diagnostic de l’état mécanique de structures par analyse

53
Université du Luxembourg, le 6/01/2011 Diagnostic de l’état mécanique de structures par analyse de vibrations GOLINVAL Jean-Claude Université de Liège, Belgique Département d’Aérospatiale et Mécanique Chemin des Chevreuils, 1 Bât. B 52 B-4000 Liège (Belgium) E-mail : [email protected] Les Jeudis des Sciences

Upload: others

Post on 29-Nov-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diagnostic de l’état mécanique de structures par analyse

Unive

rsité

duLu

xembo

urg,

le

6/01

/201

1

Diagnostic de l’état mécanique de structures par analyse de vibrations

GOLINVAL Jean-Claude

Université de Liège, Belgique

Département d’Aérospatiale et MécaniqueChemin des Chevreuils, 1 Bât. B 52

B-4000 Liège (Belgium) E-mail : [email protected]

Les Jeudis des Sciences

Page 2: Diagnostic de l’état mécanique de structures par analyse

2Outline

• Classical Methods for Machine Condition Monitoring

• Recent Methods for Structural Health Monitoring

− Principal Component Analysis (PCA)

− Null Subspace Analysis (NSA)

− Kernel Principal Component Analysis (KPCA)

• Examples of Application

• Conclusion

Page 3: Diagnostic de l’état mécanique de structures par analyse

3

• Acoustic emission (cracks in structures)

• Oil analysis (bearings and gears)

• Thermography, holography, interferometry, …

• Vibration monitoring (rotating machinery, structures)

Predictive maintenance techniques

Two categories of inspection techniques may be used:

1. Destructive techniques

2. Non destructive techniques

Page 4: Diagnostic de l’état mécanique de structures par analyse

4

Classical Methods

For

Machine Condition Monitoring

Page 5: Diagnostic de l’état mécanique de structures par analyse

5

Vibration analysis – a key predictive maintenance technique

Ampl

itude

Peak amplitude

Peak-peak amplitude

RMS amplitude

Time

Time

RMS amplitude

Peak amplitude

Peak-peak amplitude

Ampl

itude

The nature

of

vibration

Machine Condition Monitoring

Page 6: Diagnostic de l’état mécanique de structures par analyse

6

Monitoring of the global vibration amplitude level

2 2 2 2NG a b c d ...= + + + +

where a, b, c, d, … are the RMS amplitudes of the different signal components.

The global vibration level may be calculated as

Example of a fan driven by an electric motor through a gear box

Machine Condition Monitoring (Example)

Page 7: Diagnostic de l’état mécanique de structures par analyse

7

2 2 2 2NG 3 0.5 1 0.5 3.24 mm/s

= + + +=

Initial RMS amplitude level

A variation of 30 % on the unbalance (low severity) gives:2 2 2 2NG 3.9 0.5 1 0.5 4.08 mm/s= + + + = (+ 26 %)

A variation of 300 % on the bearing defect (extreme severity) gives:

2 2 2 2NG 3 0.5 1 1.5 3.53 mm/s= + + + = (+ 9 %)

Machine Condition Monitoring (Example)

Page 8: Diagnostic de l’état mécanique de structures par analyse

8

Monitoring of the indicators by comparison with an envelope

The envelope is determined from a reference spectrum (« vibratory signature ») obtained in good operating conditions.

Example EnvelopeVibration signature

at the bearing (normal state)

Overshoot Vibration signature at the bearing

(after occurrence of a defect)

Machine Condition Monitoring (Example)

Page 9: Diagnostic de l’état mécanique de structures par analyse

9

Class I Class IVClass IIIClass II

0,28 – 0,45

0,45 – 0,7

0,7 – 1,1

1,1 – 1,8

1,8 – 2,8

2,8 – 4,5

4,5 – 7

7 – 11

11 – 18

18 – 28

mm/s

GOOD

ACCEPTABLE

STILL ACCEPTABLE

NOT ACCEPTABLE

ISO Guidelines for Machinery Vibration Severity

Various classes of machinery

RMS

spee

d in

mm

/s

Machine Condition Monitoring

Page 10: Diagnostic de l’état mécanique de structures par analyse

10

Recent Methods

For

Structural Health Monitoring

Page 11: Diagnostic de l’état mécanique de structures par analyse

11

Structural Health Monitoring (SHM)

Process of implementing a damage detection strategy for aerospace, civil and mechanical engineering structures.

