sources d’energie - tsi.ljf.free.frtsi.ljf.free.fr/ats/docs/s2i/ci3a/sources_energie.pdf ·...

22
SOURCES D’ENERGIE CI3 : Chaînes d’énergie SOURCES D’ENERGIE COURS Edition 2 - 30/09/2017 Lycée Jules Ferry - 06400 Cannes [email protected] 1/22 CHAÎNE D’INFORMATION ACQUERIR TRAITER COMMUNIQUER CHAÎNE D’ENERGIE ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE ACTION

Upload: tranhanh

Post on 14-Sep-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

SOURCES D’ENERGIE

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 1/22

CHAÎNE D’INFORMATION

ACQUERIR TRAITER COMMUNIQUER

CHAÎNE D’ENERGIE

ALIMENTER DISTRIBUER CONVERTIR TRANSMETTRE

ACTI

ON

Page 2: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

PROBLEMATIQUE

« Tout système nécessite une source d'énergie, qui possède

ses propres caractéristiques.

La source d’énergie doit être compatible avec les

convertisseurs d’énergie présents dans le système »

B - MODELISERB - MODELISERB - MODELISERB1 : Identifier et caractériser les grandeurs physiques agissant sur un système

Associer les grandeurs physiques aux échanges d’énergie et à la transmission de puissance

B2 Proposer un modèle de connaissance et de comportement

Associer un modèle aux constituants d’une chaîne d’énergie

C - RESOUDREC - RESOUDREC - RESOUDRE

C1 : Choisir une démarche de résolutionProposer une méthode de résolution permettant la détermination des courants des tensions, des puissances échangées, des énergies transmises ou stockées

C2 : Procéder à la mise en œuvre d'une démarche de résolution analytique

Déterminer les courants et les tensions dans les composantsDéterminer les puissances échangées

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Problématique Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 2/22

Page 3: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

SommaireA. _______________________________________________________________Généralités! 4

A.1.Les formes d‘énergie électrique 4

B. ______________________________________________Sources de tension sinusoïdale! 5

B.1.Réseau monophasé 5B.1.1. Paramètres caractéristiquesB.1.2. Représentation d’un signal sinusoïdal par diagramme de FresnelB.1.3. Représentation d’un signal sinusoïdal par nombres complexesB.1.4. Puissances

B.2.Réseau triphasé 13B.2.1. GénéralitésB.2.2. Puissances

B.3.Transformateurs 14B.3.1. Relation entrée-sortie d’un transformateurB.3.2. Symbole d’un transformateur

C. ________________________________________________Source de tension continue! 16

C.1.Accumulateurs 16C.1.1. GénéralitésC.1.2. CaractéristiquesC.1.3. Couples électrochimiques

C.2.Puissance 17

D. __________________________________________Source de tension non sinusoïdale! 18

D.1.Introduction 18

D.2.Décomposition en série de Fourier 18

D.3.Valeur efficace en régime non sinusoïdal 19

D.4.Puissances en régime non sinusoïdal 20

D.5.Qualité du signal 20

E. ________________________________________________________Notes personnelles! 21

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Sommaire Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 3/22

Page 4: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

A. Généralités

A.1. Les formes d‘énergie électrique

L’énergie électrique peut se présenter sous différentes formes:

• Tension ou courant continu

• Tension ou courant alternatif.

(1) est un signal continu

(2) est un signal sinusoïdal

(3) est un signal continu ondulé

(4) est un signal continu ondulé

Attention à ne pas confondre un régime sinusoïdal et un régime alternatif.

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Généralités Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 4/22

Page 5: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B. Sources de tension sinusoïdaleCette source d’énergie est majoritaire, produite en grande partie par des alternateurs reliés à des machines

tournantes.

Les sources monophasées sont exploitées dans le cas d‘installations de faible ou moyenne puissance. En revanche, on privilégiera les sources triphasées dans le cas des fortes puissances.

