circuits photoniques intégrés pour les applications en

43
Circuits Photoniques Intégrés pour les Circuits Photoniques Intégrés pour les Applications en Communications Optiques Applications en Communications Optiques Journée scientifique de la chaire UPsud/PSA « Optoélectronique et Photonique » Guang-Hua DUAN III-V Lab, a joint lab of 'Alcatel-Lucent Bell Labs France', 'Thales Research and Technology' and 'CEA Leti', Campus Polytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau cedex, France 5 Juin 2014

Upload: others

Post on 05-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Circuits Photoniques Intégrés pour les Applications en

Circuits Photoniques Intégrés pour les Circuits Photoniques Intégrés pour les

Applications en Communications OptiquesApplications en Communications Optiques

Journée scientifique de la chaire UPsud/PSA« Optoélectronique et Photonique »

Guang-Hua DUANIII-V Lab, a joint lab of 'Alcatel-Lucent Bell Labs France', 'Thales

Research and Technology' and 'CEA Leti', Campus Pol ytechnique, 1, Avenue A. Fresnel, 91767 Palaiseau cedex, France

5 Juin 2014

Page 2: Circuits Photoniques Intégrés pour les Applications en

What is IIIWhat is III--V Lab?V Lab?

► A jointly owned Alcatel-Lucent Bell Labs / Thales Research &

Technology /CEA R&D Lab LETI

� French GIE (Groupement d’Intérêt Economique) organization

► with about 150 R&D experts (incl. 25 from CEA-Leti + ~18 PhD students)

� Dedicated to epitaxial growth, device and circuit design and manufacturing

► performing R&T on III-V semiconductor technology and integration with

Si circuits and microsystems Si circuits and microsystems

� Optoelectronic and microelectronic materials, devices and circuits

� From basic research to technology transfer for industrialisation …

� … or to small scale and pilot line production

► for complementary Alcatel-Lucent / Thales applications …

� High bit rate Optical Fibre and Wireless Telecommunications

� Microwave and Photonic systems for Defence, Security and Space

Page 2

Page 3: Circuits Photoniques Intégrés pour les Applications en

OutlineOutline

►Motivation

►Current state of art of III-V and silicon PICs

� InP based PICs

� Silicon based PICs

� Comparison of InP PICs and silicon PICs� Comparison of InP PICs and silicon PICs

►Hybrid III-V/Si integration technology

►Future directions

Page 3

Page 4: Circuits Photoniques Intégrés pour les Applications en

Optical communication market segments Optical communication market segments

and key components /key techniquesand key components /key techniques

Acces networksUp to 10 Gb/s per λλλλ

Data communications

Up to 25 Gb/s

VCSEL: low power consumption

Parallel links

Directly Modulated Lasers ( DML) : low cost, low temperature sensitivity, low chirp

100 m

Page 4

Metro networksUp to 100 Gb/s per λλλλ

Core networksUp to 400 Gb/s per λλλλ

Electro-absorption Modulated Lasers (EML)

Wavelength division multiplexing

Tunable lasers over C band

Wavelength division multiplexing

QPSK modulators/coherent detection

10 km

100 km

Page 5: Circuits Photoniques Intégrés pour les Applications en

ShortShort--reachreach opticaloptical transceiverstransceivers

Page 529 Juin 2011

Page 6: Circuits Photoniques Intégrés pour les Applications en

Transmission WDM

Atté

nuat

ion

(dB

/km

)

Longueur d’onde (µm)

