chimie 40s centre scolaire léo-rémillard roger durand i

70
Chimie 40S Centre scolaire Léo-Rémillard Roger Durand 1 I. La structure de l’atome A. Le modèle quantique 1. Historique Les théories nous permettent de mieux comprendre la matière et le monde qui nous entoure. Par contre, parfois la théorie ne fonctionne pas dans certains cas et nous devons l’améliorer ou la changer complètement. Voici un bref historique du modèle atomique jusqu’à aujourd’hui. a. John Dalton (1766-1844) Le modèle de Dalton (1805) reposait sur ces cinq points - toute matière est faite de particules indivisible, l’atome. Ceux-ci étaient, d’après lui, les unités fondamentales de la matière. - les atomes d’un même élément ont un rayon et une masse identiques mais différents que d’autres éléments - les atomes ne peuvent être détruites, subdivisés ni créés - les atomes se combinent en nombres entiers pour former des composés - dans des réactions chimiques, les atomes sont réarrangés pour former des différents composés Les scientifiques pouvaient utiliser cette théorie afin de prédire les produits d’une réaction. Quoiqu’elle fût utile dans certains cas, la théorie avait de sérieuses lacunes dans la prédiction de la structure des composés. Son modèle était tout simplement une boule.

Upload: others

Post on 22-Jun-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

1

I. La structure de l’atome

A. Le modèle quantique

1. Historique

Les théories nous permettent de mieux comprendre la matière et le monde qui

nous entoure. Par contre, parfois la théorie ne fonctionne pas dans certains

cas et nous devons l’améliorer ou la changer complètement. Voici un bref

historique du modèle atomique jusqu’à aujourd’hui.

a. John Dalton (1766-1844)

Le modèle de Dalton (1805) reposait sur ces cinq points

- toute matière est faite de particules indivisible, l’atome. Ceux-ci étaient,

d’après lui, les unités fondamentales de la matière.

- les atomes d’un même élément ont un rayon et une masse identiques

mais différents que d’autres éléments

- les atomes ne peuvent être détruites, subdivisés ni créés

- les atomes se combinent en nombres entiers pour former des composés

- dans des réactions chimiques, les atomes sont réarrangés pour former des

différents composés

Les scientifiques pouvaient utiliser cette théorie afin de prédire les

produits d’une réaction. Quoiqu’elle fût utile dans certains cas, la théorie

avait de sérieuses lacunes dans la prédiction de la structure des composés.

Son modèle était tout simplement une boule.

Page 2: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

2

Le daltonisme, où on ne peut différencier certaines couleurs dont

communément le rouge et le vert, est nommé d’après lui. Il fût un des

premiers scientifiques à publier une recherche à ce sujet.

b. Joseph John Thomson (1856-1940)

La théorie de Dalton a été la seule à être accepté pour presque cents ans.

C’est en 1897 que Thomson ait découvert une particule négative plus de

1000 fois (1837 pour être spécifique) plus légère qu’un atome

d’hydrogène, l’électron. En utilisant un tube de Crookes, Thomson a

envoyé un rayon cathodique vers des plaques chargées et a découvert que

le rayon déviait.

Étant donné que les atomes contiennent des charges négatives mais sont

neutres, les atomes devaient aussi contenir des charges positives. Le

proton n’étant pas encore découvert, Thomson proposa un atome chargé

positivement ayant des électrons parsemés dans celui-ci.

Page 3: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

3

c. Ernest Rutherford

Les théories de Henri Becquerel, Marie Curie et Pierre Curie (1896-1900)

par rapport à la radioactivité que certains éléments émettent des charges

positives (alpha), négatives (bêta) et de l’énergie (rayons gamma) furent

utiles pour Rutherford afin qu’il puisse découvrir le proton. Note : Hans

Geiger et Ernest Marsden, élèves de Rutherford, ont mené l’expérience

sous la supervision de Rutherford en 1909.

D’après la théorie de Thomson, les particules alpha devraient passer à

travers une mince feuille d’or sans être déviés. Ce n’est pas ce qu’ils ont

observé.

Rutherford a donc proposé, en 1911, un modèle de l’atome où le noyau est

positif et les électrons circulent autour du noyau. Donc, l’atome est

surtout constitué d’espace vide. Au niveau atomique, les particules alpha

réagissent donc de la façon suivante :

Page 4: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

4

Le modèle nucléaire (ou planétaire) de Rutherford :

d. Niels Bohr

Évidemment, nous n’aurions pas amélioré le modèle de Rutherford s’il

n’avait pas de lacunes ou si de nouvelles découvertes n’auraient pas été

faites. Ces lacunes étaient :

- un noyau composé seulement de particules positives devrait se

désintégrer à cause des forces de répulsion

- la masse de l’atome ne se calculait pas de façon exacte

- un électron en mouvement autour du noyau, d’après les lois de physique,

devrait émettre une lumière visible continue

- l’électron devrait perdre de l’énergie en émettant ce rayonnement alors

son rayon orbital devrait diminuer et tomber dans le noyau (en une

fraction de seconde selon les calculs)

Les deux premiers points ont partiellement été répondus grâce à la

découverte du neutron en 1932. Histoire à continuer. Afin de comprendre

les découvertes de Bohr, il faut premièrement comprendre la lumière.

B. Le spectre électromagnétique

Lorsqu’on parle de lumière, il existe une théorie importante à la base : celle de la

dualité onde-particule (ou parfois onde-corpuscule). Cette théorie est à la base du

modèle quantique de l’atome et dit que la lumière est à la fois une onde et une

particule.

1. Le modèle ondulatoire

La lumière est de l’énergie en mouvement qui se propage sous forme d’ondes.

= la longueur d’onde (mètres, m)

- la distance entre 2 crêtes (ou creux) successives

)( ouf = la fréquence (Hertz, Hz)

- le nombre d’ondes par unités de temps (secondes, s)

Page 5: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

5

l’amplitude indique l’intensité de l’onde (volume pour le son, intensité

lumineuse pour la lumière)

c (ou v) = la vitesse de la lumière

2,99792x108 m/s (nous utiliserons 3,00x108 m/s)

T = la période (en secondes, s)

- la durée d’une onde

11

fT ou

Tf

1

La relation entre le temps, la distance et la vitesse est la suivante :

t

dv

Par conséquent, pour la lumière nous avons :

fT

c

Page 6: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

6

2. Le modèle particulaire

La lumière est une forme d’énergie qui voyage par quantités (paquets) appelés

quanta. Chaque quantum, aussi nommé photon, contient une quantité

d’énergie qui est fonction de la fréquence lumineuse.

hfE où E = énergie en joules (J)

h = constante de Planck = 6,62x10-34 J/Hz

Étant donné la formule pour la vitesse de la lumière :

hcE

3. Le spectre électromagnétique

Page 7: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

7

4. La dualité onde-particule

La lumière, selon certaines circonstances, agira comme une particule. Prenons

par exemple la réflexion ou le fait que la lumière peut voyager dans le vide.

Dans d’autres circonstances la lumière agit comme une onde, comme dans

l’expérience suivante. Une onde qui traverse par deux fentes produira un

phénomène d’interférence où il y aura certains lieux où les ondes

s’amplifieront et d’autres où ils s’annuleront. La lumière agit, dans ce cas,

comme une onde.

Encore plus étrange, si on envoie une particule de lumière (un photon) par une

des fentes elle agira comme une particule en arrivant à l’écran. Par contre, si on

envoie assez de photons, nous voyons que le patron d’interférence réapparait

petit à petit.

C. Le modèle quantique continué

1. Le modèle atomique de Bohr

Selon la physique du 19e siècle, l’énergie émise par les électrons devrait être

observable comme un spectre continu (nous devons voir toutes les couleurs de

l’arc en ciel). Par contre, lorsque les atomes absorbent de l’énergie, ils

émettent plutôt des raies de couleurs distinctes. Chaque élément possède ses

propres raies spectrales (comme une empreinte digitale).

Page 8: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

8

Personne n’a pu expliquer ces raies spectrales jusqu’en 1913 lorsque Niels

Bohr (élève de Rutherford) a proposé un nouveau modèle de l’hydrogène. Le

modèle de Bohr se base sur ces propos :

a. L’atome n’a que certains niveaux d’énergie possibles qu’on appelle

états stationnaires. À chaque état stationnaire, les électrons occupent des

orbites circulaires fixes autour du noyau (les couches électroniques en

10e année).

b. Lorsque l’atome est dans un de ses états stationnaires, il n’émet pas

d’énergie.

c. Un atome change d’état stationnaire en émettant ou en absorbant une

quantité spécifique d’énergie qui est exactement égale à la différence

d’énergie entre les deux états stationnaires.

Bohr se basait sur l’hypothèse de Max Planck qui, en 1900, avait dit qu’au

niveau atomique, la matière ne peut qu’absorber ou émettre des quantités

spécifiques d’énergie. Chacune de ces quantités spécifiques s’appelle un

quanta d’énergie. Même si Planck affirmait que l’énergie de la matière était

quantifiée, il continuait à décrire l’énergie sous la forme d’onde.

Les raies spectrales pouvaient être expliquées par l’hypothèse des quanta

d’énergie.

