biomat ériaux biomateriaux · 2010. 11. 4. · chapitre3 prothèse de hanche - apatite- 31082010 -...

18
Chapitre3 Prothèse de hanche - Apatite- 31082010 - 1 - BIOMATERIAUX Chapitre 3 Apatite Science des mat ériaux Techniques de caractérisation Médecine Biomat ériaux D. Bazin Laboratoire de Physique des Solides UMR 8502, Université Paris Sud, Bât 510 91405 Orsay Cedex, France.

Upload: others

Post on 04-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Chapitre3 Prothèse de hanche - Apatite- 31082010 - 1 -

    BIOMATERIAUX

    Chapitre 3 – Apatite

    Science des mat ériauxTechniques de

    caractérisation

    Médecine

    Biomat ériaux

    D. Bazin

    Laboratoire de Physique des Solides UMR 8502,

    Université Paris Sud, Bât 510 91405 Orsay Cedex, France.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    2

    Chapitre 3 Apatite

    Partie A Quelques généralités sur l’os

    Partie B Propriétés physicochimiques

    Partie C La diffraction des rayons X

    Partie D Les cations

    Partie E Quelques études sur des phosphates de calcium proches de

    l’apatite p 131 Chapitre 2E.1 Influence des oligoéléments sur les transformations de phase

    p 135 Chapitre 2E.2 L’ octacalcium phosphate – OCP

    p 138 Chapitre 2E.3 Nouvel OCP ?

    p 142 Chapitre 2E.4 nouvelles morphologies pour l’OCP

    Partie F Quelques études sur des échantillons biologiques P147 Chapitre 2F.1 Répartition spatiale du strontium dans l’os

    P150 Chapitre 2F.2 Répartition du strontium à l’interface os-cartilage

    P153 Chapitre 2F.3 Le cas du gallium

    P 158 Chapitre 2F.4 Diffraction de neutrons et résorption d’une fracture

    Chapitre 2F.5 localisation du zinc dans des apatites biologiques

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    3

    Chapitre 2E Les phosphates de calciums proches de l’apatite

    Amorphous materials represent about 25% of the minerals formed under

    the induction or control of living organisms1. Among these amorphous minerals

    are those that have similar chemical composition with different degrees of short-

    range order2,3. Amorphous calcium phosphates (ACP) have been widely

    regarded as the metastable precursor phase for the subsequent formation of

    thermodynamically more stable calcium phosphate phases such as octacalcium

    phosphate (OCP) and hydroxyapatite (HAP) depending on the pH value of the

    solution4,5,6.

    - Le cas du phosphate amorphe de calcium7

    - Sr & octacalcium phosphate - OCP8

    - Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions

    1. Weiner, S.; Dove, P. M. ReV. Mineral. Geochem. 2003, 54, 1–29.

    2. Posner, A. S.; Betts, F. Acc. Chem. Res. 1975, 8, 273–281.

    3. Betts, F.; Blumenthal, N. C.; Posner, A. S.; Becker, G. L.; Lehninger, A. L. Proc. Natl.

    Acad. Sci. U.S.A. 1975, 72, 2088–2090.

    4. Abbona, F.; Baronnet, A. J. Cryst. Growth 1996, 165, 98–105.

    5. Tung, M. S.; Brown, W. E. Calcif. Tissue Int. 1983, 35, 783–790.

    6. Brecevic, Lj.; F. .uredi-Milhofer, H. Calcif. Tissue Int. 1972, 10, 82–90.

    7. Tao al., Evolution of Amorphous Calcium Phosphate to Hydroxyapatite Probed by Gold

    Nanoparticles, J. Phys. Chem. C 2008, 112, 14929–14933.

    8. K. Matsunaga et al., Sr Substitution in Bioactive Calcium Phosphates : A first principles

    study, J. Phys. Chem. B 2009, 113, 3584–3589

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    4

    Chapitre 2E.1 Influence des oligoéléments sur les transformations de phase9

    Calcium hydrogen phosphate dihydrate, CaHPO4, 2H2O, known as the

    rare mineral brushite, is a metastable compound which is normally observed as

    the primary crystalline product, when calcium phosphate is precipitated at low

    pH and low temperature10

    ,11

    .

