sclerosi laterale amiotrofica - univacalabria.it · sclerosi laterale amiotrofica: clinica,...
Embed Size (px)
TRANSCRIPT

Sclerosi Laterale Amiotrofica: Clinica, Genetica,
Nuove Prospettive Terapeutiche
Nicola Ticozzi
U.O.Neurologia e Laboratorio Neuroscienze
Università degli Studi di Milano
IRCCS Istituto Auxologico Italiano

Une leçon du Docteur Charcot à la Salpêtrière – André Brouillet, 1887
Charcot, J. M. & Joffory, A.
Deux cas d’atrophie musculaire progressive avec
lesions de la substance grise et des faisceaux antero-
lateraux de la moelle epiniere.
Arch. Physiol. Neurol. Pathol. 2, 744–754 (1869).
Sclerosi Laterale Amiotrofica
Malattia neurodegenerativa
dei motoneuroni
Paralisi progressiva della
muscolatura volontaria
Età esordio: 55-65 anni
Sopravvivnza: 3 anni
Incidenza: 2x100.000/anno
Prevalenza: 6-8/100.000
Lifetime risk: 1:400 – 1:600
Nessuna terapia efficace

Bertram L and Tanzi RE, The Journal of Clinical Investigation 2005
SLA e le altre malattie neurodegenerative

SLA e Malattie
del Motoneurone
Una malattia da vulnerabilità
selettiva di un sistema

Mitocondrio
Transporto Assonale
Motoneurone e vulnerabilità

The majority of patients with
adult-onset motor neuron
disease will be found to have
IDIOPATHIC ALS

Eziopatogenesi



Ravits et al., 2009
Diffusione
Focalità all’ esordio

Ravits et al., 2007
Diffusione

Clinical syndromes of ALS
Classic (“Charcot”) ALS Limb onset (spinal);bulbar involvement usual; UMN +LMN signs;M:F ratio 3:2.
60-70% of all cases at presentation;median survival 3-4 yrs.
Progressive bulbar palsy(PBP)
Onset with dysarthria, thenprogressive speach and swallowingdifficulties;limb involvement follows (months oryrs);M:F ratio: 1:1 (PBP > common inolder women).
20% of all case at presentation;median survival 2-3 yrs.
Progressive muscular atrophy(PMA)
Almost always limb onset;> 50% develop UMN signs;85% develop bulbar symptoms;heterogeneous condition butmajority are ALS;M:F ratio 3-4.
10% all cases at presentation;overlap with “flail arm” and “flail leg”syndromes;median survival 5 yrs;more long survivors (>10 yrs).
Primary Lateral Sclerosis(PLS)
Clinically progressive pure UMNsyndrome;after few yrs may convert to ALS.
10 yrs or more.
Syndrome Main clinical features Prognosis

Clinical syndromes of ALS (cont.)
“Flail arm syndrome”; man in abarrel syndrome; Vulpian-Bernhard syndrome
Syndrome of predominantly LMNweakness of both arms;UMN signs develop in 50-70%;often slow progression;pathology is that of ALS.
About 10% of all cases;M:F ratio 9:1;prognosis better than in ALSsyndrome more common in Africanand Asian patients.
“Flail leg syndrome”;“pseudopolyneuritic form” ofALS; Patrikios syndrome
Syndrome of progressive legweakness, predominantly LMN.
Rare;slow progression;DD difficult.
Monomelic forms of ALS Rare variants of ALS with slowlyprogressive focal (upper > lowerlimb UMN and LMN syndrome);Distinct LMN form most common inAsia (monomelic juvenile onsetamyotrophy; Hirayama’s syndrome);DD with multifocal motorneuropathy.
Juvenile onset form progressiveover months or several yrs and thenstabilises;does not generalises;pathology unknown.
ALS-dementia syndrome(ALS-D)
Dementia of fronto-temporal typepresent in 5% of all ALS cases;20-40% ALS patients have subtlecognitive changes of “frontal” type;ALS-D may present first withdementia or ALS progressing todementia, or with combination ofboth; about 50% familial.
Usually 2 to 5 yrs.
Syndrome Main clinical features Prognosis

(“Charcot” ALS)

Unusual initial signs and symptoms
• Hemiparetic form (Mills’ variant)
• Head drop (cervical extensor muscle weakness)
• Fasciculations
• Weight loss
• Respiratory failure
• Monomelic presentation
• Symmetrical onset
• Diffuse onset
Mitsumoto et al, 1998


La diagnosi di SLA

Steps in the diagnosis of ALS
suggested by WFN guidelines
Steps Rationale
1. History, physical examination Ascertain clinical findings that may
suggest level of certainty of diagnosis
2. EMG examination Ascertain findings that confirm LMN
degeneration in clinically involved regions;
Identify LMN degeneration in clinically
uninvolved regions;
Exclude other disorders
3. Neuroimaging Ascertain findings that may exclude other
disease processes
4. Clinical laboratory examinations Ascertain possible ALS-related syndromes.
5. Neuropathologic examinations Ascertain findings confirming/excluding ALS
6. Repetition of clinical and EMG Ascertain evidence of progression
(6 months apart)
Mitsumoto et al, 1998, 2006

