simulation of the tonghae thermal power plant cfb by using ... abstract −the 200 mwe tonghae...

Download Simulation of the Tonghae Thermal Power Plant CFB by using ... Abstract −The 200 MWe Tonghae thermal

Post on 23-Jul-2020

0 views

Category:

Documents

0 download

Embed Size (px)

TRANSCRIPT

  • HWAHAK KONGHAK Vol. 38, No. 1, February, 2000, pp. 53-61 (Journal of the Korean Institute of Chemical Engineers)

    53

    IEA-CFBC Îj Ï ÿzK B~Fÿ[ �²~ WËÎÒ −Ò WËæzö V B~Fÿ[ �²~ WËÎÒ −

    «"†ÁfÒW

    * *K�ö B*� �²�B*�� (1999j 4ú 10¢ 7>, 1999j 10ú 1¢ j�)

    Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model − Determination of the CFB Combustor Performance with Cyclone Modification−

    Jong-Min Lee† and Jae-Sung Kim

    Advanced Power Generation & Combustion Group, PGL, KEPRI, KEPCO (Received 10 April 1999; accepted 1 October 1999)

    º £

    ÿzK B~Fÿ[ �¢�º 200 MWe �Î Ú Z�êj ÒÏ~º & �Î~ B*Jj, *Ò 1̂ V&

    çëÚ*7ö ®b, 2̂ V& '99j 10úö &�j Ï J7ö ® . *Ò çëÚ*7ö ®º ÿzK B~Fÿ[

    �¢�º Ò Bö V Ú* n;z 5 Ú* 'z¢ >¯7ö ®b¾, & �Î~ Z�êÏ B~Fÿ[ö &

    Ú*¶òº ~ rJê :& ìÚ, ö & .G jº~ . ö � �öBº IEA-CFBC Îj Ï~� ÿ

    zK B~Fÿ[~ WËj ÎÒ > ®º �Ò.~ æj BB~&b, ¢ Ï~� Ò ÎN æzö V B

    ~Fÿ[ WË æz¢ .G~& . 6 Ò B� Ò~ WË æz 5 ÒB~ï, �Ò� ��÷ «¶ï �j

    .G~� Bö V WË Ëçj Ö;~& . � �Ö" ÿzK Ò~ WËf £ 98.7% ;ê ¾æÒb,

    Ò ÎN Ã&ö V¢ Ú ç¦N{ Ã&~º ãËj, �Ò� freeboard~ Nê& 6N Ôj^ n;z>º ©

    b ¾æÒ . � Ò ÎN~ çßj * Ò vortex finder 5 « �' B¢ >¯ ãÖ, B~F

    ÿ[ WË Ëç V&>º ©b .G>î .

    Abstract − The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite coal for generation of electric power. The #1-unit CFB boiler has been operated commercially since October 1998, and the #2-unit CFB

    boiler, of which commercial operation will be achieved at October 1999, is under construction. The optimization and stabili-

    zation of the CFB operation have been carried out through the modification of the cyclones for the units of #1 and #2. How-

    ever the operation data for the large CFB combustor firing the anthracite coal are few, so it is necessary to predict the

    performance of the CFBC with variation of the operation conditions. Therefore, in this study, the development of the simula-

    tion scheme has been achieved by using IEA(International Energy Agency)-CFBC model, and the performance of the CFB

    combustor with variation of the cyclone efficiency has been determined. The improved performance of the modified cyclone,

    which have been carried out by increase of the vortex finder length and by decrease of the cross sectional area of the cyclone

    inlet, also has been determined. The cyclone efficiency has been evaluated 98.7%. As the cyclone efficiency increases, the

    upper differential pressure increases and the freeboard temperature becomes to be low and stable. The modifications of vortex

    finder and inlet duct of the cyclone have been predicted to improve the performance of the CFB combustor.

    Key words: CFBC, IEA Model, Tonghae Boiler, Anthracite Coal, Cyclone

    1.B

    *KöBº Ú Z�êj Ï *K�Öj * 1993j .ö

    B~Fÿ[ �²~ Jê 5 J *CÞ¢ �·~& . B~Fÿ

    [f 200 MWe 2V ÿ�ö J>, Jêº ABB-CEöB, �

    Ò� "ê£ 5 �/f 7�ëöB ��~� �Úæ� ® .

