tp maple : algèbre linéaire - correction

Upload: essaidi-ali

Post on 02-Jun-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 TP Maple : Algbre linaire - correction

    1/22

    (1.1)(1.1)

    TP 02Maple et algbre linaire

    CPGE - Laayoune MP1-2013-2014

    Essaidi Ali Exercice 01 :

    Construire les lments de la base canonique de = 10 :restart ; with LinearAlgebra :base d NULL :for k from 1 to 10 do f d i / piecewise i = k , 1 ; base d base , Vector 10, f ;

    end do :Base d base ;

    Base :=

    1

    0

    0

    0

    0

    0

    00

    0

    0

    ,

    0

    1

    0

    0

    0

    0

    00

    0

    0

    ,

    0

    0

    1

    0

    0

    0

    00

    0

    0

    ,

    0

    0

    0

    1

    0

    0

    00

    0

    0

    ,

    0

    0

    0

    0

    1

    0

    00

    0

    0

    ,

    0

    0

    0

    0

    0

    1

    00

    0

    0

    ,

    0

    0

    0

    0

    0

    0

    10

    0

    0

    ,

    0

    0

    0

    0

    0

    0

    01

    0

    0

    ,

    0

    0

    0

    0

    0

    0

    00

    1

    0

    ,

    0

    0

    0

    0

    0

    0

    00

    0

    1

    base d NULL :for k from 1 to 10 do

  • 8/10/2019 TP Maple : Algbre linaire - correction

    2/22

    (2.2)(2.2)

    O O

    (2.1)(2.1)

    (1.2)(1.2)

    O O

    f d i / f l oor1

    abs i K k C 1;

    base d base , Vector 10, f ; end do :Base d base ;

    Base :=

    10

    0

    0

    0

    0

    0

    0

    00

    ,

    01

    0

    0

    0

    0

    0

    0

    00

    ,

    00

    1

    0

    0

    0

    0

    0

    00

    ,

    00

    0

    1

    0

    0

    0

    0

    00

    ,

    00

    0

    0

    1

    0

    0

    0

    00

    ,

    00

    0

    0

    0

    1

    0

    0

    00

    ,

    00

    0

    0

    0

    0

    1

    0

    00

    ,

    00

    0

    0

    0

    0

    0

    1

    00

    ,

    00

    0

    0

    0

    0

    0

    0

    10

    ,

    00

    0

    0

    0

    0

    0

    0

    01

    Exercice 02 :Vrifier si les matrices suivantes sont nilpotentes et dterminer, si cest le cas, lindicede nilpotence :

    A =

    1 0 1 0

    0 0 0 0

    2 2 2 1

    1 3 1 1

    B =

    1 1 1 2

    3 3 1 2

    2 2 2 0

    2 2 2 0

    C =

    0 2 0 0

    1 0 1 0

    0 2 0 0

    0 2 2 2

    restart ; with LinearAlgebra :A d Matrix 1, 0, 1, 0 , 0, 0, 0, 0 , 2, 2, 2, 1 , 1, 3, 1,

    1 ;

    A :=

    1 0 1 0

    0 0 0 0

    2 2 2 11 3 1 1

    A4 d MatrixPower A , 4 ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    3/22

    (2.8)(2.8)

    (2.2)(2.2)

    (2.7)(2.7)

    (2.10)(2.10)

    (2.6)(2.6)

    (2.5)(2.5)

    (2.4)(2.4)

    (2.3)(2.3)

    O O

    (2.9)(2.9)

    A4 :=

    0 0 0 0

    0 0 0 0

    0 0 0 0

    0 0 0 0

    verify A4, Zer oMat r i x 4 , ' Matrix ' ;true

    A2 d MatrixPower A , 2 ;

    A2 :=

    1 2 1 1

    0 0 0 0

    1 1 1 1

    0 1 0 0

    verify A2, Zer oMat r i x 4 , ' Matrix ' ; false

    A3 d MatrixPower A , 3 ;