Damage

Changes to the material and/or geometric properties which affectthe performance of the system.

Problem of detection

Damage is detected through changes in some carefully selected structural features (e.g. modal parameters)

Some definitions

Page 12: Diagnostic de l’état mécanique de structures par analyse

12

Initial (healthy) structure

Structural Health Monitoring Process

The SHM process involves three steps:

• the observation of a system over time using periodically sampleddynamic measurements from an array of sensors,

• the extraction of damage-sensitive features from these measurements,

• the statistical analysis of these features to determine the current state of system health.

Structure in its current state

ω i x (i)

Features

ω i x (i)

Features

• the extraction of damage-sensitive features from these measurements,

Damage ? ?

• the statistical analysis of these features to determine the current state of system health.

Page 13: Diagnostic de l’état mécanique de structures par analyse

13

The damage state of a system can be described as a five-step process (Rytter, 1993) to answer the following questions.

• Level 1: Existence. Is there damage in the system?

• Level 2: Location. Where is the damage in the system?

• Level 3: Type. What kind of damage is present?

• Level 4: Extent. How severe is the damage?

• Level 5: Prognosis. How much useful life remains?

Damage Problem

Page 14: Diagnostic de l’état mécanique de structures par analyse

14

Use of statistical procedures to increase robustness

Categories of false indications of damage

• False-positive damage indication = indication of damage when none is present.

• False-negative damage indication = no indication of damage when damage is present.

Some Difficulties

Page 15: Diagnostic de l’état mécanique de structures par analyse

15

Model-based techniques

Updating of structural parameters or matrices (inverse problem)

Non-model based techniques

Identification of modal parameters

• non-supervised methods (statistics)

• supervised methods (pattern recognition, neural networks, …)

Classification of SHM methods

Identification of modal parameters

Page 16: Diagnostic de l’état mécanique de structures par analyse

16Structural Dynamics Problem

Homogeneous equation of motion

0+ =M x K x

Inertia forces Restoring forces

Mass matrix

Stiffness matrix

1

2

n

xx

x

⎧ ⎫⎪ ⎪⎪ ⎪= ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

xwhere

Page 17: Diagnostic de l’état mécanique de structures par analyse

17

The general solution of the equation of motion is of the form

( ) ( )cos 1, 2, ,ii t i nω= =x x …

mode-shape vector n° i

natural frequency n° i

the dynamic behavior of a structure is completely characterized by its modal parameters

(i.e. the natural frequencies ω i and mode-shapes x (i) ).

Structural Dynamics Problem

Page 18: Diagnostic de l’état mécanique de structures par analyse

18

Principal Component Analysis (PCA)

Methods for Structural Health Monitoring

Page 19: Diagnostic de l’état mécanique de structures par analyse

19

1x

2x

ixnx

Instrumented structure

1 1 1

1

( ) ( )

( ) ( )

N

n n N

x t x t

x t x t

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

Xn

measurementco-ordinates

N snapshots

Principal Component Analysis (PCA)

Observation matrix:

Page 20: Diagnostic de l’état mécanique de structures par analyse

20

O x1

x2

Referencedata set

Geometric interpretation

PCA in 2D-space

Principal Component Analysis (PCA)

1 1 1 2 1

2 1 2 2 2

( ) ( ) ( )( ) ( ) ( )