    B~Fÿ[ �² 1̂ Vº 1995jöö Ê& generator¢ J~~&�,

    .V 6z 5 Ê& B�f 1997j öö �Úrb, 1998j 3ú¦

    V Vÿ Ú*j Û 1998j 10úöº çëÚ* �Úr . 2̂ V

    6 *Ò J7ö ®b, 1999j 10ú.ö &� �Úî .;

    .

    ÿzK B~Fÿ[ �²º Z�ê«j &çb �ÎöB†E-mail: jmlee@kepri.re.kr

  • 54 «"ÁfÒW

    z� B38² B1̂ 2000j 2ú

    Ú'b &Ë � ¾r �ê>º ©b � &�êº Ö

    ~Æ . � B~Fÿ[ �²~ WË 5 �² ßW, V&Ê ßW

    �f *Ò VÿÚ* data öº ² rJê © ìb 6

    b~ ;çÚ* 7öê �� Ú* æzö V çV ßW

    rJê :& ~ ìV r^ö ö & .G 5 ï&& jº~ .

    B~Fÿ[ �²ö & Îçf Vö 6Ò rJê V�Fÿ

    [ Îj "*b 1990j .¦V B® ê¯>Ú z . B~Fÿ

    [ �²~ Îç OËf �² »OËòj �J~º 1Nö Î

    ç¦V[1-7] �²¢ »OË 5 ÇOË ¢¦(coref annulus) ¾*

    º 1.5Nö~ Îç[9, 10], �Ò� »OË 5 ÇOËj Îv �J~

    º 3Nö Îçb ª>Ú B*>� ® [11, 12]. 3Nö Îç

    ~ ãÖöº "ö ôf �& ê¯7ö ®b¾ B wÏö ®Ú

    Bº 'Ï~V ÚJÚ ¦ª Îj ®Ú jçf BB�ê¢� ö

    > ® . ö > 1Nö 5 1.5Nöf ôf �& ê¯>Ú zb

    ~ wÏ 5 'Ïê ç�¦ª �Ú^ ®º ©b ��>� ®

    . Îç~ V� º >K' ßW, «¶ ª�, �² ßW

    5 V&Ê ßW, �*�" �Ò� ÒB~ �~ Ï W>Ú ®

    b, ~ Îç 'Ï.¢ Table 1ö ¾æÚî . ß® B ö.æ

    V(IEA, International Energy Agency) Ö~ Fÿ[¦^*ö²~ Î

    ç ��öBê 1990j& .¦V B* *CÞ V~ V� F

    ÿ[ Î~ Ëçj Û B~Fÿ[ Î z�¢ BB~&b

    ~ B ÖëÏ B~Fÿ[ �²~ 'Ïj Û � Ï &ËWj

    {~& [13].

    ö � �öBº IEA-CFBC Îj Ï~� ÿzK B~F

    ÿ[ �²~ Ú* j ÎÒ > ®º �Ò.~ æj BB~

    � ~ 'Ïj Û Ú* WË .Gj >¯~�¶ . � Ú

    * WË .G~ . Ò B¢ Û B~ï~ Ã& 5

    Ú~ Nê n;W �Ò� î ÎN Ã&¢ êÎ~�¶ ~º ÿz

    K B~Fÿ[~ ãÖö & WË .G Cj >¯~� � 'Ëj

    �V~�¶ .

    2. IEA-CFBC Î W

    Bö.æV(IEA) Ö~ Fÿ[ ��öB *CÞz>Ú BB>

    �, Hannes[10, 13]ö ~ ;Ò, *�ÎzB IEA-CFBC Îf

    ² r~ "º Wº² �Ú^ ® .

    2-1. Fluidization Pattern of Solid Flow

    B~Fÿ[öB~ VÚ 5 �Ú~ ç^·Ï 5 vªf riserÚ~ ®

    �¢ vªj ;W~, ©f ² riser ~�¦öBº dense '�

    j, ç� freeboard �öBº transport '�j, �Ò� ç~�¦ ã

    ê'�öBº *'�~ �Vj &Ë~² & . � ÎçöBº

    ' '�j Îv �J~&b, *'� 5 freeboard �öB~ »

    OË �Ú ³êæº Wen" Chen[14] B� ç&�j 'Ï~&

    b, denseç~ [¸ 5 �Ú ³ê ªNf {K B¦Ê~ ãê

    j ¢ê, r~ Rhodes[15]& B� �b¦V ' «¶ö &

    êÖ~� Ö;~& .