0

1

2

1,45 1,46 1,48 1,55 1,60 1,65 1,80

λλλλ (nm)1530 40 50 60 1570

λλλλ1 λλλλi λλλλk λλλλN

Longueur d’onde (nm)bande passante des

amplificateurs optiques

Page 7: Circuits Photoniques Intégrés pour les Applications en

Wavelength Division MultiplexingWavelength Division Multiplexing

laser modulator

laser modulator

laser modulator

WDM transmitter

Wavelength multiplexer

λλλλ1

λλλλ2

λλλλNlaser λλλλN

Photodiode

Photodiode

Photodiode

Wavelength multiplexer

λλλλ1

λλλλ2

λλλλN

WDM receiver

Page 8: Circuits Photoniques Intégrés pour les Applications en

MetroMetro--long long haulhaul transceivertransceiver

Page 829 Juin 2011

Page 9: Circuits Photoniques Intégrés pour les Applications en

Evolution of Evolution of CoherentCoherent TransceiverTransceiver ModuleModule

Page 929 Juin 2011

Page 10: Circuits Photoniques Intégrés pour les Applications en

100 Gb/s Transmit

100Gb/s Transmit

100Gb/s Receive

Photonic Integrated CircuitsPhotonic Integrated Circuits

100 Gb/s Receive

Courtery from Infinera

Page 11: Circuits Photoniques Intégrés pour les Applications en

PIC: an onPIC: an on--going (r)evolutiongoing (r)evolution

laser modulator

laser modulator

laser modulator

WDM transmitter

Wavelength multiplexer

λλλλ1

λλλλ2

λλλλNlaser

Photonic IntegrationSmall footprintCost effectiveReduced power consumption

High device yieldTrade-off on performance

Page 12: Circuits Photoniques Intégrés pour les Applications en

Intégration monolithic sur InP

Butt-joint par une reprise de croissance

Guide actif

laser

Guide passif

Mux

Page 13: Circuits Photoniques Intégrés pour les Applications en

CWDM : intégration de 4 et 8 λλλλ par SAG

► Principe de la SAG : compositions + effet latéral

X

Ga0.40In0.60As

Substrat

épaisseur x 2.5

200 nm

Ga0.50In0.50As

Page 14: Circuits Photoniques Intégrés pour les Applications en

►Masque 8 λλλλ à 20 nm

Wm1

Wm2

λλλλ1

λλλλ21500

1550

CWDM : intégration de 4 et 8 λλλλ par SAG

Wm i

dielectric

λλλλi1300

1350

1400

1450

0 20 40 60 80 100 120 140 160 180

Wm (µµµµm)

λλ λλ (n

m)

∆λ∆λ∆λ∆λ=160 nm

Page 15: Circuits Photoniques Intégrés pour les Applications en

100 G PIC from 100 G PIC from InfineraInfinera

Laser- modulator

Wavelength multiplexer

λλλλ1

λλλλ2

λλλλN

Laser- modulator

Laser- modulator

Page 16: Circuits Photoniques Intégrés pour les Applications en

Produit visé PIC 10x10G TOSAProduit visé PIC 10x10G TOSA

Isolateur, wavelength lockerSous-module optique

Substrat céramique multi-couches avec 10 drivers (éloignés

du PIC)

Élément Peltier

Embase Si

Barrette 10 lasers flip-chippée

AWG flip-chippé

Page 17: Circuits Photoniques Intégrés pour les Applications en

PIC: Detailed ComparisonPIC: Detailed Comparison

►Power consumption: 30% less than 10xXFP

►Footprint reduction compared to discrete solution: 68% less

than 10xXFP+Mux/Demux

► Lower cost: 7.6 k$ in 2011 and 5.2 k$ in 2012 compared to 13.7

k$ for 10xXFP+Mux/Demux

►Comparison between ALU PIC and Infinera PIC

ALU PIC

Power Consumption (28W)

Reach: Unamplified links up to 70 km� higher Tx output power (DML

approach + Silica AWG)� higher sensitivity (APD based Rx)

Infinera PIC

Power Consumption (48W)

Reach: Unamplified links <10km� lower Tx output power (EML

approach + InP AWG)� lower sensitivity (PIN based Rx)

Page 18: Circuits Photoniques Intégrés pour les Applications en

PIC for QPSK transmitterPIC for QPSK transmitter

► Infinera’s QPSK transmitter:

Nested MZM

DFBPM

► Bell Lab’s QPSK/QAM Source

� Integration of tunable laser and Electro-absorption Modulators

Page 18

I. Kang, Optics Express 2007, C. Kazmierski, OFC 201 4

Page 19: Circuits Photoniques Intégrés pour les Applications en

Roadmap of Roadmap of Infinera’sInfinera’s PICsPICs

Page 19

40 elements

40 elements

100 elements

From R. Dodd, Infinera

Page 20: Circuits Photoniques Intégrés pour les Applications en

►CMOS EIC platform on silicon� Mature industrial process with high yield

� Foundry model for cost-effective industrial production

� Cost-effective for large volume

►PICs on silicon� Taking benefit for EICs: industrial tools, foundry models, etc.

