digital health connect...than 4 of 5 pat ients. the performance of hu and gl cm at tributes w...

12
DIGITAL HEALTH CONNECT 7 Juin 2019 - Sierre

Upload: others

Post on 15-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

DIGITAL HEALTH CONNECT7 Juin 2019 - Sierre

Page 2: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

…un maillon fort de l’innovation en Valais

Page 3: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

Industrie 4.0 E-health E-energy E-tourisme

La digitalisation … élément-clé

Page 4: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive
Page 5: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

Health Institutions &

Professionals

R&D Institutes

Academies

Business

Digital Health Ecosystem

Page 6: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

Pôle d’innovation d’excellence, générateur de valeurs économiques nouvelles

Renforcer le système de santé par l’innovation.

L’inspirer par les besoins du terrain et les nouvelles technologies pour créer des valeurs ajoutées fortes.

Page 7: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 7

eHealth Research in Valais

Prof. Laurent Sciboz

laurent.sciboz

@laurentsciboz

Page 8: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 8

Le Valais, premier pôle suisse dédié aux technologies de l’information

• Favorise les synergies entre instituts de recherche et entreprises

• 60 PME et startups

• 5 instituts de recherche

• Plus de 600 collaborateurs

• Proche des besoins des patients :• localement (Hôpital du Valais, CRR Suva, Logival, ....),

• au niveau national (CHUV, HUG, EPFL, ETH, University Hospital Zurich, ...) et

• au niveau international (Stanford, Harvard, Imperial College, Carnegie Mellon, NLM, ....)

Page 9: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 9

HTIC : Health Technology Innovation Center

Page 10: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 10

Quelques exemples :

Extreme-scale Analytics via Multimodal Ontology Discovery & EnhancementProf. Henning Müller

Develop algorithms and tools to link visual content and associateddiagnoses/meta-d from various hospitals (starting from histopathology images)

Call: European Union Horizon 2020, ICT-12-2018-2020• Success rate: 78 submissions,6 projects granted

ProjectsupportedbyEuropeanUnionHorizon2020grantagreement825292

6

Page 11: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 11

Quelques exemples : VISIBILE

The future of radiomics: understanding, Validating and Increasing the Specificity of Imaging Biomarkers for personaLizEd medicine (VISIBLE)

• Medical Image Analysis (MIA) for non-invasive personalized medicine

• Medical knowledge discovery from digital phenotype analysis

• Close collaboration with CHUV (Prof. Prior)

Our tasks

• Develop and validate novel imaging biomarkers

and specific deep learning designs for MIA

Funding: SNSF

Leader

• Prof. Adrien Depeursinge

themaximumof thescoreprovided by theSVMs. A maximumareaunder theROCcurve(AUC) of 0.81 wasobtained with theregionalRiesz attributes, which suggests that prediction wascorrect for morethan 4 of 5 patients. Theperformance of HU and GLCM attributeswasclosetorandom(0.54and0.6for HUandGLCMs, respectively).Ontheother hand, predictiveSVM modelsbasedontheresponsesoftheRieszfilters, averagedover theentirelungs, hadanAUCof 0.72.

Our system'sperformancewasalsocomparedwiththeinterpreta-tionsof 2 fellowship-trained cardiothoracic fellows, each having 1 yearof experience. Interobserver agreement wasassessed with theCohenκstatistics30 andthepercentageof agreement (ie, number of timesthe2 observer agreed). Thecomparisonsaredetailed in Tables3 and 4.Theoperating points of the2 independent observers are reported inFigure4 (top right). A detailed analysisof the6 cases that weremis-classified by our system is shown in Table 5 with representative CTimages, includingpredictionsfromthecomputer andthe2fellowscom-pared with theconsensusclassification. Thesystempredicted 2 classicUIPcasesasatypical UIPand3atypical UIPcasesasclassicUIP.Acom-prehensive analysis of all 33 cases is illustrated in the SupplementalTable, Supplemental Digital Content 1, http://links.lww.com/RLI/A189.