    A3 :=

    0 1 0 0

    0 0 0 0

    0 1 0 0

    0 0 0 0

    verify A3, Zer oMat r i x 4 , ' Matrix ' ; false

    Bd

    Matrix 1, 1, 1, 2 , 3, 3, 1, 2 , 2, 2, 2, 0 , 2, 2,2, 0 ;

    B :=

    1 1 1 2

    3 3 1 2

    2 2 2 0

    2 2 2 0

    B4 d MatrixPower B , 4 ;

    B4 :=

    0 0 0 0

    0 0 0 00 0 0 0

    0 0 0 0

    verify B4, Zer oMat r i x 4 , ' Matrix ' ;true

    B2 d MatrixPower B , 2 ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    4/22

  • 8/10/2019 TP Maple : Algbre linaire - correction

    5/22

    (3.2)(3.2)

    (3.1)(3.1)

    (3.5)(3.5)

    (3.6)(3.6)

    O O

    (3.4)(3.4)

    (3.8)(3.8)

    O O

    3.3.

    O O

    (3.3)(3.3)

    (3.7)(3.7)

    O O

    O O

    Rsoudre les systmes AX = Y et BX = Y pour les deux cas Y =

    1

    1

    1

    et Y =

    1

    1

    0

    .

    restart ; with LinearAlgebra :

    A d Matrix 1, 4, 3 , 2, 1, 2 , 3, 2, 0 ;

    A :=

    1 4 3

    2 1 2

    3 2 0

    B d Matrix 1, 0, 3 , 5, 2, 2 , 6, 2, 1 ;

    B :=

    1 0 3

    5 2 2

    6 2 1

    NullSpace A ;

    ColumnSpace A ;1

    0

    0

    ,

    0

    1

    0

    ,

    0

    0

    1

    NullSpace B ;3

    172

    1

    ColumnSpace B ;1

    0

    1

    ,

    0

    1

    1

    M d MatrixAdd A , B , 1, ;

    M :=

    1 C 4 3 K 3

    2 K 5 1 C 2 2 K 2

    3 K 6 2 C 2

    S d Determinant M ;S := 106 C 87

    2C 31

  • 8/10/2019 TP Maple : Algbre linaire - correction

    6/22

    (3.10)(3.10)

    O O

    (3.9)(3.9)

    solve S , ;

    = 5387

    C4

    87 7 , = 53

    87 K

    487

    7

    Y d Vector 1, 1, 1 ; LinearSolve A , Y ; LinearSolve B , Y ;

    Y :=

    1

    11

    731

    531

    631

    Er r or , ( i n Li near Al gebr a: - LA_Mai n: - Li near Sol ve) i nconsi st entsyst emY d Vector 1, 1, 0 ; LinearSolve A , Y ; LinearSolve B , Y ;

    Y :=

    1

    1

    0

    231

    331

    1531

    1 C 3 _t2 3

    3 C 172

    _t2 3

    _t23

    Exercice 04 :Construire la matrice A = a

    ij2 M

    mn= ) dans les cas suivants :

    1 m =3, n = 4, aij

    = 2i3

    j 2 m =5, n =3, a

    ij= i K j 3 m = n

    =3, aij

    = iji C j

  • 8/10/2019 TP Maple : Algbre linaire - correction

    7/22

    O O

    (4.7)(4.7)

    (4.5)(4.5)

    O O

    O O

    O O

    O O

    (4.1)(4.1)

    (4.4)(4.4)

    (4.3)(4.3)

    (4.2)(4.2)

    (4.6)(4.6)

    (4.8)(4.8)

    O O

    O O

    O O

    O O

    O O

    4 m =3, n = 4, aij

    =1 i C j est paire

    0 sinon 5 m = n =7, a

    ij=

    1 si i = 1 ou j = n

    0 sinon 6 m

    = n = 5, aij

    =0 si i O j

    j K i C 1 sinon

    On reprend les matrices prcdentes dans le cas m = n = 5. Calculer le rang, la trace, lenoyau, le dterminant et l'inverse (si la matrice est inversible).

