niels tuning (1) “elementary particles” lecture 5 niels tuning harry van der graaf

Post on 12-Jan-2016

226 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Niels Tuning (1)

“Elementary Particles”Lecture 5

Niels Tuning

Harry van der Graaf

Thanks

• Ik ben schatplichtig aan:– Dr. Ivo van Vulpen (UvA)

– Prof. dr. ir. Bob van Eijk (UT)

– Prof. dr. Marcel Merk (VU)

Niels Tuning (2)

Homework

Exercises Lecture 4:

Niels Tuning (4)

1

Exercises Lecture 4:

Niels Tuning (5)

Exercises Lecture 4:

Niels Tuning (6)

Exercises Lecture 4:

Niels Tuning (7)

Plan

1) Intro: Standard Model & Relativity

2) Basis

1) Atom model, strong and weak force

2) Scattering theory

3) Hadrons

1) Isospin, strangeness

2) Quark model, GIM

4) Standard Model

1) QED

2) Parity, neutrinos, weak inteaction

3) QCD

6) e+e- and DIS

7) Higgs and CKM

Niels Tuning (8)

1900-1940

1945-1965

1965-1975

1975-2000

2000-2015

17 Feb

3 Mar

17 Mar

19 May

26 May

10 Feb

21 Apr

Summary Lects. 1-5

• Theory of relativity– Lorentz transformations (“boost”)

– Calculate energy in collissions

• 4-vector calculus

• High energies needed to make (new) particles

Lecture 1: Relativity

Niels Tuning (10)

• 4-vectors: – Space-time x

– Energie-momentum p

– 4-potential A

– Derivative ∂

– Covariant derivative D

– Gamma matrices

• Tensors– Metric g

– Electromagnetic tensor F

Lecture 1: 4-vector examples

Niels Tuning (11)

• Schrödinger equation– Time-dependence of wave function

• Klein-Gordon equation– Relativistic equation of motion of scalar particles

Dirac equation– Relativistically correct, and linear

– Equation of motion for spin-1/2 particles

– Described by 4-component spinors

– Prediction of anti-matter

Lecture 2: Quantum Mechanics & Scattering

Niels Tuning (12)

• Scattering Theory– (Relative) probability for certain process to happen

– Cross section

• Fermi’s Golden Rule

– Decay: “decay width” Γ

– Scattering: “cross section” σ

Lecture 2: Quantum Mechanics & Scattering

Niels Tuning (13)

ClassicClassic Scattering amplitude Scattering amplitude inQuantum Field Theory

a → b + c

a + b → c + d

• “Partice Zoo” not elegant

• Hadrons consist of quarks

Observed symmetries– Same mass of hadrons: isospin

– Slow decay of K, Λ: strangeness

– Fermi-Dirac statistics Δ++, Ω: color

• Combining/decaying particles with (iso)spin– Clebsch-Gordan coefficients

Lecture 3: Quarkmodel & Isospin

Niels Tuning (14)

• Arbitrary “gauge” Physics invariant

Introduce “gauge” fields in derivative

Interactions!

• QED

• Weak interactions

• QCD

Lecture 4: Gauge symmetry and Interactions

Niels Tuning (15)

2

exp8,1

aaa x

i

1 photon

3 weak bosons

8 gluons

EM coupling α

Strong coupling αS

Confinement

Asymptotic freedom

Lecture 5: Running couplings

Niels Tuning (16)

Feynman rules: Example

Niels Tuning (17)

• Process: e-μ- →μ- e-

Remember the 4-componentspinors in Dirac-space:

• spin-0 particles (Klein-Gordon)

• spin-1/2 fermions (Dirac)

• Photons

Lagrangian Equation of motion

Niels Tuning (18)

Klein-Gordon equation

Dirac equation

Maxwell equations

1) Assume symmetry ψ→ψ’= ψeiα(x)

2) Keep Eqs valid

Covariant derivative

Gauge Invariance

Niels Tuning (19)

1) Arbitrary gauge

2) Keep Eqs valid

This implies: ψ→ψ’= ψeiα

We started globally:

Then we went local:

AAA

iqAD

Quantum Electro Dynamics - QED

Niels Tuning (20)

Fermion ψ with mass mInteraction with coupling q Photon field Aμ

m qγμ

QCD Lagrangian

Niels Tuning (21)

Fermion ψ with mass mInteraction with coupling q 8 Gluon fields Aμ

m

Self-interaction

qγμ

• Local SU(3) gauge transformation

• Introduce 8 Aμa gauge fields

• Non-“Abelian” theory,

• Self-interacting gluons– Gluons have (color) charge

• Different “running”

• Local U(1) gauge transformation

• Introduce 1 Aμ gauge field

• “Abelian” theory,

• No self-interacting photon– Photons do not have (electric) charge

• Different “running”

QED QCDQED QCD

Niels Tuning (22)

2

exp8,1

aaa x

i

QED and QCD

1) e+e- scattering e+e- →μ+μ-

e+e- →cc Discovery of charm and colour (quantity “R”)

e+e- →qq g Discovery of the gluon

e+e- →Z 3 neutrino’s

e+e- →WW

• Deep Inelastic Scattering (DIS) (lepton-proton scattering) Quarkmodel: do quarks exist??