Électrons d’hydrogène excités

Si les électrons ne peuvent absorber un certain montant d’énergie, l’énergie

émise (la lumière qu’on voit, par exemple) doit être spécifique elle aussi.

Lorsque les électrons sont excités, ils absorbent un certain montant d’énergie

dépendant du nombre de couches qu’ils montent. Lorsque les électrons

descendent d’un état d’excitation, ils émettent une couleur spécifique

dépendant du montant et de quelles couches ils descendent.

Ce modèle pouvait prédire facilement les spectres d’émission des éléments à

un électron (Li2+, Be3+) mais ne permettait pas d’expliquer les atomes plus

complexes comportant plus d’un électron.

2. Louis de Broglie, Erwin Shrödinger, Max Planck et Werner Heisenberg

Si nous comparons les raies spectrales de l’hydrogène et des autres éléments,

nous remarquons que l’hydrogène a beaucoup moins de raies. Ceci

s’explique par le petit nombre d’électrons. Les grands espaces entre les raies

indiquent un saut à un autre niveau. En observant le spectre du mercure, nous

voyons les grands sauts mais il y a aussi des écarts entre des raies plus

rapprochés.

Page 9: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

9

L’hypothèse des scientifiques par rapport à ces écarts étroits est qu’il existe

des sous-niveaux aux niveaux proposés par Bohr. En modifiant un peu le

modèle de Bohr, on arrivait à expliquer le spectre de l’hydrogène et des ions

ne comportant un seul électron mais il n’expliquait pas encore les éléments

ayant plusieurs électrons.

En 1924, Louis de Broglie a énoncé une hypothèse que la matière avait des

propriétés semblables à celles des ondes. Il a élaboré une équation pouvant

calculer la longueur d’onde de n’importe quel objet. Ce mouvement en onde

est si minuscule qu’il n’a aucun effet sur le mouvement que nous pouvons

percevoir, par contre, au niveau atomique cet effet est très important. Cette

hypothèse fut observée en 1927.

En 1926, Erwin Schrödinger s’est servie de l’hypothèse selon de Broglie et

des photons selon Einstein pour les combiner mathématiquement. Lorsqu’on

ajoute le principe de Heisenberg, la mécanique quantique est née. Le principe

d’incertitude de Heisenberg dit qu’il est impossible de savoir avec précision la

position et la vitesse d’un objet (tel un électron). Le modèle de Bohr est donc

inexact puisque celui-ci indique la position de l’électron (son orbite) et on lui

attribue un mouvement fixe.

Les électrons sont donc décrits comme suivant la dualité onde-particule. Ses

propriétés d’ondes sont :

- ils n’orbitent pas le noyau mais sont plutôt une onde stationnaire

- on ne peut déterminer la position exacte d’un électron (selon le

principe de Heisenberg)

Ses propriétés de particules sont :

- il y a un nombre entier d’électrons dans un atome

- les électrons peuvent changer d’orbitales comme une particule

- les électrons ont des spins distincts

Utilisant la statistique, nous pouvons donc déterminer la probabilité qu’un

électron se trouve à un endroit donné. En utilisant une équation, Schrödinger

a pu déterminer plusieurs solutions possibles qui représentent une fonction

d’onde. Nous nommons ces fonctions d’onde des orbitales.

Prenons par exemple l’hydrogène et la probabilité d’y retrouver l’électron

dans le premier niveau énergétique :

Page 10: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

10

Dans le diagramme précédent, la densité de la couleur indique une plus

grande probabilité qu’on y retrouve un électron. Plus on s’éloigne du noyau,

moins il est probable de retrouver l’électron à cette distance. On définit donc

une région représentant 95% de la région totale comme étant le niveau

énergétique de l’atome. Il s’agit ici du premier niveau (première couche) de

l’électron.

Dans un état excité, les électrons auront une différente orbitale ayant une

forme et une énergie spécifiques.

3. La structure et les orbitales

Les orbitales peuvent avoir des différentes formes. Il y a trois nombres

quantiques pour décrire les orbitales :

a. le nombre quantique principal (n)

Le nombre quantique principal décrit le niveau d’énergie et la taille de

l’orbitale. Aussi, pour les premières couches, il correspond à la couche

électronique du modèle de Bohr. Les nombres possibles sont de 1 à 7. Le

nombre maximum théorique d’électrons par couche est égal à 2n2.

b. le nombre quantique secondaire (orbitale) ( )

Le nombre quantique orbital décrit la forme de l’orbitale. Ce nombre peut

varier de 0 à (n – 1). Par exemple, si n=2 ne peut valoir que 0 ou 1. Ce

sont des sous niveaux énergétiques de n.

À chaque valeur de , il y a une lettre correspondante :

= 0 porte la lettre s (sharp)

= 1 porte la lettre p (principal)

= 2 porte la lettre d (diffuse)

= 3 porte la lettre f (fundamental)

Page 11: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

11

Pour nommer un sous-niveau, on nomme premièrement le niveau

principal suivi du niveau secondaire (orbitale).

Exemple : Nommer le sous niveau ayant une valeur de n=3 et =1.

c. le nombre quantique tertiaire (magnétique) ( m )

Le nombre quantique magnétique décrit l’orientation de l’orbitale dans

l’espace. Ce nombre varie de - à + comprenant 0. Il existe 2 +1

valeurs de m .

Les formes orbitales sont donc les suivantes :

Les formes des sous-niveaux sont :

s – sphérique

p – perpendiculaires l’un à l’autre

d – en diagonal l’un à l’autre

Page 12: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

12

Exemple :

Si n=3, quelles sont les valeurs permises de et de m ? Quel est le nombre

total d’orbitales de ce niveau d’énergie? Quel est le nombre total d’orbitales

pour n’importe quel niveau d’énergie, n?

Quelles sont les valeurs possibles de m si n=5 et =1? Quelle sorte

d’orbitale est décrite par ces nombres quantiques? Combien d’orbitales peut-

on décrire avec ces nombres quantiques?

Les orbitales suivent aussi le fait qu’un électron peut être retrouvé autour du

noyau selon certaines probabilités. L’image suivante décrit la probabilité de

retrouver un électron dans un certain orbitale pour l’atome d’hydrogène.

Page 13: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

13

D. La configuration électronique

Dans l’atome d’hydrogène, toutes les orbitales pour laquelle n a la même valeur

ont la même énergie. C'est-à-dire qu 2s et 2p ont la même énergie ainsi que 3s,

3p et 3d. C’est la raison pour laquelle les couleurs du spectre sont bien espacées

et qu’il n’y a pas de petit écart entre les couleurs.

Dans la plupart des éléments, par contre, l’énergie des orbitaux est légèrement

différent. Ce qui explique les séparations entre les couleurs semblables.

Les orbitales peuvent être occupés par seulement un ou deux électrons. Le

tableau ci-dessous résume combien chaque sous niveau peut contenir d’électrons.

Nombre

quantique

(n)

Sous

couches

Nombres

d’orbitales (n2)

Nombre

d’électrons (2n2)

1 s 1 1 2 2

2 s 1

4 2

8 p 3 6

3

s 1

9

2

18 p 3 6

d 5 10

4

s 1

16

2

32 p 3 6

d 5 10

f 7 14

Page 14: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

14

Un quatrième nombre quantique vient s’ajouter lorsque nous parlons d’électrons :

celui du spin (s). Ce nombre ne peut avoir que deux valeurs : 1

2 et −

1

2. Comme le

nom le suggère, ce nombre quantique décrit le sens de rotation de l’électron. En

1925, Wolfgang Pauli a suggéré que seuls des électrons de spins contraires

peuvent occuper la même orbitale. Cette proposition est connue sous le principe

d’exclusion de Pauli et décrit aussi que deux électrons d’un même élément ne

peuvent avoir les mêmes quatre nombres quantiques.

1. La notation

La configuration électronique est une notation indiquant le nombre

d’électrons et leur disposition probable dans les régions délimitant les

orbitales. On écrit la configuration commençant avec le nombre quantique (n)

le plus petit suivi de ses sous-couches ayant des électrons. Ensuite, on

nomme le deuxième nombre quantique avec les sous-couches ayant des

électrons.

Exemple :

carbone : 1s22s2p2

Au nombre quantique n=1, il y a deux électrons dans la sous-couche s

Au nombre quantique n=2, il y a deux e- dans la sous-couche s et 2 dans celle

de p

2. Les diagrammes d’orbitales

Nous pouvons représenter les orbitales par des cases, comme tel :

Ces cases représentent le sodium. Pour chaque sous-niveau, nous regroupons

les orientations des orbitales ( m ). Il faut rester conscient du fait que même si

on place les électrons un à la fois dans les cases représentant les orbitales, que

les électrons n’occupent pas l’orbitale. L’orbitale n’ont pas de forme comme

tel mais représentent seulement une probabilité d’y retrouver un électron.