    restart ; with LinearAlgebra :

    f d i , j / 2i

    $3j;

    f := i, j / 2i 3 j

    A d Matrix 3, 4, f ;

    A :=

    6 18 54 162

    12 36 108 324

    24 72 216 648

    A d Matrix 5, 5, f ;

    A :=

    6 18 54 162 486

    12 36 108 324 972

    24 72 216 648 1944

    48 144 432 1296 3888

    96 288 864 2592 7776

    Rank A ; 1

    Trace A ;9330

    NullSpace A ;81

    0

    0

    0

    1

    ,

    9

    0

    1

    0

    0

    ,

    27

    0

    0

    1

    0

    ,

    3

    1

    0

    0

    0

    Determinant A ;0

    g d i , j / abs i K j ;g := i, j / i K j

    B d Matrix 5, 3, g ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    8/22

    (4.12)(4.12)O O

    (4.10)(4.10)

    (4.16)(4.16)

    (4.14)(4.14)

    (4.11)(4.11)

    O O

    (4.13)(4.13)

    O O

    O O

    O O

    (4.15)(4.15)

    O O

    (4.9)(4.9)

    O O

    B :=

    0 1 2

    1 0 1

    2 1 0

    3 2 1

    4 3 2

    B d Matrix 5, 5, g ;

    B :=

    0 1 2 3 4

    1 0 1 2 3

    2 1 0 1 2

    3 2 1 0 1

    4 3 2 1 0

    Rank B ;5

    Trace B ;0

    NullSpace B ;

    Determinant B ;32

    MatrixInverse B ;3

    8

    1

    2 0 0

    1

    812

    1 12

    0 0

    0 12

    1 12

    0

    0 0 12

    1 12

    18

    0 0 12

    38

    h d i , j /i $ j

    i C j;

    h := i, j / i ji C j

    C d Matrix 3, 3, h ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    9/22

    O O

    O O

    (4.24)(4.24)

    O O

    O O

    (4.17)(4.17)

    (4.21)(4.21)

    (4.20)(4.20)

    O O

    (4.22)(4.22)

    (4.18)(4.18)

    O O

    (4.23)(4.23)

    (4.19)(4.19)

    C :=

    12

    23

    34

    23

    1 65

    3

    4

    6

    5

    3

    2C d Matrix 5, 5, h ;

    C :=

    12

    23

    34

    45

    56

    23

    1 65

    43

    107

    34

    65

    32

    127

    158

    45

    43

    127 2

    209

    56

    107

    158

    209

    52

    Rank C ;5

    Trace C ;152

    NullSpace C ;

    Determinant C ;1

    4667544000

    MatrixInverse C ;450 2100 4200 3780 1260

    2100 11025 23520 22050 7560

    4200 23520 156800

    350400 17640

    3780 22050 50400 992252

    17640

    1260 7560 17640 17640 317525

    k d i , j / piecewise is i C j , even , 1 ;k := i, j / piecewise is i C j, even , 1

  • 8/10/2019 TP Maple : Algbre linaire - correction

    10/22

    O O (4.26)(4.26)

    O O

    O O

    O O

    O O

    O O

    (4.25)(4.25)

    O O

    (4.32)(4.32)

    (4.31)(4.31)

    (4.28)(4.28)

    (4.27)(4.27)

    O O

    (4.29)(4.29)

    (4.30)(4.30)

    d d Matrix 5, 5, k ;

    d :=

    1 0 1 0 1

    0 1 0 1 0

    1 0 1 0 1

    0 1 0 1 0

    1 0 1 0 1

    Rank d ;2

    Trace d ;5

    NullSpace d ;1

    0

    0

    0

    1

    ,

    0

    1

    0

    1

    0

    ,

    1

    0

    1

    0

    0

    Determinant d ;0

    l d i , j / piecewise i =1 or j = n , 1 ;l := i, j / piecewise i = 1 or j = n, 1

    n d 7; E d Matrix 7, 7, l ;n := 7

    E :=

    1 1 1 1 1 1 1

    0 0 0 0 0 0 1

    0 0 0 0 0 0 1

    0 0 0 0 0 0 1

    0 0 0 0 0 0 1

    0 0 0 0 0 0 1

    0 0 0 0 0 0 1

    n d 5; E d Matrix 5, 5, l ;n := 5

  • 8/10/2019 TP Maple : Algbre linaire - correction

    11/22

    (4.34)(4.34)

