h. zapolsky -...

46
H. Zapolsky

Upload: others

Post on 23-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

H. Zapolsky

Page 2: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

GPM

Page 3: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Groupe de Physique des MatériauxUniversité et INSA de Rouen, UMR CNRS 6634

AnalysesPhysical metallurgyand nanomaterials Modeling

Instrumentation Interaction laser - atom

Page 4: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3
Page 5: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Matériau N18 polycristallin pour disque de turbine d’un avion, formé d'un agrégat de grains. A droite, zoom dans un grain, révélant la présence de précipités durcissants.

La métallurgie physique

Page 6: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Monte‐Carlo

Phase Field

MULTI‐SCALE MODELING OF MATERIALS

Page 7: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Diffusional

PHASE TRANSFORMATIONS

Displacive

1nd ordernucleation & growth

PHASE TRANSFORMATIONS

2nd orderEntire volume transforms

Based onMass

transport

Based onorder

Page 8: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Energies involved

Bulk Gibbs free energy ↓

Interfacial energy ↑

Strain energy ↑ Solid‐solid transformation

Volume of transforming material

New interface created

Page 9: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

(i) (A-L) (j) (L-A)

i j

II - Simulation Monte Carlo

E

kT

EEexpkT

EexpW confAS

AAVA

Fréquence d’échange de la lacune avec un atome voisin :

La diffusion : mécanisme lacunaire thermiquement activé

V VAY LYY n LY A

Y n A

( )( )Econf =

1- Modèle cinétique

C. Pareige,

Page 10: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Monte Carlo simulation : thermodynamic parameters

(eV) (eV) (eV) (eV)

Ni-Al* 0.16 -0.064 - -

Ni-V 0.201 -0.0503 -0.01 0.027

Al-V 0.2 0.01 -0.01 0.03

iXY

iYY

iXX

iYX 2

*Abinandanan T., Haider F., Martin G., Solids‐Solid Phase transformations, TMS, Warrendale, PA, 1994, 443.

1YX 2

YX 3YX 4

YX

SimulationExperiment

Ordering energy:

C. Pareige,

Page 11: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Simulation Experiment

V = 2 x 11 x 22 nm3

V = 2 x 11 x 22 nm3

Al

V

L12/DO22 interface : one atomic plane - also observed experimentally

<00

1>

DO22 –Ni3V

L12 -Ni3Al

Al V

V = 4 x 16 x 30 nm3

Problématiques: traitement statistique des données, barrière de la percolation, systèmes non‐ergodiques, modèle de Potts et Heisenberg,….

1. D. Blavette, G. Grancher et A. Bostel « STATISTICAL ANALYSIS OF ATOM‐PROBE DATA (I). DERIVATION OF SOME FINE‐SCALE FEATURES FROM FREQUENCY DISTRIBUTIONS FOR FINELY DISPERSED SYSTEMS » J. Phys. Colloques 49 (1988) C6‐4332. F. Danoix , G. Grancher, A. Bostel, D. Blavette « Standard deviations of composition measurements in atom probe analyses—Part II: 3D atom probe » Ultramicroscopy, Volume 107, Issue 9, September 2007, Pages 739–743.

Page 12: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

),'()'(1),(

, ' trPFccrrL

TkdttrdP

rB

Ising lattice Atomic density function (ADF)

Kinetic equation of relaxation dynamic:

L(r-r ’) is a matrix of kinetic coeficients.

elastchem EFF

rrr

rrrrrrrr )((1)(1)(()()'()()'(21

',PLnPPLnPTkPPVF Bchem

PA(r,t) is the probability of finding of an A atom at a given lattice site r at a given time t.

a

P(r) ‐ probability to find atom at position r

H. Zapolsky, ERAFEN

Page 13: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

23

3

)()()2(2

1 k

nBkdE pqpq

elast

ELASTIC ENERGY

lkijklij nnc )(1 n kkn

2003

3' )())(ˆ)(ˆ)(ˆ(

)2()( knnΩnRR

qpkdWpq

Strain‐induced interaction between p and q inclusions located at the points R and R ’

lkljkijiklijijklpq nqpnqpcB )()()()()()( 0000 nΩn

concentrationx y

Lattice parametre ay

ax

Vegard ’s law

MISFIT

H. Zapolsky, ERAFEN

Page 14: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Images de MET des alliages ternaires vieillis à 1073°K864 ks, A1/DO22 microstructure (A. Suzuki, H. Kojima, T. Matsuoand M. Takeyama, Intermetallics 12 (2004) 969-975)

Ni-20V-10Co

Ni-19V-4Fe Ni-15V-5Nb

50 nm

<110>

50 nm

<110>

d = -0.5

d =ε11/ε33= -0.35

d=0

H. Zapolsky,S. Ferry, X. Sauvage,D. Blavette, L.Q. Chen, Phil. Mag. (2011).M. Eckholm, H. Zapolsky, A. Ruban, I. Vernyhora, D. Ledue, I. Abrikosov, PRL (2010)

