cours de thermodynamique générale - etudiant ssmt · 2018. 4. 12. · •au cours des...

188
Cours de Thermodynamique Générale

Upload: others

Post on 25-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Cours de Thermodynamique Générale

  • ECUE1: Grandeurs molaires partielles et grandeurs de

    mélange

    Chapitre 1

  • Chapitre 1: Rappels et quelques méthodes mathématiques

    appliquées à la thermodynamique

  • Chapitre 1

    • Systèmes thermodynamiques

    • Equilibre thermodynamique

    • Transformation d’un système

    • Quelques méthodes mathématiques appliquées à la thermodynamique

  • Introduction

    L’objet de la thermodynamique est de prévoir la transformation de la matière dans des conditions données:

    - Peut-elle évoluer spontanément ?

    - Jusqu’où la transformation peut-elle se faire ?

  • Introduction

    La thermodynamique s’appuie avant tout sur la description rigoureuse de la réalité observable:

    - L’état de la matière en fonction d’un certain nombre de paramètres caractéristiques

    - Les bilans de matière et d’énergie correspondant à la transformation

  • Introduction

    La thermodynamique repose sur deux notions :

    - L’énergie U ou E

    - L’entropie S

    Ces notions sont introduites à l’aide de principes (affirmations) déduits de l’observation et justifiables par l’exactitude et la cohérence des conséquences qu’on en tire.

    C’est à partir de ces deux grandeurs que sont introduites de façon formelle d’autres grandeurs thermodynamiques.

  • Systèmes thermodynamiques

    • Le système : un volume déterminé de l’espace contenant de la matière (gaz, liquide ou solide). Le système étudié doit toujours être défini avec précision.

    • Le milieu extérieur : tout ce qui est extérieur au système.

    • L’univers : l’ensemble système + milieu extérieur.

    • Exemple: gaz enfermé dans un ballon constitué d’une enveloppe en caoutchou

    • Système considéré: gaz seul ou gaz + enveloppe

  • Systèmes thermodynamiques

    • Le système fermé: système échangeant uniquement de l’énergie avec le milieu extérieur

    • Le système fermé non réagissant: système échangeant uniquement de l’énergie avec le milieu extérieur et au sein duquel il n’y a pas de réaction chimique

    • Le système ouvert: système échangeant de l’énergie et de la matière avec le milieu extérieur,

    • Le système ouvert non réagissant: système échangeant de l’énergie et de la matière avec le milieu extérieur et au sein duquel il n’y a pas de réaction chimique.

  • Equilibre thermodynamique

    Etat d’équilibre d’un système

    • Il est caractérisé par la stationnarité dans le temps du système observé à l’échelle macroscopique

    • Pendant l’évolution du système, les grandeurs thermodynamiques ne sont pas toutes définies

    • On n’étudiera pratiquement que des états d’équilibre et les passages d’un état d’équilibre à un autre

  • Transformation d’un système

    • Au cours des transformations réelles le système est en général hors équilibre

    • Pour contourner cette difficulté, la thermodynamique fait usage de transformations idéalisées.

    transformation réversible

    • Les états parcourus par le système sont des états d’équilibre

  • Transformation d’un système

    transformation irréversible

    • Seuls les états initial et final sont des états d’équilibre.

    • Les états intermédiaires ne sont pas des états d’équilibre.

    Transformations physicochimiques

    • Les réactifs représentent l’état initial et

    • les produits issus de la réaction représentent l’état final

  • Outils mathématiques appliqués à la thermodynamique

    • Variables caractérisant un système physico chimique

    • T, P, V, n, S

    • L’expérience a montré qu’il n’est pas possible de faire varier toutes ces grandeurs à la fois.

    • D’où la nécessité de maintenir certaines constantes et de faire varier un nombre restreint

    • Si bien que les manipulations de la thermodynamique font intervenir des calculs sur les dérivées partielles

  • Outils mathématiques appliqués à la thermodynamique

    Ces dérivées partielles ont une signification physique,

    • Par exemple: (ƏV

    ƏP)T

    • relie la variation du volume à la variation de la pression pour un système fermé subissant une transformation isotherme

    • Si la transformation a lieu à entropie constante on écrira :

    • (ƏV

    ƏP) S

  • Outils mathématiques appliqués à la thermodynamique

    • Ces dérivées partielles ont une signification physique,

    • Par exemple: (ƏV

    ƏP)T

    • relie la variation du volume à la variation de la pression pour un système fermé subissant une transformation isotherme

    • Si la transformation a lieu à entropie constante on écrira :

    • (ƏV

    ƏP)S

    • Un problème à résoudre est traduit en termes de dérivée partielle.

  • Outils mathématiques appliqués à la thermodynamique

    Exemple:

    • Calculer la variation de volume de n moles de gaz subissant une détente isenthalpique (à enthalpie constante) l’amenant de la pression P1 à la pression P2.

    • Solution

    On passera par la détermination de (ƏV

    ƏP)H

  • Outils mathématiques appliqués à la thermodynamique

    Identités analytiques

    • Soient les trois variables x, y, z reliées par la relation f(x, y, z) = 0 (équation d’état)

    • La variable x peut être considérée comme une fonction de y et z. On a :

    • (Əx

    Əy)z*(

    Əy

    Əx)z = 1 ou (

    Əx

    Əy)z =

    1

    (Əy

    Əx)z

    = (Əy

    Əx)-1

  • Outils mathématiques appliqués à la thermodynamique

    • Si deux seulement des trois variables sont indépendantes.

    • L’expression d’une certaine grandeur u peut être : u(x, y) ou u(y,z) ou u(x,z).

    • Soient les deux dérivées partielles

    • (Əu

    Əy)x et (

    Əu

    Əz)x

    • En considérant leur rapport on obtient:

    •(Əu

    Əy)x

    (Əu

    Əz)x= (

    Əz

    Əy)x

  • Outils mathématiques appliqués à la thermodynamique

    De la relation f(x, y, z) = 0

    • df = 0 = (Əf

    Əx)yzdx + (

    Əf

    Əy)zxdy + (

    Əf

    Əz)xydz

    • On déduit :

    • En posant successivement dx=0, dy=0 et dz=0, on obtient trois égalités et en les multipliant membre à membre, il vient ainsi:

    (Əx

    Əy)z*(

    Əy

    Əz)x*(

    Əz

    Əx)y= −1

    Relation fondamentale liant les dérivés partielles de trois variables

  • Outils mathématiques appliqués à la thermodynamique

    Application

    • α=1

    V*(

    ƏV

    ƏT)P: Coefficient de dilatation isobare

    • β=1

    P*(

    ƏP

    ƏT)V: Coefficient d’augmentation de pression à volume

    constant

    • χ(T)= −1

    V*(

    ƏV

    ƏP)T: Coefficient de compressibilité isotherme.

  • Outils mathématiques appliqués à la thermodynamique

    • L’existence de l’équation d’état f(P,V,T)=0 permet d’écrire :

    • (ƏV

    ƏT)P* (

    ƏT

    ƏP)V*(

    ƏP

    ƏV)T= −1

    • αV* 1

    Pβ*(−

    1

    Vχ(𝑇)) = −1

    • α= Pβχ(𝑇)

    • Pour un gaz parfait, cette relation est vérifiée aisément:

    • α= β =1

    Tet χ(T) =

    1

    P

  • Outils mathématiques appliqués à la thermodynamique

    Facteur intégrant/facteur de transformation

    • Une différentielle inexacte peut être transformée en différentielle totale exacte par un facteur de conversion ou de transformation ou encore facteur intégrant

    • Soit la différentielle inexacte

    • A(x, y)dx + B(x,y)dy

    • Elle peut être convertie en différentielle totale exacte par le facteur G(x, y)

  • Outils mathématiques appliqués à la thermodynamique

    • G(x, y) : fonction scalaire de x et y

    • On multiplie G(x, y) par la différentielle. On a :

    • G(x, y). A(x,y)dx + G(x,y).B(x,y)dy

    • Cette différentielle est totale exacte si et seulement si :

    •Ə

    Əy[G(x, y). A(x, y)] =

    Ə

    Əx[G(x, y). B(x, y)]

    • Exemple

    • df= RT

    PdP − R dT est une différentielle inexacte

  • Outils mathématiques appliqués à la thermodynamique

    • Le facteur de conversion est : 1

    P

    • Ainsi :

    •RT

    P^2dT −

    R

    PdT

    •Ə

    ƏT

    RT

    P2=

    R

    P2

    •Ə

    ƏP−

    R

    P= −R −

    1

    P^2=

    R

    P2

  • Outils mathématiques appliqués à la thermodynamique

    Différents points remarquables ou stationnaires

    • Soit une fonction y = y(x) au point x = xo. On dit que la fonction atteint son extrémum et on montre que pour

    (dy

    dx)x=xo = 0 et

    d2y

    dx2≠ 0.

    • Pour le minimum (d2y

    dx2)xo > 0 et pour le maximum (

    d2y

    dx2)xo < 0.

    La tangente à la courbe à ce point est horizontale.

    • La courbe y=y(x) a 1 point d’inflexion sid2y

    dx2= 0,

    dy

    dx≠ 0, la

    tangente au point d’inflexion traverse la courbe.

  • Outils mathématiques appliqués à la thermodynamique

    Différents points remarquables ou stationnaires

    • Les points critiques P=P(V) représentent une seule isotherme. Le point critique est défini par les paramètres (Tc, Vc, Pc). = 0 ;

    • (ƏP

    ƏV) T = 0 ; (

    Ə2P

    ƏV2) T = 0

    • Dans ce cas la tangente au point d’inflexion traverse la courbe et elle est horizontale.

  • Outils mathématiques appliqués à la thermodynamique

    Fonctions homogènes

    • Une fonction f(x 1, x 2, ……., x n) est dite homogène de degré n

    • si f(λx 1, λx 2, ……., λx n) = λn f(x 1, x 2, ……., x n)

    avec λ scalaire arbitraire.

    • Pour n=1 on a des grandeurs extensives

    • Pour n=0 on a des grandeurs intensives

  • Outils mathématiques appliqués à la thermodynamique

    • RemarquesLes formules mathématiques du 1er et du 2ème principe de la

    thermodynamique sont basées sur des différentielles exactes obtenues à partir des différentielles inexactes.

    • Les échanges de chaleur δQ et de travail δw n’admettent pas de différentielles totales exactes.