� Co-integration with CMOS electronics, close proximity between signal

Photonic integrated circuits on siliconPhotonic integrated circuits on silicon

� Co-integration with CMOS electronics, close proximity between signal processing unit and photonic elements

� Providing optical interconnect solutions for “More than Moore” for EICs

Can silicon be a Photonic integration platform?

Page 21: Circuits Photoniques Intégrés pour les Applications en

The building blocksThe building blocks

Optical modulator

MUX & DEMUX

Photodetector

Grating coupler

Waveguide

In-plane coupler

Laser source

Optical switch

Page 22: Circuits Photoniques Intégrés pour les Applications en

Wafer level testingWafer level testing

Impossible d'afficher l'image. Votre ordinateur manque peut-être de mémoire pour ouvrir l'image ou l'image est endommagée. Redémarrez l'ordinateur, puis ouvrez à nouveau le fichier. Si le x rouge est toujours affiché, vous devrez peut-être supprimer l'image avant de la réinsérer.

Page 23: Circuits Photoniques Intégrés pour les Applications en

Luxtera’sLuxtera’s Active Optical Active Optical CablesCables

Luxtera technology for transceiver•Freescale SC Hip7 0.13µm SOI CMOS process • Customized SOI & CMOS 130nm technology• Proprietary library for electronic design

• Flip chip laser die bonding •Si lateral depletion modulator� 10Gb/s •Ge photodetectors� 20GHz•Surface holographic gratings fiber coupling•4x28 Gb/s using 4 parallel links

Page 2329 Juin 2011

•4x28 Gb/s using 4 parallel links

Luxtera and STMicroelectronics to Enable High-Volume Silicon Photonics SolutionsCollaboration between two leading companies will bring silicon photonics into mainstream markets

March 1 st, 2012

Page 24: Circuits Photoniques Intégrés pour les Applications en

SingleSingle--chip 100 G Si transceiver Chipchip 100 G Si transceiver Chip

Page 24

•27x35.5 mm2 module: PIC, Drivers and TIA•Silicon PIC: 2.7x11.5 mm2

C. Doerre, et al., OFC 2014

Page 25: Circuits Photoniques Intégrés pour les Applications en

Photonic Integration : Photonic Integration : InPInP vsvs Si Photonics Si Photonics

PlatformsPlatforms

InP platform Si-photonics platform

Functionality Source, Detector, Waveguide, Modulator

Detector, Waveguide, ModulatorMassive electronic integrationNo source: need for InP hetero-integration or Ge sources

Performance Excellent optical performanceNo large scale integration with electronics

Good optical performanceLarge scale integration with electronics for ‘free’electronics for ‘free’

Footprint Large for passive elements (AWG, ring resonators, etc)

Compact for passive elements (AWG, ring resonators, etc)

Cost Higher due to individual device testing,

Low yield for PICs

Wafer scale testingCMOS processing & monitoring for ‘free’Foundry model for volume production will drive cost down

Power consumption

Low for electro-absorption modulator, higher for Mach-Zehnder type modulator

Novel modulator design results in low drive voltage

Page 26: Circuits Photoniques Intégrés pour les Applications en

Our Vision on Silicon PICsOur Vision on Silicon PICs

► Silicon photonics approach:

� Mature CMOS fabrication process

� Available key building blocks: modulators, detectors, low loss passive waveguides,

wavelength multiplexers/demultiplexers

� Lack of efficient lasers sources on silicon

► Sources for silicon photonics

� Ge on silicon lasers and Epitaxy of III-V layers on silicon through a buffer layers: very

promising results, but still requiring developmentspromising results, but still requiring developments

� Hybrid III-V/Si integration using wafer bodning: most efficient solution today

► Hybrid III-V/Si integration combing advantages of III-V and Si

� III-V: providing optical gain

� Si: providing wavelength selection and tuning using passive silicon waveguides

� Dies to wafer or wafer to wafer bonding proven to be a reliable process for SOI wafers

� => a new classe of tunable lasers with large tuning range, high SMSR and compact size

� = > PIC transmitter integrating tunable lasers and silicon modulators

Page 26

Page 27: Circuits Photoniques Intégrés pour les Applications en

Heterogeneous integrationHeterogeneous integration

Growth of the III-V wafers

III-V die or wafer bonding on SOI (unprocessed) InP substrate

removal

Processing of SOI wafers (modulators, detectors, passive waveguides, etc.)waveguides, etc.)

