cours composite [1]

Upload: tieuthuasari

Post on 10-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Cours Composite [1]

    1/22

    Polymer (nano)composites

    : key-role of chemistry

  • 8/8/2019 Cours Composite [1]

    2/22

    Composite :

    Natural composites Natural comp

    osites

    Bone structure

    Fibrillar

    collagen

    Hydroxyapatitecrystals

    (500nm x 250nm x 25 nm)

    Mother-of-pearl Nacre

    Silk proteins

    Heterogeneous association of two or several non-miscible materials, generally of different chemical nature, forming a multi-phase material characterized by a set of

    properties that none of the individual constituent displays separately.

    Spider thread

    Crystals of alanine-rich proteins

    Glycin-richamorphous

    matrix (70%)

  • 8/8/2019 Cours Composite [1]

    3/22

    Wood structure :

    Chemical composition

    Typical hard wood anatomy

    Constituent Weight fraction(%)

    Cellulose 45-50Hemicelluloses 20-35

    Lignin 22-30

    Extractives 0-10

  • 8/8/2019 Cours Composite [1]

    4/22

    Woodstructure :

    Macrofibril

    Microfibri

    l

    Cellulose chains

    Cellulose

    fibers

    Lignin matrix

    Natural fiber composite Crystalline cellulose Matrix of hemicellulose,

    lignin, and amorphouscellulose

    High stiffness especiallyin fiber direction

  • 8/8/2019 Cours Composite [1]

    5/22

    Synthetic composites Syn

    thetic composites

    - Used for thousands of years like Pis (adobe : blend of mud and straw)

    -More recent : concrete (cement and gravel)

    - Modern composite matrials :

    - Polymers filled with particles (end of 19th century)

    - Polymers reinforced by continuous fibers (since ~1935)

    DefinitionsDefinitions ::

    - Matrix : continuous phase, embedding the dispersed materials. When thematrix content is much less than the dispersed phase, the matrix can be named

    binder .- The dispersed phase is often called reinforcement since its main roleaims to enhance the matrix resistance to mechanical constraints.

    - These reinforcement materials are usually formed of continuous fibers (unidirectionial, woven or non-woven mat) or particles (isotropic or anisotropic).

  • 8/8/2019 Cours Composite [1]

    6/22

    Types of matrices :

    - metallic, ceramic, polymeric;

    Types de fibers :

    - metallic (rares), ceramic, carbon-based, glass, polymeric (Kevlar,Dyneema);

    Types of reinforcing particles :

    - silica, alumina, clays (kaolin, mica,), metals, carbon black, graphite,

    Various families :

  • 8/8/2019 Cours Composite [1]

    7/22

  • 8/8/2019 Cours Composite [1]

    8/22

    Typical example : polyethylene filled with reinforcing Typical example : polyethylene filled with reinforcing inorganic particlesinorganic particles

    Hydrophobic Hydrophilic-surfacepolyethylene Particulate fillers

    Fillers aggregation =>mechanical brittleness

    Uniaxial

    constraint

    Generation of voids => propagationof the rupture

  • 8/8/2019 Cours Composite [1]

    9/22

    Uniaxial

    constraint

    Generation of voids => propagation

    of the rupture

    (From Prof. G. Marosi)

  • 8/8/2019 Cours Composite [1]

    10/22

    Materials Stiffness Brittleness(fast

    deformation)

    Brittleness(slow

    deformation)Youngsmodulus

    Impactstrength

    (IZOD test)

    Elongation atbreak

    (tensile test)(GPa) (J/m) (%)

    HDPE0.7 80 900.0

    HDPE + 40wt% kaolin 3.1 17 1.6

    HDPE + 40wt% mica 6.5 20 0.3

    HDPE + 40wt% CaSO4 2.8 15 1.3

    HDPE + 40wt% CaCO 3 2.7 21 3.0

    Effect of particulate fillers on mechanical properties

    BRITTLENESS non-homogeneous mineral dispersion

    poor mineral-polymer interaction

    * High density polyethylene (Mw ~

    *

  • 8/8/2019 Cours Composite [1]

    11/22

    Tensile testing machine Impact testing machine

    ISOD

    CHARPY

  • 8/8/2019 Cours Composite [1]

    12/22

    Solutions ?1) Decrease the hydrophilicity of the filler surface

    Chemical treatment of the filler surface(alkoxysilane, alkylamine, Al carboxylates,)

    Improvement of thedispersion Poor adhesion

    Less brittle composite materials

  • 8/8/2019 Cours Composite [1]

    13/22

  • 8/8/2019 Cours Composite [1]

    14/22

    2) (Polymer) grafting reaction onto filler surface

    via chemical treatment of filler surface with coupling agents

    (vinylic or methacrylic alkoxysilanes, aluminum methacrylates,) followed by polymer grafting all along melt blending/processing

    Improved dispersion Reinforced adhesion =>Mechanical rupture within the

    matrix !

    igidity and resistance to break significantly improved

  • 8/8/2019 Cours Composite [1]

    15/22

  • 8/8/2019 Cours Composite [1]

    16/22

    Filler - Polymer Dispersion / Interaction

    Surface modification of thefiller

    Surface agents (monofunctional) :

    -silanes;-alkylamines;-Al carboxylates;-titanate esters; ...