    • Mais leur somme :δw+ δQ= dEdéfinissant la variation d’énergie interne est une différentielle

    totale exacte.

  • Outils mathématiques appliqués à la thermodynamique

    Le deuxième principe introduit la variation de l’entropie dS, dS est une différentielle totale exacte obtenue à partir de la variation de chaleur (chaleur échangée) δQ dont le facteur de transformation est

    1

    T

    • dS=δQ

    T

    • A partir de ces deux fonctions E et S, il est donc possible de déterminer les autres fonctions d’état qui admettent des différentielles totales exactes

  • Chapitre 2: les principes de la thermodynamique

    • Plan du cours

    • Premier principe ou principe de conservation

    • Deuxième principe ou principe d’évolution

    • Troisième principe ou principe de Nernst

  • Premier principe ou principe de conservation

    • Le premier principe affirme que la somme de toutes les énergies sous forme de W ou Q d’un système isolé est constante

    • Autrement dit l’énergie (le travail) peut se transformer dans une forme ou une autre (chaleur) mais ne peut être créée, ni détruite :

    • Il y a conservation de l’énergie

  • Premier principe ou principe de conservation

    • le système évoluant d’un état I à un état F, échange du travail et de la chaleur avec le milieu extérieur

    • Son énergie va varier.• Pour une transformation infinitésimale:• dU=δW+δQ• δQ quantité de chaleur élémentaire échangée avec le

    milieu extérieur.• δW travail mécanique élémentaire mis en jeu

  • Premier principe ou principe de conservation

    • Transformation réversible

    • δW= −P dV => W= −∞∞− PdV

    • Transformation irréversible

    • δW= −Pext dV => W= −Pext V f − V i

    • dU est une différentielle totale exacte

  • Premier principe ou principe de conservation

    • Pour une transformation finie, la variation de l’énergie interne est :

    • ΔU= UF − UI= Q+W

    • ΔU ne dépend que des états initial et final car U est une fonction d’état

  • Premier principe ou principe de conservation

    • Fonction enthalpie et sa différentielle

    • A pression constante P=Cste pour une transformation se faisant de l’état initial I à l’état final F:

    • ΔU= UF − UI= Q +W = Q − P V f − V i

    • UF + PVF – (UI + PVI)= Q

    • UF + PVF – (UI + PVI)= QP• (UF + PVF) – (UI + PVI)= HF − HI= ΔH

  • Premier principe ou principe de conservation

    • On définit H= U + PV : enthalpie

    • Pour une transformation élémentaire

    • dH= dU+PdV+VdP

    • = δQ-PdV+PdV+VdP

    • dH= δQ+VdP

    • Pour une transformation finie

    • ΔH= ΔU+PΔV

  • Premier principe ou principe de conservation

    • Chaleurs de réactions chimiques

    • Transformation à V=Cste , dU= δQ-PdV dV=0

    • dU= dQ

    • ΔU=Qv= UF − UI• Transformation à P=Cste , dH= δQ+VdP

    • dH= dQ

    • ΔH= Qp = HF − HI

  • Premier principe ou principe de conservation

    • Coefficients calorimétriques (thermiques)

    • Pour toute transformation réversible d’un système, la quantité de chaleur δQ peut s’exprimer de différentes manières en fonction des variables (T, V, P)

    • δQ= CvdT + ldV (1)

    • δQ= CpdT + hdP (2)

    • δQ= λdV + µdP (3)

  • Premier principe ou principe de conservation

    • Soit V= V(T,P)

    dV= (ƏV

    ƏT)P dT +(

    ƏV

    ƏP)TdP

    On a alors

    • (1) => δQ= CvdT + l[(ƏV

    ƏT)PdT + (

    ƏV

    ƏP)TdP]

    • δQ= Cv dT + l(ƏV

    ƏT) P dT + l(

    ƏV

    ƏP) T dP (1’)

    en faisant (1’)=(2) on a :

    • Cp dT + h dP= [Cv + l(ƏV

    ƏT) P] dT + l(

    ƏV

    ƏP) T dP

  • Premier principe ou principe de conservation

    • Par identification on obtient :

    • Cp = Cv + l(ƏV

    ƏT)P et h= l(

    ƏV

    ƏP)T

    • En remplaçant dV par son expression dans la relation (3), on obtient:

    • (3)=> δQ= λ [(ƏV

    ƏT)PdT + (

    ƏV

    ƏP)TdP] + µdP

    • δQ= λ (ƏV

    ƏT)PdT + [λ(

    ƏV

    ƏP)T + µ]dP (3’)

  • Premier principe ou principe de conservation

    • en égalant (3’) et (2) on obtient :

    • CpdT + hdP = λ(ƏV

    ƏT)PdT + [λ(

    ƏV

    ƏP)T + µ]dP

    • Par identification on a:

    • Cp = λ(ƏV

    ƏT)P

    • h= µ + λ(ƏV

    ƏP)T

  • 2- Deuxième principe

    • 2-1 Insuffisance du 1er principe

    W+Q = ΔU =0

    Il n’indique pas dans quel sens se fait la transformation

    Le but du 2ème principe est de déterminer le sens dans lequel la transformation peut se faire.

    • Le deuxième principe fait une différence entre le travail W et la chaleur Q au niveau de la transformation

  • 2- Deuxième principe

    • Enoncé du 2ème principe

    • Transformation monotherme fermée

    - Système en contact avec une seule source de chaleur T.

    Le cycle fonctionne parfaitement lorsque :

    W > 0 système reçoit du travail

    Q < 0 système cède de la chaleur

  • 2- Deuxième principe

    • Enoncé du 2ème principe

    • Transformation monotherme fermée

    -Lorsqu’un système revient à son état initial après avoir échangé de la Q avec une seule source extérieure, il a forcément reçu du travail W et cédé de la chaleur Q

    Q < 0 et W > 0

    Si transformation réversible (cycle réversible) les travaux W échangés dans chaque sens sont égaux et de sens contraire.

    Wcycle = 0 et Qcycle = 0

  • 2- Deuxième principe

    • Enoncé du 2ème principe

    - transformation irréversible

    Wcycle > 0 et Qcycle < 0

    - Transformation bitherme

    Système en contact avec 2 sources de chaleur au cours de chaque cycle.

    • Source froide : T1 et Q1 : chaleur échangée entre source et système.

    • Source chaude : T2 et Q2 ; T2 > T1

    D’après le premier principe :

    W + Q1+ Q2 = 0

  • 2- Deuxième principe

    • Enoncé du 2ème principe

    - transformation irréversible

    On sait que les chaleurs s’écoulent des températures les plus élevées vers les températures les plus basses. Donc le seul cas possible est :

    Q2 > 0 et Q1 < 0 et | Q2| > | Q1|

    •Une machine thermique ne peut fournir du W que si elle reçoit de la chaleur d’une source chaude et cède une partie de chaleur à une source froide

  • 2- Deuxième principe

    • Enoncé du 2ème principe

    - transformation irréversible

    Wcycle > 0 et Qcycle < 0

    - Transformation bitherme

    Système en contact avec 2 sources de chaleur au cours de chaque cycle.

    • Source froide : T1 et Q1 : chaleur échangée entre source et système.

    • Source chaude : T2 et Q2 ; T2 > T1

    D’après le premier principe :

    W + Q1+ Q2 = 0

  • 2- Deuxième principe

    Rendement d’un moteur thermique :

    Cycle de Carnot

    W + Q1+ Q2 = 0 => W = - (Q1+ Q2)

    Rdt =(- w)/Q2 =-(- (Q1+ Q2))/Q2=( (Q1+ Q2))/Q2=1+ Q1/Q2

    Cycle réversible décrit par deux sources de chaleur échangeant selon deux isothermes et deux adiabatiques.

  • 2- Deuxième principe

    Rendement d’un moteur thermique :

    • Rdt = 1 +Q1Q2= 1 −

    T1T2=

    T2− T1T2

    Rdt =T2− T1T2

    rendement dépend des températures externes

    • Par ailleurs

    •Q1Q2= −

    T1T2

    =>Q1T1= −

    Q2T2

    Q1T1+

    Q2T2= 0 Transformation réversible

    •Q1T1+

    Q2T2< 0 Transformation irréversible

  • 2- Deuxième principe

    Notion d’entropie

    L’entropie S est une grandeur extensive, une fonction d’état

    équation bilan:

    dS= deS + diS

    • deS : variation d’entropie due aux transferts entre le système et le milieu extérieur

    • diS : variation d’entropie due à la création d’entropie à l’intérieur du système lors de toute transformation spontanée

  • 2- Deuxième principe

    Notion d’entropie

    Pour un système fermé on a à l’équilibre

    • deS=δQ

    T

    • où T : température du système, identique à celle du milieu

    extérieur.

    Pour tout système et pour toute transformation réelle

    (irréversible)

    • diS > 0

  • 2- Deuxième principe

    Ces énoncés peuvent s’écrire aussi sous la forme

    • dS ≥δQ

    Tou T dS ≥ δQ inégalité de Clausius

    • δQ

    T… intégrale de Clausius

    Pour une transformation réversible

    • ΔS= Sf – Si= 12 δQ

    T

    Pour une transformation irréversible

    ΔS= Sf – Si > 12 δQ

    T

  • 2- Deuxième principe

    • Notion de chaleur non compensée de Clausius dS ≥δQ

    T

    • d’après Clausius

    • dS -δQ

    T> 0

    • dS -δQ

    T=

    δ′Q

    T> 0

    • où δ’Q est toujours supérieure à 0.

  • 2- Deuxième principe

    Cette expression peut se mettre sous la forme

    TdS – δQ= δQ’

    TdS : est la chaleur compensée de Clausius

    δQ : chaleur échangée par le système avec le milieuextérieur

    δQ’ : chaleur non compensée de Clausius

    La variation globale d’entropie:

    • dS = δQ

    T+

    δQ′

    T

  • 2- Deuxième principe

    δQ′

    Treprésente l’irréversibilité du processus.

    δQ’=0 pour un processus réversible

    δQ’ > 0 pour un processus irréversible

    δQ : chaleur échangée par le système et le milieu extérieur à

    travers la surface de séparation

    δQ’ : chaleur due aux transformations irréversibles se passant

    à l’intérieur du système

  • 2- Deuxième principe

    Par conséquent :

    δQ

    T= deS et

    δQ′

    T= diS

    - Pour un système isolé

    • dS= deS + diS avec deS=0

    • dS= diS > 0

    L’entropie d’un système isolé ne peut croître que au cours du

    temps.