    (1)

    �VB a(exponential decay constant)º Kuniif Levenspiel[16] B

    n �²Ú~ �÷³êf >jf &êö ®º r~ ç&�j '

    Ï~&b, ç>º ÎÚö .æ> «K>ê W>Ú ® .

    (2)

    ¢>'b ç>º ·f «¶ ãÖ 2-5 s−1, �Ò� «¶ ãÖ

    º 4-12 s−1 &V ��>¾, &Ë~ «¶~ ßWö V¢ þb

    ~º © Ò' ©b B�>î . � �öBº parameter

    sensitivity �Vj Û 5.5~ 8j 'Ï~& .

    Two phase theory(Davidson" Harrison[17])~ V�æj 'Ï dense

    '�f emulsion" bubble '�b ¾*Ú �V~&b, denseçö

    B~ V�ªNf Johnsson[18] B� ç&�j, �Ò� V�Vº

    Darton �[19] B� ç&�j '' 'Ï~& . Freeboard ç~ Ç

    OË �Ú ªN 5 core-annulus~ ãê Ö;&êº ­ &æ~ &;"

    þ Seiter 5 Rhodes& B� ç&&êö ~ Ö;~& [13, 15].

    ç" ? IEA-CFBC ÎöB �Úvª~ ãËf ² »OË

    5 ÇOËb ¾*Ú �V~&b, ÇOËö ®ÚBº coref an-

    nulus�b ¾*Ú ï� ßWj 'Ï~&Vö ¢>'b 1.5Nö

    ~ Îç ;�¢ �~� ® .

    2-2. Development of Particle Size Distribution

    B~Fÿ[Ú "«>º «¶f ² Cê, C²C 5 [bî(Î

    ¾) ªî > ®b, ' «¶ö & r" ?f mass balance

    & �î > ® .

    (3)

    �VB mfeedº � fragmentationj �J feeding flow, oº

    «¶ j ©ÚªÒº «¶j, �Ò� Áº «¶ j Aº «¶j

    ¾æÞ © .

    p ρs ρg–( )g

    ----------------------- = εs d, Hd 0

    H hd–∫ εs ∞, εs d, εs ∞,–( )+ ah–( )exp[ ]dh+  

    a uo⋅ constant=

    0 m· feedwi feed, 1 ηi exit,–( ) 1 ηi cyc,–( ) m· bagwi– ηsegm· disch earg wi–=

    1ni o ----- kio attr,

    i o

    nio

    ∑ uo umf–( )mtotwio ki attr, uo umf–( )mtotwi–+

    kio shrk, mtotwi o( )wi o i, kio shrk, mtotwi–+

    Table 1. Overall models for circulating fluidized bed combustors

    Ref. Fluid dynamics Size distrib. Coal comb. SO2 NOx Heat trans. Steam proc. Recirc. State

    Siegen[1] 1-dim + + + + + + + std Zhang[2] 1-dim - + + + + - + dyn Mori[8] block - + - - - - + std Basu[9] 1.5-dim - + + + + - - std Xu[3] 1-dim + + + + + + + std Lin[4] 1-dim - + + - - - - std Halder[5] 1-dim + - - - - - - std IST[6] 1-dim - + + + + - - std Alstrom[7] 1-dim - + - + + - - dyn Haider[10] 1.5-dim - + - + + - - std Hiller[11] 1.5-dim - + + - - - - std IEA[12] 1.5-dim + + + + + - + std

    std : steady-state, dyn : dynamical, + : consideration, - : no consideration

  • IEA-CFBC Îj Ï ÿzK B~Fÿ[ �²~ WËÎÒ 55

    HWAHAK KONGHAK Vol. 38, No. 1, February, 2000

    � ÎçöBº «¶ ~ "«� �ÏÏö ~ æº fragmenta-

    tion 5 Vê' îÎ(attrition), z>wö ~ «¶ »²(shrinking)

    �j �J~& . �JB Vê «¶º *Ú [{K"~

Recommended

View more >