Règles de « remplissage » (le principe d’Aufbau) :

- on place les électrons en ordre croissant de niveau d’énergie (suit l’ordre des

sous-couches du diagramme d’énergie plus bas)

- on remplit une sous-couche avant de continuer à la prochaine

- on remplit la sous-couche en plaçant les électrons du même spin (flèche vers

le haut) dans chaque orbitale avant de placer les électrons du spin opposé

1s 2s 2p 3s

Page 15: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

15

Le diagramme suivant représente l’ordre des niveaux d’énergie. Lorsque

nous représentons un élément à l’aide des cases électroniques, nous devons

inscrire les électrons dans les cases dans l’ordre suivant :

Exemple :

Construisez la configuration électronique des 10 premiers éléments.

Page 16: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

16

E. La périodicité

1. La configuration électronique

Dans le tableau périodique, il existe une périodicité pour la configuration

électronique des éléments. En voici quelques-uns :

a. le numéro de groupe

Le numéro de groupe indique le montant d’électrons sur la couche de

valence. Aussi, le numéro de groupe en chiffres romains indique le

nombre d’électrons sur la couche énergétique (n) ayant la plus haute

énergie.

b. la période

Le numéro de la période indique la couche énergétique (n) la plus élevée

des éléments appartenant à celle-ci.

c. les familles

Les éléments d’une même famille partagent la même configuration au

niveau énergétique (n) le plus élevé.

2. Le rayon atomique

Même si les orbitales sont une représentation mathématique de l’atome, nous

pouvons mesurer le rayon d’un atome. Cette mesure est basée surtout sur la

distance entre les atomes lorsque ceux-ci forment des composés. Par

exemple, si deux atomes d’oxygène forment un composé, nous pouvons

mesurer la distance entre les noyaux. En divisant par deux nous avons trouvé

le rayon atomique de l’oxygène.

Dans un même groupe, le nombre quantique principal détermine la taille de

l’atome donc c’est celui-ci qui fait augmenter le rayon à mesure qu’il

augmente. Plus il y a d’électrons, plus le nombre quantique principal

augmente ce qui fait que les électrons s’éloignent du noyau.

Dans une période, la force d’attraction nette entre les électrons et le noyau

détermine le rayon. Plus il y a de protons dans le noyau, plus la force

d’attraction s’accroît donc plus les électrons sont attirés vers le centre de

l’atome. Donc, dans une période le rayon atomique a tendance de diminuer à

mesure que le numéro atomique augmente.

Page 17: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

17

3. L’énergie de première ionisation

L’énergie de première ionisation c’est l’énergie nécessaire pour faire perdre à

un élément son premier électron.

Plus un atome est stable et plus les électrons sont près du noyau, plus il est

difficile d’y enlever un électron. C’est la raison pour laquelle l’hélium

possède la plus grande énergie de première ionisation.

Page 18: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

18

4. Affinité électronique (l’indice d’électronégativité)

Il s’agit la mesure de l’attraction que possède un élément pour un ou des

électrons. L’échelle est graduée de 0 à 4 ou un nombre élevé indique une plus

grande attraction pour les électrons. Plus la couche de valence d’un élément

est remplie, plus il aura une affinité pour les électrons. Ceux ayant peu

d’électrons sur leur couche de valence auront plus tendance de céder un

électron.

Page 19: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

19

F. Les liaisons chimiques

1. Les liaisons ioniques

Une liaison est considérée ionique si la différence d’électronégativité est plus

que 1,7.

a. le diagramme de Lewis

exemples

CaF, NaCl, MgO, Na2O

Liaison Éléments Électrons

Ionique Métaux et non-métaux Transfert du métal au

non-métal

Covalente Polaire Non-métaux différents Partage inégal

Non-polaire Non-métaux semblables Partage égal

Métallique Métaux

Libres dans un réseau

d’ions métalliques

positifs

Page 20: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

20

2. Les liaisons covalentes

On considère une liaison covalente comme étant non-polaire si la différence

d’électronégativité est entre 0 et 0,5. Si elle tombe entre 0,5 et 1,7 on dit qu’il

s’agit d’une liaison covalente polaire.

Les composés covalents sont généralement des solides mous, liquides ou gaz

à température ambiante, ils ont des points de fusion et d’ébullition peu élevés,

ils sont de pauvres conducteurs électriques et ne sont pas toujours solubles

dans l’eau.

a. le diagramme de Lewis

exemples

H2, F2, O2, N2, H2O, CH4, CO2

3. les doublets liants et non-liants

On nomme doublet liant une paire d’électron participant à la liaison du

composé. Si un doublet d’électrons ne participe pas à la liaison on dit qu’ils

sont non-liants.

Plus il y a de doublets liants dans un composé, plus l’énergie de liaison est

grande. Les liaisons doubles sont donc plus fortes que les liaisons simples.

Page 21: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

21

G. La forme moléculaire

1. La théorie de la répulsion des paires d’électrons de valence (RPECV)

L’agencement en trois dimensions est basé sur le fait que les doublets

d’électrons se repoussent l’un l’autre et le font avec de forces différentes.

Étant donné que les doublets non liants (DNL) sont assez libres de se

déplacer, ils ont tendance à se faire repousser plus loin que les doublets liants

(DL).

Deux DNL se repousseront aussi loin l’un de l’autre que possible donc leur

répulsion est la plus grande. Les DL, situés entre les noyaux atomiques, ont

une répulsion faible. L’ordre de répulsion est donc comme suit :

DNL-DNL > DNL-DL > DL-DL

Il existe cinq figures de bases que peuvent prendre les molécules :

- linéaire

- triangulaire plane

- tétraédrique

- bipyramide triangulaire (ou pyramide à base carrée)

- octaédrique

La forme moléculaire dépendra du nombre de doublets liants. S’il existe

seulement des doublets liants, la molécule prendra une des cinq formes

précédentes. S’il s’ajoute des doublets non-liants, la forme sera une des cinq

avec des variations.

Page 22: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

22

2. La notation RPECV

On utilise trois lettres pour représenter la notation RPECV. La lettre « A »

représente l’atome central, le « X » représente les doublets liants et la lettre

« E » pour représenter les doublets libres.

Par exemple, l’eau contient deux doublets liants et deux doublets non liants.

La notation est donc AX2E2.

3. Prédire la forme moléculaire

Démonstration

Afin de pouvoir prédire la forme de la molécule, il suffit de, premièrement,

représenter la molécule par une structure de Lewis afin de déterminer le

nombre de DNL et de DL autour de l’atome central (une liaison double ne

compte pas comme deux DL). Ensuite, à l’aide du tableau, détermine la

forme qui conviendrait mieux au nombre total de doublets électroniques en

prenant en considération les DL et les DNL.

Exemples

NH3, CH4, BrCl4-, H3O

+, SiF62-

Page 23: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

23

4. L’hybridation des atomes afin de déterminer la forme moléculaire

Hybridation :

𝑠𝑝3

𝑠𝑝2

𝑠𝑝

𝑠𝑝3𝑑

𝑠𝑝3𝑑2

Page 24: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

24

5. La forme moléculaire et la polarité de la molécule

La forme de la molécule est la cause de charges partielles positives et

négatives de certaines molécules, comme l’eau par exemple. Les molécules

diatomiques sont les plus simples à comprendre. Prenons l’acide

chlorhydrique (HCl). Puisque ce sont des atomes avec des électronégativités

différentes, un atome attirera plus les électrons que l’autre. Ceci résulte en la

molécule ayant une charge partielle négative sur un côté et positive sur l’autre

qu’on nomme dipôle. Note : la charge partielle est dénotée .

Les molécules à trois atomes sont plus difficiles à interpréter. Il faut

connaître leur forme afin de pouvoir déterminer s’ils sont polaires ou non. Le

BeF2 par exemple est linéaire (comme le sont la plupart des composés

ioniques). Donc, le Be est l’atome central entouré du F de chaque côté.

Puisque chaque F tire également de son côté, la molécule subit une force

nulle. BeF2 est donc non polaire.

L’eau, par contre, possède deux DL et deux DNL ce qui lui donne une forme

en V. L’oxygène et l’hydrogène tirent sur les électrons avec une force

différente et dans de différentes directions ce qui donne à la molécule une

charge partielle.

Exemples

CCl4, CHCl3

Page 25: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

25

Page 26: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

26

H. Les forces intermoléculaires

1. Les forces dipôle-dipôle

Ce sont des liens créés entre deux molécules polaires. Les charges partielles

positives d’une molécule sont attirées aux charges partielles négatives d’une

autre.

2. Les forces ion-dipôle

Un ion attire une charge partielle du signe opposé. C’est la raison pour

laquelle les composés ioniques peuvent se dissoudre dans l’eau.

3. Les forces intermoléculaires induites

Un ion ou un dipôle qui s’approche d’une molécule non polaire peut réussir à

polariser celle-ci momentanément. Lorsqu’un ion ou un dipôle est assez près

d’une molécule non polaire, la molécule chargée réussi à déformer l’autre

molécule afin de lui donner une charge.

4. La liaison hydrogène

Cette liaison est une forme de force d’attraction dipôle-dipôle. Elle est

caractérisée par une force très forte dûe à la grande différence

d’électronégativité entre l’hydrogène et soit l’oxygène, l’azote ou le fluor.

