electronique moléculaire: état de l'art & perspectives d. vuillaume institute for...

Post on 14-Dec-2015

215 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Electronique moléculaire:Electronique moléculaire:état de l'art & perspectivesétat de l'art & perspectives

D. Vuillaume

Institute for Electronics, Microelectronics

& Nanotechnology – CNRS, Lille“Molecular Nanostructures & Devices” group

SiO2 1nm Si highly doped

SiO2 1nm Si highly doped

Al

SiO2 1nm Si highly doped

hydrogen carbon oxygen

sulfur

silicon

Au Au

-(CH2)3-SH or C3-SH -(CH2)3-CH3 or C3 -(CH2)6-CH=CH2 or C8 1.0µm

PlanPlan

• Définition, quelques repères historiques

• Principes de base, structure et transport électronique dans une jonction moléculaire

• Exemples de composants à l'échelle moléculaire

Definition, introduction, Definition, introduction, foundations of the fieldfoundations of the field

• “Information processing using photo-, electro-, iono-, magneto-, thermo-, mechanico or chemio-active effects at the scale of structurally and functionally organized molecular architectures”

(Adapted from: J.M. Lehn, Angew. Chem. Int. Ed., 1988, Noble Lecture)

Molecular Electronics - manipulate and control the position of one or few molecules- tailor their electronic properties to obtain useful devices

1 molécule - 1 monocouche

Pioneer resultsPioneer results

M 1 A D M 2

F e rm ie n e rgy

L U M O

H O M O

L U M O

H O M O

A vira m -R a tn er p ro p o sa l

Aviram & Ratner, Chem Phys Lett (1974)IBM, New York U.

Theoretical suggestion of amolecular analog of the p-n junction:the donor-bridge-acceptor molecularjunction.

A - σ - D

1rst evidence of tunnelingthrough a fatty acid LBmonolayer sandwichedbetween metal electrodes

Mann & Kuhn, JAP (1971)MPI

Dimension

Courtesy of J.P. Bourgoin (LEM-CEA)

Basic problems : electronic structure, Basic problems : electronic structure, basic devices and electronic transportbasic devices and electronic transport

Molecule vs.Molecule vs.Metal-Molecule-Metal junctionMetal-Molecule-Metal junction

« L'électronique moléculaire », J.P. Bourgoin, D. Vuillaume, M. Goffman & A. Filoramo.In "Les nanosciences, nanotechnologies et nanophysique", eds. M. Lahmani, C. Dupas P. Houdy (Belin, Paris, 2004), pp.400-449

Δ

•hybridation•charge transfer

0

E

V

Vondrak et al., J. Phys. Chem B (1999)

single molecule single molecule ensemble of molecules ensemble of molecules

Charge transport, current-voltageCharge transport, current-voltage

12

Low bias:tunnel effect

12

Higher bias:resonancethrough MO

gVe 21

low coupling

V

I

V

I

C. Joachim et al. Phys. Rev. Lett. 74, 2102 (1995)Europhys. Lett. 30, 409 (1995)

D. Porath et al.J. Appl. Phys. 81, 2241 (1997)Phys. Rev. B 56, 9829 (1997)

control of the electrode-molecule interface is control of the electrode-molecule interface is crucialcrucial

Li et al., JACS (2006)Arizona U.

2.5x10-4G0

0.5x10-4G0

Patrone et al., Chem Phys (2002) LEM-CEA

What can we do with molecules ? What can we do with molecules ? Which types of electronic devices?Which types of electronic devices?

electronic function in moleculeselectronic function in molecules

S

SS

S

SS

CN

CNNC

NC16H33

semiconductor/metal

rectifyier

insulator

bistable, memory

switch

tunnel barriertunnel barrier

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

-1.0x10-14

0.0

1.0x10-14

2.0x10-14

3.0x10-14

4.0x10-14

5.0x10-14

6.0x10-14

7.0x10-14

Flux signal (V

)

Pho

tocu

rren

t (A

)

Photon energy (eV)

HTS DTS OTS

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

10-3

10-2

10-1

100

flux

D. Vuillaume et al., Phys. Rev. B (1998), Phys Rev. Lett. (1996)

A. Salomon et al., PRL (2005); Adv Mater (2007)

1.5 2.0 2.5 3.0

1x10-8

1x10-7

1x10-6

1x10-5

1x10-4

1x10-3

Monolayer thickness (nm)

Cu

rre

nt

de

nsi

ty (

A/c

m2 )

•E.E. Polymeropoulos et J. Sagiv, J. Chem. Phys. (1978)•C. Boulas et al., Phys. Rev. Lett. (1996)•J. Holmlin et al., J. Am. Chem. Soc. (2001)•D.J. Wold et al., J. Am. Chem. Soc. (2000,2001)•X.D. Cui et al., J. Phys. Chem. B (2002)

Δ Δ?Au-S- : ~ 1.5 - 2.5 eV

Si-C- : ~ 1.5 eVSi-O- : ~ 4 - 4.5 eV

S. Lenfant et al. Phys. Stat. Sol. a (2006), IEMN-CNRSKushmerick et al. Nano Lett. (2004), NISTWang et al. Nano Lett? (2004), Yale

Couplage electron-vibration moléculaireIETS

fluctuations, bruit

SiO2 1nm Si highly doped

SiO2 1nm Si highly doped

Al

SiO2 1nm Si highly doped

hydrogen carbon oxygen

sulfur

silicon

Au Au

-(CH2)3-SH or C3-SH -(CH2)3-CH3 or C3 -(CH2)6-CH=CH2 or C8

localized (E,z) defects

N. Clement et al., PRL (soumis)IEMN-CNRS & Weizmann

molecular rectifying diodemolecular rectifying diode

D A

-2 -1 0 1 2

0

2x10-3

4x10-3

6x10-3

8x10-3

1x10-2

(a)