    - Pour un système non isolé

    • L’apport d’entropie du milieu extérieur

    •δQ

    Tpositif ou négatif peut l’emporter sur la création d’entropie .

  • 2- Deuxième principe

    Soit une transformation infinitésimale pendant le temps dt

    Soit dξ la modification de l’avancement de la réaction

    La chaleur non compensée de Clausius est liée à l’accroissement de l’avancement dξ par :

    • δQ’= A dξ ≥ 0 relation de DeDonder

    A : affinité de la réaction chimique

    • L’affinité mesure de l’aptitude à réagir

    • Elle ne dépend pas du type de la transformation considérée mais dépend uniquement de l’état du système à l’instant

  • 2- Deuxième principe

    L’entropie correspondante est :

    diS = δQ′

    Tcréation d’entropie

    • Pour les systèmes ouverts, en plus de δQ′

    Ton aura d’autres

    termes liés aux échanges de matière, en revanche la création d’entropie au sein du système, due aux réactions chimiques n’est pas modifiée

  • 2- Deuxième principe

    • 2 Signification de l’affinité

    La dérivée de la formule de De Donder par rapport au temps donne :

    •δQ′

    dt= A

    dt= A.v où v: vitesse de la réaction

    A est toujours du même signe que v.

    Elle règle le signe de la vitesse de la réaction

    A.v > 0

    • A > 0 => v > 0 réaction improbable

    • A < 0 => v < 0 réaction favorable

    • A = 0 => v = 0 équilibre

  • 2- Deuxième principe

    • A < 0 et v < 0 plus A est négatif, plus on est éloigné de l’équilibre et plus la réaction est favorisée

    • A > 0 et v > 0 réaction peu favorable

    • v = 0 δQ’= 0 équilibre

    A.v=0 => v=0 et A=0 équilibre véritable

    v=0 et A≠0 faux équilibre (instable)

  • 2- Deuxième principe

    Mis à part le faux équilibre,

    • A=0 est la condition nécessaire et suffisante de l’équilibre véritable de la réaction chimique.

    Cas de plusieurs réactions simultanées : généralisation de la formule de DeDonder

    • δQ’= j Ajdξj ≥ 0

    • où Aj est l’affinité de la jème réaction

    • dξ est le degré d’avancement

    L’affinité est une mesure de l’aptitude à réagir.

  • 2- Deuxième principe

    • Affinité et chaleur de réaction

    • Cas des variables T, P et ξ

    • Soit ΔHTP, la chaleur de la réaction chimique à T et P fixées.

    Dérivée de la formule générale de la chaleur non compensée de Clausius par rapport au temps :

    •δQ′

    dt= T

    dS

    dt-δQ

    dt

    En utilisant la relation S=S(T, P, ξ)

    • dS= (ƏS

    ƏT)PξdT + (

    ƏS

    ƏP)TξdP + (

    ƏS

    Əξ)TPdξ

    • δQ= CPξdT + hTξdP - ΔHTPdξ

  • 2- Deuxième principe•δQ′

    dt= T

    dS

    dt-δQ

    dt

    • = T

    dt[(ƏS

    ƏT) Pξ dT + (

    ƏS

    ƏP) Tξ dP + (

    ƏS

    Əξ) TP dξ] - C Pξ

    dT

    dt- h Tξ

    dP

    dt+ ΔHTP

    dt

    • D’où en regroupant les termes

    •δQ′

    dt= [T(

    ƏS

    ƏT) Pξ - C Pξ]

    dT

    dt+ [T(

    ƏS

    ƏP) Tξ - hTξ]

    dP

    dt+ [T(

    ƏS

    Əξ)TP + ΔHTP]

    dt

    dT

    dtet

    dP

    dtétant des quantités arbitraires pourraient prendre

    n’importe quelle valeur et rendre δQ′

    dtnégatif, ce qui est

    contraire au processus irréversible et à la notion de chaleur non compensée de Clausius. Par conséquent leurs coefficients sont pris égaux à zéro (nuls).

  • 2- Deuxième principe D’où :

    • T(ƏS

    ƏT) Pξ - C Pξ = 0 => (

    ƏS

    ƏT)Pξ =

    C(pξ)

    T

    • T(ƏS

    ƏP) Tξ - h Tξ = 0 => (

    ƏS

    ƏP)Tξ =

    h(pξ)

    T

    • La relation devient donc :

    •δQ′

    dt= [T(

    ƏS

    Əξ)TP + ΔHTP]

    dt= A

    dt

    • Il ressort que:

    •δQ′

    dξ= T(

    ƏS

    Əξ) TP + ΔHTP = A

  • 2- Deuxième principe• Cas des variables V, T et ξ

    • Soit UTV la chaleur de la réaction à T et V fixés

    • En utilisant

    • dS= (ƏS

    ƏT)VξdT + (

    ƏS

    ƏV)TξdV + (

    ƏS

    Əξ)TVdξ

    • δQ= CVξdT + l TξdV - ΔUTVdξ

    • par un raisonnement analogue on obtient :

    • T(ƏS

    ƏT) Vξ - C Vξ = 0 => (

    ƏS

    ƏT) Vξ =

    C(vξ)

    T

    • T(ƏS

    ƏV) Tξ - l Tξ = 0 => (

    ƏS

    ƏV) Tξ =

    l(Tξ)

    T

    •δQ′

    dξ= T(

    ƏS

    Əξ) TV + ΔUTV = A

  • 2- Deuxième principe• Affinité en fonction de T

    • A= T(ƏS

    Əξ) TP + ΔHTP =>

    A−ΔH(TP)T

    =(ƏS

    Əξ) TP

    • Faisons intervenir les dérivées secondes

    • [Ə

    ƏT(A−ΔH(TP)

    T)] Pξ = [

    Ə

    ƏT(ƏS

    Əξ) TP] Pξ

    ƏA

    ƏT−

    Ə

    ƏT(ΔH

    TP ) ∗T− A−ΔH TP ∗1

    T2=Ə

    ƏT(ƏS

    Əξ) TP

    • =Ə

    Əξ(ƏS

    ƏT) Pξ

    •ƏA

    ƏT-A

    T2-1

    T

    Ə

    ƏT(ΔHTP) +

    ΔH TPT2

    = Ə

    Əξ(C(vξ)

    T) =

    1

    T(ƏC(pξ)

    Əξ) TP

    •Ə

    ƏT(A

    T) +

    ΔH TPT2

    -1

    T

    Ə

    ƏT(ΔHTP) =

    1

    T(ƏC(pξ)

    Əξ) TP

  • 2- Deuxième principe• Affinité en fonction de T

    • D’après la loi de Kirchoff

    • (ƏC(pξ)

    Əξ) TP= -

    Ə

    ƏT(ΔHTP) Pξ

    • D’où

    • [Ə

    ƏT(A

    T)] Pξ = -

    ΔHTP

    T2Relation de Gibbs Helmholtz

    Par un raisonnement analogue on obtient

    • [Ə

    ƏT(A

    T)] Vξ = -

    ΔU TVT2

    Ces relations permettent de déterminer l’affinité à une température quelconque.

  • 3-Troisième principe ou principe de Nernst

    • Enoncé du 3ème principe

    • Au zéro absolu (T=0K), l’entropie de tout corps pur cristallisé

    et chimiquement homogène tend ver s zéro.

    • T → 0K S → 0

    • Conséquences du 3ème principe

  • 3-Troisième principe ou principe de Nernst

    • mesusre de l’entropie absolue d’un corps pur cristallisé

    • Pour une transformation élémentaire on a :

    • dS= dQ

    T

    • à pression constante : dH= CpdT= δQ

    dS=dH

    T= Cp

    dT

    T

    L’entropie d’un corps pur cristallisé et homogène à P constante entre les températures T et T0 s’écrit :

    S(P,T) – S(P,T0)= T0

    T dH

    T=

    T0

    TCp

    dT

    T

    Au zéro absolu S(P,T0)= S(P,0)=0

  • 3-Troisième principe ou principe de Nernst

    • D’où

    • S(P,T) = 0

    TCp

    dT

    T=

    0

    TCpdLnT

    • S(P,T) = 0

    TCpd(LnT) = 0

    T Cp

    TdT

    Cp est une fonction de la température

    • Cp → 0 pour T → 0

    • Cp ≈ Cp ≈ α T3 (Debye)

  • 3-Troisième principe ou principe de Nernst

    • S(P,0) = 0 pour toutes les variétés chimiques et physiques d’une même substance chimique homogène.

    • Au 0 K, la variation d’entropie d’une réaction entre corps solide pur cristallisé est nulle.

    • Elle permet de faire la différence entre ΔH et ΔG.

    • ΔG = ΔH – T ΔS, T → 0 => ΔG = ΔH

    • (ƏΔH

    ƏT) P = ΔCp → 0 pour T → 0

    • (ƏΔG

    ƏT) P = - ΔS → 0 pour T → 0

    • Les courbes ΔG= f(T) et ΔH= f(T) peuvent être différenciées

  • 3-Troisième principe ou principe de Nernst

    ΔH, ΔG

    ΔH > 0

    ΔH0 T ΔS

    ΔG < 0

    0 298.16 K T (K)

  • 3-Troisième principe ou principe de Nernst

    • Le 3ème principe permet la détermination de l’entropie des corps cristallisés et gazeux

    • Lorsque T → 0, le corps est cristallisé.

    • Soit ΔSi = ΔHi

    Tientropie initiale à 0 K

    • La réaction évolue jusqu’à T température du gaz.

    • S(T, P) = 0

    Ts Cps

    TdT +

    Ts

    TF Cps

    TdT +

    TF

    TE Cpl

    TdT +

    TE

    T Cpg

    TdT + i

    ΔHi

    Ti

    • La détermination de S(T, P) se fait graphiquement dans la pratique.

    • Ti ≠Ts ; Ti =TF, Ti =TE ; ΔHi enthalpie réactionnelle de transition.