B.1. Réseau monophasé

B.1.1. Paramètres caractéristiques

B.1.1.1. Forme d’onde

Un signal sinusoïdal est caractérisé par son amplitudeVM , sa pulsation ω et sa phase ϕ .

On trouve également comme autre paramètre la fréquence f = 2πω

, ou la période T = 1f

veff

B.1.1.2. Valeur moyenne - Valeur efficace

La valeur moyenne d’une variable sinusoïdale x , aussi appelée composante continue, est définie par :

< x >= 1T

x(t)dt0

t

∫La valeur efficace d’une variable sinusoïdale est définie par :

xeff =1T

x2 (t)dt0

T

∫ = < x2 >

Dans le cas des signaux électriques, cette valeur efficace correspond au signal continu qui provoquerait le même échauffement dans une résistance.

Un signal sinusoïdal d’amplitude x a le même comportement qu’un signal continu de valeur xeff =x2

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 5/22

Page 6: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.1.2. Représentation d’un signal sinusoïdal par diagramme de Fresnel

Représenter une grandeur sinusoïdale par ses variables temporelles n’est pas la solution la plus pratique pour l’étude des réseaux électriques. En effet, additionner des tensions (par application des lois de mailles de Kirchhoff par exemple) n’est dans ce cas pas simple.

B.1.2.1. Principe de la représentation vectorielle

Un première solution est la représentation vectorielle. Un signal sera représenté par les deux grandeurs caractéristiques d’amplitude et de phase :

x

y

O

ϕ !V

!V =VM

Opérations sur les vecteurs de Fresnel

Représentation temporelle Représentation vectorielle

V =VM sin ωt +ϕV( )

Somme de tensions :

V1 +V2 =VM1sin ωt +ϕV1( ) +VM2

sin ωt +ϕV2( )

Dérivée d’un signal vectoriel (exemple d’un condensateur) :

i = C dVdt

= CVMω cos ωt +ϕV( )

= CVMω sin ωt +ϕV +π2

⎛⎝⎜

⎞⎠⎟

Rotation + π2

Homothétie Cω

Le courant capacitif est en avance sur la tension

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 6/22

Page 7: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

Représentation temporelle Représentation vectorielle

Intégration d’un signal vectoriel (exemple d’une inductance) :

i = 1L

u(t)dt0

t

∫ = − VMLω

cos ωt +ϕV( )

= VMLω

sin ωt +ϕV −π2

⎛⎝⎜

⎞⎠⎟

Rotation

Homothétie 1Lω

Le courant inductif est en retard sur la tension

B.1.2.2. Exemples d’étude : circuit RL

La tension d’entrée sinusoïdale Ve est prise comme référence de phase.

Déterminer le courant I dans le circuit se résout à l’aide du diagramme de Fresnel en écrivant que :

• e!=VL"!"

+VR"!"

•VL = L

dIdt

donc VL!"!

se déduit de I!

par rotation de + π2

!e

RI!

L dI!

dt

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 7/22

Page 8: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.1.2.3. Exemples d’étude : circuit RC

La tension d’entrée sinusoïdale Ve est prise comme référence de phase.

Déterminer le courant I dans le circuit se résout à l’aide du diagramme de Fresnel en écrivant que :

• !U =UC

" !"+UR

" !"

•I = C dUC

dtdonc UC

! "! se déduit de I

! par rotation de − π

2

!V

RI 1Cω

I

B.1.3. Représentation d’un signal sinusoïdal par nombres complexes

B.1.3.1. Généralités

Les diagrammes de Fresnel permettent de visualiser le déphase entre tension et courant, mais ne sont pas adaptés aux calculs.

Une autre représentation possible est la modélisation par nombres complexes.