Seule, cette liaison est seulement 5% de la force d’une liaison covalente, par

contre en nombres elle peut avoir un grand effet. L’ADN ne pourrait pas

avoir sa forme hélicoïdale sans les liaisons H. C’est aussi ces liaisons qui

donnent à l’eau ses propriétés uniques comme sa plus petite densité à l’état

solide qu’à l’état liquide dû à sa forme cristalline en état solide.

5. Le rayon Van der Waals

Lorsque deux molécules entrent en collision, ce ne sont pas les noyaux qui se

frappent. Dans un composé, il existe deux distances : la distance entre les

noyaux des atomes du composé et la distance entre les noyaux et la couche

protectrice. La couche protectrice représente le point où la probabilité de

rencontrer un électron est inférieure à environ 90%.

Les molécules maintiennent une distance minimale causée par la répulsion de

leurs nuages électroniques. On appelle cette distance le rayon de Van der

Waals.

Page 27: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

27

Page 28: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

28

II. La vitesse de réaction et l’équilibre chimique

A. La vitesse de réaction

Il s’agit du changement dans la quantité de réactifs ou de produits par unité de

temps. Elle est mesurée en mol/s ou en mol/(L·s).

t

Qv

ou

t

cv

Q représente une quantité de réactif ou de produit

c représente la concentration d’une substance

1. La vitesse moyenne et la vitesse instantanée

La vitesse moyenne d’une réaction est le changement moyen en

concentration d’un réactif ou d’un produit par unité de temps pour un

intervalle de temps.

La vitesse instantanée est la vitesse à un temps particulier.

[C] mol/L x10-3

Page 29: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

29

2. Les méthodes pour mesurer la vitesse

a. la masse

b. le pH

exemple : Mg + HCl MgCl2 + H2

c. la pression

exemple : 2N2O (g) 4NO (g) +O2 (g)

d. le volume

3. Les facteurs influant sur la vitesse et la théorie des collisions

Pour qu’une réaction se produise, les particules des réactifs doivent entrer en

collision les unes avec les autres dans la bonne orientation et avec assez

d’énergie.

Certains facteurs affectent la vitesse de réaction selon la théorie des

collisions dont :

a. la température

b. la concentration des réactifs

c. un catalyseur

d. la surface de contact

e. la nature des réactifs

4. La loi de la vitesse

La vitesse peut être représentée sous cette équation :

V = k[A]a[B]b

Généralement, la formule peut être dérivée de la réaction suivante :

aA + bB cC + dD

k est la constante de proportionnalité pour la vitesse de réaction.

Les exposants sont des constantes selon la réaction.

Les [A] et [B] sont les concentrations des réactifs.

a. L’ordre des réactions

L’ordre d’un réactif est déterminé par l’exposant dans la loi de vitesse.

L’ordre global de réaction est la somme de tous les exposants.

Exemple :

Dans 2N2O5 4NO2 + 5O2, v = k[N2O5]1. L’ordre de cette réaction est

1.

Dans 2 HI H2 + O2, v = k[HI]2. L’ordre de cette réaction est 2.

Dans NO + O3 NO2 + O2, v = k[NO][O3]. L’ordre de la réaction est 2.

Page 30: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

30

b. La constante de vitesse

La constante de vitesse change selon la température et les réactifs utilisés.

Plus k est grand, plus la vitesse de réaction sera rapide. Une réaction

d’ordre 1 ayant une constante de 100 durera environ 0,1 s. En

comparaison, une réaction ayant une constante de 10-3 durera environ 2 h.

c. Le calcul de la loi de la vitesse

Nous allons utiliser la méthode de vitesses initiales afin de déterminer la

loi de la vitesse.

Pour faire ceci, il nous faut des données de réaction. Pour pouvoir

calculer les exposants et la constante de vitesse, il faut plus d’un essai à

de différentes concentrations (la température reste constante).

Exemple :

Nous avons fait la réaction 2N2O5 4NO2 + 5O2 quelques fois. À

0,010M de N2O5, la vitesse initiale était de 4,8x10-6, à 0,020M de 9,6x10-6

et à 0,030M de 1,5x10-5. Calculer l’exposant et la constante de la

réaction.

Page 31: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

31

Exemple :

ClO2 + 2OH- ClO3- + ClO2 + H2O

[ClO2] [OH-] Vitesse initiale

0,015 0,0250 1,30x10-3

0,015 0,0500 2,60x10-3

0,045 0,0250 1,16x10-2

Trouver la loi de vitesse pour cette réaction.

Page 32: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

32

5. La demi-vie des réactions

La demi- vie (1/2t ) d’une réaction est le temps nécessaire pour que la masse

ou la concentration d’un réactif diminue à la moitié de sa valeur initiale. Elle

est mesurée en secondes pour la plupart des réactions mais peut avoir

n’importe quelles unités dont il est utile (minutes, heures, jours, …)

La demi-vie d’une réaction d’ordre 1 est une constante et peut être calculée à

partir de la formule :

1/2

ln 2t

k

Ce concept est surtout utile en pharmacologie pour calculer l’intervalle de

temps qu’il faut avoir pour s’assurer qu’un médicament ait une certaine

concentration dans le corps.

Exemple

La décomposition du chlorure de sulfuryle, SO2Cl2, est une réaction d’ordre

1.

SO2Cl2 SO2 + Cl2

Si la vitesse est décrite par 5 1

2 2(2, 2 10 )[ ]v s SO Cl , quelle est la demi-vie

de la réaction? Combien de temps prend le chlorure de sulfuryle à diminuer

jusqu’à un huitième de sa concentration initiale?

Page 33: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

33

6. L’orientation et l’énergie d’activation

Comme nous avons déjà vu, pour qu’il y ait une réaction il doit y avoir une

collision. Par contre, pas toutes les collisions ne résultent en une réaction.

Pour qu’une réaction ait lieu, la collision doit satisfaire ces deux conditions :

a. l’orientation des réactifs doit être correcte

b. l’énergie de collision doit être suffisante

a. l’orientation

Aussi connu sous la géométrie de collision appropriée, seule une

orientation permet que les réactifs réagissent.

b. l’énergie d’activation

Les collisions doivent posséder une assez grande énergie pour pouvoir

briser les liaisons et commencer à former des liaisons des produits.

L’énergie d’activation est l’énergie de collision minimale pour qu’une

réaction ait lieu.

L’énergie d’activation dépend en partie de l’énergie cinétique des

particules. Puisque la température est une mesure de l’énergie cinétique,

la température est donc un facteur déterminant la vitesse de réaction.

7. Les mécanismes réactionnels

La plupart des réactions consistent d’une série d’étapes qui se suivent pour

former une réaction globale. Chaque étape est une réaction élémentaire qui

doit se produire pour que la réaction globale se produise. Ces étapes sont les

réactions les plus simples donne lieu à la formation de molécules ou d’ions

servant d’intermédiaires à la réaction globale. Lorsqu’on additionne les

réactions élémentaires, nous avons comme résultat la réaction globale.

Exemple

Étape 1 : NO + O2NO3

Étape 2 : NO3 + NO 2NO2

Ces deux réactions élémentaires nous donnent la réaction globale :

2NO + O2 2NO2

Dans une réaction élémentaire, les exposants dans la loi de la vitesse

correspondent aux coefficients stœchiométriques (rapports molaires) des

réactifs.

La vitesse globale de la réaction est déterminée par l’étape la plus lente des

réactions élémentaires; c’est l’étape déterminante de la vitesse. Donc, s’il y a

deux étapes, la vitesse de réaction globale peut être décrite par la loi de la

vitesse de l’étape déterminante.

Page 34: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

34

Prenons par exemple la réaction 2NO2 + Cl2 2NO2Cl qui a comme

équation de vitesse :

v=k[NO2][Cl2]

Cette équation a été déterminée par expérimentation. Le mécanisme

réactionnel peut donc être décrit comme étant :

Étape 1 : NO2 + Cl2 NO2Cl + Cl (lent)

Étape 2 : NO2 + Cl NO2Cl (rapide)

Puisque l’étape 1 est l’étape déterminante, nous voyons que la vitesse globale

fut décrite par la loi de la vitesse de celle-ci. L’équation déterminée par

expérimentation supporte le mécanisme réactionnel précédent.

8. Les catalyseurs

Un catalyseur est une substance qui augmente la vitesse d’une réaction sans

être consommée par celle-ci. Un catalyseur fonctionne en baissant l’énergie

d’activation d’une réaction.

Page 35: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

35

B. L’équilibre chimique

1. Les réactions réversibles

Une réaction réversible en est une qu’on peut lire de gauche à droite ou de

droite à gauche car les deux réactions sont possibles.

La combustion est un exemple d’une réaction non-réversible car nous ne

pouvons pas transformer du dioxyde de carbone et de l’eau en matière

combustible et de l’oxygène.