    • Cp

    TdT ou Cpd(logT) ;

    Cp

    T= f(T) ou Cp = f (logT)

  • 3-Troisième principe ou principe de Nernst

    Cp

    T Ts solidification

    TF fusion TE ébullition

    Solide1 solide2 liquide gaz 0 TS TF TE T

  • 3-Troisième principe ou principe de Nernst

    avec

    • Ti : Température de transition (fusion, ébullition, solidification)

    • ΔHi: Chaleur latente de transition d’une phase à une autre (de fusion, de vaporisation)

    • Cp= αT3

  • Chapitre 3: Systèmes fermés non réagissant

  • Chapitre 3: Systèmes fermés non réagissant

    • Fonctions thermodynamiques

    • Potentiels thermodynamiques

    • Relations de Maxwell

    • Systèmes de gaz

    • Corps condensés

  • Fonctions thermodynamiques

    Les fonctions thermodynamiques sont:

    U = Q + W avec dU = δQ + δW

    H = U + PV avec dH= dU + P dV + V dP= δQ + δW + PdV + VdP

    F = U –TS avec dF = dU - TdS – SdT= δQ – TdS – SdT – PdV

    G = H -TS avec dG = dH -TdS – SdT = dU + PdV + VdP

    S = (H-G)/T avec

  • Potentiels thermodynamiques

    L’énergie interne :

    dU = δQ + δw

    or δQ= TdS – TdiS (où δQ’= TdiS)

    dU= TdS – PdV – TdiS

    pour une transformation à V et S constants

    dU= - TdiS < 0

  • Potentiels thermodynamiques

    L’énergie interne :

    Une réaction à V et S constants s’accompagne toujours d’une diminution d’énergie interne.

    dU est un critère (indicateur) d’irréversibilité c’est-à-dire un critère qui rend compte de l’évolution éventuelle du système.

    On dit que U est un « potentiel thermodynamique »

    L’état final de l’évolution = l’équilibre thermodynamique où U est minimal avec diS=0

  • Potentiels thermodynamiques

    L’enthalpie H

    H= U+PV

    dH= dU + PdV + VdP

    En remplaçant dU par son expression on a:

    dH= TdS + VdP – TdiS

    à S et P constants

    dH= - TdiS < 0

    ΔH < 0 => transformation spontanée pour une transformation à S et P constantes l’enthalpie constitue un « potentiel thermodynamique ».

  • Potentiels thermodynamiques

    L’énergie libre F

    F = U-TS

    dF = dU - TdS – SdT or dU= TdS – PdV – TdiS

    En remplaçant dU par son expression on obtient:

    dF= - TdiS – SdT – PdV

    à T et V constants

    dF= - TdiS < 0

    ΔF < 0 => transformation spontanée

    F est un “ potentiel thermodynamique” à T et V constants

  • Potentiels thermodynamiques

    L’enthalpie libre G

    G = U + PV-TS = H-TS

    dG = dH -TdS – SdT or dH = TdS + VdP – TdiS

    en remplaçant dH par son expression on a:

    dG = – TdiS + VdP – SdT

    à S et P constants

    dH= - TdiS < 0

    ΔH < 0 => transformation spontanée pour une transformation à S et P constantes l’enthalpie constitue un « potentiel thermodynamique ».

  • Potentiels thermodynamiques

    L’entropie S

    S est un potentiel thermodynamique si le système est isolé

    IF δQ

    T< SF – SI

    ΔS > 0 transformation spontanée.

    Selon les conditions d’évolution du système nous disposons donc de différents potentiels thermodynamiques (S, U, H, F, G) pour rendre compte de l’évolution éventuelle du système

  • Potentiels thermodynamiques

    relation entre les différentes fonctions thermodynamiques et l’affinité:

    • On sait que δQ’ ≥ Adξ

    • dU= TdS – PdV – T diS or T diS= δQ’ ≥ Adξ

    • = TdS – PdV – δQ’

    • = TdS – PdV – Adξ

    • Les autres différentielles peuvent se mettre sous la même forme

    • dH= TdS + VdP – Adξ

    • dF= – SdT – PdV – Adξ

    • dG= VdP – SdT – Adξ

  • Potentiels thermodynamiques

    relation entre les différentes fonctions thermodynamiques et l’affinité:

    • Par conséquent

    • (ƏU

    Əξ)S,V = − A;

    • (ƏH

    Əξ) S,P = − A;

    • (ƏF

    Əξ) T,V = −A;

    • (ƏG

    Əξ)T,P = − A

    • On peut déduire également toutes les autres relations liées aux dérivées croisées.

  • Relations de Maxwell

    • A l’équilibre ou à l’équilibre local la création d’entropie est nulle : diS = 0

    • Pour un système fermé sans réaction chimique on a :

    • dU= TdS – PdV= (ƏU

    ƏS) VdS + (

    ƏU

    ƏV) SdV

    • dU étant une DTE, les dérivées secondes croisées sont égales. On déduit la relation :

    • (ƏT

    ƏV) S = - (

    ƏP

    ƏS) V 1ère relation de Maxwell

    • dH = TdS + VdP

    • (ƏT

    ƏP) S = (

    ƏV

    ƏS) P 2ème relation de Maxwell

  • Relations de Maxwell

    • dF= – SdT – PdV

    • (ƏS

    ƏV) T = (

    ƏP

    ƏT) V 3ème relation de Maxwell

    • dG = – SdT + VdP

    • (ƏS

    ƏP) T = - (

    ƏV

    ƏT) P 4ème relation de Maxwell

    • Les relations de Maxwell permettent de démontrer les relations générales suivantes qui sont très utiles :

    • (ƏU

    ƏV) T = T (

    ƏP

    ƏT) V - P

    • (ƏH

    ƏP) T = -T (

    ƏV

    ƏT) P + V

    • C P – C V = α2VT

    χ(T)

  • Relations de Maxwell

    • C P – C V = α2VT

    χ(T)

    • C P – C V peut être obtenue autrement :

    • On pose

    • C V = T (ƏS

    ƏT) V et C P = T (

    ƏS

    ƏT) P

    • On exprime S= S (P, T)

    • S= S (V, T)

    • S= S (P, V)

    • En utilisant une des relations de Maxwell appropriée, on retrouve l’expression de C P – C V :• à partir des fonctions U et H en faisant

    • C P – C V = (ƏH

    ƏT) P - (

    ƏU

    ƏT) V

  • Systèmes de gaz

    Rappels

    Considérons une phase gazeuse

    •gaz clos : lorsque le gaz est pris seul

    •mélange de gaz : lorsque plusieurs gaz coexistent

    •gaz parfait : - un gaz qui a un comportement idéal,

    - il obéit à l’équation d’état des gaz parfaits

    •gaz réel : - un gaz qui a un comportement non idéal,

    - il n’obéit pas à l’équation d’état des gaz parfaits

  • Systèmes de gaz

    • Notion d’idéalité

    idéalité close : (relative à un corps pur)

    L’idéalité d’un corps gazeux se traduit par son caractère parfait

    idéalité de mélange

    • S’il y a mélange de corps gazeux, on a une idéalité de mélange.

    • il est commode de décomposer une grandeur en deux parties :

    • Φ = Φ* + Φ•

    • où Φ* : partie idéale

    • Φ• : partie d’excès, responsable de l’écart à l'idéalité

  • Systèmes de gaz

    •Notion d’idéalité

    Généralisation

    Toute grandeur peut être décomposée en deux parties :

    - une partie idéale Φ*

    - une partie d’excès Φ•

    Un autre mode de représentation est de mettre en évidence la partie standard

    Φ* = Φ° + Φ+

    Φ°: valeur standard

    Φ+: complément à la valeur standard

  • Systèmes de gaz

    • Notion d’idéalité

    La grandeur standard est une valeur obtenue dans les conditions habituelles

    T= 25°C + 273.15 = 298.15K

    P= 1 atm = 1.03 bar

    d’où

    Φ = Φ°+ Φ+ + Φ•

  • Systèmes de gaz

    • cas d’un gaz parfait

    • On a:

    • (ƏG

    ƏP) T = V =

    nRT

    Poù n : nombre de moles occupant le volume V.

    • dG = nRTdP

    P

    • Par intégration

    • G = G°+ nRTLnP = G*

    • Où G° est fonction de T et de la nature du gaz mais non de P. C’est l’enthalpie libre à 298.15 K à P =1 atm.

    • G°: enthalpie libre standard

  • Systèmes de gaz

    • cas d’un gaz parfait

    • G étant une grandeur extensive (proportionnelle à n), il est préférable de le mettre sous la forme :

    • G°= nµ° où µ°: enthalpie libre standard (molaire), relative à une mole

    • G*= n(µ°+RTLnP)

  • Systèmes de gaz

    • Cas d’un mélange de gaz parfaits

    • Pour un gaz parfait i on a :

    • PiV = niRT

    • ni: nombre de moles du gaz i

    • Pi: pression partielle du gaz i

    • n : nombre total de moles

    • Gi* = Gi

    ° + niRTLnPi= ni (µi

    ° + RTLnPi)

    • Où µi° est la même que si le gaz i était seul.

    • Pour le mélange, enthalpie libre total est:

    • G*= i=1N Gi = i=1

    N ni(µi° + RTLnPi)

  • Systèmes de gaz• Autres fonctions thermodynamiques

    S*= - (ƏG

    ƏT)P pour une mole de gaz parfait

    • = - [Ə

    ƏT(G° + RTLnP)] P

    • S*= - (ƏG°

    ƏT)P - RLnP

    • S*= S° - RLnP

    • H*= G* + TS*

    • = G° + RTLnP + T(S° - RLnP)

    • = G° + RTLnP − RTLnP + TS°

    • H* = G° + TS° = H°

  • Systèmes de gaz

    • Autres fonctions thermodynamiques

    • U*= H* - PV

    • = H° - RT

    • U*= U°

    • F*= G° - PV + RTLnP

    • F*= F° + RTLnP

  • Systèmes de gaz

    • Enthalpie de gaz réel: notion de fugacité

    • Volume d’excès

    • Nous avons toujours

    • (ƏG

    ƏP)T = V ≠ V

    * =RT

    Ppour 1 mole car gaz réel

    Mais les gaz étant réels il faut faire intervenir un terme correctif

    • PV = RTφ = RT (1 + aP + bP2 + ….)