    O O

    O O

    O O

    O O

    O O

    (4.38)(4.38)

    (4.40)(4.40)

    (4.36)(4.36)

    O O (4.33)(4.33)

    (4.42)(4.42)

    (4.32)(4.32)

    O O

    O O

    (4.39)(4.39)

    (4.37)(4.37)

    (4.35)(4.35)

    O O

    O O

    (4.41)(4.41)

    E :=

    1 1 1 1 1

    0 0 0 0 1

    0 0 0 0 1

    0 0 0 0 1

    0 0 0 0 1

    Rank E ;2

    Trace E ;2

    NullSpace E ;1

    1

    0

    0

    0

    ,

    1

    0

    0

    1

    0

    ,

    1

    0

    1

    0

    0

    Determinant E ;0

    m d i , j / piecewise i % j , j K i C 1 ;m := i, j / piecewise i % j, j K i C 1

    F d Matrix 5, 5, m ;

    F :=

    1 2 3 4 5

    0 1 2 3 4

    0 0 1 2 3

    0 0 0 1 2

    0 0 0 0 1

    Rank F ;5

    Trace F ;5

    NullSpace F ;

    Determinant F ;1

    MatrixInverse F ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    12/22

    (4.43)(4.43)

    (5.1)(5.1)

    1 2 1 0 0

    0 1 2 1 0

    0 0 1 2 1

    0 0 0 1 2

    0 0 0 0 1

    Exercice 05 :Construire les lments de la base canonique de M

    35= .

    restart ; with LinearAlgebra :base d NULL : for i from 1 to 3 do for j from 1 to 5 do

    f d k

    , l / piecewise i

    =k

    and

    j

    =l

    , 1 ; base d base , Matrix 3, 5, f ; end do : end do :Base d base ;

    Base :=

    1 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 1 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 1 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 1 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 1

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    1 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 1 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 1 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 1 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 1

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    1 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    0 1 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    0 0 1 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 1 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 1

    base d NULL : for i from 1 to 3 do for j from 1 to 5 do

    f d k , l / f l oor1

    abs i K k C abs j K l C 1;

    base d base , Matrix 3, 5, f ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    13/22

    (6.1)(6.1)

    2.2.

    O O

    3.3.

    (5.2)(5.2)

    O O

    1.1.

    end do : end do :Base d base ;

    Base :=

    1 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 1 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 1 0 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 1 0

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 1

    0 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    1 0 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 1 0 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 1 0 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 1 0

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 1

    0 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    1 0 0 0 0

    ,

    0 0 0 0 0

    0 0 0 0 0

    0 1 0 0 0

    ,

    0 0 0 0 00 0 0 0 0

    0 0 1 0 0

    ,0 0 0 0 00 0 0 0 0

    0 0 0 1 0

    ,0 0 0 0 00 0 0 0 0

    0 0 0 0 1

    Exercice 06 :Soit n 2.

    Calculer les rangs des matrices cares d'ordre n : ( | i - j |)ij et ( i + j )

    ij pour n

    variant de 2 10.Quelles conjectures peut-on dduire?Montrer que ces conjectures restent vraies pour n 2 { 2,...,100 }.restart ; with LinearAlgebra :f d i , j / abs i K j ; g d i , j / i C j ;

    f := i, j / i K jg := i, j / i C j

    for n from 2 to 10 do

    n , Rank Matrix n , n , f , Rank Matrix n , n , g ; end do ;

    2, 2, 23, 3, 24, 4, 25, 5, 26, 6, 27, 7, 2

  • 8/10/2019 TP Maple : Algbre linaire - correction

    14/22

    O O

    (7.2)(7.2)

    (6.3)(6.3)

    O O

    4.4.

