test de l’intégrité des signaux numériques des interconnexions des soc

25
Test de l’intégrité des signaux numériques des interconnexions des SoC Benoit Côté Laurent Faniel Gilbert Kowarzyk 13 décembre 2005

Upload: ishana

Post on 14-Jan-2016

22 views

Category:

Documents


0 download

DESCRIPTION

Benoit Côté Laurent Faniel Gilbert Kowarzyk. 13 décembre 2005. Test de l’intégrité des signaux numériques des interconnexions des SoC. Agenda. Introduction Problématique Test de l’intégrité du signal Solution basée sur le JTAG Solution basée sur le BIST - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Test de l’intégrité des signaux numériques des interconnexions des SoC

Test de l’intégrité des signaux numériques des interconnexions des SoC

Benoit CôtéLaurent FanielGilbert Kowarzyk

13 décembre 2005

Page 2: Test de l’intégrité des signaux numériques des interconnexions des SoC

Agenda

Introduction Problématique Test de l’intégrité du signal Solution basée sur le JTAG Solution basée sur le BIST Solution basée sur le BIST avec processeur Comparaison des méthodes Conclusion

Page 3: Test de l’intégrité des signaux numériques des interconnexions des SoC

Problématique

L’étude de l’intégrité des signaux mesure la capacité d’un signal à générer une réponse correcte/attendue dans le circuit. Les tensions doivent avoir les bonnes valeurs Les transitions doivent se faire au bon moment

Les SoC, circuits comportant plusieurs blocs IP, ont typiquement un dé de taille plutôt élevée et des fils longs entre les IP.

La réduction d’échelle dans les nouvelles technologies et l’augmentation de la fréquence d’opération ont créé de nouveaux problèmes, entre-autres une augmentation de la résistance et de la capacitance de couplage entre fils.

Les phénomènes inductifs doivent aussi être considérés à cause des fils longs (bus, réseau d’horloge, réseau d’alimentation).

Page 4: Test de l’intégrité des signaux numériques des interconnexions des SoC

Problématique

Ref: [5] Ref: [5]

Page 5: Test de l’intégrité des signaux numériques des interconnexions des SoC

Problématique

Principaux problèmes d’intégrité des signaux:

Diaphonie (Crosstalk) : distorsion du signal dû au effets de couplage entre les signaux.

« Overshoot » : montée du signal au-dessus du seuil de la tension d’alimentation pendant un instant.

Réflexion (ou écho) d’une partie du signal.

Interférence électro-magnétique : due aux propriétés « d’antenne » du circuit.

Page 6: Test de l’intégrité des signaux numériques des interconnexions des SoC

Problématique Effets de diaphonie (crosstalk) des interconnexions.

Modèle RLC. Effets résistifs, capacitifs, inductifs, d’antenne. Zone de fonctionnement en tension et délais (tresholds).

Ref: [4] Ref: [4]

Page 7: Test de l’intégrité des signaux numériques des interconnexions des SoC

Problématique

« Signal skew » : délai de l’arrivée du signal sur différents récepteurs.

« Substrate coupling » (entre les différents IP): phénomène moins en moins présent dans les SoC purement numériques.

Ref: [5]

Principaux des problèmes d’intégrité des signaux

Page 8: Test de l’intégrité des signaux numériques des interconnexions des SoC

Test de l’intégrité du signal

Modèles de fautes « Maximal aggressor » - MA

Modèle RC. Transitions opposées entre agresseurs

et une victime (6 transitions/victime).

« Multiple transition » - MT Modèle RLC. Toutes transitions possibles des

agresseurs par état des victimes(2m+1 transitions / victime).

« Behavioral » Basé sur des simulations de circuits. Génération pseudo-aléatoire.

Ref: [1]

Ref: [1]

Page 9: Test de l’intégrité des signaux numériques des interconnexions des SoC

Test de l’intégrité de signal Cellules de détection

MISR Réutilisation des structures existantes (logique + interconnexions). Détection numérique (0/1) de fautes (à l'échantillonnage). Aucune information sur la nature et la source du problème.

Détection de bruit (noise detector - ND) Signale tout écart en tension par rapport à un seuil. Détecte les « overshoot ».

Détection de délais (skew detector - SD) Signale tout écart en délais par rapport à un seuil.

Page 10: Test de l’intégrité des signaux numériques des interconnexions des SoC

Test de l’intégrité de signal

Placées à l’interface de l’unité réceptrice. Coûteuses en surface et en consommation d’énergie.

Cellule ND

Cellules de détection de bruit (ND) et délais (SD)

Circuit SDRef: [6] Ref: [6]

Page 11: Test de l’intégrité des signaux numériques des interconnexions des SoC

Test de l’intégrité de signal

Architectures des solutions proposées Solution basée sur le JTAG

Modification de la structure existante du JTAG. Ajout de cellules pour le test d’intégrité des interconnexions.

Solution basée sur le BIST (LI-BIST) Modification de la structure existante du BIST. LFSR adapté pour le test d’intégrité des interconnexions.

Solution basée sur le BIST avec processeur Solution logicielle utilisant un processeur embarqué.

Page 12: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le JTAG

But: profiter des chaînes JTAG pour faire le test SI: Modification des cellules BSC (Boundary Scan Cell) JTAG

Cellules de sortie génèrent vecteurs de test (modèle de fautes MA/MT)

Cellules d’entrée vont inclure des cellules ND et SD

Rajout de deux instructions pour tester l’intégrité des signaux G-SITEST (Generate SI Test) O-SITEST (Observe SI TEST)

Principe de localité: seulement les quelques fils adjacents à une victime contribuent à la diaphonie de celle-ci Test simultané de plusieurs interconnections est possible

Page 13: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le JTAG -Sortie• PGBSC pour Pattern Generation

Boundary Scan Cell

• G-SITEST– Met en fonction les cellules ND et

SD des OBSC.

