vwqph mécatronique pour la manipulation intuitive de

48
© Julien Mathieu Audet, 2020 Conception et validation expérimentale d’un système mécatronique pour la manipulation intuitive de composantes lourdes Mémoire Julien Mathieu Audet Maîtrise en génie mécanique - avec mémoire Maître ès sciences (M. Sc.) Québec, Canada

Upload: others

Post on 29-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VWqPH mécatronique pour la manipulation intuitive de

© Julien Mathieu Audet, 2020

Conception et validation expérimentale d’un système mécatronique pour la manipulation intuitive de

composantes lourdes

Mémoire

Julien Mathieu Audet

Maîtrise en génie mécanique - avec mémoire

Maître ès sciences (M. Sc.)

Québec, Canada

Page 2: VWqPH mécatronique pour la manipulation intuitive de

Conception et validation expérimentale d’un systèmemécatronique pour la manipulation intuitive de

composantes lourdes

Mémoire

Julien-Mathieu Audet

Sous la direction de:

Clément Gosselin, directeur de recherche

Page 3: VWqPH mécatronique pour la manipulation intuitive de

Résumé

Ce mémoire présente la conception et la validation expérimentale d'un système mécatronique

visant à faciliter la manipulation de composantes lourdes dans des situations industrielles

d'assemblage, par exemple l'assemblage de panneaux de fuselage d'avion.

Le principe de la redondance sous-actionnée est utilisé pour que l'interaction entre l'opérateur

humain et le robot soit sécuritaire, intuitive et réactive, tout en permettant une charge utile

relativement élevée. Ce principe consiste à utiliser un mécanisme passif à basse impédance cou-

plé à un système actif avec la charge utile à manipuler directement attachée à l'e�ecteur du

mécanisme passif. Lors du fonctionnement du dispositif, l'opérateur humain manipule directe-

ment la charge utile et induit ainsi des mouvements dans le mécanisme passif. Les variations

mesurées dans les articulations passives sont ensuite utilisées pour contrôler les articulations

actives à haute impédance du robot. Dans les travaux réalisés antérieurement, le principe a

été appliqué aux mouvements translationnels.

Le but de ce mémoire est donc d'appliquer le principe de la redondance sous-actionnée

aux mouvements rotatifs a�n d'orienter une charge utile dans l'espace tridimensionnel. Tout

d'abord, le principe est appliqué à un manipulateur plan à un degré de liberté pour évaluer la

validité du concept pour les mouvements rotatifs. Ensuite, il est appliqué à un manipulateur

spatial à deux degrés de liberté. Des contrepoids actifs sont utilisés pour équilibrer statique-

ment les deux manipulateurs. Il est à noter que le dernier mouvement rotatif n'est pas étudié

puisqu'il est facile à implémenter ; l'équilibrage statique n'étant pas requis pour la rotation

autour de l'axe vertical. Finalement, le système rotatif obtenu précédemment est combiné avec

un système translationnel existant dans le but de manipuler librement une charge utile dans

l'espace à six dimensions. Les validations expérimentales sont présentées pour montrer que le

manipulateur est intuitif, réactif et sécuritaire pour l'opérateur humain.

ii

Page 4: VWqPH mécatronique pour la manipulation intuitive de

Abstract

This Master's thesis presents the design and experimental validation of a mechatronic system

aimed at facilitating the handling of heavy components in industrial assembly situations, for

example the assembly of aircraft fuselage panels.

The principle of underactuated redundancy is used to make the interaction between the human

operator and the robot safe, intuitive and responsive, while allowing a relatively high payload.

This principle consists in using a low-impedance passive mechanism paired with an active

system with a payload directly attached to the passive mechanism's end e�ector. In the oper-

ation of the device, the human operator directly manipulates the payload and thereby induces

movements in the passive mechanism. The measured joint variables in the passive mechanism

are then used to control the high-impedance active joints of the robot. In previous works, the

principle of underactuated redundancy has been applied to translational movements.

The aim of this Master's thesis is therefore to apply the principle of underactuated redundancy

to rotations in order to rotate a payload in three-dimensional space. First, the principle is

applied to a one-degree-of-freedom planar manipulator in order to evaluate the validity of

the concept for rotational motions. Then, it is applied to a two-degree-of-freedom spatial

manipulator. Active counterweights are used to statically balance the two manipulators. It

should be noted that the last rotational motion is not studied since it is easy to implement;

static balancing is not required for the rotation around the vertical axis. Subsequently, the

rotational system obtained previously is combined with an existing translational system with

the objective of freely manipulating a payload in six-dimensional space. The experimental

validations are presented to show that the manipulator is safe, intuitive and responsive for the

human operator.

iii

Page 5: VWqPH mécatronique pour la manipulation intuitive de

Table des matières

Résumé ii

Abstract iii

Table des matières iv

Liste des tableaux v

Liste des �gures vi

Remerciements viii

Avant-propos ix

Introduction 1

1 Rotational Low Impedance Physical Human-Robot Interaction using

Underactuated Redundancy 4

1.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.4 Proposed architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.5 Alternative architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.6 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.7 Multimedia attachment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.9 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Intuitive Physical Human-Robot Interaction using an Underactuated

Redundant Manipulator with Complete Rotational Capabilities 18

2.1 Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.4 Proposed mechanical architecture . . . . . . . . . . . . . . . . . . . . . . . . 212.5 Calibration procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.6 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.7 Rotational and translational motion . . . . . . . . . . . . . . . . . . . . . . 312.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.9 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv

Page 6: VWqPH mécatronique pour la manipulation intuitive de

Conclusion 33

Bibliographie 35

v

Page 7: VWqPH mécatronique pour la manipulation intuitive de

Liste des tableaux

2.1 Coe�cients obtained from a calibration with n con�gurations where a ± 1 de-gree error was randomly added to the reading of the passive encoders comparedto the expected coe�cients from eqs.(2.14�2.17) and eqs.(2.23�2.24) . . . . . . 28

vi

Page 8: VWqPH mécatronique pour la manipulation intuitive de

Liste des �gures

1.1 Assembly of fuselage panels using a robot and a 6-dof passive mechanism (illus-trated as a cube). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Geometric and mass parameters of the proposed gravity-balanced architecture. 81.3 Required static torque T and absolute counterweight position (αd + θ) res-

pectively, as a function of the payload position θ in order to maintain staticequilibrium ; with m1 = 5 kg, m2 = 4 kg, m3 = 5.5 kg, M = 20 kg, c = 0.4 m,r = 0.1 m, l = 0.1 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Resisting torque as a function of the payload position θ ; with m1 = 5 kg,m2 = 4 kg, m3 = 5.5 kg, M = 20 kg, c = 0.4 m, r = 0.1 m, δθ = 5◦ ; l = 0.1 mand l = 0.15 m for the �rst and second graphs respectively. . . . . . . . . . . . 10

1.5 Geometric and mass parameters of a gravity balanced architecture using anactive spring system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Geometric and mass parameters of a gravity balanced architecture using anactuated spring and a passive counterweight. . . . . . . . . . . . . . . . . . . . 12

1.7 CAD representation of the 1-dof gravity balanced tilting mechanism. . . . . . . 141.8 Experimental setup for the 1-dof gravity balanced tilting mechanism. . . . . . . 141.9 The payload's con�guration θ and the actuator's position α whose command

is αd as a function of time during an experiment ; the green circles and thered squares respectively represent the beginning and the end of the operator'sinteraction. In Fig.(a), the locking mechanism is not applied, whereas, in Fig.(b),the locking mechanism is used when there is no interaction. . . . . . . . . . . . 16

2.1 Assembly of fuselage panels using a robot and a 6-dof passive mechanism (illus-trated as a box). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Geometric and mass parameters of the proposed gravity-balanced architecture. 222.3 Absolute di�erence between the calibrated actuator position using n con�gura-

tions and the expected actuator position, that is |∆αi|, for di�erent values ofthe payload's con�guration θi where in Fig.2.3(a) i = 1, whereas in Fig.2.3(b)i = 2, for n = 4, 6, 8, 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 CAD model of the prototype of the 2-DoF rotational manipulator. . . . . . . . 292.5 Experimental setup for the 2-DoF rotational manipulator prototype. . . . . . . 302.6 Experimental setup of the 4-DoF gravity-balanced architecture. . . . . . . . . . 30

vii

Page 9: VWqPH mécatronique pour la manipulation intuitive de

An expert is a person who has

made all the mistakes that can be

made in a very narrow �eld.

Niels Bohr

viii

Page 10: VWqPH mécatronique pour la manipulation intuitive de

Remerciements

Je tiens à prendre un moment pour témoigner de ma gratitude et pour remercier tous ceux qui

ont guidé ma ré�exion à travers la réalisation de cette maîtrise. Votre support fut fortement

apprécié.

Tout d'abord, je suis grandement reconnaissant envers mon directeur de recherche, Clément

Gosselin. J'ai sincèrement apprécié sa patience, sa grande disponibilité et son écoute tout au

long de ma maîtrise. Merci de m'avoir donné cette passion immuable pour le domaine de la

robotique.

Je veux aussi remercier tous les membres du laboratoire de robotique de l'Université La-

val. Sans l'aide indispensable de Simon pour la communication temps réel avec RTLab et de

Thierry pour la conception mécanique, les prototypes de cette maîtrise n'auraient jamais vu

le jour. Merci à tous les membres du laboratoire de robotique pour les conseils techniques, les

discussions enrichissantes et bien-sûr, ces nombreuses parties inoubliables de spikeball.

Je suis également reconnaissant envers tous les membres du groupe de robotique du centre des

technologies de fabrication en aérospatiale à Montréal pour m'avoir montré le côté industriel

de la robotique. Je remercie particulièrement le chef du groupe, Bruno Monsarrat, de m'avoir

si bien accueilli dans son équipe.

Finalement, je remercie mes parents, mon frère, ma copine et mes amis de m'avoir supporté

moralement pendant ces deux ans d'étude. Merci in�niment.

ix

Page 11: VWqPH mécatronique pour la manipulation intuitive de

Avant-propos

L'ouvrage actuel est écrit sous la forme d'un mémoire par articles. Les deux premiers chapitres

présentent des articles écrits dans le cadre des travaux de maîtrise de l'étudiant à l'Univer-

sité Laval. Il est à noter que les activités de recherche de l'étudiant qui ont été e�ectuées

au centre des technologies de fabrication aérospatiale du Conseil national de recherches du

Canada (CTFA-CNRC) ne sont pas présentées dans ce mémoire pour des raisons de con�den-

tialité. Néanmoins, ce volet complémentaire n'est pas en lien avec les recherches entreprises

par l'étudiant à l'Université Laval et son absence n'a�ectera pas la présentation des résultats

dans le mémoire.