Metallization of lasers, modulators and detectors

Processing of III-V dies/wafer

Page 28: Circuits Photoniques Intégrés pour les Applications en

Growth of IIIGrowth of III--V wafers for hybrid integrationV wafers for hybrid integration

InP (n)

SCH

MQW

SCH

Growth of active layer in a reverse order compared to classical InPdevices

Example of a 6 QW MBE grown wafer

Page 28

•Strained MQW InGaAsP/InP for 1.3 and 1.5 µm operation using MBE•Strained MQW InGaAlAs/InP for 1.3 operation using MOVPE

SCH

InP (p) cladding

InGaAs contact

Substrate

Page 29: Circuits Photoniques Intégrés pour les Applications en

ProcessingProcessing of SOI wafersof SOI wafers

SOI substrate

1-Processed SOI substrate: etching and

implantation of silicon waveguide

Typical thickness of silicon waveguides for

coupling with III-V waveguides between 400

and 500 nm

Page 29

and 500 nm

2- PECVD silica deposition

3- CMP planarization

Typical thickness of silica above RIB silicon

waveguide between 30 and 100 nm

Page 30: Circuits Photoniques Intégrés pour les Applications en

IIIIII--V / Si heterogeneous integration: wafer bondingV / Si heterogeneous integration: wafer bonding

PECVD silica deposition

Thin layer 10 nm

(roughness < 0.5 nm RMS)

III-V heterostructureSOI wafer Low temperature bonding

Page 30

Annealing and Substrate

removal

Page 31: Circuits Photoniques Intégrés pour les Applications en

Bonded IIIBonded III--V wafers/dies on SOI V wafers/dies on SOI

Wafer to wafer bonding Dies to wafer bonding

Page 31

Page 32: Circuits Photoniques Intégrés pour les Applications en

Bonding of IIIBonding of III--V dies on SOI waferV dies on SOI wafer

III-V dies

SiO2 BOX

Si waveguide

Page 33: Circuits Photoniques Intégrés pour les Applications en

ProcessingProcessing of IIIof III--V lasers on V lasers on siliconsilicon

Laser cutting of 8’’ wafers into 3’’ wafers, ready to be processed in a III-V foundry

Page 34: Circuits Photoniques Intégrés pour les Applications en

Hybrid laser structureHybrid laser structure

► Straight active section, typically 2- 3µm width , for optical amplification

► Passive SOI rib waveguides

► Double taper structure for both InP and Si waveguides or single taper structure for

Si waveguide to efficiently couple light from III-V to silicon

M. Lamponi, et al., IEEE PTL, Jan. 2012

Page 35: Circuits Photoniques Intégrés pour les Applications en

Power vs current of a FabryPower vs current of a Fabry--Perot samplePerot sample

at 1.3 µm (InGaAlAs/InP)at 1.3 µm (InGaAlAs/InP)

► Threshold current of 12mA at room temperature for 500 µm devices

► Maximum out power at 20°C: 10 mW at CW conditions and 16 mW for

I = 150 mA at pulse conditions

► Operating up to 80° at CW conditions

► Still reflections in the III-V/Si waveguide transition areas

Page 35

Page 36: Circuits Photoniques Intégrés pour les Applications en

Power Power vsvs current of a current of a FabryFabry--Perot sample at 1.5 Perot sample at 1.5

µm (µm (InGaAsPInGaAsP//InPInP))

4

6

8

10

12

14

Pho

tod

iod

e co

uple

d o

utp

ut p

ow

er (m

W) 15°C

20°C

30°C

40°C

50°C

60°C

70°C

80°C

► Threshold current: 23mA at room temperature for 800 µm devices

► Maximum out power at 20°C: 18 mW at CW conditions

► Operating up to 65° at CW conditions

► Still reflections in the III-V/Si waveguide transition areas

Page 36

0

2

4

0 50 100 150 200

Pho

tod

iod

e co

uple

d o

utp

ut p

ow

er (m

W)