Overall, 7incorrect predictionsweremadeby thefellowsand6incor-rect predictionsby thecomputer. Thefellowsandthecomputer madeonly 2commonerrors(cases1and13).

DISCUSSION

Wedevelopedanovel computational methodfor theautomatedclassificationof classicversusatypical UIPbasedonregional volumet-rictextureanalysis.Thisconstitutes,tothebestof ourknowledge,afirstattempt toautomatically differentiatetheUIPsubtypeswithcomputa-tional methods. AnSVM classifier yieldedascorethat predictsif theUIPisclassicor atypical. Theclassifier wasbasedonagroupof attri-butes that characterize theradiological phenotypeof the lung paren-chyma, specifically the morphological properties (ie, texture) of theparenchyma.Becausediffuselungdiseasescanvary inthedistributionand severity of abnormalities throughout the lungs, weextracted ourquantiativeimagefeaturesfrom36anatomical regionsof thelung. Toourknowledge,addingthisspatial characterizationtothecomputationalmodel isalso innovative, and it isparticularly relevant for assessingdiffuselungdisease.

FIGURE3. The36subregionsof thelungslocalized theprototyperegional distributionsof thetextureproperties. Figure3canbeviewed onlineincolorat www.investigativeradiology.com.

FIGURE4. TheROCanalysisof thesystem'sperformance. ClassicUIPisthepositiveclass. Left, Comparison of variousfeaturegroupsusing thedigitallungtissueatlas.Three-dimensionalRieszwaveletsprovideasuperiorAUCof 0.81.Right, Importanceof theanatomicalatlaswhencomparedwithanapproachbased on theglobal tissuepropertiesand comparisonof thecomputer'sand cardiothoracic fellows' performance. Bottom, Probabilitydensityfunctionsof thecomputer scorefor classic(red) and atypical UIP(blue) based on regional Riesztextureanalysisand thecomputer'soperating pointhighlighted in theupper right subfigure. Atypical UIPisassociated withanegativescore, which impliesthat positivescorespredict classicUIPswithhighspecificity. Figure4 can beviewed onlinein color at www.investigativeradiology.com.

Depeursingeet al InvestigativeRadiology • Volume00, Number 00, Month 2015

4 www.investigativeradiology.com ©2014WoltersKluwer Health, Inc. All rightsreserved.

Copyright © 2014 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

Computational Models of Biomedical Tissue in Radiology Images

for Non-Invasive Personalized Medicine Adrien Depeursinge1,2, Yashin Dicente1, Oscar Jimenez1, Ranveer Joyseeree1, Roger Schaer1, Henning Muller1

1Institute of Information Systems, HES-SO, Switzerland 2Biomedical Imaging Group, EPFL, Switzerland

Contact and more information: [email protected], http://medgift.hevs.ch/

Background

• Personalized medicine aims at enhancing the quality of life and

prognosis by tailoring treatment and medical decisions based on

the molecular composition of diseased tissue

• Current limitations [1]:

• Molecular analysis of tissue composition

is very invasive (biopsy), slow and costly

• Cannot capture molecular heterogeneity

Computational Models of Biomedical Tissue

• Modern multi-dimensional radiological images contain much more

information than the naked eye can appreciate [2]

(e.g., 3D structural properties of biomedical tissue)

• Goal: use image processing and machine learning to build

disease-specific imaging biomarkers [3]:

• Capture intralesional heterogeneity in a non-invasive way

• Predict diagnosis, prognosis, treatment response, genetic profile

Intr

atu

mo

r H

etero

gen

eit

y R

evealed

by m

ultir

eg

ion

Seq

uen

cin

g

n e

ngl j m

ed 36

6;10

n

ejm

.org

march

8, 2

012

887

tion th

rough lo

ss of SE

TD2 m

ethyltran

sferase func-

tion d

riven b

y three d

istinct, reg

ionally sep

arated

mutatio

ns o

n a b

ackgro

und o

f ubiq

uito

us lo

ss of

the o

ther SE

TD2 a

llele on ch

rom

oso

me 3

p.