Le premier article présenté a été soumis à la revue scienti�que Journal of Mechanisms and

Robotics de l'American Society of Mechanical Engineers (ASME) le 30 mars 2020, une re-

vue dont la portée internationale exige une rédaction en anglais. Les activités de recherche

réalisées par l'étudiant, sous la supervision de son directeur de recherche Clément Gosselin,

sont principalement la conception du mécanisme, l'élaboration de l'algorithme de contrôle et

en�n, la rédaction de l'article en tant qu'auteur principal. Avant la soumission de l'article à

la revue scienti�que, le directeur de recherche a révisé l'article. Il est à noter que la �gure

1.9 du chapitre 1 du mémoire est une combinaison de deux �gures de l'article soumis, soit les

�gures 9 et 10, dans le but de condenser la description des deux �gures en une seule pour une

meilleure lecture.

Le deuxième article présenté a été soumis à la revue scienti�que IEEE/ASME Transactions

on Mechatronics le 4 mai 2020. Le caractère international de la revue exige également une

rédaction en anglais. Sous la supervision de son directeur de recherche (et co-auteur) Clément

Gosselin, l'étudiant a rédigé en grande partie l'article, ce qui fait de lui l'auteur principal.

De son côté, M. Gosselin a révisé l'article et a apporté des corrections. L'article reprend les

concepts abordés dans le premier article a�n d'élargir l'utilisation du principe de la redondance

sous-actionnée. Appliqué à un manipulateur plan à un seul degré de liberté jusqu'à maintenant,

le principe de la redondance sous-actionnée est utilisé pour concevoir un manipulateur ayant

toutes les capacités rotationnelles et translationnelles. Les préparations pour l'article, soit la

conception du manipulateur rotatif, l'élaboration d'un système de contrôle, la conception d'un

module pour lier la partie rotative à la partie translationnelle du système et l'élaboration d'un

x

Page 12: VWqPH mécatronique pour la manipulation intuitive de

banc d'essai pour valider le système complet, ont été réalisés par l'étudiant sous la supervision

de M. Gosselin. Aucune modi�cation n'a été apportée à l'article intégré par rapport à l'article

soumis.

xi

Page 13: VWqPH mécatronique pour la manipulation intuitive de

Introduction

Problématique

Il est parfois di�cile pour l'être humain d'e�ectuer certaines tâches par lui-même. C'est pour-

quoi, dans les derniers siècles, la société n'a cessé d'inventer et d'innover pour faciliter la vie

des hommes et des femmes. On pense à l'invention de la roue, de la machine à vapeur, des

moteurs à combustion, etc. Dans la dernière décennie, l'arrivée de l'automatisation a même

détrôné l'être humain dans certaines industries comme l'industrie manufacturière, où la main-

d'oeuvre est dominée par la machinerie automatisée. Là-bas, les robots industriels réalisent

des tâches jugées simples, répétitives et dangereuses pour l'humain. Ils sont isolés dans des

cellules où l'interaction avec le vivant est inexistante, compte tenu des vitesses élevées que

peuvent atteindre ces robots.

Or, il existe certaines tâches où cette interaction serait béné�que. D'un côté, la robotique assure

une haute charge utile, une meilleure précision et une �abilité supérieure. D'un autre côté, les

humains possèdent des habilités que les robots n'ont pas, comme l'intuition, la polyvalence et

la conscience. En unissant les compétences des humains et des robots, on obtient le meilleur

des deux mondes. Une tâche qui béné�cierait de cette alliance � et qui est l'objet de cette

maîtrise � est l'assemblage de pièces aérospatiales lourdes ; plus précisément, les panneaux

de fuselage d'avion. L'utilisation d'un robot comme compensateur de charge permettrait à

l'opérateur humain de manipuler une pièce relativement lourde dans l'espace avec peu d'e�ort.

En revanche, comment est-il possible de s'assurer de la sécurité de l'opérateur pendant la

tâche ?

Dans les dernières années, des nouveaux robots collaboratifs, surnommés les cobots, ont été

introduits. Ces nouvelles avancées en robotique permettent aux humains d'interagir avec le

cobot tout en respectant les normes de sécurité. Par contre, ces robots collaboratifs ont une

limite de charge utile assez contraignante. De plus, l'aspect sécuritaire de ces robots est à

questionner [3]. Il est donc intéressant d'élaborer un nouveau type de cobot industriel pour

contrer ces désavantages. Ceci fut réalisé antérieurement pour les mouvements translationnels

en appliquant le principe de la redondance sous-actionnée [13] dans le but d'assister un opéra-

teur pour l'assemblage de portes de voitures (avec la possibilité de rotation par rapport à l'axe

1

Page 14: VWqPH mécatronique pour la manipulation intuitive de

vertical). Ce principe consiste à utiliser un mécanisme passif ainsi qu'un système actif (robot

conventionnel, système portique, etc). Dans un tel système, le mécanisme passif � qui, par

sa passivité, est de faible impédance, et donc sécuritaire et intuitif � agit comme interface de

manipulation pour l'opérateur. La charge utile à manipuler est placée sur l'e�ecteur du méca-

nisme passif. Les mouvements engendrés dans les degrés de liberté (ddl) du mécanisme passif,

produits par l'opérateur qui manipule la charge, servent de commande pour l'actionnement

des ddl correspondants du système actif. En séparant l'opérateur de la partie active, la haute

impédance du système actif devient isolée et la sécurité de l'opérateur est assurée. Un tel sys-

tème permet une haute charge utile ; celle-ci est seulement limitée par l'intégrité structurelle

du mécanisme passif et par la puissance du système actif. De plus, il s'agit d'un dispositif de

manipulation intuitif, réactif et sécuritaire. Il est donc intéressant d'appliquer le principe de la

redondance sous-actionnée aux rotations, puisque les mouvements de type SCARA, quoique

acceptables pour la plupart des tâches industrielles, ne su�sent pas pour la tâche d'assemblage

décrite plus haut. Pour réaliser cette opération, une manipulation complète de la charge dans

l'espace est essentielle.

Objectifs de la recherche

Le but de ce mémoire est d'explorer la collaboration humain-robot pour des tâches industrielles

jugées impossibles ou non-ergonomiques pour l'être humain (charge très lourde) et di�ciles

pour un robot (plusieurs capteurs, longue programmation, peu versatile, etc) en mettant une

emphase sur la manipulation intuitive de pièces aérospatiales en rotation. Les di�érents ob-

jectifs de ce mémoire sont énumérés ci-dessous dans le but d'illustrer ce qui a été traité par

les deux articles de ce mémoire :

1. Élaborer un mécanisme rotatif, équilibré statiquement, qui utilise le principe de la re-

dondance sous-actionnée.

2. Concevoir un premier prototype à 1 ddl et à petite échelle a�n de valider expérimenta-

lement le principe de la redondance sous-actionnée pour les rotations.

3. Élaborer un mécanisme rotatif à 2 ddl et concevoir un second prototype à moyenne échelle

et puis, valider expérimentalement l'intuitivité et la réactivité quant à la manipulation

de la charge utile par l'opérateur humain.

4. Associer le système rotatif obtenu au point 3) à un système translationnel existant pour

obtenir un système ayant la capacité de manipuler la charge utile dans l'espace.

5. Réaliser une tâche simple d'insertion de la charge utile en utilisant le système obtenu

dans le point 4) pour démontrer les avantages d'un tel système.

Les points 1 à 2 sont abordés dans le chapitre 1 tandis que les points 3 à 5 sont abordés dans

le chapitre 2.

2

Page 15: VWqPH mécatronique pour la manipulation intuitive de

Méthodologie de recherche

Puisque les articles survolent la méthodologie utilisée pendant la réalisation de cette maîtrise,

une section dédiée à la méthodologie est décrite.

Au tout début, une étude est réalisée pour trouver un mécanisme équilibré statiquement qui

respecte les exigences et qui fera partie du système rotatif. Le mouvement d'inclinaison de

la charge utile est étudié en premier. Les exigences du mécanisme sont décrites ci-dessous.

La charge utile à manipuler doit être placée sur l'e�ecteur de la composante passive du mé-

canisme et doit être équilibrée statiquement. Une composante active doit être ajoutée pour

contrôler la con�guration de la charge utile indirectement a�n que le principe de la redon-

dance sous-actionnée soit respecté. Di�érents mécanismes sont étudiés comme candidats pour

le mécanisme à 1 ddl. Par la suite, di�érents types de mécanismes sériels et parallèles à 2 ddl

sont explorés a�n d'ajouter un mouvement de rotation additionnel à la charge utile, soit le

mouvement de roulis. Le dernier mouvement de rotation possible de la charge utile, soit le

mouvement de pivot, n'est pas étudié dans cette maîtrise puisqu'il est facile à implémenter ;

l'équilibrage statique n'étant pas requis pour cette rotation.

Pour évaluer ces di�érents mécanismes, le logiciel Matlab est privilégié. Il est utilisé pour

résoudre les équations d'équilibre statique, pour établir les couples requis des actionneurs

selon la con�guration de la charge utile, pour élaborer des méthodes de calibration robustes

et, �nalement, pour déterminer à partir des di�érents mécanismes étudiés le mécanisme le plus

approprié pour le manipulateur rotatif à 1 ddl et, ensuite, pour celui à 2 ddl. Des graphiques

sont générés avecMatlab pour faciliter la visualisation des données. Entre autres, les graphiques

aident à la comparaison des di�érents mécanismes en illustrant certains critères comme les

e�orts requis au niveau des actionneurs.

En ce qui concerne les prototypes, le logiciel de modélisation 3D Creo est utilisé pour la

modélisation des mécanismes. Par la suite, les pièces sont usinées par l'équipe de l'atelier

d'usinage de l'Université Laval. L'assemblage des prototypes et la préparation des validations

expérimentales sont réalisés par l'étudiant.

Pour ce qui est de la partie électronique, le contrôle des actionneurs et la lecture des encodeurs

et des signaux de l'interrupteur sont réalisés à partir de deux logiciels, soit Simulink pour la

programmation des algorithmes du système et RTLab pour la communication et le contrôle

en temps réel des éléments du système.