N

N

x t x t x tx t x t x t⎡ ⎤= ⎢ ⎥⎣ ⎦

X

( )1 1x t

( )2 1x t

( )2 Nx t

( )1 Nx t

Page 21: Diagnostic de l’état mécanique de structures par analyse

21

O x1

x2

Referencedata set

Geometric interpretation

PCA in 2D-space

Principal Component Analysis (PCA)

PC-I

Page 22: Diagnostic de l’état mécanique de structures par analyse

22

PC-IPC-II

O x1

x2

Geometric interpretation

Structural Damage Detection Problem

PCA in 2D-space

Referencedata set

Page 23: Diagnostic de l’état mécanique de structures par analyse

23

O x1

x2

PC-I

PC-IIReferencedata set

Geometric interpretation

PCA in 2D-space

Principal Component Analysis (PCA)

Page 24: Diagnostic de l’état mécanique de structures par analyse

24

Key idea

• Use PCA to extract the structural response subspace (PC-I, PC-II)

• Use the concept of subspace angles to compare the hyperplanesassociated with the reference (undamaged) state and with the current (possibly damaged?) state of the structure.

Structural Damage Detection Problem

Concept of Subspace Angle (Golub-Van Loan)

Page 25: Diagnostic de l’état mécanique de structures par analyse

25

PC-I

PC-II

O x1

x2

Geometric interpretation

Structural Damage Detection Problem

Referencedata set

PCA in 2D-space

Page 26: Diagnostic de l’état mécanique de structures par analyse

26

PC-I

PC-II

O x1

x2

×

×

× ×××

×

× ×

××

×

×

×

×

×

×

××

Damagedstructure

Geometric interpretation

Structural Damage Detection Problem

Referencedata set

PCA in 2D-space

Page 27: Diagnostic de l’état mécanique de structures par analyse

27

PC-I

PC-II

O x1

x2

×

×

× ×××

×

× ×

××

×

×

×

×

×

×

××

Damagedstructure

Geometric interpretation

Structural Damage Detection Problem

PC-I

Referencedata set

PCA in 2D-space

Page 28: Diagnostic de l’état mécanique de structures par analyse

28

PC-I

PC-II

O x1

x2

×

×

× ×××

×

× ×

××

×

×

×

×

×

×

××

Damagedstructure

Geometric interpretation

Structural Damage Detection Problem

PC-II

PC-I

Referencedata set

PCA in 2D-space

Page 29: Diagnostic de l’état mécanique de structures par analyse

29

PC-I

PC-II

O x1

x2

×

×

× ×××

×

× ×

××

×

×

×

×

×

×

××

Damagedstructure

Geometric interpretation

Structural Damage Detection Problem

PC-II

PC-I

Subspace angle

Referencedata set

PCA in 2D-space

Page 30: Diagnostic de l’état mécanique de structures par analyse

30

Novelty Analysis

The aim is to build a prediction model using the principal components of reference.

Structural Damage Detection Problem

PC-I

PC-II

O x1

x2

×

×

× ×××

×

× ×

××

×

×

×

×

×

×

××

Damagedstructure

Referencedata set

( )ktx

( )ktx

kE

Page 31: Diagnostic de l’état mécanique de structures par analyse

31

Definition of the Novelty Index

Residual error matrix :

Euclidean norm : Ek kNI = E

prediction error vector at time tk

Structural Damage Detection Problem

−E = X X

mean value

standard deviation

Statistical tool : 3CL NI σ= + (Upper Control Limit at 99.7 % confidence interval)

Page 32: Diagnostic de l’état mécanique de structures par analyse

32

Environmental Vibration Testing

Test specimen

power amplifier

Detection of damages usually by visual inspection or by comparison of frequency spectra before and after the test.

Objective : to be able to detect damage as soon as it appears.

Electrodynamic vibration exciter

sensors

Signal conditioner

Acquisition and control devices

Excitation signal

Example of Damage Detection

Page 33: Diagnostic de l’état mécanique de structures par analyse

33

Crack initiation and propagation

Mode of failure of the crown

Fatigue testing of a street lighting device

Vibration specifications

• Sine excitation at the first resonance frequency (~ 12,4 Hz) during 1 hour.