Converg

ent

evolu

tion w

as observed

fo

r th

e

X-ch

rom

oso

me–

enco

ded

histo

ne H

3K4 d

emeth

-

ylase KDM

5C, h

arborin

g d

isruptive m

utatio

ns in

R1 th

rough R

3, R

5, and R

8 th

rough R

9 (m

issense

and fram

eshift d

eletion) an

d a sp

lice-site mutatio

n

in th

e metastases (F

ig. 2

B a

nd 2

C).

mTO

R F

un

ctio

nal In

tratum

or H

etero

gen

eit

y

The m

amm

alian targ

et of rap

amycin

(mTO

R) k

i-

nase carried

a kin

ase-dom

ain m

issense m

utatio

n

(L2431

P) in

all prim

ary tum

or reg

ions excep

t R4.

All tu

mor reg

ions h

arborin

g m

TO

R (L

2431P) h

ad

BRegio

nal D

istributio

n o

f Muta

tions

CPhylo

genetic R

ela

tionsh

ips o

f Tum

or R

egio

ns

DPlo

idy P

rofilin

g

ABio

psy S

ites

R2

R4

DI=

1.4

3

DI=

1.8

1

M2b

R9

Tetra

plo

id

R4b

R9

R8

R5

R4a R1

R3 R2

M1

M2b

M2a

VH

L

KD

M5C (m

issense

and fra

mesh

ift)m

TO

R (m

issense

)

SETD

2 (m

issense

)KD

M5C (sp

lice site

)

SETD

2 (sp

lice site

)

?

SETD

2 (fra

mesh

ift)

Pre

P

Pre

M

Norm

al tissu

e

Pre

PPre

M

R1

R2

R3

R5

R8

R9

R4

M1

M2a

M2b

C2orf85WDR7SUPT6HCDH19LAMA3DIXDC1HPS5NRAPKIAA1524SETD2PLCL1BCL11AIFNAR1

DAMTS10 C3KIAA1267

RT4CD44ANKRD26TM7SF4SLC2A1DACH2MMABZNF521HMG20ADNMT3ARLFMAMLD1MAP3K6HDAC6PHF21BFAM129BRPS8CIB2RAB27ASLC2A12DUSP12ADAMTSL4NAP1L3USP51KDM5CSBF1TOM1MYH8WDR24ITIH5AKAP9FBXO1LIASTNIKSETD2C3orf20MR1PIAS3DIO1ERCC5KLALKBH8DAPK1DDX58SPATA21ZNF493NGEFDIRAS3LATS2 ITGB3FLNASATL1KDM5CKDM5CRBFOX2NPHS1SOX9CENPNPSMD7RIMBP2GALNT11ABHD11UGT2A1MTORPPP6R2ZNF780AWSCD2CDKN1BPPFIA1THSSNA1CASP2PLRG1SETD2CCBL2SESN2MAGEB16NLRP7IGLON5KLK4WDR62KIAA0355CYP4F3AKAP8ZNF519DDX52ZC3H18TCF12NUSAP1

X4KDM2BMRPL51C11orf68ANO5EIF4G2MSRB2RALGDSEXT1ZC3HC1PTPRZ1INTS1CCR6DOPEY1ATXN1WHSC1CLCN2SSR3KLHL18SGOL1VHLC2orf21ALS2CR12PLB1FCAMRIFI16BCAS2IL12RB2

Priva

teU

biq

uito

us

Share

d p

rimary

Share

d m

eta

stasis

Priva

te

Ubiq

uito

us

Lung

meta

stase

s

Chest-w

all

meta

stasis

Perin

ephric

meta

stasis

M1

10 cm

R7 (G

4)

R5 (G

4)

R9

R3 (G

4)

R1 (G

3)

R2 (G

3)

R4 (G

1)

R6 (G

1)

Hilum

R8 (G

4)

Prim

ary

tum

or

Share

d p

rimary

Share

d m

eta

stasis

M2b

M2a

Pro

pid

ium

Iodid

e S

tain

ing

No. of Cells

Th

e New

Eng

land Jo

urn

al of M

edicin

e

Do

wn

load

ed fro

m n

ejm.o

rg at U

NIV

ER

SIT

E D

E G

EN

EV

E o

n Ju

ne 2

, 20

14

. Fo

r perso

nal u

se only

. No

oth

er uses w

itho

ut p

ermissio

n.