3

Page 16: VWqPH mécatronique pour la manipulation intuitive de

Chapitre 1

Rotational Low Impedance Physical

Human-Robot Interaction using

Underactuated Redundancy

1.1 Résumé

Cet article vise à appliquer le principe de la redondance sous-actionnée pour de l'interac-

tion physique humain-robot à un contexte d'assemblage industriel en introduisant un nouveau

manipulateur rotatif équilibré statiquement à 1 degré de liberté. L'architecture proposée est

composée d'un contrepoids actif en rotation et d'un pivot passif équipé d'un encodeur. L'archi-

tecture proposée est d'abord présentée et les conditions d'équilibre statique sont utilisées pour

décrire le fonctionnement du mécanisme. Ensuite, des architectures alternatives sont briève-

ment présentées. En�n, une validation expérimentale est fournie pour démontrer la viabilité

du concept pour de l'interaction physique humain-robot rotatif à faible impédance.

1.2 Abstract

This paper extends the concept of underactuated redundancy for physical human-robot in-

teraction (pHRI) in a context of industrial assembly by introducing a novel 1-dof gravity

balanced rotational manipulator. The proposed architecture consists of a rotational active

counterweight with a passive joint equipped with an encoder. The proposed architecture is

�rst described and the static equilibrium conditions are used to describe the operation of the

mechanism. Then, alternative architectures are brie�y introduced. Finally, an experimental

validation is provided to demonstrate the viability of the concept for rotational low impedance

pHRI.

4

Page 17: VWqPH mécatronique pour la manipulation intuitive de

1.3 Introduction

Physical human-robot interaction (pHRI) is becoming more common in various industrial

applications, such as manufacturing [1], [2]. Indeed, while robots have better precision and can

carry higher payloads, humans possess abilities that robots lack like intuitiveness, versatility

and awareness. Unfortunately, most robots cannot interact with humans without proper safety

precautions because of their high payloads and speed (such as conventional industrial robots).

Those that can, i.e., commercial collaborative robots, have a relatively limited payload and

yet, their safety features are far from �awless [3]. In an industrial assembly environment,

high payload-handling abilities and precise manipulation together with stringent safety are

required. Therefore, pHRI is di�cult to integrate in such an environment. Multiple strategies

were conceived to allow humans and robots to share a common workspace and collaborate in

the performance of tasks.

In order to reduce the perceived combined inertia of the payload and the robot, the prevalent

approach in pHRI applications has been the use of force/torque sensors. Paired with an admit-

tance controller, this approach can be used to emulate di�erent impedances [4], [5]. In some

instances, a proportional-integral (PI) controller [6], or even lead and lag compensators [7] are

used. However, such techniques are limited in their abilities to reduce the apparent impedance

due to hardware dynamics [8] and leads to unstable behaviours if used to go below a certain

proportion of the intrinsic inertia [9]. Based on techniques used in [4], [5] and [7], reduction

ratios of �ve to seven times the inertia were achievable. Another approach can mechanically

�lter the high-frequency interactions using force sensors paired with compliant material [10].

Nonetheless, physical contacts remain limited to speci�c ranges of environment dynamics, con-

sidering that these large inertia reduction ratios are obtained only by overstepping the concept

of passivity [11], [12].

One potential avenue for intuitive pHRI is the decoupling of the human and robot dynamics,

which has been successfully studied in previous works. In this approach, the human operator

is working in the manipulative space while the robot provides forces and moments in the con-

strained space while allowing the large amplitude motions in the manipulative space [13]-[15].

This is obtained by using a low-impedance passive manipulator (in the manipulative space) and

a high-impedance active robot. The input driving the robot is the end-e�ector displacement

of the passive mechanism, with which the operator interacts using his/her own mechanical

impedance. Therefore, high bandwidth interaction can be achieved. Underactuated redun-

dant mechanisms provide lower apparent impedance than any actuated mechanisms, ensuring

safety standards and allowing precise and intuitive manipulation by the operator while retain-

ing the same high payload-handling abilities. This is ideal for pHRI applications.

However, in previous work [13]-[15], only the translational degrees of freedom (dofs) (and

possibly a rotation about a vertical axis) were included in the manipulative space. Although 4-

5

Page 18: VWqPH mécatronique pour la manipulation intuitive de

dofs SCARA-type motions are su�cient for many industrial assembly tasks, in some instances

tilting rotations are necessary (i.e., the two rotations that are constrained in the SCARA

motions). For instance, aerospace components like fuselage panels need accurate adjustments

in 6 dofs to assemble correctly, which is why rotational dofs are required for advanced assembly

tasks. This is illustrated schematically in Fig. 1.1, where a fuselage panel is supported by

a robot (where all rotations are constrained) and manipulated by an operator, using a 6-dof

underactuated redundant mechanism (illustrated as a cube in Fig. 1.1) for �ne and intuitive

assembly.

Figure 1.1 � Assembly of fuselage panels using a robot and a 6-dof passive mechanism(illustrated as a cube).

As shown in [13], [14], only the vertical dof (Z motion) requires gravity balancing since both

horizontal dofs (X and Y motions) are perpendicular to the direction of gravity. This di�ers

from the rotational dofs where the tilting dof and the rolling dof both need gravity balancing

since vertical motions of the centre of mass of the payload can be present in these dofs. In

a di�erent context, Kawamura et al. explored the principle of underactuated redundancy in

order to obtain an agile low-power robotic arm using a movable counterweight [16] to indirectly

drive a passive joint. Similarly, a rotational counterweight [17] was also developed, improving

the limited workspace and torque.

In this paper, we propose to extend the principle of underactuated redundant robot presented

in [13], [14] to a tilting rotational dof using a redundant active counterweight as a �rst step

toward a 6-dof low-impedance manipulator for industrial applications. The paper is structured

as follows. Section 1.4 explores the architecture used for the 1-dof underactuated redundant

tilting mechanism. Section 1.5 then brie�y describes viable alternative architectures. Section

1.6 presents the experimental validation and section 1.7 describes the multimedia attachment.

In section 1.8, conclusions are drawn.

6

Page 19: VWqPH mécatronique pour la manipulation intuitive de

1.4 Proposed architecture

The proposed architecture is illustrated schematically in Fig. 1.2. It consists of a link that

can be tilted in a vertical plane and which is used to manipulate a payload. The payload is

rigidly attached to the link and together they have a mass m with a centre of mass (CoM)

located at a distance c from the passive pivot. The passive pivot is equipped with an encoder

that measures the angle of the link, noted θ, with respect to a horizontal reference. The

objective is to allow a human operator to freely manipulate the payload that is attached to

the link and tilt it around the �xed pivot. When the operator lets go of the payload, the

payload should remain stationary in its current orientation. In order to balance the payload

and link, a counterweight of mass M is mounted on a second link of length ` that is attached

to the main link by an actuated pivot, located at a distance r from the �xed pivot. Angle α

represents the angle between the two links, associated with the motion of the actuator. Using

the actuator to control angle α, it is possible to control the equilibrium con�guration of the

link and payload.

In principle, if the counterweight is perfectly adjusted, the mechanism is statically balanced

around the �xed pivot and all con�gurations are equilibrium con�gurations. In such a situ-

ation, it is not necessary to actuate the joint between the two links in order to balance the

mechanism in a certain con�guration. However, the mass and location of the CoM of the link

and payload are not known precisely in practice. Therefore, if the pivot on which the payload

is mounted is not actuated, it is very likely that the mechanism will not be perfectly balanced

and that only one equilibrium con�guration will exist. The counterweight is chosen such that

one has the static balancing condition in the nominal condition, namely

Mr = mc. (1.1)

To obtain the desired behaviour (active-passive decoupling), the active pivot is used. In the

operation of the device, the human user applies an interaction force (Fi) on the payload to

move it in the desired position. At the same time, the rotation of the passive pivot (angle θ)

is detected by the encoder and the actuator then rotates the counterweight link in order to

maintain static equilibrium in the desired θ position.

For the proposed architecture to be statically balanced, the CoM of the entire system must

be located on the vertical line passing through the passive pivot, which yields

−M(r cos θ − l cos(α+ θ)) +mc cos θ = 0. (1.2)

Solving eq.(1.2) for α, we obtain

αd = ± arccos(C cos θ)− θ, (1.3)

where αd is the desired α position for static equilibrium and

C =Mr −mc

Ml. (1.4)

7

Page 20: VWqPH mécatronique pour la manipulation intuitive de

m

M

θ

α

Fi

gr

c

l

Figure 1.2 � Geometric and mass parameters of the proposed gravity-balanced architecture.

For real solutions, C ∈ [−1, 1]. The plus-minus sign in eq.(1.3) corresponds to the fact that

there exist two values of angle α that correspond to a given value of θ, for a given set of

masses and lengths. The two con�gurations are analagous to an inverted pendulum and a

conventional pendulum. In practice, the position with the lower CoM is chosen for stability

purposes and in order to reduce the required actuator torques. Substituting eq.(1.1) into

eq.(1.4), we �nd that the coe�cient, noted C, is equal to zero in the nominal condition chosen

earlier. Eq.(1.3) can then be rewritten as

αd = − arccos(0 cos θ)− θ = −π2− θ. (1.5)

Therefore, if the nominal condition is respected as dictated by eq.(1.1), the second link of

length l must be parallel to the direction of gravity in order to be statically balanced in all

con�gurations. In this state, energy expenditure is kept at a minimum since the torque (T )

used to raise the counterweight is

T = Mgl cos(α+ θ), (1.6)

which amounts to zero using eq.(1.5). However, if the mass and the payload's CoM are

not known precisely, the coe�cient C may not be exactly equal to zero. Consequently, the

actuator has to rotate the second link out of its resting vertical con�guration to indirectly

increase or decrease the torque acting on the passive pivot. Experimentally, the architecture

can be calibrated using a single set of angles (θ and α) to calculate the coe�cient C appearing

in eq.(1.3), namely

C =cos(α+ θ)

cos(θ). (1.7)

8

Page 21: VWqPH mécatronique pour la manipulation intuitive de

Therefore, the same counterweight M can be used for similar payloads with varied CoM and

mass using the actuator to generate torque indirectly. As shown in Fig. 1.3, a mechanism ini-

tially designed and calibrated form1 = 5 kg can also be calibrated for new payloadsm2 = 4 kg

and m3 = 5.5 kg (which is 20% less and 10% more mass than anticipated respectively). These

relatively high corrections are used only to better illustrate the principle. In practice, mass

would be added to or removed from the counterweight and the actuator would be used only for

correcting the remaining unbalance in order to avoid energy expenditure during interaction.