Page 15: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

1WR

a

),...,...,,,()( 21 n r

A small parameter determining the transition to microscopique continuum version of ADF model is:

a‐ Ising lattice parameterRWαβ‐ characteristic distance of interatomic interaction

P(r) ‐ probability to find atom at position r ρ(r) ‐ atomic density

a a

ADF on constrained lattice ADF on unconstrained lattice

ρ(r) ‐> averaging over time :Δt > frequency of phonons Δt < characteristic diffusion time

Page 16: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

'),(

),(),( 3

1

rdt

FLt

t

V

n

''

rrrr

• There is no Ising lattice constraint: atoms are free to continuously move to relax the free energy. • The n-component system is described by the n atomic density functions:

),...,...,,,()( 21 n r

• The ADF kinetic equations are essentially the same but the integration is over continuum space is substituted for summation over lattice sites:

is a non-local free energy functional of n atomic density functions,is the mobility matrix.))(( rF

),( rr L

n...,,2,1

The conservation of the number of atoms:

Page 17: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

VV V

rdfrdrdWF 333 ))(()()()(21][ rrrrr

Non‐local termLocal term

Free energy approximations:

Embedded potential, effective paire potential, …

Page 18: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Martensite

FCCAustenite

FCCAustenite

Alternate choice of Cell

Tetragonal Martensite

Austenite to Martensite → 4.3 % volume increase

Possible positions of Carbon atoms

Only a fraction ofthe sites occupied

20% contraction of c-axis12% expansion of a-axis

In Pure Fe after the Matensitic transformation

c = a

C along the c-axis obstructs the contraction

CBCT

CFCC Quench

% 8.0)( '

% 8.0)(

Page 19: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

FCC‐BCC Transition

H. Zapolsky, ERAFEN

Page 20: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 3.58°

Read and Shockley fit

Page 21: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 3.58°

Read and Shockley fit

Page 22: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 3.58°

Read and Shockley fit

Page 23: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 7.17°

Read and Shockley fit

Page 24: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 10.17°

Read and Shockley fit

Page 25: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 14.25°

Read and Shockley fit

Page 26: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 17.76°

Read and Shockley fit

Page 27: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 21.24°

Read and Shockley fit

Page 28: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 24.68°

Read and Shockley fit

Page 29: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

PFC, tilt angle θ = 28.07°

Simulation Experimental image

To improve our simulation: More efficient numerical methods to solve TDLG equation Condition for Δt

Page 30: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Time dependent Ginzburg‐Landau equation for the lro parameters

Cahn‐Hilliard equation for the concentrations

t),r(ζ)t),rδc(

δF( .Mt

t),rc(c

t),r(ζ)t),rδη(

δF( L -t

t),rη(η

Phase Field equations (mesoscopic description)

M – mobility .

L – kinetic coefficient describing the motion of the interface

F – total free energy. F = Fchemical + Felastic

ζc(r,t) et ζ(r,t) – Langevin noises.

αα

αα

ααα β

C(r)

η=1

η=0

Phase field variables: Concentration c(r)Order parameter η(r)

H. Zapolsky, ERAFEN

Page 31: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

V

ν

1αν21,

2chim )]dV,...ηηηf(c,)ηβ(

21c)α(

21[F

In the phase field model, the chemical energy is:

Local term density of the bulk free

energy

Non-local term (interfacial energy)

....η c)C(T,c)ηB(T,η c)A(T,fη)c,f(T, 432dés

with fdes – the free energy density for the disordered phase.

A, B, C – coefficients of the expansion.

Chemical energy

Page 32: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Parameters of model

kinetics coefficients driving force Δf interfacial energy elastic constants misfit

Modeling

E.A. Marquis,D.N.Seidmant* = 10 000(CSc=0.06%)

Experience

Page 33: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Parameters of model

kinetics coefficients driving force Δf interfacial energy elastic constants misfit

Isoconcentration of scandium

E.AMarquis,D.N.Seidmant* = 10 000

f = 500 MJ.m-3

= 162 mJ.m-2

Approximatedscale

1 cell 1 nm

modeling Experimental

Page 34: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Isoconcentration of scandium

- Simulation box in 3D : 1283 cells

E.A. Marquis,D.N.Seidmant* = 10 000

(CSc=8.38%)

(CSc=0.06%)

f = 500 MJ.m-3

= 162 mJ.m-2

Approximated scale

1 cell 1 nm

Growth of an isolate precipitate

The precipitate grows along to non-elastically soft directions.J. Boisse, H. Zapolsky, R. Patte, N. Lecoq Acta Mat. (submitted)

Experimental images

Simulation

Page 35: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

Calculs, modelisation et simulation pour l’amélioration de la sonde atomique tomographique

