some important weather radar correction algorithms and the development of the new 3d ... ·...

1
S S o o m m e e i i m m p p o o r r t t a a n n t t w w e e a a t t h h e e r r r r a a d d a a r r c c o o r r r r e e c c t t i i o o n n a a l l g g o o r r i i t t h h m m s s a a n n d d t t h h e e d d e e v v e e l l o o p p m m e e n n t t o o f f t t h h e e n n e e w w 3 3 D D r r a a d d a a r r c c o o m m p p o o s s i i t t e e p p r r o o d d u u c c t t a a t t t t h h e e H H u u n n g g a a r r i i a a n n M M e e t t e e o o r r o o l l o o g g i i c c a a l l S S e e r r v v i i c c e e . . Roland Steib, Péter Németh, István Sebők, Csaba Szegedi Hungarian Meteorological Service, Kitaibel Pál u. 1, 1024 Budapest, Hungary 3 3 . . T T h h e e W W i i f f i i F F i i l l t t e e r r c c o o r r r r e e c c t t i i o o n n a a l l g g o o r r i i t t h h m m Data quality of Cband radars affected by RLANs Interfereces in the lower elevations of radar products WifiFilter Filter out interferences Remove real echoes as less as possible Uncorrected CMAX pictures WifiFilterB Algorithm relies on the shape of the echoes Can filter out interferences which are only a few rays wide Napkor (good correction) Budapest (still some RLANs) WifiFilterA Relies on the shape of the echoes Specific values of Volume parameters (radial velocity, ZDR) Original reflectivities (rays) are flaged WifiFilterR Used together with WifiFilterA If a flaged ray is found, the algorithm makes a linear azimuthal interpolation from the previous and next rays's reflectivity values WifiFilterS In operative use since the Budapest radar upgrade (2013) Relies on specific values of Volume parameters (SNR, SQI) Budapest WifiFilter A,R,B (almost good correction) Budapest WifiFilter A,S,R,B (in operative use) 2 2 . . T T h h e e a a t t t t e e n n u u a a t t i i o o n n c c o o r r r r e e c c t t i i o o n n a a l l g g o o r r i i t t h h m m ( ( r r a a i i n n ) ) Preprocessing of differential propagation phase (filtering, unfolding, smoothing) Linearly relationship between attenuation ( ) and differential propagation phase( ) Calculation of corrected reflectivity (Z) from measured reflectivity (Z m ) and Relatonship between differential propagation phase, measured and corrected reflectivity along a specific radar ray uncorrected attenuation corrected Biggest differeces in the southwest direction behind a high reflectivity area (thunderstorm line) Correction algorithm is in semioperative mode 4 4 . . T T h h e e 3 3 D D c c o o m m p p o o s s i i t t e e r r a a d d a a r r p p r r o o d d u u c c t t 10 min 10 min 10 min 10 min 10 min HAWK-3 tool for visualization of all meteorological data that are useed at HMS representation of 3D meteorological fields 1 1 . . H H u u n n g g a a r r i i a a n n r r a a d d a a r r n n e e t t w w o o r r k k Cband Doppler radars Dualpolarimetric Magnetronbased Constructed by EEC DWSR2501C EDRP9 signal processor Alternate dual DWSR2500C IQ2 signal processor Simultaneous dual DWSR5001C IQ2 signal processor Simultaneous dual Poster number: DAC.P17 base of 3D grid (813x961) ~ 1 km resolution Step 1 radar polar Volume pseudo3D grid vertical layers = number of radar sweeps (10) Step 2 pseudo3D grid cartesian 3D grid vertical layers = 16 (every 1 km) Step 3 individual 3D composite 3D selection of maximum reflectivity vertical cross section along line AB of the horizontal cross section horizontal cross section of 3D composite radar product at 5000 m (composite CAPPI) Napkor Budapest

Upload: others

Post on 05-Apr-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Some important weather radar correction algorithms and the development of the new 3D ... · 2015-10-09 · Some important weather radar correction algorithms and the development of

SSoommee iimmppoorrttaanntt wweeaatthheerr rraaddaarr ccoorrrreeccttiioonn aallggoorriitthhmmssaanndd tthhee ddeevveellooppmmeenntt ooff tthhee nneeww 33DD rraaddaarr ccoommppoossiittee

pprroodduucctt aatt tthhee HHuunnggaarriiaann MMeetteeoorroollooggiiccaall SSeerrvviiccee..Roland Steib, Péter Németh, István Sebők, Csaba Szegedi

Hungarian Meteorological Service, Kitaibel Pál u. 1, 1024 Budapest, Hungary

33.. TThhee WWiiffiiFFiilltteerr ccoorrrreeccttiioonn aallggoorriitthhmm• Data quality of C­band radars

affected by RLANs• Interfereces in the lower elevations

of radar products

WifiFilter

• Filter out interferences• Remove real echoes as

less as possibleUncorrected CMAX pictures

WifiFilterB

• Algorithm relies on the shape ofthe echoes

• Can filter out interferences whichare only a few rays wide

Napkor

(good correction)

Budapest

(still some RLANs)

WifiFilterA

• Relies on the shape of the echoes• Specific values of Volume parameters

(radial velocity, ZDR)• Original reflectivities (rays) are flaged

WifiFilterR

• Used together with WifiFilterA• If a flaged ray is found, the algorithm

makes a linear azimuthal interpolationfrom the previous and next rays'sreflectivity values

WifiFilterS

• In operative use since the Budapest radarupgrade (2013)

• Relies on specific values of Volumeparameters (SNR, SQI)

Budapest

WifiFilter A,R,B

(almost good correction)

Budapest

WifiFilter A,S,R,B

(in operative use)

22.. TThhee aatttteennuuaattiioonn ccoorrrreeccttiioonn aallggoorriitthhmm ((rraaiinn))• Preprocessing of differential propagation phase

(filtering, unfolding, smoothing)• Linearly relationship between attenuation ( )

and differential propagation phase( )• Calculation of corrected reflectivity (Z) from

measured reflectivity (Zm) andRelatonship between differential propagation

phase, measured and corrected reflectivity

along a specific radar ray

uncorrected attenuation corrected

• Biggest differeces in thesouthwest directionbehind a high reflectivityarea (thunderstorm line)

• Correction algorithm is insemi­operative mode

44.. TThhee 33DD ccoommppoossiittee rraaddaarr pprroodduucctt

10 min

10 min

10 min

10 min

10 min

HAWK­3

• tool for visualization of all meteorologicaldata that are useed at HMS

• representation of 3D meteorological fields

11.. HHuunnggaarriiaann rraaddaarr nneettwwoorrkk• C­band Doppler radars• Dual­polarimetric• Magnetron­based• Constructed by EEC

• DWSR­2501C• EDRP9 signal processor• Alternate dual•

• DWSR­2500C• IQ2 signal processor• Simultaneous dual•

• DWSR­5001C• IQ2 signal processor• Simultaneous dual•

Post

er

nu

mber:

DA

C.P

17

base of 3D grid (813x961)

~ 1 km resolution

Step 1

• radar polar Volume pseudo­3D grid• vertical layers = number of radar sweeps (10)

Step 2

• pseudo­3D grid cartesian 3D grid• vertical layers = 16 (every 1 km)

Step 3

• individual 3D composite 3D• selection of maximum reflectivity

vertical cross section

along line AB of the

horizontal cross section

horizontal cross section

of 3D composite radar

product at 5000 m

(composite CAPPI)

Napkor Budapest