−180 −90 0 90 180−10

−5

0

5

10

θ [◦]

T[Nm

]

Error on mass

0%-20%+10%

−180 −90 0 90 180−110

−100

−90

−80

−70

θ [◦]

αd

[◦]

Figure 1.3 � Required static torque T and absolute counterweight position (αd + θ) respec-tively, as a function of the payload position θ in order to maintain static equilibrium; withm1 = 5 kg, m2 = 4 kg, m3 = 5.5 kg, M = 20 kg, c = 0.4 m, r = 0.1 m, l = 0.1 m.

On another note, it was shown in a dynamic simulation that small unaccounted external

forces (such as tension from the actuator electric cables) can rotate the payload out of the

desired orientation even if there is no interaction with the operator. Additionally, imperfect

initialization of the encoders can result in both links slowly moving toward a low energy

con�guration (links vertical). To avoid such situations, a load cell is mounted on the payload's

link in order to measure the interaction force. If the interaction force is below a certain

threshold or uncharacteristic of a human interaction, the actuated joint of the mechanism

is locked in order to constrain the system to a single equilibrium con�guration. A non-

backdrivable (self-locking) actuated joint is used to avoid energy expenditure of the actuator

during lockdown.

It is also worth noting that the apparent impedance, or resistance to motion due to gravity,

can be adjusted using the second link length (l). This impedance can be evaluated by rotating

the �rst link by a certain angle δθ while locking the second link which simulates the system's

response rate and then calculating the resisting torque R to the movement neglecting inertia

(assuming low velocity), that is the sum of moments around the passive pivot due to gravity,

which yields

R = (Mgr −mgc) cos(θ + δθ)−Mgl cos(αd + (θ + δθ)

). (1.8)

9

Page 22: VWqPH mécatronique pour la manipulation intuitive de

The resisting torque R as a function of the payload position θ is depicted in Fig. 1.4 using

the same parameters as before but with l = 0.1 m and l = 0.15 m for the �rst and second

graphs. It can be observed in Fig. 1.4 that if the nominal condition of eq.(1.1) is satis�ed,

the resisting torque R is constant for every con�guration and is proportional to the length l .

Mathematically, the resisting torque R in the nominal condition can be expressed as

R = −Mgl cos(δθ − π

2). (1.9)

−180 −90 0 90 180−4

−3

−2

−1

θ [◦]

R[Nm

]

Error on mass

0%-20%+10%

−180 −90 0 90 180−4

−3

−2

−1

θ [◦]

R[Nm

]

Figure 1.4 � Resisting torque as a function of the payload position θ; withm1 = 5 kg, m2 = 4kg, m3 = 5.5 kg, M = 20 kg, c = 0.4 m, r = 0.1 m, δθ = 5◦ ; l = 0.1 m and l = 0.15 m forthe �rst and second graphs respectively.

However, if the nominal condition is not satis�ed, the resisting torque varies according to

θ, which can be calculated with eq.(1.8). Since the calibration process is used for small

corrections, only slight �uctuations will be felt by the operator. In this architecture, the

counterweight can also be used to increase or decrease the apparent impedance. However,

parameter M is linked to the static balancing condition of eq.(1.1), which makes it harder to

use.

Hence, a 1-dof underactuated redundant tilting mechanism is obtained with the passive motion

of the system preserved at all times. To validate the system experimentally, a prototype was

built and is presented in section 1.6.

1.5 Alternative architectures

Several alternative architectures were studied for the gravity balanced tilting mechanism,

although, an active counterweight system was shown to be the simplest system for a prototype.

As an example, a redundant active spring system could have been used as shown in Fig. 1.5.

Similarly to the proposed architecture, the payload is rigidly �xed on a link of length l.

Together, they have a mass m with a CoM located at a distance c from the passive pivot,

10

Page 23: VWqPH mécatronique pour la manipulation intuitive de

m

θ

α

k

g

lc

h

s

Figure 1.5 � Geometric and mass parameters of a gravity balanced architecture using anactive spring system.

which the link is attached to. A second link of length h is mounted to the same pivot, but is

actuated to incorporate the principle of underactuated redundancy. The �rst and second links

are connected by a zero-free-length spring of sti�ness k and extended length s, attached to

the end of both links and their rotations are described by θ and α with respect to a horizontal

reference. To reduce the size of the system, a torsional spring could alternatively be used.

The potential energy of the redundant active spring system can be written as

E = mgc sin θ +1

2k(s− s0)2, (1.10)

where

s2 = h2 + l2 − 2hl cos(α− θ) (1.11)

and s0 = 0 for zero-free-length springs. For the static balancing condition of this architec-

ture to be met, the partial derivative of eq.(1.10) with respect to θ must be equal to zero.

Substituting eq.(1.11) into eq.(1.10) (with s0 = 0) and taking the derivative then yields

sin(αd − θ) =mgc

khlcos θ. (1.12)

Using eq.(1.12), the two solutions for the desired αd position can be calculated. During the

operation of the device, the rotation of the passive pivot θ, induced by the operator, is detected

by the encoder. The actuator then rotates the second link to the αd position calculated with

eq.(1.12) using θ. Therefore, the static equilibrium of the system is preserved at all times. In

this architecture, the actuator must generally apply large torques compared to the proposed

active counterweight architecture.

11

Page 24: VWqPH mécatronique pour la manipulation intuitive de

m

θ

αk

M

g

r

l c

h

s

Figure 1.6 � Geometric and mass parameters of a gravity balanced architecture using anactuated spring and a passive counterweight.

An alternative architecture, using both a counterweight and a spring, was also studied as

illustrated in Fig. 1.6. In this hybrid version, the payload is rigidly �xed on a link connected

to a passive pivot. Together, they have a mass m with a CoM at a distance c from the passive

pivot. A counterweight M is mounted on the other end of the same link located at a distance

of r from the passive pivot, aligned with the payload. Like in the proposed architecture, the

counterweight is chosen to satisfy the condition for static balancing, that is

Mr = mc. (1.13)

To incorporate the principle of underactuated redundancy, a second link of length h is con-

nected to the �xed pivot and is actuated. A zero-free-length spring of sti�ness k and extended

length s is attached from one end to the tip of the second link and from the other end to a

location on the �rst link at a distance l from the passive pivot. Angle α represents the rotation

of the second link while angle θ is the tilting rotation of the payload, both with respect to the

horizontal reference. The potential energy of this hybrid architecture can be written as

E = (mc−Mr)g sin θ +1

2k(s− s0)2, (1.14)

where s2 is described by eq.(1.11) and s0 = 0 for zero-free-length springs. For equilibrium,

the partial derivative of eq.(1.14) with respect to θ must be zero. Substituting eq.(1.11) into

eq.(1.14), taking the derivative and equating it to zero then yields

sin(αd − θ) =(mc−Mr)g

khlcos θ, (1.15)

from which the two solutions for the desired αd position can be calculated. The operation of

the device is the same as for the previous architectures, using the passive pivot rotation θ in

12

Page 25: VWqPH mécatronique pour la manipulation intuitive de

order to calculate αd which is then used for the actuator's input in order to maintain static

equilibrium. If the nominal condition of eq.(1.13) is satis�ed, the second link must be aligned

with the �rst link according to eq.(1.15), that is

αd = θ or αd = θ + π. (1.16)

Since the counterweight directly balances the payload, there is minimal strain on the actuator

in the nominal condition contrary to the previous architecture of Fig. 1.5. Likewise, the

use of torsional springs instead of extension springs would result in a more compact system.

Additionally, the parameters k, h and l can be selected according to the impedance that

the operator is comfortable with during interaction so that it feels intuitive. Employing the

same method used previously to obtain eq.(1.8), the resisting torque R to movement can be

calculated, that is

R = (Mgr −mgc) cos(θ + δθ) + khl sin(αd − (θ + δθ)

). (1.17)

If the nominal condition of eq.(1.13) is satis�ed, the resisting torque R is constant for every

payload con�guration and is proportional to parameters k, h and l.

Other possible architectures include the movable counterweight [16] and rotational counter-

weight [17]. For the initial experimental validation, the active counterweight from section 1.4

is chosen as a prototype because of its simplicity and e�ectiveness.

1.6 Experimental validation

To demonstrate the validity of the proposed architecture for low impedance pHRI, an experi-

ment is conducted with a redundant active counterweight prototype. The prototype is based

on the design shown in Fig. 1.7. The geometric and mass parameters of the prototype were

chosen according to eq.(1.1). Small brass weights are used for the payload m and the counter-

weight M (0.2 kg and 1.2 kg respectively). The actuator is moved away from the active pivot

using two sprockets and a timing belt (not illustrated) in order to allow a full rotation. The

actuator and the passive joint are equipped with encoders since the values of θ and α must

both be known. A simple PD controller is used with the angle α whose command is the value

calculated by eq.(1.3). The experimental setup with the prototype is shown in Fig. 1.8.

During the experimental validation, the static balancing of the mechanism was evaluated in

various con�gurations. The payload was �rst manipulated without the locking mechanism,

which locks down the active joint when no interaction is detected. As expected, the power

cable of the actuator was inconvenient since it causes an undesirable force that the system

cannot distinguish from the operator's force. In order to diminish the e�ects, the cable is

held during the demonstration. Even then, there is a slight deviation of the payload's desired

orientation when the payload is let go which can be seen in Fig. 1.9 a) (see the variations of

13

Page 26: VWqPH mécatronique pour la manipulation intuitive de

M

m

Passive pivot

Active pivot

Actuator with encoder

Passive encoder (hidden)

Figure 1.7 � CAD representation of the 1-dof gravity balanced tilting mechanism.

angle θ between the human interactions). Afterwards, we introduced the locking mechanism

so that the active counterweight was locked when the operator was not interacting with the

payload. Doing so signi�cantly reduced the error caused by an imperfect initialization of

the encoders and by continuous external forces. The interaction was then shown to be quite

intuitive as shown in Fig. 1.9 b). After adding mass to the payload (a small nut of 16.5 grams

which is approximately 8% of the initial payload weight), we proceeded with the recalibration

process, which was successful using eq.(1.7). In view of what was observed, the principle of

underactuated redundancy for low impedance rotational interaction was validated during the

demonstration.

Passive pivot

Actuator with encoder

m

M

Active pivot

Passive encoder (hidden)

Figure 1.8 � Experimental setup for the 1-dof gravity balanced tilting mechanism.