F.Vurpillot, A. Vella, J. Houard, L. Arnoldi, E. Silaeva

*Equipe de Recherche en Instrumentation Scientifique

Groupe de Physique des Matériaux UMR 6634 CNRS,

Université de Rouen Avenue de l’Université, B.P. 12 76801 Saint – Etienne du Rouvray Cedex, France

F. Vurpillot,

Page 36: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

36

Tip

VD

C20K<

T<80

KPo

sitio

n Sensitive

Detector X Y ti

min

g

Principes de la sonde atomique tomographique

Fe

MgO

Fe

Au

Une pointe soumise à un potentiel en face d’un détecteur

Projection quasi déterministe des ions

Erosion controlée de la pointe (field evaporation)

Reconstruction tomographique

Spectroscometrie de masse à temps de vol

Performances biasées par

TempératureProjection non stationnaire des ions

Evolution de la pointe non stationnaireAberration de trajectoires

10 nm

F. Vurpillot

Page 37: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

37

Une sonde atomique assistée par impulsion laser

Tip

DSpot

Laser beam

τpulse

Energy ~ 1 – 500 nJ /pulseDspot ~ 10 - 100 μm

: intensity 1-100 J/m2

τpulse ~100-500 fsvariable wavelength (infrared-visible)repetition rate 1-100 kHz

B. Gault, et al. Rev. Sci. Instrum. 77, 043705 (2006)

Page 38: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

38

Role de la modélisationModeliser les processus physique est essentiel pour evaluer les limites de l’instrument en terme de

1. Resolution spatiale (fidélité)2. Distortions (justesse)3. Corréler les propriétés du matériaux aux effets lors de

l’analyse4. Controler les paramètres d’analyse

Difficultés

Echelles de temps : de la fs à la microsecondeEchelles d’espace : du pm au cmIntensités : Eclairement intense (TW)

Champ electrostatiques intenses (1010 V/m)Multiphysique : Physique des champs intenses, thermiques à

l’échelle nano, interaction laser matière, Electrostatique, physique du solide, mecanique quantique (ionisation , evaporation par effet de champ)

Page 39: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

39

Exemple 1 : Trajectoires ioniques: optique electrostatique

• V=0

Resolution numérique du PFD pour calculer les trajectoires ioniques dans la distribution

de potentiel

,(2),(2),(2),(2

),(22

1111 iiiii

iiii

iii

iiii

iii

iii

iii

i

iiii

iii

ii

i

zrVrrr

rrzrVrrr

rrzrVzzz

rzrVzzz

r

zrVrr

rrrzz

r

Page 40: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

40

Difficulté de la mise en oeuvre : Multi‐echelle et dynamique

Electric potential V

field

Ion impact

EvaporatedAtom

40 nm

• De l’échelle atomique à l’échelle macroscopique

• Champ derive de V ( ΔV = 0 )

• Trajectoires (PFD)

4 V/A

2 V/A

0 V/A

Page 41: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

41

Experimental desorption image (pure Al)

Image CAMECA Simulated desorption image

Champ local induit des artefacts

Page 42: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

42

A l’échelle local : effet quantique à prendre en compte…

• Calcul Ab‐Initio, ex: Sanchez (numerical model)

MgO field evaporation (courtesy of J. Kreuzer)

Processus pas encore décrit de manière

satisfaisante

Page 43: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

43

FDTD : finite difference time domainFDTD solution from Lumerical

Resolution numérique des équations de Maxwell en 3D

k

F

Field

Absorption map

tEJH

tHE

Maxwell equations

Absorbed energy

)( HEdivQabs

Exemple 2 : Interaction laser matière

Page 44: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

44

Evolution de la temperature (modèle 3D)

Electronic temperature

Lattice temperature

Heat fluxHeat

source

: FDTD +

ballistic effects

electron-phonon coupling constant

Page 45: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

45

Exemple : Acier/laser vert (515 nm)Lattice temperature

Electronic temperature

Page 46: H. Zapolsky - ionut.danaila.perso.math.cnrs.frionut.danaila.perso.math.cnrs.fr/zdownload/GTIM/2012_journee_inter… · Simulation Experiment V = 2 x 11 x 22 nm3 V = 2 x 11 x 22 nm3

46

Exemple 3 : Dans les semiconducteursCarrier drift and diffusion in high field

E=1 GV/m

‐‐‐

‐‐‐electrons

+ ++++holes

T< 80K V=1 kV

• Free carriers in silicon move under huge electric field E = 1 GV/m• Mobility is high at low temperature = 20 000 cm2(Vs)‐1• Carrier accumulation zone at the tip apex ~ 1 nm• Required spatial resolution z = 1 Å

• Explicite finite‐difference method gives stable solution if

100 nm

)(0

eh

eeeee

ee

hhhhh

hh

nnedzdE

RSEnznD

ztn

RSEnznD

ztn

z

sEzt 20105

we need results at 1 ns very long calculation time 3D calculation almost impossible