Sub-structure

Bjorken-x, sum rules

Scaling (violations)

‘Parton density functions’ (pdf) and ‘structure functions’

Outline for today:

Niels Tuning (23)

e+e- Scattering

• e+e-→μ+μ-

• e+e-→cc– Confirmation of “color”

– Discovery of charm

• e+e-→qq g– Discovery of the gluon

• e+e-→tt– Hunt for the top

• e+e-→Z– 3 neutrino’s

• e+e-→WW

Shopping list

Niels Tuning (25)

e+e- colliders

Niels Tuning (26)

Accelerator Lab s (GeV) Year

SPEAR SLAC 2 – 8 1972 - 1990

DORIS I, II DESY 10 1974 - 1993

CESR(-c) Cornell 3.5 - 12 1979 - 2008

PEP SLAC 20 - 29 1980 - 1990

PETRA DESY 12 – 47 1978 - 1988

TRISTAN KEK 50 – 60 1987 - 1995

SLC SLAC 90 1988 - 1998

LEP I, II CERN 90 – 208 1989 - 2000

Examples of e+e- processes

time

Examples of e+e- processes

• Rutherford scattering

(scattering off static point charge)

• Mott scattering

(now with high energy, taking into account recoil of target and magnetic moment: spin ½)

• spin-½ spin-½ scattering

(average over incoming spin, sum over outgoing spin)

Scattering

Niels Tuning (29)

• Point cross section

• At √s=10 GeV:

σ(e+e-→μ+μ-) ~ 0.9 nb

e+e-→μ+μ-

Niels Tuning (30)

e+e-→hadrons

• Point cross section

• At √s=10 GeV:

σ(e+e-→q+q-) ~ 3.6 nb

e+

e- γ f

f-

e+e-→hadrons

• Compare cross section of σ(e+e-→q+q-) to σ(e+e-→μ+μ-)

Photon couples to fermion charge!

Color of quarks?

Inspect Ratio R:

...222 sduc qqqNR

muons

quarks

Prediction R: me+e- < 2mc

Without color: R = 2/3

R (ee qq )

(ee )

(2 /3)2 (1/3)2 (1/3)2

12 2

3

R (ee qq )

(ee )

3(2 /3)2 3(1/3)2 3(1/3)2

12 2 With 3 colors: R = 2

muons

quarks

Without color: R = 10/9

R (ee qq )

(ee )

(2 /3)2 (1/3)2 (1/3)2 (2 /3)2

12 10

9

R (ee qq )

(ee )

3(2 /3)2 3(1/3)2 3(1/3)2 3(2 /3)2

12 30

9With 3 colors: R = 30/9

Prediction R: me+e- > 2mc

me+e- (GeV)

1 (3) colors

1.1(3.3)

0.7 (2)

prediction

1

0

No color (udsc)No color (uds)

with color(udsc)

data

With color (uds)

e+

e- γ f

f-

e+e-→hadrons

So, quarks have color!

How about spin?

Sam ‘J’ Ting. Burt ‘’ Richter

Discovery of charm (J/November 1976: ‘November revolution’New meson discovered (J/ψ) with mass 3.16 GeVQuark model: J/ψ consists of pair of c-quarks

e+e-→cc

Sam ‘J’ Ting. Burt ‘’ Richter

Discovery of charm (J/November 1976: ‘November revolution’New meson discovered (J/ψ) with mass 3.16 GeVQuark model: J/ψ consists of pair of c-quarks

e+e-→cc

Because of the nearly simultaneous discovery, the J/ψ is the only elementary particle to have a two-letter name. Richter named it "SP", after the SPEAR accelerator used at SLAC; however, none of his coworkers liked that name. After consulting with Greek-born Leo Resvanis to see which Greek letters were still available, and rejecting "iota" because its name implies insignificance, Richter chose "psi" – a name which, as Gerson Goldhaber pointed out, contains the original name "SP", but in reverse order.[2] Coincidentally, later spark chamber pictures often resembled the psi shape. Ting assigned the name "J" to it, which is one letter removed from "K", the name of the already-known strange meson; possibly by coincidence, "J" strongly resembles the Chinese character for Ting's name ( 丁 ). J is also the first letter of Ting's oldest daughter's name, Jeanne.