Current (mA)

Page 37: Circuits Photoniques Intégrés pour les Applications en

TunableTunable lasers with 45 nm tuning rangelasers with 45 nm tuning range

Heater/Ring resonator 2Gain section Grating

couplerHeater/Ring resonator 1

A. Le Liepvre, et al., GFP Conference, Aug. 2012

Page 38: Circuits Photoniques Intégrés pour les Applications en

WavelengthWavelength selectableselectable laserlaser

►Wavelength selectable

source :

� Si AWG inside the laser

cavity as a filter

� Broadband bragg

reflectors for feedback

� Si AWG : 5 channels, � Si AWG : 5 channels,

400GHz spacing

� Vertical bragg gratings for

on wafer scale testing

Page 38

Simple wavelength tuning for access networksCan also be used as multi-wavelength source

Page 39: Circuits Photoniques Intégrés pour les Applications en

WavelengthWavelength selectableselectable laser : laser : spectrumspectrum

� Spectrum for each channel with 110mA injection

� Single mode operation with > 30 dB SMSR

� 390GHz spacing between channels

-20

-10

0

Po

we

r co

up

led

in f

ibre

(d

Bm

)

L5 I=110mA

L4 I=110mA

Page 39

-80

-70

-60

-50

-40

-30

1480 1500 1520 1540 1560 1580 1600

Po

we

r co

up

led

in f

ibre

(d

Bm

)

Wavelength (nm)

L3 I=110mA

L2 I=110mA

L1 I=110mA

-80

-70

-60

-50

-40

-30

-20

-10

0

1514 1516 1518 1520 1522 1524

Po

we

r co

up

led

to

fib

re (

dB

m)

Wavelength (nm)

Spectrum for each channel

Page 40: Circuits Photoniques Intégrés pour les Applications en

TunableTunable transmitter chiptransmitter chip

III-V waveguideBack Bragg reflector

Front Bragg reflector

Silicon MZ modulator Output waveguideHybrid III-V/Si laser

Page 40

Laser Ring resonator

Mach-Zehnder Modulator

G. –H. Duan, et al., ECOC 2012

Page 41: Circuits Photoniques Intégrés pour les Applications en

λλλλ1 λλλλ2

λλλλ3 λλλλ4

-2

-3

Log(B

ER

)

Ref.λ1λ2λ3λ4λ5λ6λ7

BER and eye BER and eye diagrammediagramme at 10 at 10 GbGb/s/s

Page 41

λλλλ5 λλλλ6

λλλλ7 λλλλ8

-4

-5

-6

-7-8-9

-10-32 -30 -28 -26 -24 -22 -20 -18 -16

Log(B

ER

)

Received Power (dBm)

λ7λ8

Page 42: Circuits Photoniques Intégrés pour les Applications en

Technology roadmapTechnology roadmap

Design &

Demonstrators

Photonic PDK

Photonic IP

libraries

4x25G Active optical cable

4x100 G WDM transceiver

2 Tb/s WDM transceivesr

Optical Network on Chip

Building blocks

Design & integration

Plasmonics

High temperature

laser

Low power 40G modulator

Avalanche photodiode

Photonic Electronic integration

Complete Design flow

2013 2015 2017

Page 43: Circuits Photoniques Intégrés pour les Applications en

AcknowledgementsAcknowledgements

► European projects:

� Plat4M, Fabulous, Sequoia

► French national projects:

� ANR Ultimate (QPSK QAM transmitter)

► III-V Lab:

� A. Accard, P. Kaspar, F. Poingt, D. Make, F. Lelarge, G. Levaufre, N. Girard, C. Jany,

A. Le Liepvre, M. Lamponi, A. Shen, R. Brenot, F. Mallecot

Page 43

A. Le Liepvre, M. Lamponi, A. Shen, R. Brenot, F. Mallecot

► CEA:

� S. Olivier, S. Malhuitre, S. Messaoudene, D. Bordel, and J.-M. Fedeli, C Kopp, B.

Ben Bakir, L. Fulbert

► IEF:

� L. Vivien, D. Morini