LB3/5,chena/bo429d

Cu

rre

nt d

ensi

ty (

mA

/cm

2 )

Voltage (V)

CN

CNNC

NC16H33

Aviram & Ratner concept (1974)

A.S. Martin et al., Phys. Rev. Lett. (1993), Cranfield U.R.M. Metzger et al., J. Am. Chem. Soc. (1997), Alabama U.D. Vuillaume et al., Langmuir (1999), IEMN-CNRS

RR~30V>0

DA

simplified concept

-1.0 -0.5 0.0 0.5 1.0-2.5x10-5

-2.0x10-5

-1.5x10-5

-1.0x10-5

-5.0x10-6

0.0

5.0x10-6

1.0x10-5

OETS-thiophene HETS-phenyl HETS-thiophene

VT

Cur

rent

den

sity

(A

.cm

-2)

Voltage (V)S. Lenfant et al., Nano Letters (2003)D. Vuillaume, J. Nanosci. Nanotechnol. (2002)S. Lenfant et al., J. Phys. Chem. B (2006)IEMN-CNRS

Π

RR~37

capacitive molecular memorycapacitive molecular memory

+Q

IV…

U. California Riverside, North Carolina & ZettaCore Inc (2002) Liu et al., science (2003)

Porphyrin-based SAM on Si-H surfacesPorphyrin-based SAM on Si-H surfaces

multi-redox = multi-valuedwrite ~ 10-3 - 10-5 srentention ~ 100-200 sr/w cycle : 1012

stable : 400°C (30min, inert atm)charge density ~16 µC/cm2

Kuhr et al., MRS Bul (2004)

Mémoire moléculaire capacitiveMémoire moléculaire capacitive

SiSiO2, 2 nm

C60, 1ML

Al2O3 (ALD), 30 nmSiO2 (PECVD), 26 nm

Hou et al., APL (2006)Cornell

functionalized NW memoryfunctionalized NW memory

Duan et al., Nano Letters (2002) Harvard Univ

InP (10-30 nm) + Co phthalocyanine

on/off ~104

write ~ ?? srentention ~ 20min - 600hr/w cycle : ??stable : ??

resistive molecular memoryresistive molecular memory

Ron Roff

command

S

S

SSHSH

Gplane > Gtwisté

G ~ G0 cos2θ

SS

SHSHS

Vankataraman et al., Nature (2006)Columbia

several attempts…several attempts…

A. Szuchmacher Blum et al.,Nature Mater. (2005)NRL, Rice, Geo-Centers

Moore et al.JACS (2006)Penn State & Rice U.

Donhauser et al., Science (2001)Penn State & Rice U.

Au(111)/mica

avoid thiol on gold !avoid thiol on gold !

Au-S ~180kJ/mol ~1.8eV

Si-Si ~326kJ/mol ~3.3eV

Si-C ~451kJ/mol ~4.7eV

Si-O ~800kJ/mol ~8.3eV

NH2/Auless sensitive to local structure

coupling through N lone pair

Very low energy

Loppacher et al., PRL (2003)U. Basel, IBM & CEMES-CNRS

~50zJ

=10°"OFF"

=55°"ON"

F. Moresco et al., Phys. Rev. Lett. (2001)U. Berlin & CEMES-CNRS

- CMOS FET : 0.1-1 fJ

- mol switch : 50 zJ

- kTLn2=2.8 zJ (@300K)

1012 "devices" at 1 GHz = 47 W

~ x104

~ x20

molecular transistormolecular transistor

McEuen & Ralph et al. Nature 2002Cornell

20-60 nm

Mottaghi et al. Adv Func Mater. (2007)ITODYS, IEMN-CNRS

Park et al, Nature 2002Harvard

Coulomb blokadeKondo effect

field effect

other molecular devicesother molecular devices

McEuen & Ralph et al. Nature 2002Park et al, Nature 2002

N. P. Guisinger et al, Nanoletters 4, 55 (2004)

Feringa et al., Adv. Mater. (2006)Univ. Groningen

NDR diodeMolecular transistor

Optical switch

Molecular spin-valve

Ralph et al., Phys Rev Lett (2004)

molecular-based circuitsmolecular-based circuits

J.M. Tour et al., IEEE Trans Nanotechnol. (2002)J.M. Tour et al., J. Am. Chem. Soc. (2003)

"NANOCELL"

A. Dehon et al., IEEE Trans Nanotechnol. (2003)

"Connecting nano to micro"

Crossnets Synaptic plaquette

Lykharev (2004)

NanoBlocks and NanoFabrics

Goldstein (2001)

Conclusions and perspectivesConclusions and perspectives

• Several functions and devices have been studied at the molecular scale : tunnel barrier, molecular wire, rectifying and NDR diodes, bistable devices and memories.– A better understanding and further improvements are

mandatory.– Need to be confirmed– What's about a true molecular 3-terminals device?

• Molecule-electrode coupling and conformation strongly modifies the molecular-scale device properties. Molecular engineering (changing ligand atoms for example) may be used to improve or adjust the electrode-molecule coupling.– A better control of the interface (energetics and atomic

conformation) is still compulsory.

• Towards molecular architecture and circuits: mainly the « cross-bar » architecture has been studied. Is it sufficient?– More new architectures must be explored (e.g. non Von

Neuman, neuronal…).– Molecular device interconnection?– 3D

Thank you!Thank you!

top related