    Brushite, forming tabular crystals, has been precipitated at 25°C in the

    presence of each of 14 different di- and trivalent metal ions. The influence of

    these ions at micromolar concentrations on the solvent-mediated phase

    transformation of brushite to more basic calcium phosphates has been studied as

    well. The effect of additives on brushite crystallization was pH-dependent,

    which could be related to the presence or absence of amorphous precipitate. In

    the latter case the course of the crystallization process could be followed by

    recording pH as function of time.

    Most of the ions have a marked effect on the transformation to

    octacalcium phosphate (OCP) and hydroxyapatite (HAP) as well.

    - Cu(II) and Zn are strong inhibitors,

    - whereas Pb(II) is a moderate promotor.

    9. H. E. Lundager-Madsen, Influence of foreign metal ions on crystal growth and morphology

    of brushite (CaHPO4, 2H2O) and its transformation to octacalcium phosphate and apatiteJ. of

    Crystal Growth 310 (2008) 2602-2612.

    10. H.E. Lundager Madsen, G. Thorvardarson, J. Crystal Growth 66 (1984) 369.

    11. F. Abbona, H.E. Lundager Madsen, R. Boistelle, J. Crystal Growth 74 (1986) 581.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    5

    Chapitre 2E.2 Le cas du phosphate amorphe de calcium12

    Gold nanoparticles are used as ex-situ probes to monitor the detailed

    evolution process of ACP in vitro.

    12. Tao al., Evolution of Amorphous Calcium Phosphate to Hydroxyapatite Probed by Gold

    Nanoparticles, J. Phys. Chem. C 2008, 112, 14929–14933.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    6

    La synthèse est suivie par T.E.M.

    Figure 3. TEM images of calcium phosphates at different intervals in the

    presence of gold nanoparticles. (A-C) Gold nanoparticles were immersed into

    calcium phosphates.

    (A) 16 min;

    (B) 5 h;

    (C) 12 h.

    (D-F) Gold nanoparticles were loaded on the surface of ACP

    microspheres.

    Par comparaison : Clearly, Au NPs hadn’t changed the pathway of

    transformation phenomenologically as the morphologies and phases at different

    stages were similar in the presence and absence of gold probes.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    7

    Conclusion :

    - The HAP nanoneedles first formed at the ACP-solution interface and

    extended outward radially.

    - The ACP microsphere provides a template and nutrient for the growth

    and assembly of HAP nanoneedles.

    This study shows that the involvement of gold nanoparticles can provide a

    new strategy to investigate the detailed evolution process of amorphous

    materials.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    8

    Chapitre 2E.2 L’ octacalcium phosphate - OCP13

    Regarding the HAp-solution interfaces, it can be expected that HAp

    surfaces in contact with aqueous solutions are subjected to hydration by water

    molecules.

    A number of researchers pointed out the presence of a transition region

    between HAp and aqueous solution, which is metastable, as compared to HAp,

    and contains water molecules, protonated phosphate ions (HPO42-

    ), and other

    trace elements14

    ,15

    .

    13. K. Matsunaga et al., Sr Substitution in Bioactive Calcium Phosphates : A first principles

    study, J. Phys. Chem. B 2009, 113, 3584–3589

    14. Santos, R. A.; Wind, R. A.; Bronnimann, C. E. J. Magn. Reson. B1994, 105, 183–187.

    15. Cazalbou, S.; Eichert, D.; Ranz, X.; Drouet, C.; Combes, C.; Harmand, M. F.; Rey, C. J.

    Mater. Sci. 2005, 16, 405–409.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    9

    In this regard, Brown et al. proposed the crystal structure of octacalcium

    phosphate [Ca8H2(PO4)6 ·5H2O (OCP)] as a structural model for the interfacial

    transition region (see Figure 1)16,17

    .