    Où a et b dépendent de la température

    • Le volume réel s’écrit :

    • V= RT

    P(1 + aP + b P2 + …) pour 1 mole

    • V= V*(1 + aP + bP2 + ….) pour 1 mole

  • Systèmes de gaz

    • Enthalpie de gaz réel: notion de fugacité

    •V

    V∗ = 1 + a P + b P2 = φ : volume relatif de Leduc

    • V = V* + V*(a P + b P2)

    • V = V* + V• où V• = V*(a P + b P2)

    • V = RT

    P+ RT

    P(a P + b P2+…) =

    RT

    P+ RT

    P(φ -1)

    • D’où

    • V• = RT

    P(φ -1) : volume d’excès

  • Systèmes de gaz

    Fugacité – coefficient de fugacité

    • Pour 1 mole de gaz réel

    • PV = RTφ

    • On a aussi

    • (ƏG

    ƏP)T = V =

    RT

    P+ V• =

    RT

    P+ RT

    P(φ -1)

    • Différentielle de G

    • dG = RT

    PdP + V•dP =

    RT

    PdP +

    RT

    P(φ -1) dP

    • En intégrant on a :

    • dG = RTdP

    P+ V•dP= RT

    dP

    P+ RT (φ − 1)

    dP

    P

    • G = G* + G•

  • Systèmes de gaz

    Fugacité – coefficient de fugacité

    • G = G* + G•

    • = G° + RTLnP + 0P RT

    P(φ − 1)dP

    • = G°+ RTLnP + RT 0P (φ −1)dP

    P

    • = G° + RTLnP + RTLnν

    • = G° + RTLnP.v

    • G = G° + RTLnf

    • f s’appelle la fugacité

  • Systèmes de gaz

    Fugacité – coefficient de fugacité

    • C’est la pression sous laquelle devrait se trouver le gaz, s’il était parfait, pour posséder la même enthalpie libre qu’il possède actuellement, sous la pression P la température étant la même.

    • ν est le coefficient de fugacité

    • f = Pν => ν = f

    P

    • Lorsque P devient faible, le gaz tend à se comporter comme un gaz parfait et par conséquent la fugacité tend vers la pression ; f → P.

    • Aux basses pressions, P → 0, f → P et f

    P→ 1

  • Systèmes de gaz

    • Calcul de la fugacité

    • Détermination de la fugacité de deux manières :

    • En calculant d’abord le coefficient de fugacité

    • G•= RTLnν= 0PV•dP

    • Lnν=G•

    RT=

    1

    RT 0PV•dP

    • ν= exp (G•

    RT)= exp (

    1

    RT 0PV•dP)

    • d’où f= P.ν

    • En calculant directement f par la relation suivante :

    • dG= 0PVdP = RT f0

    fdLnf

    • Sachant que f → P lorsque P → 0, on a :

    • G = G° + RTLnf = G° + RTLnP + RTLnν

  • Systèmes de gaz

    • Les autres fonctions thermodynamiques

    • Entropie

    • S = - (ƏG

    ƏT) P = -

    Ə

    ƏT(G° + RTLnP + RTLnν)

    • = - (ƏG°

    ƏT) P - RLnP - RLnν – RT(

    Ə

    ƏTLnν)P

    • = S° - R LnP - RLnν – RT(Ə

    ƏTLnν)P = S

    *+ S•

    • Où S° entropie standard

    • S* entropie idéale

    • S• entropie d’excès

  • Systèmes de gaz

    • Les autres fonctions thermodynamiques

    • Enthalpie

    • H = G + TS

    • En remplaçant G et S par leurs expressions on a :

    • H = H* + H•

    • = G° + RTLnP + RTLnν + T[S° - RLnP - RLnν – RT(Ə

    ƏTLnν)P]

    • = G° + TS°− RT

    2

    ƏTLnν)P

    • H = H°−RT

    2

    ƏTLnν) P

  • Systèmes de gaz

    • Les autres fonctions thermodynamiques

    • Energie interne

    • U = H – PV en remplaçant H par son expression

    • U = H° -RT²(Ə

    ƏTLnν)P – PV

    • = H° - PV −RT²(Ə

    ƏTLnν)P

    • U = U° -RT²(Ə

    ƏTLnν)P

    • Energie libre

    • F = G – PV en remplaçant G par son expression

    • = G° + RTLnP + RT Lnν – PV

    • = G°– PV + RTLnP + RTLnν

    • = F° + RTLnP + RTLnν

  • Systèmes de gaz

    Cas d’un mélange de gaz réels

    • De même que dans le cas d’un gaz parfait, on peut définir une fugacité partielle fi, ayant la même définition que f.

    • Pour une mole de constituant i, de ce mélange de gaz réels, on a :

    • Gi = Gi° + RTLnfi

    • = µi° + RTLnfi où µi

    °: enthalpie libre partielle du constituant i.

    • pour ni moles on aura :

    • Gi = ni (µi° + RTLnfi)

  • Systèmes de gaz

    Gi ne dépend que de T et de la nature du gaz.

    • Lorsque Ptotale → 0 fi → Pi ou fi

    Pi→ 1

    • La règle semi empirique de Lewis et Randal permet aussi de calculer fi.

    La règle semi empirique de Lewis et Randal

    • La fugacité d’un gaz dans un mélange est égale au produit de sa fraction molaire par sa fugacité, à l’état pur, sous la même pression que la pression que la pression totale du mélange.

    • fi = τifi°

  • Corps condensés

    • Définitions

    • Corps condensés : sont des liquides ou des solides. Ce sont des corps

    • peu compressibles.

    • χ (T)= -1

    V(ƏV

    ƏP) T : coefficient de compressibilité isotherme, très

    faible.

    • α= 1

    V(ƏV

    ƏT) P : coefficient de dilatation isobare, très faible

    • β= 1

    P(ƏP

    ƏT) V : coefficient de variation de pression à volume

    constant très grand

  • Corps condensés

    • Définitions

    • Etat condensé parfait : est une sorte d’état limite aux pressions faibles

    • La relation entre les capacités calorifiques reste valable pour les corps condensés :

    • C P – C V = PVTαβ or χ(T)P =α

    β=> β =

    α

    χ (T)P

    • C P – C V = VTα2

    χ (T)

    • Pour P → 0 => C P ≈ C V

  • Corps condensés

    • Définitions

    Matières α χ

    Solide 10−4 10−12

    Liquide 10−3 10−10

    Gaz 3. 10−3 10−6

    Gaz Parfait 1273

    =5.7 10−3 10−6

    •Ordre de grandeur de α et χ

  • Corps condensés

    • Equation d’état

    • On a :

    • α = 1

    V(ƏV

    ƏT)P =

    d LnV

    dT= α

    • d’où

    • dLnV= αdT

    • en intégrant on obtient :

    • Ln V

    V0= αT

  • Corps condensés

    • Equation d’état

    •V

    V0= exp(αT) ≈ 1 + αT car α

  • Corps condensés

    • Equation d’état

    En première approximation, les variations de pression ont peu d’influence sur les corps condensés.

    • Considérons le volume sous la forme :

    • V= V 0 + k P

    • D’autre part on sait que

    • χ (T)= -1

    V(ƏV

    ƏP)T

    • Posons (ƏV

    ƏP)T = k

    •1

    V(ƏV

    ƏP)T ≈

    1

    V0(ƏV

    ƏP)T =

    k

    V0= - χ

    • D’où k = - V 0 * χ

    • Alors V = V 0 + k P = V 0 - V 0 * χP

    V = V 0 (1 - χP) Equation d’état des corps condensés entre 0 K et 1000 K

  • Corps condensés

    • 5-3 autres fonctions d’état•

    • 5-3-1 enthalpie libre•

    • (ƏG

    ƏP)T = V

    • G= VdP = V0(1 - χP)dP

    • = V0dP - V0χPdP

    • = V0P -1

    2V0*χP

    2 + Cte

    • Pour P= P° on a :

    • G → G° = V0P -1

    2V0*χP

    2 + Cte

  • Corps condensés

    • 5-3 autres fonctions d’état

    • 5-3-1 enthalpie libre

    • D’où Cste= G° - V0 P° +

    1

    2V0 * χP

    2

    • L’expression de G devient :

    • G= G° + V0(P - P°) -

    1

    2V0 * χ(P

    2 - P°2)

    • Comme χ est très faible, χ

  • Corps condensés

    • 5-3 autres fonctions d’état

    • 5-3-2 entropie S

    • (ƏG

    ƏT)P = - S

    • S= -Ə

    ƏT(G° + V0(P - P

    °))P

    • = -Ə

    ƏTG° - (P - P°) (

    ƏV0

    ƏT)P

    • = S° - α° V0(P - P°) (où α°V0 = (

    ƏV0

    ƏT)P)

  • Corps condensés

    • 5-3 autres fonctions d’état

    • 5-3-3 enthalpie

    • H= G + TS

    • = G° + V0 (P - P°) + T(S° - α°V0 (P - P

    °))

    • = G° + T S° + V0(P - P°) (1 – Tα°)

    • H= H° + V0(P - P°) (1 – Tα°) (où H°= G° + TS°)

  • Corps condensés

    • 5-3 autres fonctions d’état

    • 5-3-4 énergie interne

    • H = U + PV

    • U = H – PV

    • = H° + V0(P- P°)(1 – Tα°) - PV0(1 - χP)

    • = H° - P0 + V0(P - P°) (1 – Tα°) + V0χP

    2

    • = U° + V0 (P - P°)(1 –Tα°) (où V0χP

    2 → 0 et U°= H°- PV0)

  • Corps condensés

    • 5-3 autres fonctions d’état

    • 5-3-5 énergie libre

    • F= G – PV

    • = G° + V0(P - P°) - PV0(1 - χP)

    • = G° - V0P° + V0P - PV0 + V0χP

    2

    • = F° (où V0χP2 → 0 et F°= G°-V0P

    °)

  • Chapitre4: Systèmes ouverts non réagissant

  • Systèmes ouverts non réagissant

    • Plan du cours

    • Généralités

    • Grandeurs molaires – grandeurs molaires partielles

    • Relations de GIBBS-DUHEM

    • Définition du potentiel chimique

    • Applications aux différents systèmes (gaz parfait, gaz réel, mélange)

    • Grandeurs de mélange et grandeurs d’excès de mélange

  • Généralités

    • Solution

    • Une solution est assimilable à toute phase homogène contenant plus d’un constituant.

    • Il existe des solutions de plusieurs types :

    • Solutions gazeuses

    • Solutions solides

    • Solutions liquides

    - Les solutions liquides constituent le cas plus fréquemment envisagé. Les solutions font l’objet d’un chapitre particulier car leurs propriétés ne peuvent en général pas être déduites de celles des composantes à l’état pur par une simple règle d’additivité.