    1.1.

    (7.4)(7.4)

    2.2.

    (6.2)(6.2)

    (7.3)(7.3)

    3.3.

    (7.1)(7.1)

    O O

    O O

    8, 8, 29, 9, 2

    10, 10, 2

    for n from 10 to 100 while n = Rank Matrix n , n , f and 2= Rank Matrix n , n , g do

    end do : n ;

    101

    Exercice 07 :

    Soit f 2 L (= 4} dfini par f ( x, y, z, t ) = ( x - y - z - 3t, y + 3 z + t, -x + y + z + 3t, -3 x + y+ 3 z - 2 t ).

    Donner la matrice de f dans la base canonique ( e1, e

    2, e

    3, e

    3) de = 4.

    Donner la dimension de Im f , ainsi qu'une base.Donner la dimension de ker f , ainsi qu'une base.Les sous-espaces Im f et ker f sont-ils supplmentaires ?

    restart ; with LinearAlgebra :f d x , y , z , t / x y z 3 $ t , y C 3 $ z C t , x

    C y C z C 3 $ t , 3 $ x C y C 3 $ z 2 $ t ;

    f := x, y, z, t / x K y K z K 3 t , y C 3 z C t , x C y C z C 3 t , 3 x C y C 3 z K 2 t

    A d GenerateMatrix f x , y , z , t , x , y , z , t 1 ;

    A :=

    1 1 1 3

    0 1 3 1

    1 1 1 3

    3 1 3 2

    Rank A ; F d ColumnSpace A ;3

    F :=

    1

    0

    10

    ,

    0

    1

    00

    ,

    0

    0

    01

    G d NullSpace A ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    15/22

  • 8/10/2019 TP Maple : Algbre linaire - correction

    16/22

    (8.4)(8.4)

    O O

    S := x1, 12 C x1, 2 x2, 1 C x1, 1 K 1, x1, 1 x1, 2 C x1, 2 x2, 2 C x1, 2 K 1, x1, 2 x2, 1 C x2, 2

    2 C x2, 2 K 1,

    x2, 1 x1, 1 C x2, 2 x2, 1 C x2, 1 K 1

    sol d solve S ; n d nops sol : for k from 1 to n do x d ' x ' :X d Matrix 2, 2, symbol =' x ' :assi gn sol k : eval m X ; end do ;

    sol := x1, 1 = 0, x1, 2 = 1, x2, 1 = 1, x2, 2 = 0 , x1, 1 =32

    , x1, 2 =12

    , x2, 1 =12

    , x2, 2 =

    32

    , x1, 1 =12

    , x1, 2 =12

    , x2, 1 =12

    , x2, 2 =12

    , x1, 1 = 1, x1, 2 = 1, x2, 1 = 1, x2, 2

    = 1

    x := x

    X := x1, 1 x1, 2

    x2, 1 x2, 2

    0 1

    1 0

    x := x

    X := x1, 1 x1, 2

    x2, 1 x2, 2

    32

    12

    12

    32

    x := x

    X := x

    1, 1 x

    1, 2

    x2, 1 x2, 2

    12

    12

    12

    12

    x := x

  • 8/10/2019 TP Maple : Algbre linaire - correction

    17/22

  • 8/10/2019 TP Maple : Algbre linaire - correction

    18/22

    (9.6)(9.6)

    (9.5)(9.5)

    O O

    O O

    (10.1)(10.1)