On associe à chaque grandeur sinusoïdale x = X 2 sin ωt +ϕ( ) (où X représente la valeur efficace) un

nombre complexe tel que :

x = X 2 cos ωt +ϕ( ) + j sin ωt +ϕ( )⎡⎣ ⎤⎦ = X 2e j ωt+ϕ( )

Représentation temporelle Représentation complexe

V =VM sin ωt +ϕV( ) V =VMej ωt+ϕ( )

Somme de tensions :

V1 +V2 =VM1sin ωt +ϕV1( ) +VM2

sin ωt +ϕV2( ) VM =V1 +V2

Dérivée d’un signal vectoriel (exemple d’un condensateur) :

i = C dVdt

= CVMω cos ωt +ϕV( )i = jCωVMe

j ωt+ϕ( ) = jCωVM

Intégration d’un signal vectoriel (exemple d’une inductance) :

i = 1L

u(t)dt0

t

∫ = − VMLω

cos ωt +ϕV( )i = 1

jLωVMe

j ωt+ϕ( ) = 1jLω

VM

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 8/22

Page 9: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.1.3.2. Notion d’impédance complexe

Pour tout dipôle d’un circuit, caractérisé par une tension complexe U à ses bornes, et un courant complexe I le traversant, on peut définir une relation similaire à une loi d’Ohm :

U = ZI où Z est appelée impédance complexe du dipôle

Ainsi :

•l’impédance complexe d’un condensateur est Z = 1

jCω (admittance complexe Y = jCω )

•l’impédance complexe d’une inductance est Z = jLω (admittance complexe Y = 1

jLω )

• l’impédance complexe d’une résistance est Z = R

B.1.3.3. Exemple de calcul d’une impédance complexe équivalente

On considère le réseau ci-dessous, représentant une ligne de transmission haute fréquence (du type câble coaxial TV).

On cherche à déterminer le rapport V2V1

afin d’estimer l’atténuation de ligne.

Zeq = R1 + jLω

1Z 'eq

= 1R2

+ jCω ⇒ Z 'eq =R2

1+ jR2Cω

On se retrouve avec un diviseur de tension, tel que

V2V1

=Z 'eq

Zeq + Z 'eq= R21+ jR2Cω( ) R1 + jLω( )

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 9/22

Page 10: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.1.4. Puissances

B.1.4.1. Généralités

La puissance instantanée à un instant t est définie par p(t) = v(t).i(t)

Comme il s’agit de signaux sinusoïdaux, la puissance instantanée est fluctuante et donc peu exploitable. Nous préférerons alors définir la puissance moyenne :

P =< p >= 1T

p(t)dt0

T

∫ = 1T

v(t)i(t)dt0

T

∫ [E1]

Or, en prenant la tension comme référence de phase, on a :

v(t) =V 2 sin ωt( )

i(t) = I 2 sin ωt −ϕ( )Alors l’équation [E1] devient :

P = 1T

V 2 sin ωt( ) I 2 sin ωt −ϕ( )dt0

T

∫ = 2VIT

sin ωt( )sin ωt −ϕ( )dt0

T

P = 2VI2T

cos ϕ( )− cos 2ωt −ϕ( )⎡⎣ ⎤⎦dt0

T

∫ = VIT

cosϕ t[ ]0T − 1

2ωsin 2ωt −ϕ( )⎡

⎣⎢⎤⎦⎥0

T⎛

⎝⎜⎞

⎠⎟

Soit au final :

P =VI cosϕ

Cette puissance active, exprimée en Watt, correspond à la puissance réellement disponible pour une conversion d’énergie (mécanique, thermique, ...)

B.1.4.2. Puissances réactive - apparente

On définira également la puissance réactive Q =VI sinϕ (unité : VAR, Volt-Ampère réactif). Cette puissance, qui circule entre générateur et récepteurs, n’est pas convertie.

Enfin, on définit la puissance apparente S =VI (unité : VA, Volt-Ampère).

La puissance apparente S a, dans le plan complexe, une composante réelle P et une composante imaginaire Q : S = P + jQ (et donc S2 = P2 +Q2 )

La puissance réactive est produite ou consommée par les dipôles capacitifs ou inductifs.