– Plusieurs “Update DR” sont nécessaires pour générer les différentes transitions.

• Décalage d’un “seed” qui va générer plusieurs vecteurs de test (4 valeurs décalées pour 6 tests)

Ref: [6]

Ref: [1]

Page 14: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le JTAG -Entrée• OBSC

(Observation BSC)

• O-SITEST – après l’instruction G-SITEST.

– utilisée pour le capture et scan-out des cellules ND/S.

– Désactive SD/ND.

Ref: [6]

Page 15: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le JTAG

Avantages et inconvénients+ Permet un test déterministe « MT ».

+ Reste compatible avec la norme JTAG.

+ Permet de savoir où le problème surgit.

- Pas très rapide.

- Aire due au JTAG et à l’ajout des ND/SD est non négligeable.

- Nécessite l’utilisation d’une chaîne JTAG et d’un testeur externe.

Page 16: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST Architectures

BIST dédié au test des interconnexions Surface et consommation d’énergie élevées.

BIST réutilisé pour le test des interconnexions Pas adapté pour le test d’intégrité des signaux

(faible taux de couverture).

LI-BIST Adapté au test d’intégrité de signaux. Impact minimal sur la surface et la consommation d’énergie.

Page 17: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST Architecture LI-BIST

Réutilisation des cellules LFSR/MISR. Modification de la génération de vecteurs (LFSR).

Vecteurs pseudo-aléatoires pondérés. Alternance des probabilités de 0 et de 1.

Générateur de vecteurs LI-BIST 4 bits Ref: [3]

Page 18: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST Architecture LI-BIST

Générateurs de vecteurs pour interconnexions (TPG). Multiplexeurs pour mode normal ou test des interconnexions. Contrôleur de test LI-BIST. 3 modes d’opération: normal, test unité logique, test interconnexions.

Architecture de test LI-BISTRef: [3]

Page 19: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST

Avantages et inconvénients+ Permet le test logique (core) et d’intégrité des interconnexions.+ Augmentation de surface très faible et proportionnelle au nombre

d’interconnexions (scalable), si BIST existant.+ S’exécute à la vitesse du circuit (self-test).

- Requiert un LFSR et MISR à chaque unité logique.- Génération de vecteurs uniquement pseudo-aléatoire et fixe.- Modèle proposé n’inclut pas de cellules ND-SD.

Page 20: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST avec processeur

Principe: utiliser le µP existant pour tester les interconnexions (génération des vecteurs + analyse des résultats)

µP µP

: cellules de détection

Vecteurs de test pseudo-aléatoires

(génération software) déterministes:

génération dynamique génération statique => mémoire

Ref: [2]

Page 21: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST avec processeur Le contrôle des interconnexions peut être:

direct via ponts (bridges) impossible

Ajout éventuel d'un TPG (*) si m<n

(*) Test Pattern Generator

Ref: [2]

Ref: [2]

Page 22: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST avec processeur Ajout de matériel:

cellules de détection TPG Multiplexeurs Pont (bridge)

Ref: [2]

Page 23: Test de l’intégrité des signaux numériques des interconnexions des SoC

Solution basée sur le BIST avec processeur

Avantages et inconvénients+ Grande flexibilité sur la génération de vecteurs.+ Possibilité d’analyser les réponses par le processeur, utile pour

diagnostic.

- Besoin d'un processeur aux capacités CPU et mémoire suffisantes

(pas systématique).- Contrôlabilité et surface supplémentaire requise dépendantes de la

topologie du circuit.- Difficile ou impossible de tester les cores logiques.

Page 24: Test de l’intégrité des signaux numériques des interconnexions des SoC

Conclusion: comparaison des méthodes Solution JTAG Test de cores et d'intégrité Surface additionnelle ~ nb d'interconnexions Vecteurs déterministes correspondant au modèle MT

Solution LI-BIST Test de cores et d'intégrité Surface ~ nb d'interconnexions, et faible si BIST existe Pseudo-aléatoire, à la vitesse du circuit

Solution BIST avec processeur Seulement test d'intégrité Surface et temps de test dépendent de la topologie et du µP Flexibilité sur la génération de vecteurs (PR - déterministe)

Page 25: Test de l’intégrité des signaux numériques des interconnexions des SoC

Références Figures:

[1] Testing SoC Interconnects for Signal Integrity Using Extended JTAG Architecture, Mohammad H. Tehranipour, Nisar Ahmed, and Mehrdad Nourani, IEEE Transactions on computer-aided design of integrated circuits and systems, VOL. 23, NO. 5, MAY 2004

[2] Signal Integrity Loss in SoC's Interconnects: A Diagnosis Approach Using Microprocessor, Mohammad H. Tehranipour and Mehrdad Nourani, International Test Conference, 2002

[3] LI-BIST: A Low-Cost Self-Test Scheme for SoC Logic Cores and Interconnects, Krishna Sekar and Sujit Dey, Proceedings of the 20 th IEEE VLSI Test Symposium (VTS’02)

[4] Built-In Self-Test for Signal Integrity, Mehrdad Nourani and Amir Attarha, Center for Integrated Circuits & Systems, The University of Texas at Dallas

[5] Signal integrity in deep-sub-micron integrated circuits, Alessandro Bogliolo, Universita’ Di Ferrara

[6] Extending JTAG for Testing Signal Integrity in SoCs, N. Ahmed, M. Tehranipour and M. Nourani, Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)