    O O O O

    O O

    C 3 x2, 2 C x3, 2 K 3 x1, 1 K 3 x1, 3, 2 x1, 2 C 3 x2, 2 K 3 x3, 1 K x3, 2 K 3 x3, 3, x1, 3 C x2, 3K x3, 3 K x2, 1 C x2, 2, 2 x1, 3 C 3 x2, 3 C x3, 3 K x1, 1 C x1, 2

    sol ut i ons d solve S ;

    solutions := x1, 1 = x1, 1, x1, 2 =152

    x2, 1 K92

    x1, 3, x1, 3 = x1, 3, x2, 1 = x2, 1, x2, 2 = x1, 1

    K 92

    x2, 1 C 72 x1, 3, x2, 3 = 12

    x2, 1 K 12 x1, 3, x3, 1 = 92

    x2, 1 K 52 x1, 3, x3, 2 = 6 x2, 1

    K 3 x1, 3, x3, 3 = 4 x1, 3 K 6 x2, 1 C x1, 1

    M d subs solutions 1 , evalm X ;

    M :=

    x1, 1152

    x2, 1 K92

    x1, 3 x1, 3

    x2, 1 x1, 1 K92

    x2, 1 C72

    x1, 312

    x2, 1 K12

    x1, 3

    92

    x2, 1 K 52 x1, 3 6 x2, 1 K 3 x1, 3 4 x1, 3 K 6 x2, 1 C x1, 1

    Exercice 10 :

    Rsoudre le systme

    2 x C 3 y C z = 1

    x C 2 y C 3 z = 2

    3 x C y C 2 z = 1

    .

    restart ;sol ve 2 $x C 3$y C z =1, x C 2$y C 3$z =2, 3 $x C y C 2$z = 1 ;

    x = 89

    , y = 79

    , z = 49

    Exercice 11 :

    Donner une base du sous-espace de = 5 dfini par : x

    1 C 2 x

    2 C x

    3 C 3 x

    4 C x

    5 = 0

    x2 C x

    3 2 x

    4 C 2 x

    5 = 0

    2 x1 C x

    2 5 x

    3 4 x

    5 = 0

    .

    restart ; with LinearAlgebra :

    sys d x 1

    C 2 x 2 C x 3 C 3 x 4 C x 5 =0, x 2 C x 3 K 2 x 4 C 2 x 5 =0 , 2 x 1

  • 8/10/2019 TP Maple : Algbre linaire - correction

    19/22

    1.1.

    O O

    2.2.

    O O

    (11.2)(11.2)

    (11.1)(11.1)

    (11.3)(11.3)

    C x 2 K 5 x 3 K 4 x 5 =0 ;

    vars d x 1, x 2, x 3, x 4, x 5 ;

    sys := x1 C 2 x2 C x3 C 3 x4 C x5 = 0, x2 C x3 K 2 x4 C 2 x5 = 0, 2 x1 C x2 K 5 x3 K 4 x5 = 0

    vars := x1, x2, x3, x4, x5

    Ad

    GenerateMatrix sys , vars 1 ;

    A :=

    1 2 1 3 1

    0 1 1 2 2

    2 1 5 0 4

    NullSpace A ;3

    2

    00

    1

    ,

    10

    5

    31

    0

    Exercice 12 :On considre les vecteurs v

    1= (2, 4, 5, 6), v

    2 = (1, 2, 5, 3), v

    3 = (3, 1, - 1, 0) et v

    4 = (4,

    3, 4, 3).Donner une base du sous-espace vectoriel engendr par v

    1, v

    2 , v

    3 et v

    4 .

    Le vecteur w = (4, 3, - 1, 3) est-il dans ce sous-espace vectoriel? Si oui,exprimez-le comme combinaison linaire des vecteurs de la base.restart ; with LinearAlgebra :v1 d Vector 2, 4, 5, 6 ; v2 d Vector 1, 2, 5, 3 ; v3

    d Vector 3, 1, 1, 0 ; v4 d Vector 4, 3, 4, 3 ;

    v1 :=

    2

    4

    5

    6

    v2 :=

    1

    2

    5

    3

  • 8/10/2019 TP Maple : Algbre linaire - correction

    20/22

    O O

    O O

    O O

    (12.2)(12.2)

    (12.6)(12.6)O O

    (12.1)(12.1)