1970: Prediction of charm quark Observation K0→μμ

Lesson:Loop diagrams are sensitive to heavy particles

Intermezzo: “indirect discoveries”

GIM, Phys.Rev.D2,1285,1970

s d

μ

μ

“Loop” diagram:

e+e-→qq g

Niels Tuning (40)

From: arXiv:1008.1869

1979

J/ψ

c e-

e+

γ

e+e-→cc

c

b e-

e+b

γ

e+e-→bb ?

• In modern times: yes!• Babar experiment at SLAC (USA)

• Belle experiment at KEK (Japan)

• e+e-→Υ(4S) → B0B0

• M(Υ(4S)) =10579.4 MeV

• 2 x M(B0) = 10559.2 MeV (coincidence??)

“B-factories”

Y

Intermezzo: bottom discovery

Niels Tuning (43)

• Fermilab (Chicago), 400 GeV proton – fixed target– p + (Cu,Pt) μ+ + μ- + anything

– m(bb)~9.5 GeV , so m(b)~5 GeVm(b)~5 GeV

“background subtracted”:

e+e-→ttt e-

e+

γ

e+e- cross-section

t

• 1977: bottom discovered

• How heavy could the toptop be??

– 20 GeV ?

– 25 GeV ??

– 30 GeV ???

– Built Tristan accelerator, with Topaz detector (Japan)

– Reached 25.5 GeV in 1986

At minimum of cross section…

e+e-→ttt e-

e+

γ

e+e- cross-section

t

• 1977: bottom discovered

• How heavy could the toptop be??

– 20 GeV ?

– 25 GeV ??

– 30 GeV ???

– Built Tristan accelerator, with Topaz detector (Japan)

– Reached 25.5 GeV in 1986

At minimum of cross section…

ARGUS almost discovered the top quark: mtop> 50 GeV

Lesson:Loop diagrams are sensitive to heavy particles

Intermezzo: “indirect discoveries”

ARGUS Coll, Phys.Lett.B192:245,1987

?

bs

s

b

Z-boson

f e-

e+ anti-f

Z

e+e-→Z(From: PDG)

Remember:

• AB+C : Total decay rate

• τ = ħ /Γ

• A+B R C+D: Resonance:

e+e-→Z

Breit-Wigner

E0-Γ/2 E0 E0-Γ/2

Pmax

Pmax/2

3 families !

e+e-→Z

• Measure total width, with energy scan: “Z-lineshape” Total width is sum of “partial widths”

• Measure branching ratios of Zqq and Zl+l-

“Invisible width” due to neutrinos

..., eetotalZ

e+e-→WW

• Upgrade of LEP:

90 208 GeV!

• Enough energy to create WW-pairs

and ZH-pairs?!

e+e-→WW

(a) (b) (c)

(c)

(a+c)

(a+b+c)

• Triumph for Standard Model:

Intermezzo:Discovery Z and W

Gargamelle experiment

Neutrinos on target (12,000 liter freon (CF3Br)

Discovery neutral currentDiscovery neutral current

υμ υμ

Z

quark(nucleon)

quark(hadrons)

19731973

Spokesman UA1 experiment In 1989 Director General CERN Initiator of Energy Amplifier

SPS proton-anti-protoncollider √s = 540 GeV Carlo RubbiaSimon van der Meer

Correcting signal

stochastic cooling

Direct observation weak-force carrierDirect observation weak-force carrier

Discovery Z-bosonDiscovery Z-boson

“Experimental observation of lepton pairs of invariant mass around 95 GeV/c2

at the CERN SPS collider”

Nederlands tintje

Ml+l- [GeV/c2]

Lepton pair mass (4 events)

3 June 19833 June 1983

24 februari 198324 februari 1983

Discovery W-bosonDiscovery W-boson

Prediction:

Observation:

2012:

“Experimental observation of isolated large transverse energy electrons with associated

missing energy at √s=540 GeV”

Deep Inelastic Scattering

Lepton – proton scatteringor:

Hitting something big, using something small

• Quarkmodel: do quarks exist??