    Figure 1. Crystal structures of (a) OCP and (b) HAp viewed along the c axis.

    The PO43-

    groups are represented by the tetrahedra. These two are arranged to

    highlight the similarity in HAp and the apatitic layer of OCP.

    16. Brown, W. E. Nature 1962, 196, 1048–1050.

    17. Brown, W. E.; Mathew, M.; Tung, M. S. Prog. Crystal. Growth Charact. 1981, 4, 59–87.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    10

    Since it is also thought that OCP is an intermediate phase for nucleation of

    HAp crystals during bone mineralization processes18,19,20

    , it is reasonable to

    consider that OCP is a prototype structure of the interfacial transitional region

    between HAp and aqueous solution21

    .

    In order to investigate possible Sr2+

    location in the system of HAp

    crystals in contact with aqueous solutions, therefore, the present study attempts

    to perform first-principles calculations for Sr2+

    ions incorporated into OCP and

    HAp by ion exchange with Ca2+

    .

    Conclusion :

    As compared with the Sr substitutions in HAp, the formation energies of

    substitutional Sr2+

    at a number of Ca sites in OCP were much smaller,

    which indicates that Sr2+

    ions can be more favorably substituted for Ca2+

    in OCP

    by ion exchange.

    Since OCP is considered as the precursor phase of HAp, it can be

    speculated that the Sr2+

    incorporation can stabilize the metastable

    calcium phosphate phase,

    - to prevent apatite resorption

    - or to promote apatite nucleation during bone remodeling

    processes.

    18. Dorozhkin, S. V. J. Mater. Sci. 2007, 42, 1061–1095.

    19. Brown, W. E.; Schroeder, L. W.; Ferris, J. S. J. Phys. Chem. 1979,83, 1385–1388.

    20. Tseng, Y. H.; Mou, C. Y.; Chen, J. C. C. J. Am. Chem. Soc. 2006, 128, 6909–6918.

    21. Tung, M. S.; Skrtic, D. In Octacalcium phosphate; Chow, L. C., Eanes, E. D., Eds.;

    Karger: Basel, Switzerland, 2001.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    11

    Chapitre 2E.3 Nouvel OCP ? Collapsed OCP Stabilized by

    Ionic Substitutions22

    OCP versus HP d’un point de vue structural

    The unit cell of OCP consists of “apatitic layers”, where Ca2+

    and PO43-

    ions occupy the same relative positions as in HA, and of “hydrated layers”,

    where Ca2+

    and PO43-

    ions are more widely spaced, due to the presence of the

    interdispersed structural water molecules23

    ,24

    . Apatitic layers (about 1.1 nm

    thick) alternate with hydrated layers (about 0.8 nm thick) parallel to the (100)

    face.

    OCP et les impuretés

    However, OCP is less sensitive than HA to the presence of

    impurities25

    ,most likely because of the presence of lattice waterwhich decreases

    the adsorption of foreign ions26

    . At variance, the results of theoretical studies

    based on first principles calculations;with OCP assumed to be a structuralmodel

    of the transition region betweenHAand the solution;indicated that substitutional

    foreign ions, such as Sr2+

    , Mg2+

    , and Zn2+

    , can be more easily incorporated in

    OCP than in HA lattice27

    ,28

    .

    22. E. Boanini et al., Crystal growth desigh 2010

    23. Brown, W. E.; Smith, J. P.; Lehr, J. R.; Frazier, A. W. Nature 1962, 196, 1048–1055.

    24. Mathew, M.; Brown, W. E.; Schroeder, L. W.; Dickens, B. J. Cryst. Spectrosc. Res. 1988,

    18, 235–250.

    25. Salimi, M. H.; Heughebaert, J. C.; Nancollas, G. H. Langmuir 1985, 1, 119–122.

    26. Wang, L.; Nancollas, G. H. Chem. Rev. 2008, 108, 4628–4669. 27. Matsunaga, K. J. Chem. Phys. 2008, 128, 245101245111

    28. Matsunaga, K.; Murata, H. J. Phys. Chem. B 2009, 113, 3584–3589.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    12

    Des différences en SEM et DRX importantes en fonction de la nature des substitutions

    Figure 1. SEM images of (a) Ca-OCP, (b) Mg10, (c) Sr10, and (d) Mn10

    crystals.