Un dipôle capacitif produit de la puissance réactive (ϕ > 0 ), tandis qu’un dipôle inductif en consomme (ϕ < 0 )

Triangle des puissances

R

I

O

ϕ

S

P

Q

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 10/22

Page 11: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

Le facteur de puissance k = PS

traduit la qualité d’utilisation de l’énergie électrique. En pratique, on cherche

à obtenir un k au moins égal à 0,9 (faible consommation relative de puissance réactive)

Dans le cas d’un régime sinusoïdal, k = cosϕ et tanϕ = QP

Dipôle Puissance active P Puissance réactive Qϕ

(i par rapport à u)

Résistance P = RI 2 Q = 0 O

Inductance P = 0 Q = Lω I 2 − π2

Condensateur P = 0 Q = − 1Cω

I 2 + π2

B.1.4.3. Théorème de Boucherot

Dans une installation comportant plusieurs circuits en parallèle, la puissance active totale est la somme des puissances actives de chacun de ce circuits. Il en est de même pour la puissance réactive.

Pt = Pii∑ et Qt = Qi

i∑

En revanche, cette égalité n’est pas applicable à la puissance apparente :

St = Pt2 +Qt

2( )Le courant efficace total se calcule en passant par la puissance apparente :

It =StV

B.1.4.4. Exemple : compensation de puissance réactive

Les installations qui consomment de la puissance réactive (utilisation de machines à induction telles que moteurs, alternateurs, ...) induisent une diminution du facteur de puissance. Or le fournisseur d’énergie électrique pénalise les clients qui ont un facteur de puissance trop faible, car pour une même puissance active consommée ceci entraine un surdimensionnement des câbles et des transformateurs.

Il faut donc, pour ces clients, compenser la puissance réactive en en injectant dans le réseau.Pour cela, il leur faudra installer des batteries de condensateurs, qui produisent de la puissance réactive.

On considère un poste de travail sous une tension efficace de 230V 50 Hz, est constitué de 10 lampes à incandescence de 100W chacune, et d’un moteur de puissance utile Pu = 3680W . Le rendement de ce moteur est

égal à η = 0,75 , et son facteur de puissance k = 0,707

Le fournisseur d’énergie impose un cosϕ = 0,88 pour ne pas appliquer de pénalités. L’installation nécessite-t-elle l’adjonction de condensateurs de compensation de puissance réactive ?

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 11/22

Page 12: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

Calcul de la puissance absorbée par le moteur

Pa =Puη

= 4907W

Calcul du facteur de puissance de l’installationPuissance active totale : P = 10.100 + 4907 = 5907W (les lampes son assimilées à des résistances)

Puissance réactive totale : Q = Pa tanϕ = 4908VAR

D’où le facteur de puissance global :

Fp =PS= P

Q2 + P2= 0,707

L’installation consomme alors

I = PV cosϕ

= 30.2 A

Dimensionnement de la batterie de condensateurs Il faut donc injecter de la puissance réactive, puisque FP < 0,88

Les condensateurs doivent injecter QC tel P

Q −QC( )2 + P2= 0,88

On en déduit QC = 2259VAR

Or QC = 1jCω

I 2 = jCωV 2 donc QC = CωV 2

Soit, pour finir, la capacité totale des condensateurs à installer

C = QC

2π fV 2 = 136 µF

Après ajout de ces condensateurs, l’installation consommera :

I = PV cosϕ

= 24.2 A

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 12/22

Page 13: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.2. Réseau triphasé

B.2.1. Généralités

L’alimentation triphasée sinusoïdale est très répandue dans le domaine industriel. Les alimentations monophasées sont en fait issues de ces réseaux triphasés.

Une alimentation triphasée est constituée de trois câbles dans lesquels transitent un signal sinusoïdal, chacun

de ces signaux étant déphasé de 2π3

(1/3 de période)

v1 =V 2 sin ωt( )

v2 =V 2 sin ωt − 2π3

⎛⎝⎜

⎞⎠⎟

v3 =V 2 sin ωt − 4π3

⎛⎝⎜

⎞⎠⎟

V1!"