Cop

yrig

ht ©

20

12

Massach

usetts M

edical S

ociety

. All rig

hts reserv

ed.

Intr

atu

mo

r H

etero

gen

eit

y R

evealed

by m

ultir

eg

ion

Seq

uen

cin

g

n e

ngl j m

ed 36

6;10

n

ejm

.org

march

8, 2

012

887

tion th

rough lo

ss of SE

TD2 m

ethyltran

sferase func-

tion d

riven b

y three d

istinct, reg

ionally sep

arated

mutatio

ns o

n a b

ackgro

und o

f ubiq

uito

us lo

ss of

the o

ther SE

TD2 a

llele on ch

rom

oso

me 3

p.

Converg

ent

evolu

tion w

as observed

fo

r th

e

X-ch

rom

oso

me–

enco

ded

histo

ne H

3K4 d

emeth

-

ylase KDM

5C, h

arborin

g d

isruptive m

utatio

ns in

R1 th

rough R

3, R

5, and R

8 th

rough R

9 (m

issense

and fram

eshift d

eletion) an

d a sp

lice-site mutatio

n

in th

e metastases (F

ig. 2

B a

nd 2

C).

mTO

R F

un

ctio

nal In

tratum

or H

etero

gen

eit

y

The m

amm

alian targ

et of rap

amycin

(mTO

R) k

i-

nase carried

a kin

ase-dom

ain m

issense m

utatio

n

(L2431

P) in

all p

rimary tu

mor reg

ions excep

t R4.

All tu

mor reg

ions h

arborin

g m

TO

R (L

2431P) h

ad

BRegio

nal D

istributio

n o

f Muta

tions

CPhylo

genetic R

ela

tionsh

ips o

f Tum

or R

egio

ns

DPlo

idy P

rofilin

g

ABio

psy S

ites

R2

R4

DI=

1.4

3

DI=

1.8

1

M2b

R9

Tetra

plo

id

R4b

R9

R8

R5

R4a R1

R3 R2

M1

M2b

M2a

VH

L

KD

M5C (m

issense

and fra

mesh

ift)m

TO

R (m

issense

)

SETD

2 (m

issense

)KD

M5C (sp

lice site

)

SETD

2 (sp

lice site

)

?

SETD

2 (fra

mesh

ift)

Pre

P

Pre

M

Norm

al tissu

e

Pre

PPre

M

R1

R2

R3

R5

R8

R9

R4

M1

M2a

M2b

C2orf85WDR7SUPT6HCDH19LAMA3DIXDC1HPS5NRAPKIAA1524SETD2PLCL1BCL11AIFNAR1

DAMTS10 C3KIAA1267

RT4CD44ANKRD26TM7SF4SLC2A1DACH2MMABZNF521HMG20ADNMT3ARLFMAMLD1MAP3K6HDAC6PHF21BFAM129BRPS8CIB2RAB27ASLC2A12DUSP12ADAMTSL4NAP1L3USP51KDM5CSBF1TOM1MYH8WDR24ITIH5AKAP9FBXO1LIASTNIKSETD2C3orf20MR1PIAS3DIO1ERCC5KLALKBH8DAPK1DDX58SPATA21ZNF493NGEFDIRAS3LATS2 ITGB3FLNASATL1KDM5CKDM5CRBFOX2NPHS1SOX9CENPNPSMD7RIMBP2GALNT11ABHD11UGT2A1MTORPPP6R2ZNF780AWSCD2CDKN1BPPFIA1THSSNA1CASP2PLRG1SETD2CCBL2SESN2MAGEB16NLRP7IGLON5KLK4WDR62KIAA0355CYP4F3AKAP8ZNF519DDX52ZC3H18TCF12NUSAP1

X4KDM2BMRPL51C11orf68ANO5EIF4G2MSRB2RALGDSEXT1ZC3HC1PTPRZ1INTS1CCR6DOPEY1ATXN1WHSC1CLCN2SSR3KLHL18SGOL1VHLC2orf21ALS2CR12PLB1FCAMRIFI16BCAS2IL12RB2