In order to improve the current prototype, some strategies could be devised. For example,

14

Page 27: VWqPH mécatronique pour la manipulation intuitive de

smaller �exible electric cables could have been used, passing them through the passive pivot

to substantially reduce their undesirable e�ect on the pivot. Fixing the actuator on the frame

and moving the second link with a 5-bar linkage would also be an option to eliminate the

torsion completely, but such an arrangement was deemed too complex for the simple validation

conducted here.

1.7 Multimedia attachment

A video accompanies this paper. It is available at https://youtu.be/drFbH3sFtpg. The video

shows the operator manipulating the payload and evaluating the static balancing of the system

in various con�gurations without the locking mechanism at �rst. The actuator cables are held

during the demonstration to reduce the resulting forces on the system. The interaction is

shown to be intuitive aside from the fact that the payload slightly moves out of its desired

position because of external disturbances (from the cables mainly). Afterwards, the bene�t

of locking the active counterweight while there is no interaction is shown since it forces the

payload to have a single stable con�guration even under the e�ects of external disturbances.

To keep the prototype simple, the active counterweight is blocked manually without the use

of a load-cell. Subsequent tests will be conducted to include the force sensor. Finally, the

calibration using eq.(1.7) is successfully tested using a heavier payload (adding a small nut of

16.5 g which is approximately 8% of the initial payload weight).

1.8 Conclusion

A 1-dof tilting manipulator with low impedance was developed using the principle of active-

passive dynamics decoupling. The proposed architecture, which uses an active rotational

counterweight, was explained and alternative architectures were explored. The experimental

validation showed that the interaction between the system and the operator was easy and in-

tuitive. The e�ectiveness of locking the actuator when the operator is not interacting with the

system was also proven since relatively small external disturbances or even imperfect initial-

ization of the encoders can a�ect the balancing substantially. Therefore, future experiments

with a load cell mounted on the payload's link will be conducted to evaluate the practicability

of this solution.

This 1-dof tilting mechanism can be used with the 3-dof translational uMan system [13]

mentioned earlier as a serial 4-dof mechanism for precise assembly tasks (with the possibility

of adding a rotation around the vertical axis). Con�icts between dofs could arise (a vertical

interaction force induces both a vertical translation and a tilting motion for example), therefore

intuitive control will be implemented. Another problem that needs to be addressed is the

unloading of the payload after assembly. Based on the positive results, a larger prototype

15

Page 28: VWqPH mécatronique pour la manipulation intuitive de

0 2 4 6 8 10 12 14

Time [s]

-400

-350

-300

-250

-200

-150

-100

[°]

Beginning of interaction

End of interaction

0 2 4 6 8 10 12 14

Time [s]

0

50

100

150

200

250

300

[°]

d

(a)

0 2 4 6 8 10 12 14 16

Time [s]

-40

-20

0

20

40

[°]

Beginning of interaction

End of interaction

0 2 4 6 8 10 12 14 16

Time [s]

-140

-120

-100

-80

-60

[°]

d

(b)

Figure 1.9 � The payload's con�guration θ and the actuator's position α whose command is αd

as a function of time during an experiment; the green circles and the red squares respectivelyrepresent the beginning and the end of the operator's interaction. In Fig.(a), the lockingmechanism is not applied, whereas, in Fig.(b), the locking mechanism is used when there isno interaction.

16

Page 29: VWqPH mécatronique pour la manipulation intuitive de

is currently under development, adding another dof (the rolling motion) to the mechanism,

making it a 2-dof underactuated redundant rotational manipulator.

1.9 Acknowledgment

This study was supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC) and by the Fonds de recherche du Québec - Nature et Technologies (FRQNT).

The authors would like to acknowledge the help of Thierry Laliberté and Simon Foucault with

the experimental validation of the prototype.

17

Page 30: VWqPH mécatronique pour la manipulation intuitive de

Chapitre 2

Intuitive Physical Human-Robot

Interaction using an Underactuated

Redundant Manipulator with

Complete Rotational Capabilities

2.1 Résumé

Dans cet article, le principe de la redondance sous-actionnée est présenté à l'aide d'un nouveau

manipulateur rotatif à deux degrés de liberté (2 ddl) équilibré statiquement, composé de

contrepoids mobiles. Les équations d'équilibre statique de l'architecture à 2 ddl sont d'abord

obtenues a�n de fournir la con�guration requise des contrepoids pour avoir un mécanisme

équilibré statiquement. Une méthode de calibration du mécanisme, qui établit les coe�cients

des équations d'équilibre statique, est également présentée. A�n de déplacer et d'orienter

la charge utile pendant l'interaction, le manipulateur rotatif est monté sur un manipulateur

translationnel existant. Des validations expérimentales des deux systèmes sont présentées pour

démontrer le comportement intuitif et réactif des manipulateurs lors des interactions physiques

humain-robot.

2.2 Abstract

In this paper, the concept of underactuated redundancy is presented using a novel two-degree-

of-freedom (2-DoF) gravity balanced rotational manipulator, composed of movable counter-

weights. The static equilibrium equations of the 2-DoF architecture are �rst described in order

to provide the required con�guration of the counterweights for a statically balanced mecha-

nism. A method for calibrating the mechanism, which establishes the coe�cients of the static

equilibrium equations, is also presented. In order to both translate and rotate the payload

18

Page 31: VWqPH mécatronique pour la manipulation intuitive de

during manipulation, the rotational manipulator is mounted on an existing translational ma-

nipulator. Experimental validations of both systems are presented to demonstrate the intuitive

and responsive behaviour of the manipulators during physical human-robot interactions.

2.3 Introduction

Fully manual systems are becoming less common in industrial applications since the intro-

duction of physical human-robot interactions (pHRI) [1], [2]. The concept of pHRI allows

industries to incorporate the adaptability and intuitiveness of human operators into the in-

dustrial process, while bene�ting from the high payload capabilities and precise manipulation

control of robots, as well as reducing potential ergonomic injuries for the operators. A typical

example of intuitive pHRI is a human operator guiding and assembling a heavy part using

his/her own impedance through direct physical contacts, while the robot � used as a gravity

compensator � bears the brunt of the payload. Unfortunately, challenges remain in the imple-

mentation of pHRI in industrial applications, especially in the area of safety. Without proper

safety measures, humans cannot interact and share a common workspace with most conven-

tional industrial robots, since their payload and speed are relatively high. Even commercial

collaborative robots, which are designed for pHRI and are limited in both payload and speed,

can raise safety issues [3].

Active research in pHRI has yielded multiple approaches which attempt to satisfy the strict

safety measures in order to allow robots and humans to perform safe and intuitive collaborative

tasks. The usage of force/torque sensors has been the prevalent approach for reducing the per-

ceived combined inertia of the payload and robot since they can be used to sense and regulate

the interaction between the human user and the mechanical system. Paired with an admittance

controller, di�erent impedances can be emulated [4], [5]. In rarer cases, a proportional-integral

(PI) controller [6], or even lead and lag compensators [7] are used with the force/torque sen-

sors. Due to hardware dynamics, the reduction of the perceived inertia is limited using such

techniques [8]. Additionally, unstable behaviours are observed if the apparent impedance is

reduced below a certain fraction of the intrinsic inertia [9]. In [4], [5] and [7], it was demons-

trated that reduction ratios of �ve to seven of the intrinsic inertia were attainable. In another

approach, compliant material is used with force sensors with the purpose of mechanically �lte-

ring the high-frequency interactions [10]. Regardless, large inertia reduction ratios cannot be

obtained without overstepping the concept of passivity [11], [12]. Therefore, physical contacts

must remain limited to speci�c ranges of environment dynamics.

An interesting approach is to employ the principle of underactuated redundancy, which was

successfully implemented for translational collaborative tasks using a serial architecture [13]

and using a parallel architecture [14]. In pHRI, safety issues mainly originate from the inherent

high impedance of the robot. Using underactuated redundancy, it is possible to decouple

19

Page 32: VWqPH mécatronique pour la manipulation intuitive de

the human and robot dynamics, therefore segregating the human operator apart from the

robot's high inertia during collaborative tasks. This is done by using low-impedance passive

joints, that the operator interacts with, whose measured joint variables are used to control the

high-impedance active joints of the robot. Furthermore, the low-inertia joints enable intuitive

interactions which provide a higher bandwidth than any force controlled methods.

The underactuated redundant robots proposed in [13], [14] allowed only translations (with the

possibility of adding a rotation around a vertical axis). Although SCARA-type motions are, in

many instances, su�cient for industrial applications, there are several cases in which additional

degrees of freedom are needed. For example, airplane fuselage panel assembly requires 6-DoF

adjustments in order to satisfy the strict geometric tolerances. This is illustrated schematically

in Fig. 2.1, where a fuselage panel is supported by a 6-DoF robot and manipulated by an

operator. A 6-DoF passive mechanism, illustrated schematically as a box in Fig. 2.1, is used

to connect the payload to the robot. Hence, to fully manipulate a payload with six degrees

of freedom using the concept of underactuated redundancy, a passive mechanism that allows

translations and rotations must be developed. Compared to the passive mechanisms proposed

in [13] and [14], the development of a passive mechanism that can handle rotations while

preserving static balancing is a signi�cant challenge.

Figure 2.1 � Assembly of fuselage panels using a robot and a 6-dof passive mechanism(illustrated as a box).

An underactuated redundant manipulator that can handle rotations of the payload was pro-

posed in [18] using a passive joint to tilt the payload and a movable counterweight to control

the equilibrium position of the payload. However, this architecture allows only one rotational

degree of freedom and is therefore mainly relevant for planar tasks. In order to allow a payload

to freely rotate in three-dimensional space, a manipulator with 3-DoF rotational capabilities is

needed. However, it should be pointed out that, for the payload to be statically balanced, gra-

20

Page 33: VWqPH mécatronique pour la manipulation intuitive de

vity compensation is required in only two rotational DoFs, i.e., the pitch and the roll motions.

Gravity cannot act on the third rotational DoF, the yaw motion, considering that the axis of

rotation is parallel to the line of action of gravity. Therefore, in this paper, an underactuated

redundant 2-DoF manipulator is proposed, with the possibility of adding a passive third DoF.

A translational unit, such as the one presented in [13], can also be included, to yield a 6-DoF

underactuated redundant manipulator.

This paper is structured as follows. Section 2.4 extends the principle of underactuated redun-

dancy of a 1-DoF gravity-balanced rotational manipulator to a spatial 2-DoF manipulator.