V3!"!

V2!"!

2π3

Un régime sera dit équilibré si la somme des trois tensions (ou des trois courants) est nulle. Seuls les régimes équilibrés seront abordés dans ce cours.

En valeur efficace, on vérifie U = 3V et I = 3J

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 13/22

Page 14: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.2.2. Puissances

B.2.2.1. Théorème de Boucherot

Le théorème de Boucherot s’applique également pour les régimes triphasés sinusoïdaux.

B.2.2.2. Puissance active

Dans le cas d’une alimentation triphasée, la puissance instantanée est :

p(t) = v1(t)i1(t)+ v2 (t)i2 (t)+ v3(t)i3(t)

La puissance moyenne - dite active - est alors donnée par l’expression :

P =UI 3cosϕ

B.2.2.3. Puissances réactive - apparente

La puissance réactive, exprimée en VAR, a pour expression :

Q =UI 3sinϕ

La puissance apparente quant à elle a pour expression :

S =UI 3

B.3. Transformateurs

Le transport de l’énergie électrique nécessite, pour des raisons de coût, d’abaisser le courant car c’est la valeur du courant qui dimensionne les câbles.

Pour transporter la même puissance en abaissant le courant, il est donc nécessaire d’élever la tension : c’est le rôle des transformateurs

B.3.1. Relation entrée-sortie d’un transformateur

Un transformateur est constitué de N1 spires sur l’enroulement primaire (entrée), et de N2 spires sur l’enroulement secondaire (sortie).

Dans le cas d’un transformateur parfait, la loi de Lentz énonce que le rapport des tensions suit la relation suivante :

U2

U1

= N2

N1

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 14/22

Page 15: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

B.3.2. Symbole d’un transformateur

Le primaire (1) est en convention récepteur

Le secondaire (2) est en convention générateur

Les deux cercles représentent les bobinages

Les deux points désignent les «bornes homoloques», qui fournissent une indication sur le sens du courant (hélice à droite ou hélice à gauche)

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 15/22

Page 16: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

C. Source de tension continueUne source de tension sera dite continue si elle fournit une tension invariante dans le temps.

C.1. Accumulateurs

C.1.1. Généralités

Les piles ou les accumulateurs (qui sont des piles rechargeables) sont des systèmes basés sur le transfert d’électrons dans une réaction chimique.

Dotés d’une très faible résistance interne, les accumulateurs peuvent être assimilés à des sources de tension.

C.1.2. Caractéristiques

Un accumulateur peut être défini par :

• sa tension à vide (fém)

• sa capacité en Ah (Ampère.heure) : il s’agit de l'énergie disponible

• sa résistance interne

C.1.3. Couples électrochimiques

C.1.3.1. Plomb-Acide

il s’agit du couple le plus ancien. La tension nominale d’un élément est 2,1 V.

Une telle batterie a une faible énergie massique, mais une forte densité de courant, autorisant ainsi les pics de courant (démarrage moteur par exemple)

C.1.3.2. Nickel-Cadmium NiCd

Sa tension nominale vaut 1,2 V

L’effet mémoire se manifeste sur ce couple électrochimique (une recharge avant d’avoir une batterie complétement déchargée diminue sa capacité)

C.1.3.3. Nickel-métal hydrure (NiMH)

Sa tension nominale vaut également 1,2 V.

Un tel accumulateur est doté d’une énergie massique 40% supérieure à celle du couple NiCd

C.1.3.4. Lithium ion ou Lithium métal

Sa tension nominale vaut 3,7 V.

Technologie récente, elle dispose d’une forte densité énergétique.

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension continue Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 16/22

Page 17: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

C.2. Puissance

En régime continu, la puissance transmise par un générateur est égale à :

P =U.I

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension continue Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 17/22

Page 18: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

D. Source de tension non sinusoïdale

D.1. IntroductionLes sources d’énergie abordées précédemment étaient continues ou sinusoïdales. Mais les signaux électriques

peuvent présenter des caractéristiques qui, bien que périodiques, ne sont aps sinusoïdales.