• Substructure

• Bjorken-x, sum rules

• Scaling

• ‘Parton density functions’ (pdf) and ‘structure functions’

• Scaling violations

Shopping list

Niels Tuning (58)

Scattering

Niels Tuning (59)

• Rutherford scattering

(scattering off static point charge)

• e+e-→μ+μ- scattering

(s-channel)

• e-μ+→e-μ+ scattering

(t-channel)

• Point cross section

e+q→e+q

Niels Tuning (60)

e+ e+

q q

2sin

)cos1(2

2

22

y

EQ e

• Easiest: fixed target

– ep scattering

– μp scattering

– νp scattering

• 1990’s: ep collider

DIS experiments

Niels Tuning (61)

protonsprotons

electronselectrons

Experiment Accel Lab lepton Elep Ehad Year

SLAC-MIT SLAC e 20 fixed 1967-1973

Gargamelle CERN fixed

E80 - SLC SLAC fixed

CHORUS SPS CERN 10-200 fixed 1998

CCFR Tevatron Fermilab 30-360 fixed

NMC SPS CERN 90-280 fixed 1986-1989

EMC/SMC SPS CERN 100-190 fixed 1984-1994

BCDMS SPS CERN 100-280 fixed

ZEUS, H1 HERA DESY e 27.5 920 1992-2007

NB: Table not complete

electron protonbeam target

detector

Robert Hofstadter

spin ½, r=10 -15m

spin 0

spin ½, point

Sub-structure

Niels Tuning (63)

• Remember Rutherford

– Back-scatter of α from nucleus

• Now:

– Back-scatter of e from quarks

data

voorspelling

electron protonbeam target

detector

J.D. Bjorken “scaling hypothesis” (1967):

• If scattering is caused by pointlike constituents structure functions must be independent of Q2

Would you expect a Q2 dependence?

R. Feynmans “parton model” (1969):

• Proton consists of ‘constituents’

• “Physicists were reluctant to identify these objects with quarks at the time, instead calling them "partons" – a term coined by Richard Feynman.”

Scaling

Niels Tuning (65)

Proton

valence quarks

sea quarksQCD: deep in the protonQCD: deep in the proton

Proton

valence quarks

sea quarksQCD: deep in the protonQCD: deep in the proton

Two important variables:

• Q2: 4-mom. transfer, scale

• x: fractional momentum of quark

• eq scattering:

• ep scattering:

Deep Inelastic Scattering

Niels Tuning (68)

(Fro

m: P

hD th

esis

N.T

unin

g)

Form factor

• ep scattering:

• F2(x): proton structure function

• q(x): parton density function

Deep Inelastic Scattering

Niels Tuning (69)

• ep scattering:

• F2(x): proton structure function

• q(x): parton density function

But… the proton had 3 quarks?!

Sum rules:

Parton Densities

Niels Tuning (70)

Proton: xProton: x

• What is ‘momentum fraction’ distribution of quarks??

• Quarks:

“Valence”

“Sea”

(From: Halzen & Martin)

Proton: xProton: x

• What is ‘momentum fraction’ distribution of quarks??

• Quarks:

“Valence”

“Sea”

Dynamic, QCD !

(From: Halzen & Martin)

Proton: xProton: x

(From: Halzen & Martin)

(From: PhD thesis N.Tuning)

• What is ‘momentum fraction’ distribution of quarks??

• Quarks:

“Valence”

“Sea”

Dynamic, QCD !

x=1/3

Proton: Q2Proton: Q2

• The “deeper” one looks into the proton, the more quarks and gluons

Proton: x, Q2Proton: x, Q2

(From: PhD thesis N.Tuning)

Proton: x, Q2Proton: x, Q2

(From: PhD thesis N.Tuning)

• The “deeper” one looks into the proton, the more quarks and gluons

• “QCD evolution”

• Describes quark-gluon splitting

DGLAP evolution eqs:

J.D. Bjorken “scaling hypothesis” (1967):

• If scattering is caused by pointlike constituents structure functions must be independent of Q2

• Would you expect a Q2 dependence?

Yes, due to QCD, ie. quark/gluon splitting ! Matured in mid ‘70s

The proton is “dynamic” !

Measurement of F2(x,Q2) very accurate test of QCD

Scaling violations

Niels Tuning (77)

Scaling violations

Niels Tuning (78)

Measurement of F2(x,Q2) very accurate test of QCD

Proton StructureProton Structure

45

The deeper you look, the more low-x quarks

Proton StructureProton Structure

45

The deeper you look, the more low-x quarks

Proton StructureProton Structure

Proton Structure: knowledge needed for predictionsProton Structure: knowledge needed for predictions

Plan

1) Intro: Standard Model & Relativity

2) Basis

1) Atom model, strong and weak force

2) Scattering theory

3) Hadrons

1) Isospin, strangeness

2) Quark model, GIM

4) Standard Model

1) QED

2) Parity, neutrinos, weak inteaction

3) QCD

6) e+e- and DIS

7) Higgs and CKM

Niels Tuning (83)

1900-1940

1945-1965

1965-1975

1975-2000

2000-2015

17 Feb

3 Mar

17 Mar

19 May

26 May

10 Feb

21 Apr

top related