Section 2.5 describes a method for calibrating the proposed manipulator. In Section 2.6, a

prototype is described which has been built and validated experimentally. Section 2.7 explores

the combination of the proposed mechanism with a translational unit in order to freely mani-

pulate a payload in six-dimensional space. The intuitive and responsive behaviour of the whole

system is veri�ed experimentally using a simple insertion task. In Section 2.8, conclusions are

drawn.

2.4 Proposed mechanical architecture

The proposed 2-DoF architecture is represented schematically in Fig. 2.2. It consists of a �rst

link, mounted on a �xed joint, that can be tilted in a vertical plane. Angle θ1 represents

the angle between the �rst link and a �xed horizontal reference, associated with this tilting

motion. A second axis of rotation is de�ned along the link and corresponds to a second revolute

joint, to which a second moving link is attached. This second moving link is represented as

a shaft mounted along the �rst link in Fig. 2.2. Angle θ2 represents the rotation around this

axis, associated with the rolling motion. The payload, of mass m, is rigidly attached to the

second moving link and its centre of mass (CoM) is located at a distance c1 from the �xed

pivot, measured in the direction of the �rst link and at a distance c2 from the second axis

of rotation. Since the actual location of the payload's CoM is usually not known precisely,

an o�set angle θ0 is included in the model. The objective of the proposed architecture is to

allow a human operator to freely manipulate the payload along both the tilting motion and

the rolling motion, without having to support the weight of the payload in any con�guration.

Therefore, the payload must be gravity balanced in all con�gurations. Counterweights are used

to statically balance the mechanism. A �rst counterweight of mass M1 is mounted on a link of

length l1 that is attached to the �rst moving link by an actuated pivot, located at a distance

r1 from the �xed pivot. A second counterweight of mass M2 is mounted similarly on a link of

length l2 that is attached to the second moving link (shaft) by another actuated pivot, located

at a distance r2 from the second revolute joint. Angle αi, i = 1, 2 represents the angle between

the axis of link i and the direction of the link supporting counterweight Mi. This angle is

associated with the motion of the ith counterweight actuator. In summary, the two pivots

associated with the motion of the links are unactuated while the two pivots associated with

21

Page 34: VWqPH mécatronique pour la manipulation intuitive de

M1

θ1

α1

g

r1

l1

α2

θ2

c1 Fi

mView

View

θ2

M2

θ0

M2

l2

r2

m

α2

Payload

Payload

c2

Figure 2.2 � Geometric and mass parameters of the proposed gravity-balanced architecture.

the motion of the counterweights are actuated. Four encoders are used to measure the rotation

of all four joints. Using the two actuators to control angles α1 and α2, it is possible to control

the equilibrium con�guration of the payload (angles θ1 and θ2). During the performance of a

task, the human user applies an interaction force Fi on the payload in order to guide it to the

desired orientation. Simultaneously, the encoders detect both passive rotations which inform

the actuators to rotate the counterweight links in a con�guration where the system is statically

balanced. In other words, the equilibrium con�guration is constantly adjusted according to

the user input. Also, around the equilibrium con�guration, the payload can be moved with

very little e�ort from the user which means that the interaction forces remain very low.

The counterweight parameters r1, r2 and M1, M2 are chosen for the system to be statically

balanced in the nominal con�guration (θ1 = θ2 = 0) for a nominal payload m, that is,

M1r1 = mc1 (2.1)

and

M2r2 = mc2. (2.2)

Writing the mechanism's equilibrium equations, the relation between the passive rotations and

the active rotations is obtained and it is possible for the proposed architecture to be statically

balanced for any given speci�ed con�guration (θ1, θ2) by selecting the appropriate actuated

22

Page 35: VWqPH mécatronique pour la manipulation intuitive de

angles α1 and α2. The requirement for static equilibrium is, for both joints, to have the CoM

of the rotational system located on the line of action of gravity passing through the base pivot.

For stability purposes, the CoM should be lower than the pivot. Considering the �rst pivot

yields

M1l1 cos(α1 + θ1) +M2r2 sin θ2 sin θ1

−M2l2 sin(α2 + θ2) sin θ1 −mc2

cos θ0sin(θ2 + θ0) sin θ1

+mc1 cos θ1 −M1r1 cos θ1 = 0. (2.3)

Expanding sin(θ2 + θ0) yields

sin(θ2 + θ0) = sin θ2 cos θ0 + cos θ2 sin θ0. (2.4)

Substituting eq.(2.4) into eq.(2.3) and simplifying, we then obtain

M1l1 cos(α1 + θ1) +M2r2 sin θ2 sin θ1

−M2l2 sin(α2 + θ2) sin θ1 −mc2(sin θ2 + tan θ0 cos θ2) sin θ1

+mc1 cos θ1 −M1r1 cos θ1 = 0. (2.5)

Solving eq.(2.5) for α1, we �nd that the equilibrium is obtained if

α1 = ± arccos

[(M1r1 −mc1) cos θ1

M1l1+(

M2(l2 sin(α2 + θ2)− r2 sin θ2) +mc2(sin θ2 + tan θ0 cos θ2))

sin θ1

M1l1

]− θ1. (2.6)

Considering now the second passive pivot yields

−M2r2 cos θ2 +M2l2 cos(α2 + θ2)−mc2 tan θ0 sin θ2 +mc2 cos θ2 = 0, (2.7)

which can be similarly solved for α2. The expression of the second actuated joint coordinate

that leads to equilibrium is then obtained as

α2 = ± arccos

[(M2r2 −mc2) cos θ2 +mc2 tan θ0 sin θ2

M2l2

]− θ2. (2.8)

The solutions for α1 and α2 in eq.(2.6) and eq.(2.8) that lead to the lowest position of the

CoM are chosen for stability. The workspace of this architecture is only limited by mechanical

interferences and by the torque limits of its actuators. Substituting eq.(2.1) and θ1 = 0 into

eq.(2.6) and substituting eq.(2.2) and θ2 = 0 into eq.(2.8), we �nd that in this case, one has

α1 = −π2, (2.9) α2 = −π

2. (2.10)

23

Page 36: VWqPH mécatronique pour la manipulation intuitive de

In this con�guration, the torque required at the actuators is minimum. Indeed, the torques

(T1 and T2) required to raise the �rst and second counterweights can be respectively written

as

T1 = M1gl1 cos(α1 + θ1) (2.11)

and

T2 = M2gl2 cos(α2 + θ2) cos(θ1), (2.12)

which are both equal to zero in the nominal con�guration of the mechanism (θ1 = 0 and

θ2 = 0) using the nominal conditions.

Relatively small unaccounted for external forces can easily rotate the payload away from its

current con�guration since the mechanism is always in an equilibrium con�guration if both

eq.(2.6) and eq.(2.8) are satis�ed and since friction in the passive pivots is low. In order to

di�erentiate the operator's intentions from external disturbances, a device can be used to

lock the counterweight joints when there is no interaction between the human user and the

robot. This can be simply implemented by using a mechanical switch on the device to turn on

interactions when pressed, similarly to a dead man's switch. To avoid any energy expenditure

during lockdown, non-backdrivable (self-locking) actuated joints are used. It can also be noted

that, theoretically, the load range of the mechanism is relatively high since an extremely

heavy payload can be balanced by similarly heavy counterweights. The true limitations lie in

the structural strength of the architecture and in the torque limits of the actuators (which

constrain the workspace).

Hence, a 2-DoF rotational manipulator which uses underactuated redundancy is obtained.

2.5 Calibration procedure

In order to establish the equilibrium equations of the system, several mass and geometric para-

meters must be known, as shown in eq.(2.6) and eq.(2.8). Since the value of these parameters

is usually not known exactly, a calibration procedure can be used to determine the coe�cients

to be included in the equations. The calibration procedure can also be used to calibrate the

system for a di�erent payload (as a general rule, the system should be designed to be stati-

cally balanced in the nominal conditions to reduce the torque demands on the actuators). The

calibration procedure of the proposed architecture is presented in this section.

2.5.1 First joint

Replacing mass and geometric parameters by coe�cients to be determined in eq.(2.5) and

rearranging, we obtain

cos(θ1 +α1) = C11 cos θ1 +C12 sin θ1 sin θ2 +C13 sin θ1 sin(α2 + θ2) +C14 sin θ1 cos θ2, (2.13)

24

Page 37: VWqPH mécatronique pour la manipulation intuitive de

with

C11 =M1r1 −mc1

M1l1, (2.14) C12 =

mc2 −M2r2M1l1

, (2.15)

C13 =M2l2M1l1

, (2.16) C14 =mc2 tan θ0M1l1

. (2.17)

If the parameters are chosen for the system to be statically balanced in the nominal condition,

that is,

Mr = mc,

it follows from eqs.(2.14�2.15) that coe�cients C11 and C12, are equal to zero. In order to

reduce the required torque, computed with eq.(2.11), the right-hand side of eq.(2.13) must

be close to zero. This is why the prototype presented in an upcoming section of the paper is

designed with the coe�cients close to zero (C13 and C14 can only be minimised). Equation (13)

is then written for four di�erent con�gurations, noted A, B, C and D and the four equations

obtained are written as a system of linear equations in matrix form. We obtain

A1x1 = b1 (2.18)

with

A1 =

cos θ1A sin θ1A sin θ2A sin θ1A sin(α2A + θ2A) sin θ1A cos θ2A

cos θ1B sin θ1B sin θ2B sin θ1B sin(α2B + θ2B) sin θ1B cos θ2B

cos θ1C sin θ1C sin θ2C sin θ1C sin(αC2 + θ2C) sin θ1C cos θ2C

cos θ1D sin θ1D sin θ2D sin θ1D sin(α2D + θ2D) sin θ1D cos θ2D

, (2.19)

x1 =

C11

C12

C13

C14

, (2.20) b1 =

cos(θ1A + α1A)

cos(θ1B + α1B)

cos(θ1C + α1C)

cos(θ1D + α1D)

, (2.21)

where θiA and αiA stand for the values of θi and αi in con�guration A (similarly for con�gu-

rations B, C and D). To solve the linear equations, A1 must be invertible, which leads to the

condition that the det(A1) must not be equal to zero. The sets of passive and active rotations

must therefore be independent from one another to avoid singularity.

Solving for x1 and using four independent sets of both passive and active rotations, that is

θ1n, θ2n, α1n and α2n for n = A,B,C,D, the four coe�cients C1n can be found and the �rst

joint is calibrated.