C’est le cas par exemple avec l’utilisation de hacheurs.

Par définition, un récepteur sera dit «non linéaire» s’il prélève un signal courant de forme différente que la tension qui lui est appliquée.

Malgré tout, les deux variables conservent leur périodicité.

D.2. Décomposition en série de Fourier

On montre que tout signal périodique f (t) peut se décomposer en une somme infinie de signaux sinusoïdaux : il s’agit de la décomposition de Fourier :

f (t) = a0 + an cos nωt( ) + bn sin nωt( )⎡⎣ ⎤⎦n=1

+∞

avec a0 =1T

f (t)0

T

∫ dt : moyenne du signal

an =2T

f (t)0

T

∫ cos ωnt( )dt et bn =2T

f (t)0

T

∫ sin ωnt( )dt

Les termes de rang n sont appelés harmoniques de rang n.

En outre, l’harmonique de rang 1 est appelé fondamental

Si la fonction est symétrique sur une demi période, la décomposition de Fourier ne fait intervenir que des rangs impairs

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension non sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 18/22

Page 19: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

Exemple : on considère le signal ci-dessous :

Il est la somme des trois signaux sinusoïdaux suivant :

Fréquence 70 HzAmplitude 0.5

Fréquence 20 HzAmplitude 1

Fréquence 5 HzAmplitude 1

La décomposition de Fourier de ce signal est alors :

D.3. Valeur efficace en régime non sinusoïdal

La décomposition de Fourier ne fait intervenir que des grandeurs sinusoïdales, et rend le calcul des valeurs efficaces :

La valeur efficace du fondamental a pour expression :

F1 =amplitude

2=

a12 + b1

2

2

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension non sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 19/22

Page 20: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

La valeur efficace du rang n a pour expression :

Fn =an2 + bn

2

2

La valeur efficace de l’ensemble du signal a donc pour expression :

Fn =a02 + an

2 + bn2( )

n=1

+∞

∑2

D.4. Puissances en régime non sinusoïdal monophaséLa puissance instantanée a pour expression p(t) = u(t).i(t)

On se place dans l’hypothèse où u(t) est purement sinusoïdal, tandis que i(t) est non sinusoïdale, et donc décomposable en série de Fourier.

Par définition, la puissance active n’est véhiculée que par les harmoniques de u(t) et de i(t) de même rang. Par conséquent, dans notre cas, la puissance active n’est véhiculée que par u(t) et le fondamental de i(t) :

P =V .I1 cosϕ

Les autres harmoniques génèrent une puissance qui circule, mais sans être échangée entre le générateur et le récepteur : il s’agit d’une puissance déformante D

Le bilan des puissances s’écrit alors :

P =V .I1 cosϕ

Q =U.I1 sinϕ

S =U.I

D = S2 − P2 −Q2

D.5. Qualité du signal

La qualité du signal peut être définie avec le taux de distorsion harmonique, qui est le rapport entre la valeur efficace de l’ensemble des courants harmoniques et la valeur efficace du fondamental :

THD =In2

n=2

+∞

∑I1

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Source de tension non sinusoïdale Edition 2 - 30/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 20/22

Page 21: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

E. Notes personnelles

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Notes personnelles Edition 1 - 21/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 21/22

Page 22: SOURCES D’ENERGIE - tsi.ljf.free.frtsi.ljf.free.fr/ATS/docs/S2I/CI3A/Sources_energie.pdf · transmission de puissance B2 Proposer un modèle de connaissance et de comportement Associer

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

.......................................................................................................................................................................................................................

Crédits : Sources d’énergie PMF - AL-1 TSI

CI3 : Chaînes d’énergie

SOURCES D’ENERGIE COURS

Notes personnelles Edition 1 - 21/09/2017

Lycée Jules Ferry - 06400 Cannes [email protected] 22/22