, Jucker M. Homeostatic and injury-

induced microglia behavior in the aging brain. Aging Cell. 2014;13(1):60–9.

Page 130: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

108

344. Wang B, Gao Y, Xiao Z, Chen B, Han J, Zhang J, et al. Erk1/2 promotes proliferation and inhibits

neuronal differentiation of neural stem cells. Neurosci Lett. 2009;461(3):252–7.

345. Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G. Efficient transfer of receptor-

associated protein (RAP) across the blood-brain barrier. J Cell Sci. 2004;117(Pt 21):5071–8.

346. Yata K, Nishimura Y, Unekawa M, Tomita Y, Suzuki N, Tanaka T, et al. In vivo imaging of the

mouse neurovascular unit under chronic cerebral hypoperfusion. Stroke. 2014;45(12):3698–703.

347. Wu F, Echeverry R, Wu J, An J, Haile WB, Cooper DS, et al. Tissue-type plasminogen activator

protects neurons from excitotoxin-induced cell death via activation of the ERK1/2-CREB-ATF3

signaling pathway. Mol Cell Neurosci. 2013;52:9–19.

348. An J, Haile WB, Wu F, Torre E, Yepes M. Tissue type plasminogen activator mediated neuroglial

coupling in the central nervous system. Neuroscience. 2014;257:41–8.

349. Yong VW, Rivest S. Taking advantage of the systemic immune system to cure brain disease. Neuron.

2009;64(1):55–60.

350. Schwartz M, Baruch K. The resolution of neuroinflammation in neurodegeneration: Leukocyte

recruitment via the choroid plexus. EMBO J. 2014;33(1):7–20.

351. Lampron A, Gosselin D, Rivest S. Targeting the hematopoietic system for the treatment of

Alzheimer’s disease. Brain Behav Immun. 2011;25:S71–9.

352. Majumdar A, Cruz D, Asamoah N, Buxbaum A, Sohar I, Lobel P, et al. Activation of microglia

acidifies lysosomes and leads to degradation of Alzheimer amyloid fibrils. Mol Biol Cell.

2007;18(4):1490–6.

353. Sanchez-Ramos I, Song S, Sava V, Catlow B, Lin X, Mori T, et al. Granulocyte colony stimulating

factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice.

Neuroscience. 2009;163(1):55–72.

Page 131: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

109

Annexe – Figures supplémentaires

Chapitre 2

Figure. 2.1. Motricity behavior in APPswe/PS1 after severe chronic cerebral hypoperfusion (SCCH).

Motricity performance was assessed by open field test (A) and asymmetry cylinder test (B) which

respectively defined motor capacity and lateral asymmetry. Overall, both groups performed similarly

suggesting that SCCH do not induce motor impairment.

Page 132: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

110

Figure 2.2. SCCH does not alter blood-brain barrier tightness. BBB leakage is shown by

immunocytochemistry (A,B). Claudin V level is quantified by Western blot (C) and rationalised with β-

actin’s expression. SCCH neither induces IgG (A) and albumin’s (B) extravasation, nor changes of claudin V

expression (C). Control demonstrates IgG (A) and albumin (B) extravasation 48 hours after stroke. Images

were acquired with 1X objective. Scale bar = 1mm.

Figure 2.3. Absence of infiltred monocytes after SCCH. Monocyte (CD45+) infiltration is verified by

immunocytochemistry. Both, sham and SCCH, groups do not have monocyte infiltration. Control show

monocytes infiltration in the lesion region 48 hours after stroke. Images were acquired with 1X and 40X

objectives. Scale bar = 1mm (1X objective) ; Scale bar = 75µm (40X objective).

Page 133: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

111

Figure 2.4. SCCH seems to atrophy CA3 without neuronal death. Neuronal death and structural changes

in hippocampus are respectively confirmed by FJB (A) and thionin staining (B). Control presented neuronal

death at the lesion site 48 hours later, whereas sham and SCCH groups do not (A). SCCH animals seem (P =

0.0739) to develop CA3 region’s atrophy, without alteration of CA1 and CA2 region and, dentelate gyrus (B).

Data are means ± SEM. Data are analysed by standard two-tailed unpaired t-test’s. FJB staining images were

acquired with 1.25X and 20X objectives. Thionin staining images were acquired with 1X and 20X objectives.

Scale bar = 1mm (1.25X objective); Scale bar = 500µm (1X objective) ; Scale bar = 75µm (20X objective).