  • Généralités

    • Exemples

    • Le volume d’une solution saline ou d’un mélange d’eau et d’alcool n’est pas égal à la somme des volumes des constituants considérés isolément.

    • Solution saline: NaCl + H2O

    • Mélange alcool et eau: CH3OH + H2O

    • De même l’enthalpie d’un mélange d’eau et d’acide sulfurique n’est pas égale à la somme des enthalpies de l’eau et d’enthalpie de l’acide séparés puisque leur mélange est exothermique.

  • Généralités• Exemples

    • De même l’enthalpie d’un mélange d’eau et d’acide sulfurique n’est pas égale à la somme des enthalpies de l’eau et d’enthalpie de l’acide séparés puisque leur mélange est exothermique.

    • Il en est ainsi pour la plupart des grandeurs extensives qui caractérisent les solutions : (U, H, S, G, V, CP ….)

    • Il y a toujours additivité dans le cas de la matière (quantité de matière)

    • Ce chapitre sera consacré à l’étude des variations des propriétés extensives d’un système lorsque sa composition varie.

    • Systèmes étudiés :

    • Des systèmes ouverts ou des systèmes fermés hors d’équilibre, à l’intérieur desquels une réaction chimique peut avoir lieu.

  • Généralités• Variables de composition du système

    • Il existe plusieurs moyens d’indiquer la composition d’une solution.

    • Considérons un mélange contenant n1, n2, …., ni … moles des différents constituants 1, 2, …., i

    • soit au total n moles (n= n1+ n2 + ……. + ni).

    • Il y a trois sortes de variables de composition intensives usuelles. Considérons un mélange binaire (1, 2)

    • La fraction molaire d’un des constituants est égal au rapport : n1/(n1+n2) où τ1=n1/(n1+n2)

    • n1 et n2 désignent le nombre de moles de 1 et 2 dans le mélange.

    • Pour un mélange binaire,

    • τ1 + τ2 = 1 et τ1/τ2 = n1/n2

  • Généralités• Variables de composition du système

    • Il peut arriver que, pour des raisons de solubilité limitée, la fraction molaire d’un des constituants (2 par exemple) ne puisse varier qu’entre 0 et une valeur inférieure 1, τ2 є [0, 1[.

    • Ce constituant peut être solide, liquide ou gazeux lorsqu’il se présente à l’état pur.

    • Le constituant 2 est appelé soluté et le constituant 1, liquide est désigné par solvant.

    • Molarité C2 =n2

    V

    • Nombre de moles de soluté (2) contenues dans 1 litre de solution, mole/L

    • Molalité m2 :

    • Nombre de moles de soluté contenues dans 1000 g de solvant (1), mole/Kg

  • Généralités• Remarque

    • La fraction molaire τi, la fraction massique et molalité mi du constituant i, dans une solution ne dépendent pas de la température de celle-ci

    • Contrairement à la molarité Ci, puisque cette dernière dépend de V et donc de T.

    • Malgré cet inconvénient, la variable Ci est la plus utilisée car elle est souvent la plus facile à déterminer

  • Généralités

    • Passage d’une définition à l’autre

    • Passage de τ2 à m2 molalité

    • Il est souvent utile de connaître le rapport

    •τ1

    τ2

    = n1

    n2, τ2=

    n2

    n1+n2, τ1=

    n1

    n1+n2

    • Raisonnons sur 1000g de solvant, de masse molaire : par définition n2 = m2molalité

    • n1 = 1000

    M1

    • Il s’ensuit :

    •τ2

    τ1= m2

    M1

    1000

  • Généralités

    • Or τ1 = 1- τ2:

    • D’où

    •τ2

    1−τ2= m2

    M1

    1000relation entre τ2 et m2

    • Si la solution est très diluée, τ1 = 1- τ2≈ 1 (Car τ2

  • Généralités

    • Passage de m2 à C2• Soit M2 la masse molaire du soluté, et d la densité de la solution :

    • 1L de solution de masse 1000 dg contient

    • M2C2 g de soluté.

    • La masse de solvant correspondante est : (1000 d - M2C2) g ;

    • elle contient C2 moles de soluté

  • Généralités

    • Pour 1000 g de solvant, on déduit :

    • m2 = 1000

    1000d −M2C2

    C2 masse de soluté pour 1000 g de solvant

    • Aux faibles concentrations C2, on peut négliger M2C2 devant 1000 d ;

    • m2 = C2

    d

    • m2 et C2 sont proportionnelles ; le coefficient de proportionnalité 1

    dvarie

    peu avec T.

    • Dans le cas de l’eau, m2 → C2 lorsque C2 → 0 car d → 1

  • Grandeurs molaires – grandeurs molaires partielles

    • Propriété molaire / propriété molaire partielle

    • propriété molaire

    • Soit un système composé de plusieurs phases où chacune est formée d’un corps pur

    • Soit X une grandeur thermodynamique, extensive, décrivant l’état du système, dépend de la composition ni

    • X= i X i• Où Xi: grandeur, quantité relative au constituant i pur

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire

    • Soit ni, le nombre de mole du constituant i pur, on a alors :

    • xi =Xini

    = grandeur molaire du constituant i pur.

    • X désigne toute fonction thermodynamique extensive : U, H, S, F, G

    ou bien une grandeur extensive telle que le volume.

    • Cas du volume

    • vi =Vi

    ni= volume molaire du constituant i pur.

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire partielle

    • Soit un système composé d’une seule phase contenant plusieurs constituants.

    • La grandeur molaire d’un constituant i est influencée par la présence des autres constituants j dans la même phase.

    • La grandeur molaire du constituant i est alors modifiée par l’influence des autres constituants.

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire partielle

    • On définit la grandeur

    • Xi =(ƏX

    Əni)T,P,nj ,

    appelée grandeur molaire partielle du constituant i dans le mélange.

    • Cette grandeur molaire partielle caractérise alors le constituant i dans un mélange de composition donnée à T et P fixées.

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire partielle

    • Exemple

    • Mélange eau-méthanol se fait avec une contraction de volume (diminution)

    • Le pH d’une solution 10-1 mole L-1 de HCl expérimentalement vaut 1.1 au lieu de 1. En effet lorsqu’il s’agit d’un électrolyte les interactions entre les ions (f(

    1

    n2)) se font sentir à grande distance.

    • Les interactions moléculaires sont responsables de l’écart à l’idéalité.

    • Remarques

    • Les grandeurs ne sont additives que pour les mélanges idéaux (par analogie avec le gaz parfait).

    • Dans un mélange réel l’additivité s’écrit à partir des grandeurs molaires partielles.

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire partielle

    • Ce sont donc des fonctions homogènes des variables ni avec j=1. On aura donc :

    • X = f(n1, n2, ……) = n1 (Əx

    Ən1) + n2 (

    Əx

    Ən2) + ……..

    • Soit, compte tenu de la définition des Xi par :

    • X= i X i• Pour tout constituant i, Xi → Xi

    °

    • Où Xi° est la propriété molaire du constituant i pur lorsque τi → 1

    • X propriété extensive proportionnelle au nombre de moles

    • Xi propriétés intensives rapportées à 1 mole dépendant des proportions τ1, τ2, des constituants mais non des mases des phases

  • Grandeurs molaires – grandeurs molaires partielles

    • propriété molaire partielle

    • Pour une solution binaire, il faut donc écrire :

    • X= n1 X1 + n2 X2• Cas du volume

    • V= n1 V1 + n2 V2 pour une solution binaire

    • V= n1 (ƏV

    Ən1) T, P, n2 + n2 (

    ƏV

    Ən2) T, P, n1

    • Généralisation

    • Les notions de grandeurs molaires partielles et de grandeurs molaires apparentes sont applicables à toutes les grandeurs thermodynamiques autres que les volumes et les chaleurs.

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthodes de mesure des grandeurs molaires partielles• Dans un souci de simplicité nous nous limiterons à l’étude des solutions

    binaires (systèmes à 2 constituants (solvant) et (soluté))• La température T et la pression P sont maintenues constantes.• Il existe diverses méthodes pour mesurer les grandeurs molaires partielles :• Méthodes directes• Méthode de petits accroissements• Méthode algébrique• Méthode des tangentes• Méthode des intersections• Méthode logarithmique• Méthode indirecte• Une seule méthode basée sur la relation de Gibbs Duhem

  • Grandeurs molaires – grandeurs molaires partielles• Méthode algébrique

    Méthode précise et très employée mais elle est longue.

    • On opère de la façon suivante :

    • On détermine X la grandeur extensive relative à 1000g de solvant (1) en fonction de n2, le nombre de moles de soluté (2).

    • En effet n1 est constant et n2 = m2 représente la molalité: X= f (m2)

    • Connaissant cette forme analytique, on dérive X par rapport à m2pour trouver X2

    • X2 = (ƏX

    Əm2)T, P, n1

    • On déduit alors X1

    • X1 =X−m2 X2

    n1

  • Grandeurs molaires – grandeurs molaires partielles• Méthode algébrique

    • Exemple X=V

    • On ajoute m2 moles de soluté dans 1000 g de solvant

    • On étudie le volume occupé par m2 moles dans le mélange.

    • Si V est sous la forme analytique

    • V= 1000

    ρ1+ a m2 + b m2

    2

    • Où a et b sont des coefficients

    • On dérive V par rapport à m2

    • V2 = (ƏV

    Əm2) T, P, n1 = a + 2bm2

    • Ensuite on calcule V1• V= n1 V1 + m2 V2• V1 est la seule inconnue, car n1=

    1000

    M1

    • M1: masse molaire du solvant

    • V1 =V−m2 V2

    n1

  • Grandeurs molaires – grandeurs molaires partielles• Méthode logarithmique

    • Elle est basée sur l’utilisation des propriétés molaires apparentes.

    • On mélange n1 moles de solvant (1) et n2 moles de soluté (2).