Priva

teU

biq

uito

us

Share

d p

rimary

Share

d m

eta

stasis

Priva

te

Ubiq

uito

us

Lung

meta

stase

s

Chest-w

all

meta

stasis

Perin

ephric

meta

stasis

M1

10 cm

R7 (G

4)

R5 (G

4)

R9

R3 (G

4)

R1 (G

3)

R2 (G

3)

R4 (G

1)

R6 (G

1)

Hilum

R8 (G

4)

Prim

ary

tum

or

Share

d p

rimary

Share

d m

eta

stasis

M2b

M2a

Pro

pid

ium

Iodid

e S

tain

ing

No. of Cells

Th

e New

Eng

land

Jou

rnal o

f Med

icine

Do

wnlo

aded

from

nejm

.org

at UN

IVE

RS

ITE

DE

GE

NE

VE

on

Jun

e 2, 2

01

4. F

or p

erson

al use o

nly

. No

oth

er uses w

itho

ut p

ermissio

n.

Co

py

righ

t © 2

01

2 M

assachu

setts Med

ical So

ciety. A

ll righ

ts reserved

.

In t r at umor Het er ogenei t y Reveal ed by mul t i r egion Sequencing

n engl j med 366;10 nejm.org march 8, 2012 887

tion through loss of SETD2 methyltransferase func-

tion driven by three distinct, regionally separated

mutations on a background of ubiquitous loss of

the other SETD2 allele on chromosome 3p.

Convergent evolution was observed for the

X-chromosome–encoded histone H3K4 demeth-

ylase KDM5C, harboring disruptive mutations in

R1 through R3, R5, and R8 through R9 (missense

and frameshift deletion) and a splice-site mutation

in the metastases (Fig. 2B and 2C).

mTOR Funct ional Int r atumor Heterogeneit y

The mammalian target of rapamycin (mTOR) ki-

nase carried a kinase-domain missense mutation

(L2431P) in all primary tumor regions except R4.

All tumor regions harboring mTOR (L2431P) had

B Regional Distribution of Mutations

C Phylogenetic Relationships of Tumor Regions D Ploidy Profiling

A Biopsy Sites

R2 R4

DI=1.43

DI=1.81

M2bR9

Tetraploid

R4b

R9 R8R5

R4a

R1R3R2

M1M2b

M2a

VHL

KDM5C (missense and frameshift)mTOR (missense)

SETD2 (missense)KDM5C (splice site)

SETD2 (splice site)

?

SETD2 (frameshift)