Page 134: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

112

Chapitre 3

Figure. 3.1. BBB tightness is preserved after Activase® rt-PA administration. Microphotograph (a) and

immunohistochemical analysis (b,c) examining the purity of isolated cerebral MVs, and BBB permeability to

blood-borne molecules in the brain of APPswe/PS1 mice. The bright-field microphotograph outlines the

purity of isolated brain MVs (a). The immunohistochemical analysis shows no albumin (b) and IgG (c)

extravasation staining in the brain parenchyma of APPswe/PS1 mice 10 weeks after Activase® rt-PA weekly

systemic administration. Images were acquired with a 40X objective. Scale bar = 50 µm (a), 25 µm (b,c).

Page 135: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

113

Figure. 3.2. BBB integrity is preserved after Activase® rt-PA administration. Western blot analysis,

using brain capillary extracts from wildtype mice and examining the expression levels of proteins involved in

BBB physical and functional proprieties, 3 (a,c,e) and 24 hours (b,d,f) after a single systemic Activase® rt-

PA administration. The protein expression levels of Occludin (a,b), Claudin 5 (c,d), and ABCB1 (e,f), do not

change. Optical densities were corrected with β-actin levels. Data are means ± SEM (n = 5-6).

Page 136: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

114

Figure. 3.3. Endothelial transporters involved in Aβ transport across the BBB are not affected

following Activase® rt-PA administration. Western blot analysis, using brain MVs extracts from wildtype

mice and examining the expression levels of endothelial transporters involved in Aβ transport across the

BBB, 3 (a,c) and 24 hours (b,d) after a single systemic Activase® rt-PA administration. The protein

expression levels of LRP1 (a,b) and RAGE (c,d), do not change. Optical densities were corrected with β-actin

levels. Data are means ± SEM (n = 5-6).

Page 137: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

115

Figure. 3.4. Activase® rt-PA regimen does not modulate the brain levels of synaptophysin.

Immunofluorescence staining (a) and western blot analysis (b) examining synaptophysin levels in the brain of

of APPswe/PS1 mice. Immunofluorescence staining shows that Activase® rt-PA treatment does not change

the brain levels of synaptophysin in treated APPswe/PS1 mice (a). Western blot analysis shows that

synaptophysin levels are decreased in the brain of APPswe/PS1 mice compared to wildtype littermate (b).

However, Activase® rt-PA treatment does not change synaptophysin levels in the brain of APPswe/PS1

treated mice (b). WT: wildtype. Data are means ± SEM (n = 6-7). **** P < 0.0001 compared with saline

treated group. Immunofluorescent images were acquired with a 4X objective. Scale bar = 500 µm.

Page 138: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

116

Figure. 3.5. Acute Activase® rt-PA administration modulates total monocyte frequency in the blood of

APPswe/PS1 mice. Flow cytometry analysis was performed to examine total monocyte population frequency

and subset frequencies in the blood of APPswe/PS1 mice. Activase® rt-PA increases total monocyte

frequency in leukocytes (CD45+ cells) in the blood 3 hours after injection (a). However, Activase® rt-PA

does not modulate Ly6CHigh monocyte subset frequency (b) and Ly6CLow subset frequency (c) in the blood 3

hours after injection. Data are means ± SEM (n = 7-8 animals per group). * P < 0.05 compared with saline

treated group.

Figure. 3.6. Chronic Activase® rt-PA administration does not trigger a sustained inflammation in the

brain of chimeric APPswe/PS1 mice. In situ hybridization examining IkBα expression, an indicator of NF-

kB activity, following Activase® rt-PA administration. The acute administration of rt-PA does not induce

NF-kB activation (a), which is assessed by the expression levels of IkBα gene transcript. Data are means ±

SEM (n = 4-5). * P < 0.05 compared with saline treated group. Brain sections of mice systemically injected

with LPS were used as positive controls for NF-kB activation. Images were acquired with a 4X objective.

Scale bar = 250 µm.

Page 139: Implication du remodelage de l’unité neurovasculaire dans la … · 2018-04-24 · iii Résumé L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amylode

117

Chapitre 4

Figure 4.1. Changement de la déposition vasculaire de l’amyloïde. L’amyloïde vasculaire a été marquée

par immunohistochimie à la Thioflavine 0,1%, puis analysé à l’aide du programme stéréo Investigateur. À la

suite de la SCCH, le nombre de plaques vasculaires diminue significativement comparé au contrôle, sans que

l’aire occupée par les plaques ne soit modulé. Les valeurs représentent la moyenne ± SEM (n = 6-8, 4 sections

du cerveau analysés par animal). L’amyloïde vasculaire** P < 0.001 comparé au groupe contrôle (SHAM).