    Figure 2. Powder X-rays diffraction patterns patterns of (a) Ca-OCP, (b) Mg10,

    (c) Sr10, and (d) Mn10 samples.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    13

    Figure 2. Powder X-rays diffraction patterns patterns of (a) Ca-OCP, (b) Mg10,

    (c) Sr10, and (d) Mn10 samples.

    Plusieurs phases sont synthétisées suite à la substitution

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    14

    Le comportement des phases en température est different suivant la subsitution

    Figure 4. –High magnification of the small angle region of the powder XRD

    patterns of (a) Ca-OCP, (b) Mg15, and (c) Sr15 samples. The diagrams were

    recorded in situ at increasing temperature.

    Conclusion : We have explored the possibility of introducing biologically

    relevant ions, namely Sr2+

    , Mg2+

    , and Mn2+

    into the structure of octacalcium

    phosphate (OCP).

    - OCP with partial substitutions of Sr2+

    and Mg2+

    for Ca2+

    up to 7.4 and 1.0

    at%, respectively, was successfully synthesized.

    - On the contrary, Mn2+

    completely inhibits OCP crystallization, and it

    promotes the precipitation of brushite.

    The incorporation of Sr2+

    and Mg2+

    disturbs the shape of the crystals and

    reduces the stability of OCP structure.

    Due to the destabilizing effect of the foreign ions, in the temperature range

    of 170-250 °C, Mg- and Sr-OCP contain “collapsed OCP” but no OCP, which

    allowed us to calculate the unit cell of this new phase characterized by a slightly

    reduced a-axis and a wider γ angle with respect to OCP.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    15

    Chapitre 2E.4 Différentes Morphologies pour l’OCP29

    In this study, we hypothesize that the cationic surfactant lamellar

    templates may “sandwich” the longitudinal side of the OCP plates and modulate

    the nanocrystal growth while its surface remains clear.

    Cetyltrimethylammonium bromide (CTAB), which is an extensively applied

    structure-directing amphiphilic small molecule, has the potential to form

    vesicles over critical micelle concentration (CMC) and transform lamellar

    structure with increasing concentration in solution30

    ,31

    .

    29. Yang et al., Facile Synthesis of Octacalcium Phosphate Nanobelts: Growth Mechanism

    and Surface Adsorption Properties, JPC 2010

    30. Lamont, R. E.; Ducker, W. A. J. Am. Chem. Soc. 1998, 120, 7602.

    31. Zhao, F.; Du, Y.; Yang, P.; Li, X.; Tang, J. Sci. China, Ser. B: Chem. 2005, 48, 101.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    16

    (a)

    (b)

    ©

    Figure 3. Morphology difference of OCP synthesized with calcium acetate (a),

    calcium chloride (b), and calcium nitrate (c) as calcium salt species.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    17

    Figure 4. Morphology evolution of OCP obtained at different CTAB

    concentrations with 1 h of aging time: (a) 0.20, (b) 0.30, (c) 0.40, (d)

    0.60, (e) 0.70, and (f) 0.80 mM. The bar is 20 μm.

  • Chapitre3 Prothèse de hanche - Apatite- 31082010

    18

    Figure 7. Schematic mechanism illustration of OCP nucleation on the CTAB

    vesicle preferentially protecting the longitudinal faces of the OCP nanobelts by

    CTAB lamellar structure template leaving the belt ends amenable to grow

    rapidly in the aqueous solution, without surface contamination.

    Conclusions

    In summary, the OCP nanobelts without surface contaminants were

    synthesized by a new small molecule-assisted wet-chemical method. The

    nonabsorbed small molecule surfactant (i.e., CTAB) has a key role in

    modulating crystallite anisotropic growth of long belt-like nanostructures.