electrostatic properties of carbon nanotubes and cnt-based devices...

Post on 01-Jan-2021

9 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Electrostatic properties of carbon nanotubesand CNT-based devices

using scanning force techniques

Thierry MELIN

Institut d’Electronique, de Microélectroniqueet de Nanotechnologie

IEMN CNRS-UMR8520 Villeneuve d’Ascq FRANCE

Thierry MELIN, Heinrich DIESINGER CNRS research scientists

M. Zdrojek (2006), D. Brunel (2008) PhD studentsS. Barbet (2008), L. Borowik

D. Deresmes Technical support

Our aim :

Probing the electrostatics of nanostructures and nanodevicesusing electrical techniques derived from atomic force microscopy

Electric Force Microscopy (EFM) detecting chargesKelvin Force Microscopy (KFM) probing surface potentials

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)[ carbon nanotubes as memory devices ]

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)

Charge injection - Charge detection

Charge injection Charge detection (EFM)

Q Q

Principle of charge detection

Force gradient on the tip

Fz = Fz(zo)+ gradz Fz .(z - zo)

“ - Δk ”

Q

cantilever resonance frequency shift

fexc

effective change in cantilever stiffness

2π f0= km

sensitivity down to 1e in specific cases

Illustration : silicon nanoparticles 1/2

Topographyimage

EFM image(VEFM=-8V)

50 nm scale 40 Hz scale

Uncharged silicon nanoparticles (capacitive interaction)

Illustration : silicon nanoparticle 2/2

+

+ ++ +

- -- -

EFM (Δf0) 300x300nm

- 2V

+2V

Injection @+6V(~ +170 e)

+ ++ +

- -- -

- 2V

+2V

Injection @ -6V(~-170 e)

-

-

+

Silicon nanoparticles after charge injection

T. Mélin et al., Appl. Phys. Lett., 78 5054 (2002)

Charge injection in carbon nanotubes

Charge injection Vinj=-5V Delocalized charge patternDifferent FWHMs between chargeand capacitive EFM patterns

~30 nm diameter MWCNT VEFM=-3V, 10Hz color scale

M. Zdrojek et al., J.Appl Phys (2006)

Abrupt discharge phenomena

• Abrupt discharges when scanning along the nanotubes

[MWCNT with 18 nm diameter, VEFM=-2V, 20Hz color scale]

AFM EFM EFM

[MWCNT with 18 nm diameter, Vinj=-7V (3 min) detection VEFM=-3V]

Abrupt discharges in MWCNTs

MWCNT with 21 nm diameter, Vinj=-5V (2 min) VEFM=-3VAFM : 50 nm color scale ; EFM : 20 Hz color scale

Preferential charge emission sites with density : < a few µm-1

MWCNTs can carry an out-of-equilibrium charge on SiO2 !!

M. Zdrojek et al., J. Appl. Phys. 100 114326 (2006)

MWCNTs versus SWCNTs

SWCNT 3.0 nm diameter

Charge injection : Vinj=-6V, 30s, charge detection : VEFM=-3V

distance [µm]0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

distance [µm]0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

MWCNT 15.0 nm diameter

nanotube charge signal

M. Zdrojek et al., Phys. Rev. Lett. 96 039703 (2006)

Charging mechanisms

Charging mechanisms ?

Capacitive responseto the tip bias

??

SiO2e=200nm

dCNT

Intrashellconduction

Intershellconduction

Vinj

Transverse dielectric properties of nanotubes

⇒ Response to the electric fieldgenerated by the EFM tip

substrate

oxide

MWCNT

EFM tip-eVinj

0

Energy

substrate

oxide

MWCNT

EFM tipΔV

Response to the electric field at the EFM tip : λ = 2 πε0 ε / ln(4e/dCNT) . ΔV

Energy diagrams during charge injection

Capacitive prediction λ = 2πε0 ε / ln(4e/dCNT)

(a) analytical ε=(εox+1)/2 (b) numerical calculations

Experimental data points

and (c) :

λ = πε0 ε / ln(4e/dCNT) . Etip. dCNT

Comparison with experiments

M. Zdrojek et al., Phys. Rev. B 77 033404 (2008)

Inner-shell charging of MWCNTs

• Charge storage in the first inner metallic shells

(coll. A. Mayer, Univ Namur, Belgium)

Inner-shell charging of MWCNTs

M. Zdrojek et al., Phys. Rev. B 77 033404 (2008)

Electron interactions in SWCNTs

Charge distribution in SWCNTs 1/3

in vacuum on SiO2

-e-e

Charge accumulationat the nanotube ends ?