25

Page 38: VWqPH mécatronique pour la manipulation intuitive de

2.5.2 Second joint

Replacing mass and length parameters by coe�cients into eq.(2.7) and rearranging in the same

way as with the �rst joint, we obtain

cos(θ2 + α2) = C21 cos θ2 + C22 sin θ2, (2.22)

where

C21 =M2r2 −mc2

M2l2, (2.23) C22 =

mc2 tan θ0M2l2

. (2.24)

If the system is statically balanced in the nominal con�guration, coe�cient C21 is equal to

zero. Writing eq.(2.22) for two di�erent con�gurations noted A and B and assembling the

linear equations in matrix form, we obtain

A2x2 = b2 (2.25)

with

A2 =

[cos θ2A sin θ2A

cos θ2B sin θ2B

], (2.26)

x2 =

[C21

C22

], (2.27) b2 =

[cos(θ2A + α2A)

cos(θ2B + α2B)

], (2.28)

where a notation similar to the one used for the �rst joint is employed here. The condition

under which the coe�cients cannot be solved from the above linear system can be obtained

by setting the determinant of matrix A2 to zero, that is

det(A2) = cos θ2A sin θ2B − sin θ2A cos θ2B = 0,

which yields

θ2A = θ2B + πi i ∈ Z.

Using two independent sets of the second joint passive and active rotations, that is θ2n and

α2n for n = A,B, the two coe�cients can be found and the second joint is calibrated. In this

case, the �rst joint requires four sets of angles, therefore, the same values will be used for the

second joint.

2.5.3 Robustness of the calibration procedure

In the above subsections, the minimum number of con�gurations was selected for the cali-

bration procedure. Although this procedure is theoretically correct, in practice it may not

26

Page 39: VWqPH mécatronique pour la manipulation intuitive de

yield the best results due to measurement errors. In order to improve the robustness of the

calibration procedure, a number of con�gurations larger than the minimum required can be

used, leading to an overdetermined system of linear equations. The overdetermined system of

equations can then be solved using a least squares approach, namely

xi = Ai+bi with i = 1, 2,

where

Ai+ = (Ai

TAi)−1Ai

T .

For the �rst joint, a minimum of four equations (A, B, C and D) is required for calibration,

which gives us

A1 =

cos θ1A sin θ1A sin θ2A sin θ1A sin(α2A + θ2A) sin θ1A cos θ2A

cos θ1B sin θ1B sin θ2B sin θ1B sin(α2B + θ2B) sin θ1B cos θ2B

cos θ1C sin θ1C sin θ2C sin θ1C sin(α2C + θ2C) sin θ1C cos θ2C

cos θ1D sin θ1D sin θ2D sin θ1D sin(α2D + θ2D) sin θ1D cos θ2D

... ... ... ...

cos θ1n sin θ1n sin θ2n sin θ1n sin(α2n + θ2n) sin θ1n cos θ2n

,

x1 =

C11

C12

C13

C14

, b1 =

cos(θ1A + α1A)

cos(θ1B + α1B)

cos(θ1C + α1C)

cos(θ1D + α1D)

...

cos(θ1n + α1n)

.

For the second joint, a minimum of two equations is required for calibration, which can be

represented by the following equations

A2 =

cos θ2A sin θ2A

cos θ2B sin θ2B

... ...

cos θ2n sin θ2n

, x2 =

[C21

C22

], b2 =

cos(θ2A + α2A)

cos(θ2B + α2B)

...

cos(θ2n + α2n)

.

In order to adequately calibrate the system, the number of equilibrium equations needed for

the calibration is investigated. With the assumption that an error of ± 1 degree is randomly

applied to the reading of the passive encoders 1, Table 2.1 shows the expected calibration

1. Inaccuracies that would originate from the incremental nature of the encoder, from the joint friction andfrom the actuators' electric cables (interfering with the static balancing equations).

27

Page 40: VWqPH mécatronique pour la manipulation intuitive de

coe�cients, derived from eqs.(2.14�2.17) and eqs.(2.23�2.24), and the calibrated coe�cients

obtained with four to ten equations.

Table 2.1 � Coe�cients obtained from a calibration with n con�gurations where a ± 1 degreeerror was randomly added to the reading of the passive encoders compared to the expectedcoe�cients from eqs.(2.14�2.17) and eqs.(2.23�2.24)

Calibration coe�cients

n C11 C12 C13 C14 C21 C22

- 0 0 0.1800 -0.0804 0 -0.44664 0.0214 0.2777 2.2882 2.1743 0.0115 -0.41206 -0.0001 0.1812 1.1928 1.0027 -0.0017 -0.42518 -0.0130 0.0032 0.0980 -0.1729 0.0061 -0.434410 -0.0105 0.0185 0.3005 0.0494 0.0011 -0.4380

-40 -30 -20 -10 0 10 20 30 40

1 [°]

0

1

2

3

4

5

6

7

|1| [°

]

n = 4

n = 6

n = 8

n = 10

(a)

-40 -30 -20 -10 0 10 20 30 40

2 [°]

0

0.5

1

1.5

2|

2| [°

]

n = 4

n = 6

n = 8

n = 10

(b)

Figure 2.3 � Absolute di�erence between the calibrated actuator position using n con�gura-tions and the expected actuator position, that is |∆αi|, for di�erent values of the payload'scon�guration θi where in Fig.2.3(a) i = 1, whereas in Fig.2.3(b) i = 2, for n = 4, 6, 8, 10.

The coe�cients produced by the calibration procedure are still far from the expected coef-

�cients according to the data in Table 2.1 : this is expected since an error was added to

the con�gurations of the payload before theoretically calibrating. Alternatively, the absolute

di�erence between the calibrated actuator position using n con�gurations and the expected

actuator position for di�erent values of the payload's con�guration, that is |∆αi| as a functionof θi for i = 1, 2, can be examined as exposed in Fig.2.3. According to the results in Fig.2.3,

it is observed that using at least eight con�gurations provides an error of less than 1 degree.

Therefore, it is assumed that using eight con�gurations should be su�cient for the calibration.

28

Page 41: VWqPH mécatronique pour la manipulation intuitive de

2.6 Experimental validation

A small-scale prototype based on the 2-DoF rotational manipulator was built according to

the design illustrated in Fig. 2.4. Both active joints are actuated with harmonic drive motors

for a higher gear ratio. The actuators are placed at the end of each of the primary links with

the aim of reducing the size of the counterweights. The payload has a mass of 2.27 kg. The

counterweights for the pitch motion and the roll motion respectively have a mass of 6.80 kg and

2.27 kg. The counterweights are chosen using the nominal conditions of eq.(2.1) and eq.(2.2).

The actuators are driven by a simple PD controller with eq.(2.6) and eq.(2.8) providing the

command values. All joints are equipped with encoders.

M2

M1

m

α2

α1

θ1

θ2

Figure 2.4 � CAD model of the prototype of the 2-DoF rotational manipulator.

The prototype is mounted in an experimental setup, as shown in Fig. 2.5, in order to validate

both the calibration procedure and the manipulability/intuitiveness of the mechanism. In

the �rst video accompanying this paper, available at https ://youtu.be/�zElABZHdw, the

intuitive manipulation of the robot and the calibration procedure are demonstrated. First,

the intuitiveness of the operation of the system is evaluated qualitatively. Using the static

balancing equations with the expected coe�cients from eqs.(2.14�2.17) and eqs.(2.23�2.24) to

drive the actuators, the manipulation is shown to be intuitive and reactive to the operator, as

demonstrated in the video.

Then, the calibration procedure is evaluated experimentally with the aim of verifying if the

equilibrium coe�cients are identi�ed correctly. To show that the system can be easily recali-

brated for a higher or lower than anticipated payload, the payload is increased by adding a 0.2

kg mass to the payload (an increase of ≈ 8.8% of the initial payload). Di�erent con�gurations

are used during the calibration procedure and both the active and passive joint angles are

measured. Solving the systems of linear equations of eq.(2.18) and eq.(2.25) using the least-

29

Page 42: VWqPH mécatronique pour la manipulation intuitive de

M2

M1

Payload mActuatorswith encoders

Passive pivotswith encoders

Dead man’sswitchCounterweights

Figure 2.5 � Experimental setup for the 2-DoF rotational manipulator prototype.

squares approach, the calibrated equilibrium coe�cients are found. The modi�ed payload is

then manipulated to demonstrate the e�ectiveness of the calibration.

3-DoF Gantry

Rotationalsystem

systemTranslational

Payload

Figure 2.6 � Experimental setup of the 4-DoF gravity-balanced architecture.

30

Page 43: VWqPH mécatronique pour la manipulation intuitive de

2.7 Rotational and translational motion

In order to freely manipulate a payload with 6 DoFs, a translational manipulator can be com-

bined with the rotational manipulator presented in the previous sections. The robot proposed

in [13] is ideal for the translational component of the 6-DoF serial architecture since it operates

using the same principle of underactuated redundancy, leading to an intuitive and reactive be-

haviour for all DoFs. The translational manipulator consists of a 3-DoF active gantry system

coupled with a passive translational manipulator equipped with encoders. The rotational ma-

nipulator is simply mounted on the end of the translational manipulator. In order to simplify

the experiments, only two of the translational DoFs of the manipulator presented in [13] (hori-

zontal motion) are included in this work, leading to a 4-DoF system allowing two translational

DoFs (horizontal motion) and two rotational degrees of freedom. The combined prototype is

shown in Fig. 2.6.

Considering that the control systems of both manipulators are mainly driven by the relative

positions of their passive components, no major changes are to be made to the control systems

when the rotational and the translational manipulators are combined. Statically, both manipu-

lators are independent from one another. Nevertheless, they do a�ect each other dynamically.

However, the low dynamic responses produced by their interactions during pHRI � conside-

red quasi-static because of the low speed/acceleration � are trivial to the equilibrium of the

whole system since it is mechanically damped by the human operator during interactions.

The serial architecture was validated experimentally in order to con�rm its intuitive behaviour

for pHRI. This is demonstrated in the second video accompanying this paper, available at

https ://youtu.be/z8nbQrFxoQM, where a human operator manipulating the device performs

a 4-DoF insertion task. First, the translational movements are shown. Then, the rotational

capabilities are presented. In order to demonstrate the intuitiveness of the device for industrial

applications such as aerospace panel assembly, two pins are added to the payload, that need

to be assembled on a plate with two corresponding sockets. The plate and the manipulator

are placed in a con�guration where 4 DoFs are needed to complete the task. From the video,

it can be observed that the operator can easily insert the two pins in the sockets, thereby

demonstrating that the whole system is stable, responsive and intuitive for the operator.