PreP

PreM

Normal tissue

PrePPreM

R1R2R3R5R8R9R4M1M2aM2b

C2orf85

WD

R7

SU

PT6H

CD

H19

LAM

A3

DIX

DC1

HPS5

NRAP

KIA

A1524

SETD

2PLCL1

BCL11A

IFN

AR1

DAM

TS10

C3

KIA

A1267

RT4

CD

44

AN

KRD

26

TM

7SF4

SLC2A1

DACH

2M

MAB

ZN

F521

HM

G20A

DN

MT3A

RLF

MAM

LD

1M

AP3K6

HD

AC6

PH

F21B

FAM

129B

RPS8

CIB

2RAB27A

SLC2A12

DU

SP12

AD

AM

TSL4

NAP1L3

USP51

KD

M5C

SBF1

TO

M1

MYH

8W

DR24

ITIH

5AKAP9

FBXO

1LIA

STN

IKSETD

2C3orf20

MR1

PIA

S3

DIO

1ERCC5

KL

ALKBH

8D

APK1

DD

X58

SPA

TA21

ZN

F493

NG

EF

DIR

AS3

LATS2

ITG

B3

FLN

ASATL1

KD

M5C

KD

M5C

RBFO

X2

NPH

S1

SO

X9

CEN

PN

PSM

D7

RIM

BP2

GALN

T11

ABH

D11

UG

T2A1

MTO

RPPP6R2

ZN

F780A

WSCD

2CD

KN

1B

PPFIA

1TH

SSN

A1

CASP2

PLRG

1SETD

2CCBL2

SESN

2M

AG

EB16

NLRP7

IGLO

N5

KLK4

WD

R62

KIA

A0355

CYP4F3

AKAP8

ZN

F519

DD

X52

ZC3H

18

TCF12

NU

SAP1

X4

KD

M2B

MRPL51

C11orf68

AN

O5

EIF

4G

2M

SRB2

RALG

DS

EXT1

ZC3H

C1

PTPRZ1

INTS1

CCR6

DO

PEY1

ATXN

1W

HSC1

CLCN

2SSR3

KLH

L18

SG

OL1

VH

LC2orf21

ALS2CR12

PLB1

FCAM

RIF

I16

BCAS2

IL12RB2

PrivateUbiquitous Shared primary Shared metastasis

Private

Ubiquitous

Lungmetastases

Chest-wallmetastasis

Perinephricmetastasis

M110 cm

R7 (G4)

R5 (G4)

R9

R3 (G4)

R1 (G3) R2 (G3)

R4 (G1)

R6 (G1)

Hilum

R8 (G4)

Primarytumor

Shared primary

Shared metastasis

M2b

M2a

Propidium Iodide Staining

No. of Cells

The New England Journal of Medicine

Downloaded from nejm.org at UNIVERSITE DE GENEVE on June 2, 2014. For personal use only. No other uses without permission.

Copyright © 2012 Massachusetts Medical Society. All rights reserved.

R1 R2 R3 R5 R8 R9 R4

Methods

• 2D/3D steerable wavelets to characterize local multi-scale and

multi-directional structural properties of biomedical tissue [4]

• Locate the properties in the anatomy to construct personalized

radiological phenotypes [5]

• Integration into cloud-based infrastructures [6]

Targeted Diseases

• Lung, brain, liver, breast, bone cancer [7-9]

• Interstitial lung diseases [5]

• Pulmonary embolism [10]

References

[1] Intratumor heterogeneity and branched evolution revealed by multiregion

sequencing, Gerlinger et al., New Eng. Journal of Med., 366(10), 883-892, 2012. [2] Radiomics: extracting more information from medical images using advanced

feature analysis, Lambin et al., European Journal of Cancer, 48, 441-446, 2012 [3] Three-dimensional solid texture analysis and retrieval in biomedical imaging:

review and opportunities, Depeursinge et al., Medical Image Analysis, 18, 176-196, 2014

[4] Rotation-covariant texture learning using steerable Riesz wavelets, Depeursinge et al., IEEE Trans on Image Proc, 23, 898-908, 2014 [5] Automated classification of usual interstitial pneumonia using regional volumetric texture analysis in high-resolution CT, Depeursinge et

al., Investigative Radiology, 50(4), 261-267, 2015 [6] Automated tracking of quantitative assessments of tumor burden in clinical trials, Rubin et al., Translational Oncology, 7(1), 23-35, 2014

[7] Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT, Depeursinge et al., Medical Physics, 42(4), 2054-2063, 2015

[8] Glioblastoma multiforme: exploratory radiogenomic analysis by using quantitative image features, Gevaert et al., Radiology, 273,

168-174, 2014 [9] Predicting visual semantic descriptive terms from radiological image data: preliminary results with liver lesions in CT, Depeursinge et al.,

IEEE Trans on Medical Imaging 33(8), 1-8, 2014 [10] Benefits of texture analysis of dual energy CT for computer-aided pulmonary embolism detection, Foncubierta-Rodriguez et al., 35th

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), 3973-3976, 2014

Page 12: DIGITAL HEALTH CONNECT...than 4 of 5 pat ients. The performance of HU and GL CM at tributes w asclosetorandom (0. 5 4 and 0. 6 for HU and GLCMs, respectively). On the other hand, predictive

HES-SO Valais-Wallis Page 12

laurent.sciboz

@laurentsciboz

Prof. Laurent Sciboz

Institute of Information Systems

[email protected]

Techno-Pôle 3 – CH-3960 Sierre