    (12.7)(12.7)

    (12.8)(12.8)

    (12.3)(12.3)

    O O

    (12.5)(12.5)

    (12.4)(12.4)

    O O

    v3 :=

    3

    1

    1

    0

    v4 :=

    43

    4

    3

    Basis v1 , v2 , v3 , v4 ;1

    2

    5

    3

    ,

    3

    1

    1

    0

    ,

    2

    4

    5

    6

    w d Vector 4, 3, 1, 3 ;

    w :=

    4

    3

    1

    3

    Determinant Matrix v1 , v2 , v3 , w ;0

    U d x $v1 C y $v2 C z $v3 K w ;

    U :=

    2 x C y C 3 z K 4

    4 x C 2 y C z K 3

    5 x C 5 y K z C 1

    6 x C 3 y K 3

    Sys d convert U , set ;Sys := 6 x C 3 y K 3, 2 x C y C 3 z K 4, 4 x C 2 y C z K 3, 5 x C 5 y K z C 1

    solve Sys ; x = 1, y = 1, z = 1

    LinearSolve Matrix v1 , v2 , v3 , w ; # Autre mthode1

    1

    1

  • 8/10/2019 TP Maple : Algbre linaire - correction

    21/22

    5.5.

    (13.2)(13.2)

    O O

    (13.1)(13.1)

    O O

    O O

    O O

    (13.6)(13.6)

    2.2.

    O O

    3.3.

    (13.4)(13.4)

    (13.5)(13.5)

    O O

    1.1.

    O O

    O O

    O O

    (13.9)(13.9)

    (13.8)(13.8)

    (13.3)(13.3)

    O O

    4.4.

    (13.7)(13.7)

    Exercice 13 :Soit lapplication f : =

    2 X / =

    2 X dfinie par f P = le reste de la division

    euclidienne de X 3P par X K 1 X K 2 X K 3 .

    Construire f et calculer f 1 , f X , f X 2 et gnralement f x C yX C zX 2 .Montrer que f est un endomorphisme de =

    2 X .

    Donner la matrice de f .Montrer que f est un automorphisme de =

    2 X .

    Dterminer f 1.restart ; with LinearAlgebra :

    f d P / rem X 3

    $P , X K 1 $ X K 2 $ X K 3 , X ; f := P / rem X 3 P , X K 1 X K 2 X K 3 , X

    sort f 1 ;6 X 2 K 11 X C 6

    sort f X ;25 X 2 K 60 X C 36

    sort f X 2

    ;90 X 2 K 239 X C 150

    f x C y $X C z $X 2

    ;90 z C 25 y C 6 x X 2 C 60 y K 239 z K 11 x X C 6 x C 150 z C 36 y

    expand f $P C $Q K $ f P K $ f Q ;0

    M d GenerateMatrix seq coeff f x C y $X C z $X 2

    , X , k , k =0 . . 2 ,

    x , y , z 1 ;

    M :=

    6 36 150

    11 60 239

    6 25 90

    Determinant M ;216

    N d MatrixInverse M ;

  • 8/10/2019 TP Maple : Algbre linaire - correction

    22/22

    O O

    (13.13)(13.13)

    (13.10)(13.10)

    O O

    (13.11)(13.11)

    O O

    O O

    (13.9)(13.9)

    (13.12)(13.12)

    N :=

    575216

    8536

    116

    3718

    53

    1

    85

    216

    11

    36

    1

    6V d Vector x, y, z ;

    V :=

    x

    y

    z

    K d MatrixVectorMultiply N , V ;

    K :=

    575216

    x C 8536

    y C 116

    z

    3718

    x K 53

    y K z

    85216

    x C 1136

    y C 16

    z

    U d Matrix 1, X , X 2

    ;

    U := 1 X X 2

    sort MatrixVectorMultiply U , K 1 ;85

    216 xC

    1136 y

    C16 z X

    2 C3718 x

    K53 y

    K z X

    C575216 x

    C8536 y

    C116 z