2.8 Conclusion

In this paper, a 2-DoF rotational manipulator, composed of movable counterweights, was

proposed using the principle of underactuated redundancy. A third rotational DoF, the yaw

motion, is not included since static balancing is not required for this DoF. In order to control

the payload's con�guration, the static equilibrium equations and actuators' torque equations

were developed. A calibration procedure was presented with the purpose of adjusting the

static equilibrium equations on the assumption that the mass and geometric parameters can

31

Page 44: VWqPH mécatronique pour la manipulation intuitive de

be either imprecise or unknown and that a di�erent payload can be used (without changing

the counterweights). A small-scale prototype was developed to validate both the intuitiveness

and the calibration of the manipulator. It was found that the system was both intuitive and

responsive for the operator.

In order to achieve intuitive pHRI for applications requiring 6-DoF manipulation like aerospace

panel assembly, the 2-DoF rotational manipulator is attached to an existing translational

manipulator from a previous work [13]. A simple 4-DoF insertion task is used to demonstrate

the viability of the system, where high-bandwidth low-impedance interactions are achieved

between the operator and the system.

2.9 Acknowledgement

This study was supported by the Natural Sciences and Engineering Research Council of Ca-

nada (NSERC) and by the Fonds de Recherche du Québec - Nature et Technologies (FRQNT).

The authors would like to acknowledge the help of Thierry Laliberté and Simon Foucault with

the experimental validation of the prototype.

32

Page 45: VWqPH mécatronique pour la manipulation intuitive de

Conclusion

La problématique abordée dans ce mémoire est la manipulation de pièces aérospatiales lourdes,

soit l'assemblage de panneaux de fuselage d'avion, situation industrielle où l'interaction humain-

robot est sans doute béné�que. On pense à une réduction des blessures de nature ergonomique,

à une augmentation de la productivité et à une réduction des coûts d'opération ; une véritable

synergie entre l'humain et le robot. Pour soutenir les opérateurs humains lors de ces tâches

d'assemblage, un mécanisme capable de supporter et déplacer une charge utile élevée, en plus

d'avoir la capacité de l'orienter dans l'espace tridimensionnel, est investigué. Ce mécanisme

doit être intuitif, réactif et sécuritaire.

Les travaux de recherche présentés dans le premier chapitre ont tout d'abord permis d'ap-

pliquer le principe de la redondance sous-actionnée aux mouvements rotatifs, principe qui,

jusqu'à maintenant, n'avait été appliqué qu'aux mouvements translationnels. Le principe de

la redondance sous-actionnée est utilisé parce qu'il permet une interaction intuitive, réactive

et sécuritaire entre l'opérateur humain et le robot. Di�érents mécanismes rotatifs, équilibrés

statiquement, sont étudiés comme candidats pour le premier manipulateur à 1 degré de liberté.

Le mécanisme à contrepoids actif est sélectionné et un prototype est construit. Le mécanisme

est ensuite validé expérimentalement.

Appuyé par la preuve de concept du premier chapitre, le deuxième chapitre introduit un mé-

canisme ayant la capacité d'orienter une charge utile dans l'espace tridimensionnel, toujours

en utilisant le principe de la redondance sous-actionnée. Ce manipulateur rotatif est ensuite

jumelé à un manipulateur translationnel existant dans le but d'ajouter au système la capacité

de positionnement de la charge utile. Le manipulateur rotatif, ainsi que sa combinaison avec

le manipulateur translationnel, sont validés expérimentalement. Les résultats sont très satis-

faisants : l'opérateur humain manipule la charge utile facilement dans l'espace et la passivité

du dispositif assure un milieu sécuritaire pour l'opérateur. Ceci est d'ailleurs démontré par

une tâche d'insertion à quatre degrés de liberté.

En se basant sur les résultats présentés dans les deux chapitres de ce mémoire, on peut conclure

qu'un manipulateur intuitif, réactif et sécuritaire, basé sur le principe de la redondance sous-

actionnée et ayant les capacités d'orienter et de positionner une charge utile dans toutes les

dimensions, est obtenu. Pour intégrer le manipulateur dans un contexte industriel, il faudrait

33

Page 46: VWqPH mécatronique pour la manipulation intuitive de

au préalable appliquer quelques modi�cations. Premièrement, l'architecture complète com-

binant les translations et les rotations doit être réduite en taille pour en faire une variante

compacte plus facile à utiliser. Pour la partie translationnelle du manipulateur, l'architecture

utilisée jusqu'à maintenant [13] pourrait être remplacée par son homologue parallèle [14], éli-

minant ainsi la longue chaîne passive en série. Pour la partie rotative du manipulateur, il est

possible de réduire la taille de celle-ci en remplaçant les contrepoids rotatifs, utilisés pour

l'équilibrage statique, par un système de ressorts industriels compacts. Deuxièmement, une

méthode intuitive pour le chargement et le déchargement de la charge utile doit être élaborée.

En ce moment, le manipulateur rotatif est équilibré statiquement lorsque la charge utile est

montée sur l'e�ecteur du robot. Une stratégie temporaire, qui peut facilement être implémen-

tée, est de bloquer les articulations passives du manipulateur rotatif lorsque la charge utile à

manipuler est absente. Le désavantage de cette stratégie est bien évidemment la perte de la

passivité du système pendant un certain moment. Dans la même optique, il faudrait analyser

les dangers liés à la défaillance d'un moteur puisque l'équilibre statique ne serait plus assuré

suite à un tel événement. Finalement, il serait béné�que de diminuer ou d'éliminer l'in�uence

des �ls électriques sur les composantes passives de la partie rotative du manipulateur a�n

d'améliorer l'équilibrage statique de celle-ci. Par exemple, l'utilisation de bagues collectrices

pourrait être étudiée pour remplacer les connexions électriques actuelles du manipulateur ro-

tatif (particulièrement celles des moteurs). Cela permettrait de réduire grandement le moment

généré par la torsion des �ls électriques lors du fonctionnement de l'appareil.

34

Page 47: VWqPH mécatronique pour la manipulation intuitive de

Bibliographie

[1] J. Krüger, T. Lien, and A. Verl, �Cooperation of human and machines in assembly lines,�

CIRP Annals - Manufacturing Technology, vol. 58, no. 2, pp. 628-646, 2009.

[2] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse, �Collaborative manu-

facturing with physical human-robot interaction,� Robotics and Computer-Integrated Ma-

nufacturing, vol. 40, pp. 1-13, 2016.

[3] I. Bonev. (2014), Should We Fence the Arms of Universal Robots ?, [Online]. Available :

http ://coro.etsmtl.ca/blog/ ?p=299, accessed on May 02, 2020.

[4] R. van der Linde and P. Lammertse, �Hapticmaster - a generic force controlled robot for

human interaction,� Industrial Robot : An International Journal, vol. 30, no. 6, pp. 515-524,

2003.

[5] A. Lecours, B. Mayer-St-Onge, and C. Gosselin, �Variable admittance control of a four-

degree-of-freedom intelligent assist device,� IEEE International Conference on Robotics and

Automation (ICRA), 2012, pp. 3903-3908.

[6] W. S. Newman and Y. Zhang, �Stable interaction control and Coulomb friction compensa-

tion using natural admittance control,� Journal of Robotic Systems, vol. 11, no. 1, pp. 3-11,

1994.

[7] S. Buerger and N. Hogan, �Complementary stability and loop shaping for improved human-

robot interaction,� IEEE Transactions on Robotics, vol. 23, no. 2, pp. 232-244, April 2007.

[8] N. Hogan, �On the stability of manipulators performing contact tasks,� IEEE Journal on

Robotics and Automation, vol. 4, no. 6, pp. 677-686, Dec 1988.

[9] E. Colgate and N. Hogan, �An analysis of contact instability in terms of passive physical

equivalents,� IEEE International Conference on Robotics and Automation (ICRA), May

1989, vol.1, pp. 404-409.

[10] X. Lamy, F. Colledani, F. Ge�ard, Y. Measson, and G. Morel, �Achieving e�cient and

stable comanipulation through adaptation to changes in human arm impedance,� IEEE

International Conference on Robotics and Automation (ICRA), May 2009, pp. 265-271.

35

Page 48: VWqPH mécatronique pour la manipulation intuitive de

[11] J. E. Colgate and N. Hogan, �Robust control of dynamically interacting systems,� Inter-

national Journal of Control, vol. 48, no. 1, pp. 65-88, 1988.

[12] J. E. Colgate, �Coupled stability of multiport systems�Theory and experiments,� Journal

of Dynamic Systems, Measurement, and Control, vol. 116, no. 3, pp. 419-428, Sep 1994.

[13] P. D. Labrecque, T. Laliberté, S. Foucault, M. E. Abdallah, and C. Gosselin, �uMan : A

low impedance manipulator for human-robot cooperation based on underactuated redun-

dancy,� IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, pp. 1401-1411, June

2017.

[14] N. Badeau, C. Gosselin, S. Foucault, T. Laliberté and M. E. Abdallah, �Intuitive Physical

Human-Robot Interaction Using a Passive Parallel Mechanism,� IEEE Robot. Autom. Mag.,

vol. 25, no. 2, pp. 28-38, June 2018.

[15] A. Campeau-Lecours, P. L. Belzile, T. Laliberté, S. Foucault, B. Mayer-St-Onge, D. Gao

and C. Gosselin, �An articulated assistive robot for intuitive hands-on-payload manipula-

tion,� Robotics and Computer-Integrated Manufacturing, vol. 48, pp. 182-187, April 2017.

[16] A. Kawamura, T. Hisatsune, K. Matsusaka, M. Uemura and S. Kawamura, �Adaptive

motion control of a robotic arm with movable counterweights,� Proc. of the IEEE/ASME

Int. Conf. on Advanced Intelligent Mechatronics, pp. 882-887, Besacon, France, 2014.

[17] A. Kawamura, B. Gang, M. Uemura and S. Kawamura, �Mechanism and Control of Ro-

botic Arm using Rotational Counterweights,� Proc. of the IEEE Int. Conf. on Robotics and

Automation (ICRA), pp. 2716-2721, 2015.

[18] J. M. Audet and C. Gosselin, �Rotational Low Impedance Physical Human-Robot Inter-

action using Underactuated Redundancy," submitted to the ASME Journal of Mechanisms

and Robotics, March 2020.

36