• Acceleration level of 0,5 g at the fixation.

Total test duration: ~ 4 hours

Control accelerometer

Strain gauges Inner side of the crown+ 10 measurement accelerometers

Example of Damage Detection

Page 34: Diagnostic de l’état mécanique de structures par analyse

34

0 20 40 60 80 100 120 140 160 180 200 220 24010

10.5

11

11.5

12

12.5

Time (min)Fr

eque

ncy

(Hz)

10 20 30 40 50 60 70 80 90 100 1100

5

10

15

20

25

30

35

Observation data block n°

Angl

e (°

)

10 20 30 40 50 60 70 80 90 100 1100

5

10

15

20

25

30

35

Observation data block n°

Angl

e (°

)

Time-evolution of the angle

Time-evolution of the resonance frequency

1st hr 4th hr

Damage Detection (Results)

Page 35: Diagnostic de l’état mécanique de structures par analyse

35

Limitation of the PCA-based method

The number of sensors must be larger than the number of active modes it can be solved using the concept of null-subspace of the Hankel matrices of responses.

Principal Component Analysis (PCA)

Page 36: Diagnostic de l’état mécanique de structures par analyse

36

Null Subspace Analysis (NSA)

Methods for Structural Health Monitoring

Aim : to replace the observation matrix X by a “dynamic” response matrix (i.e. the Hankel matrix)

Page 37: Diagnostic de l’état mécanique de structures par analyse

37

1 2

2 3 1

1 1

1,2

1 2

2 3 1

2 2 1 2 1

... ...

... ...

... .. ... ... ...... ...

"

... ...

... ...

... .. ... ... ...... ...

.

.

j

j

i i i j p

i

i i i j f

i i i j

i i i j

p

+

+ + −

+ + +

+ + + +

+ + −

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥

⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥= − − − − − − − − − − − ≡ − − ≡⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

x x x

x x x

x x x X

Hx x x X

x x x

x x x

"" "

astfuture

where 2i is the (user-defined) number of row blocks, each row block contains m terms (number of measurement sensors), j is number ofcolumns (in practice, j = N-2i+1, N is the number of sampling points)

• Definition of the data-driven Hankel matrix

Null Subspace Analysis (NSA)

Page 38: Diagnostic de l’état mécanique de structures par analyse

38

→ The street-lighting device is excited by a shock applied every 2 sec. by a cam mechanism.

→ Accelerometers and strain-gauges measure the structural responses with a sampling frequency of 528 Hz.

→ Test duration : 2 hrs 38 min with a failure in the frame close to the fixation.

cam

Null Subspace Analysis (NSA)

Page 39: Diagnostic de l’état mécanique de structures par analyse

39

Example of the system response under repeated impulsions

Null Subspace Analysis (NSA)

0 1000 2000 3000 4000 5000 6000 7000 8000-100

-80

-60

-40

-20

0

20

40

60

80

100

sampling point

Page 40: Diagnostic de l’état mécanique de structures par analyse

40

On-line monitoring: the NSA-based method indicates obvious damage development earlier than the PCA-based method

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25

30

35

40

45

50null-subspace analysis based on Data-driven Hankel,i=10,n=3

time (hr)

dam

age

indi

cato

r

x2x2H

NSA

0 0.5 1 1.5 2 2.5 30

5

10

15

20

25null-subspace analysis based on COV-driven Hankel,i=1,n=5

time (hr)

dam

age

indi

cato

r x2

PCA

Null Subspace Analysis (NSA)

Page 41: Diagnostic de l’état mécanique de structures par analyse

41

Kernel Principal Component Analysis (KPCA)

Methods for Structural Health Monitoring

Page 42: Diagnostic de l’état mécanique de structures par analyse

42

1 1 1

1

( ) ( )