CH4 + O2 CO2 + 2H2O

Par contre, les réactions suivantes sont réversibles :

H2 (g) + I2 (g) ↔ 2HI (g)

H2O (l) + E ↔ H2O (g)

2. La constante d’équilibre

Puisqu’il y a deux réactions qui se passent en même temps, il y a donc deux

vitesses aussi.

aA + bB ↔ cC + dD

La vitesse directe peut être décrite :

v1 = k1[A]a[B]b

La vitesse inverse peut être décrite :

v2 = k2[C]c[D]d

On dit qu’un système est à l’équilibre lorsque la vitesse directe est égale à la

vitesse inverse.

v1 = v2

k1[A]a[B]b = k2[C]c[D]d

Nous pouvons isoler les concentrations et les constantes pour obtenir :

éqkba

dc

2

1

[B][A]

[D][C]

k

k

Une réaction ne peut être à l’équilibre que si elle satisfait ces conditions :

- la réaction doit être réversible

- les propriétés observables (macroscopiques) doivent être constantes

- le système doit être fermé

- l’équilibre peut être décrit dans n’importe quel sens de la réaction

Page 36: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

36

L’équation pour calculer la constante d’équilibre n’inclut pas les solides ni

les liquides car ceux-ci n’ont aucune concentration. On utilise seulement les

solutions aqueuses et les gaz dans nos calculs.

Exemples :

Écrivez l’expression de la constante d’équilibre de ces réactions :

N2 (g) + 3H2 (g) ↔ 2NH3 (g)

CaCO3 (s) ↔ Ca2+(aq) + CO3

2-(aq)

H2O (l) ↔ OH-(aq) + H+

(aq)

4P(g) + 5O2 (g) ↔ 2P2O5 (g)

Cu(s) + 2Ag+(aq) ↔ 2Ag (s) + Cu2+

(aq)

a. Calculs de la constante

Dans un ballon de 5,0L, un mélange d’azote et de chlore gazeux

réagissent suivant la réaction N2 (g) + 3Cl2 (g) ↔ 2NCl3 (g). À l’équilibre,

le mélange contient 0,0070mol de N2 (g), 0,0022mol de Cl2 (g) et 0,95mol

de NCl3 (g). Calcule la constante d’équilibre de cette réaction.

Page 37: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

37

Dans la réaction Fe3+(aq) + SCN-

(aq) ↔ Fe(SCN)2+(aq) nous avons débuté

avec 0,0064 mol/L de Fe3+ et de 0,0010 mol/L de SCN-. Si à l’équilibre

nous avons 0,00045 mol/L de Fe(SCN)2+, quelle sera la valeur de la

constante d’équilibre?

À une température de 700K, la constante d’équilibre de la réaction :

CO(g) + H2O (g) ↔ H2 (g) + CO2 (g) est de 0,83. Suppose que tu

commences avec 1,0mol de CO et 1,0mol de H2O dans un récipient de

5,0L. Quelle quantité sera présente dans le récipient lorsque les gaz

seront à l’équilibre?

Page 38: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

38

La réaction H2 (g) + I2 (g) ↔ 2HI (g) a une constante d’équilibre de 25,0 à

1100K. On place 2,00mol de H2 et 3,00mol de I2 dans un contenant de

1,00L à 1100K. Quelle est la concentration de chaque gaz à l’équilibre?

b. Interpréter la constante d’équilibre

Si k > 1, l’équilibre favorise les produits. Il y aura donc plus de produits

que de réactifs. Une réaction complète en est une où k > 1010.

Si k environ 1, les concentrations des réactifs et des produits sont à peu

près égales.

Si k < 1 l’équilibre favorise les réactifs. Lorsque k < 10-10, on considère

que la réaction n’a pas eu lieu.

c. Estimer selon la constante d’équilibre

Lorsque k <1, la concentration des produits sera tellement faible par

rapport à celle des réactifs qu’on peut ignorer la variation des réactifs.

Pour savoir si une approximation est justifiée ou non, divise la

concentration initiale la plus faible des réactifs par k.

Si la réponse est > 500, l’approximation est sûrement justifiée.

Si la réponse est entre 100 et 500, l’approximation est peut être justifiée.

Si la réponse est < 100, l’approximation n’est pas justifiée.

Page 39: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

39

Exemple :

Dans N2 (g) + O2 (g) ↔ 2NO (g), la constante d’équilibre est de 4,2x10-8.

On place 0,085mol de N2 et 0,038mol de O2 dans un contenant de 1 litre.

Quelle est la concentration de NO à l’équilibre?

Page 40: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

40

3. Le quotient de réaction (Qc)

Lorsqu’une réaction n’est pas encore à l’équilibre, nous pouvons calculer

dans quel sens se dirige la réaction. Il s’agit du quotient de réaction et est

calculé avec la même formule que la constante d’équilibre.

Si Qc < Kc : la réaction se déroule en sens direct

Si Qc = Kc : la réaction est à l’équilibre

Si Qc > Kc : la réaction se déroule en sens inverse

4. Le principe de Le Châtelier

Le principe de Le Châtelier dit que si on fait varier les conditions imposées à

un système initialement à l’équilibre, ce dernier se déplacera dans le sens qui

rapportera le système à l’équilibre.

Les facteurs affectant l’équilibre d’un système :

a. la concentration

Si on augmente la concentration d’un corps, le système cherchera à faire

diminuer cette concentration.

Donc, si on augmente la concentration d’un réactif, la réaction directe

sera favorisée.

b. la température

Pour connaître l’effet de la température sur un système, nous devons

savoir si la réaction est exothermique ou endothermique.

Une hausse de température favorise le sens endothermique de la réaction

(puisque celle-ci absorbe l’énergie) et une baisse de température favorise

le sens exothermique.

c. la pression

Une hausse de pression favorise le sens où il y a moins de moles de gaz

et une baisse de pression favorise le sens où il y a plus de moles de gaz.

d. un catalyseur

Celui-ci n’affecte pas l’équilibre autre que le fait qu’on l’atteint plus

rapidement.

Page 41: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

41

III. La solubilité

Il s’agit de la quantité maximale de soluté dissout dans un solvant à une

température donnée.

A. La dissolution

Lorsqu’on fait dissoudre un soluté, celui-ci se dissocie en ions. Ce n’est pas,

par contre, un système stable. Entre les ions et le solide correspondant il y a un

dynamisme où le solide se dissocie et les ions précipitent (redeviennent solide).

À l’équilibre, la vitesse de dissociation est égale à la vitesse de précipitation.

On peut alors parler d’équilibre de solubilité et d’équilibre de dissociation.

Équilibre de solubilité : équilibre entre la phase pure, souvent solide, et les ions

en solution

Équilibre de dissociation : équilibre entre un corps non-dissocié et le même

corps dissocié en solution. Souvent on parle d’acides et de bases.

B. Facteurs affectant la solubilité

1. L’entropie maximum

Les systèmes ont une tendance vers l’entropie (désordre) maximum.

L’entropie favorise la dissolution des solides parce qu’ils sont plus en

désordre en solution qu’en forme solide.

2. L’enthalpie minimum

Tous les systèmes tendent vers l’énergie minimum. Moins une réaction

requiert de l’énergie, plus elle aura de chances de se produire. Puisque les

solides sont moins énergétiques que les liquides, l’enthalpie favorise la

précipitation ou la cristallisation.

3. La température

La température affecte la solubilité puisqu’elle affecte l’entropie. Une

hausse dans la température augmente le désordre puisque les particules sont

plus agitées (possèdent plus d’énergie).

Page 42: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

42

C. Le produit de solubilité (Kps)

Le produit de solubilité est une constante d’équilibre appliquée au cas de

solubilité.

Dans les systèmes de solubilité, il y a généralement un solide qui se dissocie en

ions.

AgCl (s) ↔ Ag+(aq) + Cl-

(aq)

Dans cette exemple, le Kps = [Ag+][Cl-]. Puisqu’on ignore les solides (ou

plutôt parce qu’ils ont une valeur de 1) dans les calculs de constante

d’équilibre, il n’y a pas de dénominateur.

Exemple :

Quel est l’expression du produit de solubilité de :

a. carbonate de baryum

b. iodate de calcium

c. phosphate de cuivre (II)

Exemple :

La solubilité du carbonate d’argent, Ag2CO3, est de 1,3x10-4mol/L à 25°C.

Quelle est la valeur de Kps pour cette substance?

Page 43: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

43

Exemple :

À 25°C, la valeur de Kps pour le PbI2 est de 9,8x10-9. Quelle est la solubilité

molaire de PbI2 à cette température?

Page 44: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

44

D. L’effet d’ion commun

Lorsqu’on dissout une substance dans une solution ayant déjà un de ses ions,

l’équilibre de la substance change. On peut prédire dans quelle direction se

dirigera l’équilibre à l’aide du principe de Le Châtelier.

Exemple :

On verse du fluorure de cadmium dans une solution de fluorure de sodium.

Quel sera l’effet sur la solubilité du fluorure de cadmium?

Le chromate de plomb a une solubilité de 4,8x10-7mol/L. Détermine quel sera

l’effet sur la solubilité de l’ajout du chromate de plomb à une solution de

Na2CrO4 de 0,10mol/L.

Page 45: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

45

E. La prédiction d’un précipité

1. le produit ionique (Qps)

Le produit ionique nous aide, comme le quotient de réaction, à déterminer

si une réaction est à l’équilibre. Dans le cas de la solubilité, il nous aide à

déterminer si la solution est non saturée, saturée ou sursaturée.