    • On mesure la propriété correspondante X

    • X= n1 X1 + n2 X2• En supposant que le solvant garde ses propriétés à l’état pur, la

    propriété molaire apparente du soluté 2 est :

    • φ2 =X−n1 X1°

    n2

    • On a en fait :

    • X= n1 X1 + n2 X2• X= n1 X1

    ° + n2 φ2• Détermination de X2

  • Grandeurs molaires – grandeurs molaires partielles• Méthode logarithmique

    • (ƏX

    Ən2) n1 = X2 = n2

    Əφ2Ən2

    + φ2

    • Car Ə(n1X1°)

    Ən2= 0 puisque n1 et n2 sont constants

    • Si nous raisonnons sur 1000 g de solvant, n2 = m2 (molalité) on a alors :

    • X2 = (ƏX

    Əm2) n1 = m2

    Əφ2

    Əm2+ φ2, qui peut se mettre aussi sous la forme :

    • X2 =Əφ2

    Ə Ln(m2)+ φ2

  • Grandeurs molaires – grandeurs molaires partielles• Méthode logarithmique

    • Détermination de X2• On trace la courbe φ2 en fonction de ln(m2)

    • On précise la pente de la tangente à la courbe en un point M

    correspondant à m2, soit s =Əφ2

    Ə Ln(m2)

    • On obtient ainsi la grandeur recherchée

    • X2 = s + φ2• On aboutit au même résultat par le calcul si l’on peut exprimer

    empiriquement φ2 en fonction de m2 (expression analytique)

  • Grandeurs molaires – grandeurs molaires partielles• Méthode indirecte

    • Il y a une seule méthode basée sur la relation de Gibbs Duhem :

    • τ1 dX1 + τ2 dX2=0

    • Etablissement de la relation de Gibbs Duhem

    • Soit une grandeur extensive X=X(n1, n2 …..nj) à T et P constantes.

    • La différentielle de X s’écrit :

    • dX = (ƏX

    Ən1) T, P, n2 dn1 + (

    ƏX

    Ən2) T, P, n1 dn2 + …..

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthode indirecte

    • Pour un mélange binaire on a :

    • dX = X1 dn1+ X2 dn2 (1)

    • Or d’après la relation d’Euler on a :

    • X= n1X1 + n2X2• Par différentiation on a :

    • dX = n1dX1 + X1dn1+ n2dX2+ X2 dn2• dX = X1dn1+X2 dn2 + n1dX1 + n2dX2 (2)

    • En comparant les relations (1) et (2) il vient:

    • n1dX1 + n2dX2 = 0 Relation de Gibbs-Duhem

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthode indirecte

    • En divisant par n1+ n2 on obtient

    •n1

    n1+ n

    2

    dX1 +n2

    n1+ n

    2

    dX2 =0

    • D’où

    • τ1 dX1 + τ2 dX2=0

    • X correspond à V, Cp, Cv, U, H, S et G ;

    • Toutes ces relations obtenues à partir de la grandeur extensive quelconque X sont valables pour n’importe quelle grandeur extensive, en particulier pour V, Cp, Cv, U, H, S et G.

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthode indirecte

    • détermination de X2• Cette relation permet d’obtenir X2 à partir de X1 (ou inversement) si ce

    dernier est connu pour diverses compositions. On a :

    • dX2= -τ1

    τ2

    dX1

    • d’où en intégrant entre les états A et B on a:

    • (X2)B =(X2)A - AB τ

    1

    τ2

    dX1

    • Si X1 a été mesurée pour diverses compositions (diverses valeurs du rapport

    τ1

    τ2

    ) ; il suffit de tracer la courbe

    •τ1

    τ2

    = 1−τ2

    τ2

    = f (X1)

    • On fait une intégration graphique

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthode indirecte

    • L’intégrale est représentée par l’aire comprise entre la courbe et l’axe des abscisses.

    • On peut ainsi évaluer X2 en n’importe quel état B, pour vu qu’il soit cependant connu en un seul état A.

    • L’état A étant un état de référence décrivant les conditions initiales

  • Grandeurs molaires – grandeurs molaires partielles

    • Méthode indirecte

    • Application : détermination du volume molaire partiel V2• La courbe dans ce mode de représentation admet donc une

    asymptote d’abscisse V10

    • Lorsque τ1→ 0 => τ2 =1 ; τ1τ2

    → 0, V1=V10 volume molaire partiel à

    dilution infinie

    • Valeur pour laquelle la courbe coupe l’axe des abscisses.

    • La courbe peut cependant s’interrompre en M si la solution devient saturée en 2.

    • Les valeurs de V2 aux points pour lesquels V1=V10 et V1=V1

    0 sont respectivement V2

    0 dilution infinie et V20 corps pur. La figure suivante

    illustre la façon d’opérer.

  • Application : détermination du volume molaire partiel V2

    τ1

    τ2

    A

    S1

    S2 S3 B

    S4 M

    0 V10 (V1) A (V1) B V10 V

    Volume molaire Volume molaire partiel Solvant pur à dilution infinie

  • Application : détermination du volume molaire partiel V2

    • On prend souvent comme état A, un état simple; le solvant pur (V1=V1

    0) ou le soluté pur (V1=V10) dilution infinie, ce qui nécessite la

    connaissance une fois pour toute de V20 dilution infinie et ou V1

    0.

    • Mais ce procédé conduit souvent à quelque imprécision en raison de la difficulté d’évaluer l’aire dans la région asymptotique.

    • AB τ

    1

    τ2dV1 = Aire = S= S1+S2+S3+S4

    • Or

    • (V2) B = (V2)A - AB τ1τ2

    dV1

    • Où (V2) A est la valeur de V2 pour un état de référence donné

    • (V2) B = (V2)A - S

  • Application : détermination du volume molaire partiel V2

    Les considérations restent les mêmes lorsqu’il s’agit de chaleur, mais

    l’asymptote de la courbe est l’axe des ordonnées lui-même.

    En effet, lorsque τ1→1; τ1

    τ2 → ∞ ; ΔH1→ 0

    Ce qui représente la dissolution de 1 dans 1 pur ; la courbe coupe l’axe des

    abscisses en ΔH1 = ΔH10

    Dilution infinie τ1→0 ; τ2→1 ; τ1

    τ2 → 0

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • Définition

    • grandeur molaire partielle définie par :

    • Xi =(ƏX

    Əni) T, P, nj

    • La fonction thermodynamique qui joue un rôle très important dans les équilibres chimiques est l’enthalpie libre G

    • On définit l’enthalpie libre molaire partielle par :

    • Gi =(ƏG

    Əni)T, P, nj = µi : potentiel chimique du constituant i.

    • Il joue un rôle très important dans les phénomènes physico chimiques

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • G= i niµi à T et P constantes.

    • Les autres fonctions thermodynamiques peuvent se déduire de G.

    • H= G+TS= i niµi + TS

    • F= G-PV= i niµi – PV

    • U= F+TS= i niµi – PV + TS

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • Considérons la variation élémentaire de U par rapport aux variables extensives S, V et n:

    • U=U(S, V, ni)

    • dU= (ƏU

    ƏV)S,ni dV + (

    ƏU

    ƏS)V,nidS + i (

    ƏU

    Əni)S,V,njdni

    • dU= -P dV + T dS + i µidni (1)

    • Or en différentiant la relation U= i niµi – PV + TS

    • On a :

    • dU= -PdV – VdP + TdS + SdT + i nidµi + i µidni (2)

    • En comparant les 2 différentielles de U on a :

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • – VdP + SdT + i nidµi = 0

    • Relation de Gibbs Duhem généralisée

    • Cette relation peut être retrouvée en partant aussi des autres fonctions.

    • En prenant la différentielle des fonctions H, F et G on trouve l’expression de µi

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • H = H(S, P, ni)

    • H = U + PV

    • dH = dU + PdV + VdP or dU= - PdV + TdS + i µidni

    • = -PdV + TdS + i µidni + PdV + VdP

    • dH= TdS + VdP + i µidni

    • = (ƏH

    ƏS)P, ni dS + (

    ƏH

    ƏP)S, nidP + i (

    ƏH

    Əni)dni

    • D’où µi =(ƏH

    Əni)S, P, nj

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • F= F(V, T, ni)

    • F= U – TS

    • dF= dU – TdS – SdT

    • = - PdV + TdS + i µi dni – TdS – SdT

    • = - PdV – SdT + i µidni

    • = (ƏF

    ƏV)T, ni dV + (

    ƏF

    ƏT)V, nidT + i (

    ƏF

    Əni)T, V, nj dni

    • D’où µi =(ƏF

    Əni)T, V, nj

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange

    • Par conséquent le potentiel chimique du constituant i peut s’exprimer dans tous les cas de la façon suivante :

    • µi = (ƏU

    Əni)S, V, nj = (

    ƏH

    Əni)S, P, nj = (

    ƏF

    Əni)T, V, nj = (

    ƏG

    Əni)T, P, nj

    • Remarque

    • Ces formules permettent de relier le potentiel chimique à l’affinité chimique. En raisonnant avec l’enthalpie libre G on a :

    • A= - (ƏG

    Əξ)TP = - i (

    ƏG

    Əni) T, P

    dG

    dξ= - i νi (

    ƏG

    Əni) T, P =

    • A= - νi µi (car dξ = dni

    ν=> ν=

    dni

    dξ)

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Grandeurs de mélange• Les relations établies à propos de l’enthalpie libre G s’appliquent également

    au potentiel chimique µ, • IMPORTANT : A condition de remplacer les grandeurs extensives par les

    grandeurs molaires partielles.• On a:

    • dG= VdP – SdT + i µidni•

    • (ƏG

    ƏT)P = - S => (

    Ə(µi)

    ƏT)P = - Si

    •Ə

    Əni(ƏG

    ƏT) P, ni =

    Ə

    ƏT(ƏG

    Əni) P = (

    Ə(µi)

    ƏT)P = - Si : entropie molaire partielle

    • De même

    • (ƏG

    ƏP)T = V => (

    Ə(µi)

    ƏP)T = Vi : Volume molaire partiel

    •Ə

    ƏT(G

    T) P, ni = -

    H

    T2=>

    Ə

    ƏT(µi

    T)= -

    Hi

    T2= -

    hi

    T2Hi=hi

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Potentiel chimique d’un gaz

    • Gaz parfait, à la pression Pi

    • G= i=1N n i (µi

    ° + RTLnPi)= i=1N n i (µi

    ° + RTLnP + RTLnτi)

    • Donc µi = (ƏG

    Əni)P = µi

    ° + RTLnPi = µi° + RTLnP + RTLnτi

    • = A(T,P) + RTLnτi• µi

    °: potentiel chimique pour Pi°= 1 atm ne dépend pas de mais de T et

    de la nature du gaz.