( ) ( )

N

n n N

x t x t

x t x t

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦

X

n measurement co-ordinates

N time samples1x

ix

nx

Kernel Principal Component Analysis (KPCA)

Key idea

• Create a map which defines a high

dimensional feature space F

• Apply PCA in space F

( ) ( )( )k kt tΦx x

Page 43: Diagnostic de l’état mécanique de structures par analyse

43Kernel Principal Component Analysis (KPCA)

The eigenvectors identified in the feature space F can be considered as kernel principal components (KPCs), which characterize the dynamical system in each working state.

a) Linear PCA b) Kernel PCA

Feature spaceInput space

Page 44: Diagnostic de l’état mécanique de structures par analyse

44

Examples of Fault Detection in Industrial Systems

Page 45: Diagnostic de l’état mécanique de structures par analyse

45Fault Detection in Industrial Systems

Example 1: Quality tests on electro-mechanical devices at the end of the assembly line

XZ

YTop monoaxialaccelerometer

Flank triaxial accelerometer

Instrumented device

Page 46: Diagnostic de l’état mécanique de structures par analyse

46

Mapping of a healthy component in the X direction using 6σ−limit

Mapping of a damaged component in the X direction using 6σ-limit

Number of active components

Ord

er

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NSA-based detection method

Mapping of the space [number of PCs, system order]

Damage indicator based on the reconstruction error (Novelty index)

Fault Detection in Industrial Systems

Number of active components

Ord

er

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 47: Diagnostic de l’état mécanique de structures par analyse

47

NSA based - detection KPCA based - detection

Damage detection by NSA and KPCA methods based on statistics –(the dashed horizontal line correspond to the maximal value for good devices)

Fault Detection in Industrial Systems

Page 48: Diagnostic de l’état mécanique de structures par analyse

48

Example 2: Quality control of welded joints

Bad-66% covering and compensationWelding I

Acceptable+5% forging pressureWelding H

Good-10% forging pressureWelding G

Bad-20% currentWelding F

Acceptable-10% currentWelding E

Acceptable-66% compensationWelding D

Good-33% compensationWelding C

Bad-66% coveringWelding B

Acceptable-33% coveringWelding A

Weld qualityModified parameterName

Welds realized with modified parameters (with respect to the nominal parameters)

Fault Detection in Industrial Systems

Page 49: Diagnostic de l’état mécanique de structures par analyse

49

0 20 40 60 80

OK-1OK-2OK-3OK-4OK-5OK-6

A-1A-2A-3B-1B-2B-3C-1C-2C-3D-1D-2D-3E-1E-2E-3F-1F-2F-3G-1G-2G-3H-1H-2H-3I-1I-2I-3

%

Overshoot for each welding (6 σ lim.)

Fault detection based on Null subspace analysis (NSA), using theNovelty Index (NI) based on the Mahalanobis norm

lim 6NI NI σ= +

standard deviation of NI for the reference test

Fault Detection in Industrial Systems

Page 50: Diagnostic de l’état mécanique de structures par analyse

50Fault Detection in Industrial Systems

Fault detection based on KPCA

Subspace angleStatistics

Page 51: Diagnostic de l’état mécanique de structures par analyse

51

• Analyse vibratoire est un outil puissant et complexe

• Pas simple à mettre en place, demande réflexion

• Coût important d’une maintenance vibratoire

=> machine stratégique

Conclusion

Page 52: Diagnostic de l’état mécanique de structures par analyse

52

Further readings

• Christian Boller, Fu-Kuo Chang, Yozo Fujino,

Encyclopedia of Structural Health Monitoring (5 volumes),

Wiley, 2009

• Nguyen Viet Ha,

Damage Detection and Fault Diagnosis in Mechanical Systems Using Vibration Signals,

University of Liege, PhD thesis, 2010

Page 53: Diagnostic de l’état mécanique de structures par analyse

53

Thank you for your attention.