Si Qps < Kps alors le système favorise la dissociation – solution non saturée

Si Qps = Kps alors le système est à l’équilibre – solution saturée

Si Qps > Kps alors le système favorise la précipitation – solution saturée

2. l’utilisation du produit ionique

Lorsqu’on mélange deux solutions, il y a des ions qui pourraient se

rencontrer qui ne sont pas aussi solubles que les substances initiales.

Prenons par exemple une solution de nitrate d’argent et de chlorure de

sodium. Les ions présents sont Ag+, NO3-, Na+ et Cl-. Puisque les ions sont

libres de se rencontrer il se peut qu’un ion d’argent rencontre un ion de

chlore ou qu’un ion nitrate rencontre un ion sodium.

Si ces combinaisons sont peu solubles, il y aura précipitation.

Exemple :

On ajoute 0,050mL de nitrate d’argent 6,0mol/L à un litre de chlorure de

sodium de 0,10mol/L. Y aura-t-il un précipité?

AgNO3 (aq) + NaCl(aq) ↔ AgCl(s) + NaNO3 (aq)

Étape 1 : déterminer la nouvelle concentration des ions

Étape 2 : calculer le Qps de la substance dont tu vérifies la solubilité

Étape 3 : comparer le Qps à Kps pour déterminer s’il y aura un précipité

Page 46: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

46

IV. Les acides et les bases

L’équilibre de dissociation de l’eau

L’eau se dissocie de la façon suivante :

H2O (l) ↔ H+ (aq) + OH- (aq)

[H+] = [OH-] = 10-7 mol/L dans l’eau pure (neutre)

Étant donné qu’on a un équilibre, on peut calculer la constante de dissociation :

K = [H+][OH-] = 10-14 dans l’eau pure à 25°C

Si [H+] < [OH-], on dit que la solution est basique, donc si [H+] < 10-7.

Si [H+] > [OH-], on dit que la solution est acide donc si [H+] > 10-7.

B. Définitions

1. Acides et bases

a. Théorie d’Arrhénius

Acide : substance qui libère un ion H+ en solution aqueuse

Exemple : HCl et H2SO4

HCl ↔ H+ + Cl-

Base : substance qui libère un ion OH- en solution aqueuse

Exemple : NaOH et KOH

NaOH ↔ Na+ + OH-

L’ion H+ n’existe pas comme tel dans l’eau; on retrouve plutôt l’ion

H3O+ (l’ion hydronium) qui se forme lorsque l’ion H+ se lie à l’eau.

H+ + H2O H3O+

Ceci nous mène à chercher une autre définition des acides.

b. Théorie de Bronsted-Lowry

Acide : substance qui donne un proton

Base : substance qui reçoit un proton

Exemple :

CH3COOH + H2O ↔ H3O+ + CH3COO-

Acide base acide base

Page 47: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

47

On nomme la paire acide-base conjuguée les composés différant d’un

seul proton (H+). Donc, dans l’exemple précédent, l’acide CH3COOH

diffère d’un proton de la base CH3COO-. Sa base conjuguée est donc cet

ion. De même pour la base H2O et son acide conjuguée le H3O+.

Identifie la paire acide-base conjuguée des réactions :

H3PO4 (aq) + H2O (l) ↔ H2PO4- (aq) + H3O

+ (aq)

H2PO4- (aq) + OH-

(aq) ↔ HPO4-(aq) + H2O (l)

c. Théorie de Lewis

Acide : substance qui peut recevoir un doublet électronique

Base : substance qui donne un doublet électronique

2. Neutralisation et sel

Une neutralisation est une réaction entre un acide et une base. Les ions H+

de l’acide se combine avec les ions OH- de la base pour former de l’eau.

Ainsi, la concentration de ces ions diminue, neutralisant l’acide et la base.

La quantité (# moles) d’acide et de base se combine suivant les rapports

molaires afin de se neutraliser.

En se neutralisant, les ions ne participant pas à la production d’eau se lient

afin de former une liaison ionique, un sel. Étant donné qu’ils sont en

solution aqueuse, il est probable que les ions restent dissociés et ne

précipitent pas.

Exemple :

HCl(aq) + NaOH(aq) ↔ NaCl(aq) + H2O(l)

ou avec les ions

H+(aq) + Cl-

(aq) + Na+(aq) + OH-

(aq) ↔ Na+(aq) + Cl-

(aq) + H2O(l)

Si on a 5 moles de HCl qu’on mélange avec 3 moles de NaOH, 3 moles

d’eau seront formées et il restera 2 moles de HCl.

Page 48: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

48

On verse 25,0mL d’acide nitrique à 1,40mol/L dans un bécher qui contient

15,0mL d’hydroxyde de sodium à 2,00mol/L. La solution sera-t-elle acide

ou basique? Quelle est la concentration de l’ion la rendant acide ou

basique?

3. La force d’un acide ou d’une base

Un acide et une base peuvent être décrits comme étant forts ou faibles. Un

acide fort en est un dont les molécules sont très dissociées (presque tout en

ions).

Un acide ou une base qui ne se dissocie pas complètement en ses ions est

dit faible.

Exemple :

Une solution de 0,5mol/L de HNO3, un acide fort, contient quelle

concentration d’ion H+?

Page 49: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

49

D. pH/pOH

Le pH (puissance hydronium) décrit l’acidité d’une solution selon la

concentration d’ions H3O+ (ou de façon simplifiée H+). L’échelle pH est

logarithmique à base 10. C'est-à-dire qu’une solution ayant un pH de 6 a 10

fois plus d’ions H3O+ qu’une solution de pH 5. De façon pratique, l’échelle du

pH est de 0 à 14.

pH = -log[H3O+]

De la même façon, on peut aussi calculer la concentration des ions hydroxydes

avec le pOH.

pOH = -log[OH-]

Utilisant la dissociation de l’eau où Ke = [H3O+][OH-] = 1x10-14, on peut

déterminer un rapport entre le pH et le pOH.

[H3O+][OH-] = 1x10-14

log[H3O+][OH-] = log(1x10-14)

log[H3O+] + log[OH-] = -14

(-log[H3O+]) + (- log[OH-]) = 14

pH + pOH = 14

Exemple :

Un shampoing liquide a une concentration en ions hydroxyde de 6,8x10-5

mol/L. Le shampoing est-il acide, basique ou neutre? Calcule la concentration

d’ions hydronium. Quels sont le pH et pOH du shampoing?

Note : l’inverse d’un logarithme est 10x. Dans le cas du pH : 10-pH = [H3O+]

Page 50: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

50

Exemple :

Quelles sont les concentrations OH- et H3O+ d’une solution de CH3COOH de

pH de 5?

Page 51: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

51

C. Les constantes d’équilibre

1. La constante du produit ionique de l’eau

Nous avons déjà vu que Ke = [H3O+][OH-] = 1x10-14. Ceci est dû à

l’expression de la constante de dissociation de la réaction suivante :

2H2O (l) ↔ H3O+

(aq) + OH-(aq)

D’après l’expression de la constante d’équilibre :

22

3 0

OH

OHHK c

Mais étant donné que l’eau est liquide, elle ne paraît pas dans l’expression

nous donnant ainsi :

Ke = [H3O+][OH-]

Exemple :

Quelles sont les [H3O+] et [OH-] dans une solution de 2,5mol/L d’acide

nitrique? Dans une solution de 0,16mol/L d’hydroxyde de baryum?

Page 52: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

52

2. La constante de dissociation acide

Les acides faibles, puisqu’elles ne se dissocient pas complètement dans

l’eau, nous permettent de calculer une constante d’équilibre. Cette

constante, nommée constante de dissociation, nous indique la force de

l’acide. Plus la constante est élevée, plus l’acide se dissociera et moins la

constante est élevée, moins l’acide se dissociera.

L’expression de la constante des acides monoprotiques (ayant un seul H)

s’écrit de la façon suivante :

pour la réaction HA(aq) + H2O(l) ↔ H3O+

(aq) + A-(aq)

Ka =

HA

AOH

3

Exemple :

L’acide propanoïque, un acide faible, de 0,1mol/L a un pH de 2,96. Quelle

est la constante de dissociation? Quel pourcentage s’est dissocié en

solution (le degré ou pourcentage de dissociation)?

Page 53: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

53

L’acide méthanoïque (ou formique puisqu’il est retrouvé dans certaines

fourmis), HCOOH, a une concentration de 0,025mol/L. Quel est le pH de

cet acide?

Page 54: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

54

3. Les acides polyprotiques

Un acide polyprotique en est un qui possède plusieurs atomes d’hydrogène

pouvant se dissocier à leur tour. Un acide polyprotique est généralement un

acide faible qui devient de plus en plus faible à chaque dissociation d’un

proton. L’exception la plus courante est l’acide sulfurique qui est un acide

fort.

Les problèmes comportant des acides polyprotiques se résolvent de la

même façon que les autres sauf qu’on divise le problème en autant d’étape

qu’il y a d’atomes d’hydrogène dans l’acide.

Exemple :

Calcule le pH de l’acide phosphorique, H3PO4, d’une solution de 3,5mol/L.