φ= charge enhancement factorRatio of the charge density

at the end of the CNT (10%L) with respect to its middle

[ coll. Z. Wang, M. Devel,Univ. Franche Comté France ]

Charge distribution in SWCNTs 2/3

Experimental evidencefor charge enhancement at the CNT cap

Nanotube radius (nm)E

nhan

cem

entf

acto

r

Enhancement as a function of the CNT radius

Z. Wang et al., Phys. Rev. B 78 085425 (2008)

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)- description of experiments- analysis of coupled transport and KFM measurements- model

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)- description of experiments- analysis of coupled transport and KFM measurements- model

Electrostatic excitation : ac+dc voltage to the AFM tip

Principle of surface potential measurementsusing Kelvin force microscopy

~Vdc

Vac

Electrostatic force

1ω force component

Nullification of the 1ωforce component

Vdc=Vs

Measurementof the surface potential

AFM image

Vds=-3V

Coupled tranport and KFM experiments

CNT-FET subjected to a local charge perturbation

Transportmeasurements

electrostaticmapping

EFM,KFM

charge injection in the SiO2 layer

I(Vg)

Vinj=-6V

AFMKFM (before injection)

0V

1,5V

1 µm

KFM (after injection)

Experimental procedure

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)- description of experiments- analysis of coupled transport and KFM measurements- model

AFM

AFM

Vinj = -6V

Negative charge injection close to the CNT-FET

~-200e at ~200nm from the CNTPositive effective gate voltage shift (!)

AFM

AFM

Vinj = +6V

Positive charge injection close to the CNT-FET

~+200e at ~200nm from the CNT Negative effective gate voltage shift (!)

KFM images (Vinj>0)

AFM KFMKFMBefore injection After injectionBefore injection After injectionAFM KFMKFMBefore injection After injectionBefore injection After injection

Vinj = 6V

50 mV

200 mV

Vs

(mV

)

Nanotube response probed by KFM (Vinj>0)

Vinj = +6V

Vs

(mV

)

Nanotube response probed by KFM (Vinj>0)

AFM KFMKFMBefore injection After injectionBefore injection After injection

Injection at Vinj = -6V

Vinj = -6V

50 mV

200 mV

KFM images (Vinj<0)

Nanotube response probed by KFM (Vinj<0)

Vinj = -6V

Nanotube response probed by KFM (Vinj<0)

I - Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

II - Coupled transport and electrostatic measurements (SWCNTs)- description of experiments- analysis of coupled transport and KFM measurements- model

Qualitative model

gate

Local charge

S D

RC RC’Ctube-lc

Clc-gate

Q+ Ctube-gate

Q- Q-Q-

- Nanotube coupled to electrodes by tunnel contacts- screening of the local (Q+) charge by (Q-) charges from the electrodes- delocalized (Q-) charge emission pattern along the nanotube

Sensitivity of CNTs as charge detectors

Charge over distance

Gat

evo

lata

gesh

ift In our case :100e@100nm

Additional exp. point :Single charge

in a nanocrystal closeto the CNT channel

(1µm-thick oxide device)[Gruneis et al. Nanolett. (2007)]

- Electrostatics of individual nanotubes (SWCNTs, MWCNTs)

-Coupled transport and electrostatic measurements[ carbon nanotubes as memory devices ]

Conclusion - Prospects

Electrostatic properties of CNTs and CNT-devicesusing scanning force techniques

Prospects

UHV – AFM (EFM, KFM etc …) low-temperature measurements

AFM

KFM

AFM

KFM

-0,2V

-0,1V

Vd = 0V Vs = 0V Vd = 0,15 V Vs = 0VVg = 0V Vg = 0V

300 nm

Prospects

top related