    Coupling agents* (difunctional/radical

    grafting): -vinyl silanes;-aluminum

    methacrylates; ...

    Better filler dispersion with at best some improvement of adhesion*

    Filler pre-encapsulation Surface coating by a crosslinked resin layer (Ceraplast

    technology)(as diffuse ca.12nm interface of intermediate elastic

    modulus)-coupling agent ( -unsaturated amines)

    -difunctional monomers (dienes,dimethacrylates)

    -thermally activated initiators (peroxydes)

    Combination of stiffness/toughness - costly

    Polymerization from the fillersurface

    POLYMERIZATION-FILLED COMPOSITES : PFCs

  • 8/8/2019 Cours Composite [1]

    17/22

    Polymerization-Filling Technique

    Filler

    Z.-N. Catalyst

    Filled-Polyolefin

    Olefin

    (i.e., ethylene)

    fixation of a Ziegler-Natta type catalystonto the filler

    olefin polymerization from the fillersurface/pores

    ENIKOLOPIAN N.S., USSR Pat. 763,379 (1976)HOWARD E.G., US Pat. 4,104,243 and 4,097,447 (19

    PFT on a wide range of fillers :

    acidic surface (kaolin, silica,glass beads,)

    basic surface (magnesiumhydroxide,...)

    organic fillers (graphite, carbonblack,...)

    metallic fillers (nickel, zinc,)

  • 8/8/2019 Cours Composite [1]

    18/22

    Polymerization-Filling Technique

    y developed for Ziegler-Natta catalysts (transition metal complexes

    Transition metal ( M)

    Sublimation,Impregnation or

    Deposition

    Solid ( M) phase on thefiller surface

    Support-OH + MRn

    Support-O MRn-1 + RH

    Physicaladsorption

    Chemicalgrafting

    Catalyst types : Ti : TiCl 4 /AlR 3 ; Ti(BH 4)3 ; Ti(OR) 4 /AlR 2Cl

    Zr : Zr(CH 2-C 6H5)4 ; Zr(BH 4)4

    V : VCl 4 /AlR 3 ; (VCl 3 + VO(OEt) 3)/AlEt 2Cl

    Cr : CrRCl 4 ; Cr(O 2CR) 3

    Hf : Hf(CH 2-C 6H5)4 ; Hf(BH 4)4

  • 8/8/2019 Cours Composite [1]

    19/22

    tallocenes : Single Site Catalysts in Olefin Polymerization

    eneral structure activation by methylaluminoxane MAO

    MXX

    + A l O

    CH3

    Al O

    CH3

    X n

    MCH3

    +

    M = Ti, Zr, Hf X = Cl, CH3, ...

    n

    MAO for : - methylation- cationization

    - protic scavenger action

    Properties

    -High catalyst activity-Molecular weight control

    (sensitivity to hydrogen)-Copolymerization with -olefins

    (thermoplastic to elastomer)mol% comonomer

    molecular masses

    Ziegler-Natta

    metallocene

  • 8/8/2019 Cours Composite [1]

    20/22

    PFT via Metallocene Catalysts

    filler

    MAO

    Composite

    Metallocene Monomer

    Deagglomeration

    of the filler

    Fixationpossible on

    basic, acidic,organic,metallicsurfaces

    Protection of

    activecatalyst

    Immobilization of the active species

    throughelectrostaticinteractions

    Homogeneousdispersion of the fille

    MtR

    (+)Al O

    CH3

    X n

    (- )

  • 8/8/2019 Cours Composite [1]

    21/22

    T via metallocene catalysis : some applications

    iller precoating : Dispersion of coated glass beads in HDPE

    Precoating of glass beads byeither polyethylene (HDPE) or ethylene/1-octene copolymer (LLDPE)

    and composites filled with 20 wt% glass beads

    Composite

    HDPEMatrix

    Filler coating(wt %)

    E (Gpa) r (%) r (MPa) I.E. (kJ/m2)

    1a) - 1.7 636 24.7 12.0

    1a)

    HDPE (14.5) 1.3 659 28.5 150.510 b) - 1.4 4.2 26.4 14.5

    10 b) LLDPE (7.0) 1.5 6.9 28.9 41.0

    a) Melt flow index under 2.16 kg load MI2 = 1 g/10min.; b) MI2 = 10 g/10min.

    bare glass beads/HDPEcomposite

    coated glass beads/HDPEcomposite

    AFM Phase detection

  • 8/8/2019 Cours Composite [1]

    22/22