L’acide phosphorique est utilisé dans plusieurs procédés industriels dont

dans la fabrication d’engrais et de colas.

Page 55: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

55

4. La constante de dissociation basique

La constante de dissociation basique se calcule de la même façon que la

constante de dissociation des acides. Étant donné la réaction générale

suivante :

B(aq) + H2O(l) ↔ HB+(aq) + OH-

(aq)

La constante de dissociation basique s’écrit donc :

B

OHHBK b

Exemple :

La quinine est un composé qui est utilisé pour le traitement de la malaria.

La constante de dissociation est de 3,3x10-6. Calcule la [OH-] et le pH

d’une solution de 1,7x10-3mol/L de quinine.

Page 56: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

56

5. Les solutions tampons

Une solution qui contient un acide faible et sa base conjuguée ou une base

faible et son acide conjugué est appelé une solution tampon. Une solution

tampon résiste aux changements de pH et sont importants dans les systèmes

biologiques.

La façon la plus simple de créer une solution tampon est d’y mettre un

acide ou une base faible et d’y ajouter un sel ayant son conjugué. Par

exemple, nous pouvons prendre l’acide acétique et l’acétate de sodium.

Acide acétique :

CH3COOH(aq) + H2O(l) ↔ CH3COO-(aq) + H3O

+(aq)

Acétate de sodium :

NaCH3COO(s) ↔ Na+(aq) + CH3COO-

(aq)

L’ajout de l’acétate de sodium diminue le montant de CH3COOH qui se

dissocie (comme l’effet d’ion commun) suivant le principe de Le Châtelier.

Si on ajoute de l’acide à ce système, l’augmentation de l’ion hydronium

aura tendance de faire la réaction se diriger dans le sens inverse diminuant

donc l’ion responsable du pH. Le pH restera donc stable.

Si on ajoute une base à se système, l’ion hydroxyde réagira avec le H3O+

afin de produire de l’eau qui initialement diminuera la concentration d’ion

hydronium. Par contre, l’augmentation d’eau fera la réaction se diriger en

sens direct qui augmentera donc le H3O+ qui stabilisera le pH.

Le dioxyde de carbone dans le sang est une des solutions tampons les plus

importantes dans notre corps pour stabiliser le pH de notre sang.

CO2 (aq) + 2H2O(l) ↔ HCO3-(aq) + H3O

+(aq)

Le HCO3- se dissocie donc dans l’eau pour donner :

HCO3-(aq) + H2O(l) ↔ CO3

2-(aq) + H3O

+(aq)

S’il y a une augmentation de H3O+, il est la réaction se dirigera dans le sens

inverse pour former du HCO3- et s’il y a une augmentation de OH-, il sera

neutralisé par le HCO3- pour donner de l’eau et l’ion carbonate (CO3

2-).

Page 57: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

57

V. L’oxydoréduction et l’électrochimie

Les réactions d’oxydoréductions sont celles ayant un échange d’électrons. Il s’agit

d’une demi-réaction d’oxydation et une demi-réaction de réduction.

A. Définitions

1. L’oxydation

Une réaction où il y a une perte d’électrons.

ex. Zn Zn+2 + 2e-

Une substance qui perd un ou des électrons est nommé réducteur. On dit

qu’un réducteur est oxydé.

2. La réduction

Une réaction où il y a un gain d’électrons.

ex. Cu+2 + 2e- Cu

Une substance qui gagne un ou des électrons est nommée oxydant. On dit

qu’un oxydant est réduit.

3. Les ions

Un cation est un ion chargé positivement.

Un anion est un ion chargé négativement.

4. Les piles électriques

Une pile est un appareil qui transforme une réaction d’oxydoréduction en

énergie électrique. Les électrons libérés par le réducteur traversent un fil

conducteur et sont acceptés par l’oxydant.

Une électrode est un conducteur où se produit une oxydation ou une

réduction.

La cathode est l’électrode où se produit une réduction.

L’anode est l’électrode où se produit l’oxydation.

Page 58: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

58

B. Les degrés d’oxydation

Afin de déterminer s’il y a oxydoréduction, il faut savoir s’il y a eu un transfert

d’électrons. Ceci est fait en comparant les degrés d’oxydation (ou charges) des

éléments avant et après la réaction.

1. Les règles des degrés d’oxydation

Dans un composé ionique, le degré d’oxydation correspond au nombre

d’électrons gagnés ou perdus.

Dans un composé covalent, le degré d’oxydation est le nombre d’électrons

partagés.

a. Un élément pur et les molécules élémentaires ont un degré d’oxydation de

0.

ex. Na 0

Cl2 Cl = 0

b. Le degré d’oxydation d’un ion est la charge de l’ion.

ex. Al+3 : Al = +3

c. Le degré d’oxydation des métaux alcalins est toujours +1, les alcalino-

terreux toujours +2 et les halogènes généralement -1.

d. Le degré d’oxydation de l’hydrogène est +1 sauf dans les hydrures où il

est -1.

ex. HCl : H = +1, Cl = -1

NaH : Na = +1, H = -1

e. Le degré d’oxydation de l’oxygène est -2 sauf dans les péroxydes où il est

-1.

ex. Li2O : Li = +1, O = -2

H2O2 : H = +1, O = -1

f. Dans les composés covalents n’ayant pas d’oxygène ni d’hydrogène,

l’élément le plus électronégatif a un degré d’oxydation négatif égal à la

charge qu’il possède généralement dans ses composés ioniques.

ex. PCl3 : P = +3, Cl = -1

g. La somme des degrés d’oxydation de tous les éléments d’un composé est

0.

ex. CF4 : C = +4, F = -1

h. La somme des degrés d’oxydation de tous les éléments d’un ion

polyatomique est égale à la charge de l’ion.

ex. SO42- : S = +6, O = -2

Page 59: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

59

2. Application des degrés d’oxydation

a. KClO3

b. Cr2O72-

c. Fe2(SO4)3

d. H3AsO4

e. PO43-

Page 60: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

60

C. L’équation d’oxydoréduction

1. L’équation ionique nette

Prenons par exemple la réaction de déplacement simple suivante :

Zn(s) + CuSO4 (aq) Cu(s) + ZnSO4 (aq)

Écrivons cette réaction sous forme ionique globale :

Zn(s) + Cu+2(aq) + SO4

-2 (aq) Cu(s) + Zn+2

(aq) + SO4-2

(aq)

Remarquez que les ions sulfates sont sur les deux côtés de la réaction. Ils ne

participent pas à la réaction; ils sont des ions spectateurs. En enlevant ces

ions nous obtenons l’équation ionique nette :

Zn(s) + Cu+2(aq) Cu(s) + Zn+2

(aq)

2. Les demi-réactions

Prenons la réaction précédente :

Zn(s) + CuSO4 (aq) Cu(s) + ZnSO4 (aq)

Une réaction d’oxydoréduction est en effet deux demi réactions : une de

réduction et l’autre d’oxydation.

Les degrés d’oxydation du zinc et du cuivre ont changé. Le zinc est passé

d’un degré d’oxydation de 0 à +2 et le cuivre de +2 à 0. Il s’agit donc d’une

réaction rédox. Les demi-réactions sont :

oxydation : Zn Zn+2 + 2e-

réduction : Cu+2 + 2e- Cu

Si nous additionnons ces deux réactions, nous avons :

Zn + Cu+2 + 2e- Cu + Zn+2 + 2e-

Et en éliminant les électrons de chaque côté :

Zn + Cu+2 Cu + Zn+2

Notez que pour les demi-réactions, les éléments et les charges sont

équilibrés.

Page 61: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

61

3. Équilibrer les réactions d’oxydoréduction

a. les demi-réactions dans des solutions acides

- écris la demi-réaction non équilibrée

- équilibre tous les atomes sauf l’oxygène et l’hydrogène

- équilibre tous les atomes d’oxygène en ajoutant des molécules d’eau

- équilibre tous les atomes d’hydrogène en ajoutant des ions hydrogène

- équilibre les charges en ajoutant des électrons

Exemple : Écris une demi-réaction équilibrée décrivant la réduction des

ions permanganate, MnO4-, en ions manganèse (II) dans une solution

acide

Page 62: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

62

b. les demi-réactions dans des solutions basiques

- écris la demi-réaction non équilibrée

- équilibre tous les atomes sauf l’oxygène et l’hydrogène

- équilibre les atomes d’oxygène et d’hydrogène comme si les conditions

étaient acides

- additionne sur chaque côté le même nombre d’ions hydroxydes qu’il y

a d’ions hydrogène

- combine les ions hydroxydes et hydrogène pour obtenir des molécules

d’eau

- simplifie chaque côté en enlevant les molécules d’eau de surplus

- équilibre les charges en ajoutant des électrons

Exemple : Écris une demi-réaction équilibrée décrivant l’oxydation

d’ions thiosulfate, S2O32-, en ions sulfite, SO3

2-, dans une solution

basique.