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Potentiel chimique d’un gaz

    • Gaz réel

    • µig = µi° + RTLnfi

    • où fi est la fugacité partielle de i

    • µig = µi° + RTLnfi or fi = Pi νi

    • = µi° + RTLnPi + RTLnνi

    • = µi° + RTLnP + RTLnτi + RTLnνi

    • = µi° + RTLnP + RTLnνi + RTLnτi

    • = Ai (T,P,νi) + RTLnτi• Avec Ai (T,P,νi) = µi

    ° + RTLnP + RTLnνi

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Potentiel chimique d’un gaz

    • Mélange de gaz

    • Lois relatives au mélange de gaz

    • Loi de Dalton, Pi =P

    • Peut être déterminée par la relation de Gibbs-Duhem

    • i ni dµi =0

    • En divisant par le volume on a :

    • ni

    Vdµig = 0

    • i Ci dµig =0, Or µig = µig° + RTLnPi

    • dµig = RT dPi

    Piet PiV = niRT Pi = CiRT

    • D’où i Ci * RT dPi

    Pi=0 et dPi =0

    • i Pi = Cte = P

    • i Pi = P

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Loi de Leduc : Pi = τiP

    • Si on mélange les gaz à la même température et à la même pression, le volume occupé est la somme des volumes qu’occupent les gaz à la même pression et à la même température.

    • P V1 = n1RT

    • P V2 = n2RT => P (V1 + V2 +……. + Vi)= (n1 + n2 +……… + ni)RT

    • P Vi = ni RT

    • P i Vi = ni*RT

    • PV= RT ni

    • τi= Ci

    Ci

    = Ci RT

    CiRT

    = Pi

    Pi

    = Pi

    P

    • Pi = τiP

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Potentiel chimique d’un gaz

    • Mélange de gaz

    • Le potentiel chimique s’exprime en fonction de la fraction molaire

    • µig = µi° + RTLnPi = µi

    ° + RTLnτiP

    • µig = µi° + RTLnτi + RTLnP

    • µig = µi° + RTLnP + RTLnτi

    • µig = A(T, P) + RTLnτi•

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Potentiel chimique d’un gaz

    • Mélange idéal

    • Un mélange est idéal par rapport à un constituant i lorsque son potentiel chimique est une fonction linéaire du logarithme de sa fraction molaire avec un coefficient angulaire de RT

    • µig = A(T, P) + RTLnτi• La constante A(T, P) change suivant les constituants.

    • L’expression du potentiel chimique d’un constituant dans un mélange idéal a la même forme que celle du gaz parfait.

    • Ces deux potentiels diffèrent par la constante A(T, P).

  • Potentiel chimique et variation des fonctions thermodynamiques

    • Mélange parfait

    Un mélange parfait est un mélange idéal se manifestant à basse pression et pour lequel certaines grandeurs thermodynamiques sont nulles

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Le volume de mélange est nul dans tout mélange idéal

    •Ə

    Əni(ƏG

    ƏP)=

    Ə

    ƏP(ƏG

    Əni)

    •Ə

    Əni(V)=

    Ə

    ƏP(µi) = Vi = volume molaire partiel du constituant i

    • Or µig = A(T, P) + RTLnτi

    •Ə

    ƏP(µig) =

    Ə

    ƏP[A(T, P)] + 0 = Vi = Vi

    °

    • => Vi = Vi = Vi°

    • Car pour un corps pur τi =1 => µig = A(T, P)

    • Vi est le volume molaire du corps pur par conséquent

    • VM = i ni (Vi - Vi) = 0 volume de mélange

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • L’enthalpie de mélange ou chaleur intégrale de mélange est nulle

    • HM= 0

    • µig = A(T, P) + RTLnτi• µig = µig

    + + RT Lnτi• µig - µig

    + = RTLnτi

    •µigT

    -µigT

    = RLnτi

    • Appliquons la relation de Gibbs Helmholtz en dérivant l’expression précédente par rapport à T :

    •Ə

    ƏT

    µigT

    −Ə

    ƏT(µigT) =

    Ə

    ƏTR Ln τi

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • L’enthalpie de mélange ou chaleur intégrale de mélange est nulle

    • −Hi

    T2+ Hi

    T2= 0

    • D’où Hi - Hi° = 0 = ΔHi : chaleur molaire partielle de dissolution de i

    • En étendant la démonstration en prenant en compte les différents constituants il vient que la chaleur de mélange s’écrit :

    • HM= i ni (ΔHi) = i ni (Hi - Hi°) = 0

    • Dans tout mélange parfait l’enthalpie de mélange ou chaleur intégrale de mélange est nulle.

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • L’entropie de mélange n’est pas nulle

    • (ƏG

    ƏT) P = - S, par analogie (

    Ə

    ƏT(µi)) = - Si

    • En effet

    • Si = - (Ə

    ƏT(µi)) T = -

    Ə

    ƏT[(A(T, P) + RTLnτi)]

    • = -Ə

    ƏT[A(T, P)] – RLnτi

    • Si = Si - RLnτi• Or Si représente l’entropie molaire spécifique du corps pur.• D’où l’entropie molaire du mélange est :• Si - Si = - RLnτi = si - si• L’entropie de mélange est :

    • SM = i ni Si - i ni Si= - R i ni Lnτi

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Enthalpie libre de mélange

    • L’enthalpie libre s’écrit:

    • i ni µi = i ni µi + i ni RT Lnτi

    • i ni µi - i ni µi = i ni RT Lnτi

    • i ni (µi - µi)= i ni RT Lnτi

    • GM = i ni RT Ln τi ≠ 0 enthalpie libre de mélange.

    • En divisant la relation pur par i ni on a :

    • µi - µi = RT τi Ln τi ≠ 0 pour une mole de mélange

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • On peut dans ce cas définir un potentiel chimique d’excès car le mélange n’est pas parfait.

    • µig = µig* + µig

    • = µig° + RTLnP + RT Lnτi + RTLnνi

    • = µig° + RTLnP + RT Lnτi + µig

    • = µig+ + RTLnτi + µig

    • Si les gaz sont mélangés à la même température et à la même pression (conditions de la loi de LEDUC) le potentiel chimique d’excès est négligeable.

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • Enthalpie libre

    • µig = µig° + RT Ln P + RT Ln τi + RT Lnνi

    • µig - µig° = RT Ln P + RT Ln τi + RT Lnνi

    • µig - µig+ = RT Ln τi + RT Lnνi

    • Enthalpie libre de mélange

    • GM = i ni (µig - µig+)= i ni (RT Ln τi + RTLnνi)

    • GM = i ni (RT Ln τi) + i ni (RTLnνi)

    • Or GM = G*M + G•M

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • Pour un mélange de gaz parfaits

    • G*M = i ni (RT Ln τi) : enthalpie idéal de mélange

    • G•M = GM - G*M : enthalpie d’excès de mélange.

    • G•M = i ni (RTLnνi)

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • Entropie

    • sig= - (Ə

    ƏT(µi))= - (

    Ə

    ƏT(µig

    ° + RTLnP + RTLnτi + RTLnνi))

    • sig= -Ə

    ƏT(µig) - RLnτi - R Lnνi - RT

    Ə

    ƏT(Lnνi)

    • sig - sig+ = - RLnτi - R Lnνi - RT

    Ə

    ƏT(Lnνi)

    • entropie de mélange

    • SM = i ni (sig - sig+) = - i ni (R Ln τi + R Ln νi + RT

    Ə

    ƏT(Ln νi))

    • = - i ni (R Ln τi) - i ni (R Ln νi + RT Ə

    ƏT(Ln νi))

    • Or SM = S*M + S•M

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • S*M = - i ni (R Ln τi) pour un mélange de gaz parfait

    • Entropie idéal de mélange

    • S*M = - i ni (R Ln τi)

    • Entropie d’excès de mélange

    • S•M = SM - S*M = - i ni (R Ln νi + RT Ə

    ƏT(Ln νi))

    • µig= µig+ + RT Ln τi + RT Ln νi

    • µig= µig° + RT Ln Pi + RT Ln νi

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel• Volume

    • (Ə

    ƏP(µig)) T = (

    Ə

    ƏP(µig(+)))T + (

    Ə

    ƏP(RT Ln τi)) T + (

    Ə

    ƏP(RT Ln νi)) T

    • Vi = Vi+ + RT

    Ə

    ƏP(Lnτi) + RT

    Ə

    ƏP(Lnνi)

    • Vi - Vi+ = RT

    Ə

    ƏP(Lnτi) + RT

    Ə

    ƏP(Lnνi)

    • Volume de mélange

    • VM = i ni (Vi - Vi+) = V*M + V•M

    • Volume idéal de mélange

    • V*M = i ni RTƏ

    ƏP(Lnτi) = 0

    • Volume d’excès de mélange

    • V•M = VM - V*M = i ni RTƏ

    ƏP( Ln νi)

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • Enthalpie

    • µig= µig° + RT Ln Pi + RT Ln νi = µig

    ° + RT Ln P + RT Ln τi + RT Ln νi= A (T, P) + RT Ln τi + µig= µig

    * + µig• (Avec A (T, P) = µig

    ° + RT Ln P, µig*= A (T, P) + RT Ln τi et µig = RT (Ln νi)

    •µig

    T= µig(+)T

    + R Ln τi + R (Ln νi)

    • Enthalpie de mélange

    • HM = i ni (Hi - Hi+) = i ni Hi = i ni R

    Ə

    ƏT(Lnνi)

    • HM = H*M + H•M

    • Or H*M = 0= i ni (Hi - Hi+) pour un gp

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Mélange de gaz réels : mélange réel

    • D’où

    • H•M = HM = i ni (Hi - Hi+)

    • H•M = HM - H*M = i ni RTƏ

    ƏP(Lnνi)

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Potentiel chimique d’un corps condensé

    • Notion très délicate à préciser, mais elle peut être définie dans les conditions particulières : solutions très diluées (solubilité très faible)

    • On considère donc une phase gazeuse en équilibre avec phase liquide, il y a égalité des potentiels chimiques :

    • µis=µig= µi° + RT Ln fi= µi

    ° + RT Lnfi , Pi → 0

    • Pi: pression de vapeur saturante au-dessus de la solution

  • Grandeurs de mélange et grandeurs d’excès de mélange

    • Potentiel chimique d’un corps condensé

    • Pour une température et une pression totale fixées, Pi est alors une fonction des fractions molaires Pi = f(τ1, τ2,……. τi).

    • Dans le cas contraire il faut faire intervenir T et P

    • Dans tout le domaine de composition où un des corps, considéré comme solvant est un grand excès par rapport aux autres, la solution peut être considérée comme idéale.