Page 63: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

63

c. la méthode des demi-réactions pour une réaction rédox

- écris l’équation ionique nette non équilibrée

- sépare l’équation ionique nette en demi-réactions d’oxydation et de

réduction en attribuant des degrés d’oxydation aux éléments de

l’équation ionique

- équilibre les demi-réactions de façon indépendante

- détermine le plus petit commun multiple des nombres d’électrons des

demi-réactions

- multiplie chaque demi-réaction par un coefficient nous donnant le

ppcm d’électrons déterminé dans l’étape précédente

- additionne les demi-réactions équilibrées comprenant les nombres

égaux d’électrons

- enlève les électrons de chaque côté de l’équation

- enlève les molécules ou ions identiques de surplus qui sont présents sur

chaque côté de l’équation

- inclus les ions spectateurs

- inclus les états au besoin

Exemple :

Écris une équation ionique nette équilibrée pour décrire la réaction d’ion

perchlorate, ClO4-, et de dioxyde d’azote dans une solution acide, une

réaction qui produit des ions chlorure et des ions nitrate.

Page 64: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

64

d. la méthode des nombres d’oxydation

- écris l’équation non équilibrée

- détermine si la réaction est une réaction d’oxydoréduction en attribuant

les degrés d’oxydation à chaque élément

- si la réaction est une réaction d’oxydoréduction, identifie le réducteur et

l’oxydant

- détermine le plus petit rapport en nombres entiers des éléments oxydés

et réduits de façon que l’augmentation du degré d’oxydation soit égale à

la diminution totale

- utilise ce rapport pour équilibrer le nombre d’atomes des éléments

oxydés et des éléments réduits

- équilibre les autres éléments par vérification des coefficients

- pour des réactions qui se produisent dans des solutions acides ou

basiques, inclus des molécules d’eau, des ions hydrogène ou des ions

hydroxyde au besoin pour équilibrer

Exemple :

Écris une équation ionique nette équilibrée qui décrit la formation d’iode

par barbotage d’oxygène dans une solution basique qui contient des ions

iodure.

Page 65: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

65

D. L’électrochimie

Étant donné qu’il y a un échange d’électrons dans les réactions

d’oxydoréduction, on peut empêcher les réactifs d’entrer en contact direct l’un

avec l’autre et ne permettre que le passage des électrons par un conducteur. Ce

mouvement d’électrons à travers un conducteur cause un courant électrique.

1. La pile électrochimique (voltaïque, galvanique)

Une pile consiste de deux électrodes où se dérouleront les demi-réactions de

réduction et d’oxydation. Ceux-ci sont généralement des métaux

conducteurs. L’oxydation se déroule à l’anode tandis que la réduction se

déroule à la cathode.

Une pile nécessite aussi des électrolytes en solution qui est généralement une

solution contenant un sel dissout. Les électrolytes permettent la conduction

d’électricité.

La pile Daniell

Dans ce diagramme, le zinc perd des électrons et se dissout en solution sous

forme d’ion. À la cathode, c’est l’inverse : les ions de cuivre acceptent deux

électrons et se dépose en cuivre solide sur l’électrode. Il y aura donc une

augmentation de masse à la cathode et une diminution à l’anode.

Les électrons voyagent de l’anode à la cathode à travers un fil conducteur.

Pour garder les charges des deux solutions égales, des ions traversent soit

une membrane poreuse ou un pont salin afin de garder les charges des deux

solutions neutre. Les cations se dirigent vers la cathode pour remplacer les

ions positifs et les anions vers l’anode pour équilibrer les nouvelles charges

positives.

La notation abrégée pour les piles galvaniques est :

Zn | Zn+2 || Cu+2 | Cu

Page 66: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

66

On place l’anode (l’oxydation) à la gauche et la cathode (la réduction) à la

droite. La ligne verticale | représente un changement de phase et ||

représente le pont salin ou la barrière poreuse.

Si la réaction d’oxydation ou de réduction ne comporte pas un solide, il est

possible d’utiliser une électrode inerte afin de créer la pile. Ici, on ajoute

une autre ligne verticale afin de dénoter l’électrode inerte.

Exemple :

Pb | Pb2+ || Fe3+, Fe2+ | Pt (pour la réduction d’un ion en un autre)

Zn | Zn+2 || I- | I2 | Pt (pour la réduction d’un ion en un gaz)(électrode en

gaz?)

2. Le potentiel des piles

Le potentiel est l’énergie potentiel emmagasinée dans les électrons afin

qu’ils puissent accomplir un travail. Lorsque nous parlons de potentiel

d’une pile nous parlons de la différence de potentiel ou d’énergie entre

l’anode et la cathode.

La différence de potentiel est aussi connue comme la tension, la force

électromotrice ou le voltage. Elle est mesurée en Joule par Coulombs (J/C).

Un J/C équivaut à un volt (V).

Toutes les demi-réactions sont comparées par rapport à une demi-réaction

standard afin de déterminer son potentiel standard. Cette demi-réaction

standard est : 2H+ + 2e- H2. Toutes piles sont mesurées à des conditions

standards de 298K, 101,3kPa et dont la concentration des ions est de 1

mol/L.

Le calcul du potentiel d’une pile est :

E° = E°cathode – E°anode

ou

E° = E°réduction + E°oxydation

Toutes les piles ont un potentiel positif. En examinant le tableau de potentiel

standards de réduction il est possible de déterminer quel élément servira

d’anode et de cathode.

Dans le tableau de potentiel standards, les demi-réactions sont en forme de

réduction. Afin d’avoir une demi réaction d’oxydation, il suffit de renverser

l’équation et d’inverser le signe du potentiel.

Page 67: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

67

Exemple

Détermine le potentiel standard de la pile I- | I2 || Br2 | Br-

Détermine le potentiel dans la réaction 2Na(s) + 2H2O(l) 2NaOH(aq) + H2 (g)

Page 68: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

68

3. L’électrolyse

Dans une pile électrochimique, on convertit l’énergie chimique en énergie

électrique. Dans une pile électrolytique, le processus est l’inverse; donc on

convertit l’énergie électrique en énergie chimique.

Dans les piles électrochimiques, la réaction est spontanée (dû à la loi

d’entropie) mais pour produire l’électrolyse (le processus se déroulant dans

les piles électrolytiques) il faut ajouter de l’énergie. On peut produire

l’électrolyse à l’aide ou sans pont salin. C’est ce qui différencie les piles

voltaïques aux piles électrolytiques.

La pile électrolytique comprend une solution électrolyte, deux électrodes et

une source d’énergie (généralement une pile ou source électrique à courant

direct). Étant donné qu’il y a un courant, une électrode est positive et l’autre

négative. Les ions contenus dans la solution se dirigent vers l’électrode de

charge opposée. L’anode et la cathode ont des polarités opposées à celle des

piles, c'est-à-dire que l’anode est positive et la cathode est négative.

L’électrolyse est utilisée dans des procédés tels la production du chlore et du

sodium à partir du chlorure de sodium, l’hydrolyse de l’eau pour produire du

dioxygène et du dihydrogène et la galvanoplastie.

Afin de déterminer le voltage nécessaire pour que l’électrolyse soit possible,

nous utilisons cette formule :

E° = E°cathode – E°anode

Puisque les demi-réactions se déroulent aux électrodes opposées, la

différence de potentiel calculée sera alors négative. Ceci indique qu’il a

fallu ajouter de l’énergie afin que la réaction se produise. La réaction n’est

pas spontanée.

Page 69: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

69

4. La spontanéité des réactions

Nous savons que le potentiel d’une pile électrochimique est positif tandis

que le potentiel d’une pile électrolytique est négatif. Afin de déterminer si la

réaction sera spontanée, il suffit de vérifier si le potentiel sera positif

(spontanée) ou négatif (non spontanée).

Exemple :

La pile Cd | Cd2+ || Cu2+ | Cu est-elle une pile électrochimique ou

électrolytique, c'est-à-dire, est-ce que la réaction est spontanée?

Comment devons-nous construire la pile contenant les demi réactions

suivantes afin d’obtenir une réaction spontanée?

Cl2 + 2e- 2Cl-

I2 + 2e- 2I-

Page 70: Chimie 40S Centre scolaire Léo-Rémillard Roger Durand I

Chimie 40S Centre scolaire Léo-Rémillard Roger Durand

70

5. La loi de Faraday

La loi dit que la quantité d’une substance produite ou consommée dans une

réaction d’électrolyse est directement proportionnelle à la quantité de

courant passant dans le circuit.

Le courant (I) est mesuré en ampères (A) qui est équivalent à 1 Coulomb

passant par un point en une seconde (1 C/s). La formule du courant est donc

t

QI . Nous allons plutôt utiliser ItQ où Q est la charge électrique en

Coulombs (C), I est le courant en ampères (A) et t est la durée en secondes

(s).

Le Coulomb est le montant de charge d’un objet. L’électron possède une

charge de -1,602x10-19C et le proton en a une de 1,602x10-19C. Nous

pouvons donc calculer la charge d’une mole d’électrons à 96 485C (le

manuel arrondi à 96 500C).

Exemple :

Un courant de 2,0A passe pendant 5 minutes dans une pile électrolytique

composée de zinc. Combien de moles de zinc avons-nous déposé sur

l’électrode?

Calcule la masse d’aluminium produite par l’électrolyse de chlorure

d’aluminium fondu, si un courant de 500mA passe pendant 1,5h.