CRITERI CLINICI
Trofismo
Tono
Stenia
ROT
Segni patologici


UMN
LMN
REGIONS
Bulbar Cervical Thoracic
Abdominal Lombar
+
+
+
+ + +
+ +/-
Clinically definite ALS

Criteri di El Escorial


Neurofisiologia
EMG
ENG
TMS-MEPs

EMG
• A riposo – Attività spontanea
patologica (fibrillazione, onde lente positive, fascicolazioni, scariche ad alta frequenza, scariche miotoniche)
• Lieve contrazione – Morfologia Potenziali di Unità
Motoria (PUM): alterazioni quantitative e qualitative
• Massima Contrazione – Reclutamento PUM
200 msec L 100uV 200 msec L 100uV

EMG
• A riposo – Attività spontanea
patologica (fibrillazione, onde lente positive, fascicolazioni, scariche ad alta frequenza, scariche miotoniche)
• Lieve contrazione – Morfologia Potenziali di Unità
Motoria (PUM): alterazioni quantitative e qualitative
• Massima Contrazione – Reclutamento PUM
200 msec L 200 uV

EMG
• A riposo – Attività spontanea
patologica (fibrillazione, onde lente positive, fascicolazioni, scariche ad alta frequenza, scariche miotoniche)
• Lieve contrazione – Morfologia Potenziali di Unità
Motoria (PUM): alterazioni quantitative e qualitative
• Massima Contrazione – Reclutamento PUM <
200 msec L 1mV

SEGNI DI DENERVAZIONE IN FASE ATTIVA
• Potenziali di fibrillazione.
• Onde positive appuntite o sharp waves.
EMG
NUOVI CRITERI ELETTROMIOGRAFICI
DI EL ESCORIAL PER LA DIAGNOSI DI LMN

PRESENZA DI FASCICOLAZIONI
• La presenza è utile nella diagnosi anche quando
sono registrabili in muscoli in cui non sono presenti
segni di denervazione sia attiva che cronica.
• L’assenza non preclude la diagnosi.
EMG
NUOVI CRITERI ELETTROMIOGRAFICI
DI EL ESCORIAL PER LA DIAGNOSI DI LMN

EMG
SEGNI DI DENERVAZIONE CRONICA
• Potenziali di Unità Motoria (PUM) di ampiezza e durata
incrementata.
• per la presenza di una sofferenza del UMN si ha una
riduzione del reclutamento sia spaziale che temporale e
quindi una riduzione della frequenza di scarica.
• Potenziali di Unità Motoria instabili.
NUOVI CRITERI ELETTROMIOGRAFICI
DI EL ESCORIAL PER LA DIAGNOSI DI LMN

NUOVI CRITERI ELETTROMIOGRAFICI
DI EL ESCORIAL PER LA DIAGNOSI DI LMN
ENG
Richiesta per la diagnosi per definire ed escudere
altre patologie del nervo periferico, della giunzione
neuromuscolare e dei muscoli che possano mimare
una SLA.

NUOVI CRITERI ELETTROMIOGRAFICI
DI EL ESCORIAL PER LA DIAGNOSI DI LMN
ENG
• I parametri di conduzione nervosa motoria sono all’inizio della
malattia generalmente normali o lievemente alterati. Importante la
ricerca di eventuali blocchi di conduzione (riduzione dell’ampiezza del
MAP >30% senza dispersione temporale) in sedi non usuali di
compressione.
• I parametri di conduzione nervosa sensitiva devono essere normali.
(sono alterati nella sindrome di Kennedy).
• Presenza di onda F di ampiezza aumentata e monomorfa.


VALUTAZIONE DELLE
ALTERAZIONI UMN
Potenziali Evocati Motori

PEM •Nella SLA in fase iniziale
Ampiezza Motot Evoked Potential (MEP) corticale ridotta
T.C.M.C normale
T.C.M.P. normale o lievementa aumentato
•Nella SLA in fase avanzata
Ampiezza MEP corticale ridotta o MEP assente
T.C.M.C aumentato
T.C.M.P. aumentato o MEP radicolare assente

PEM: CONCLUSIONI
Le alterazioni del TCMC, della soglia di eccitabilità corticale, e del
rapporto MEP/MAP sono comunque variabili anche quando sono
presenti segni bulbari.
Se sono presenti alterazioni di questi parametri i PEM supportano la
diagnosi ma se sono assenti non la escludono
Le percentuali di alterazione del PEM nelle varie casistiche variano
dal 38% (Mills and Nithi, 1998) al 100% (Hugon et al, 1987)

Neuroimaging studies in the diagnosis of ALS
• Brain atrophy (parietal, insular, frontal temporal, corpus callosum).
• Spinal cord atrophy (rarely documented).
• CST hyperintensity in T2- and proton-density weighted MRI<
(usually bilateral and symmetrical, 17 to 100% in studies<).
• Neocortical hypointensity (in T2, bilateral, in pre- and post-central
gyrus, mean 52% reported).
MRI



Filippini et al., Neurology, 2010
Neuroimaging

Diagnosis flow for ALS patients
1) First consultation • Hearing
• Neurological exam
2) Exclusion of other dubious diseases
(hospitalization)
• Blood Biochemistry
• Needle EMG (electromyogram)
• Nerve conduction study
•MR
• C.S.F.
• (Muscle biopsy)
3) ALS diagnosis
• Diagnosis Standard of WFN (El
Escorial)
• Therapy (riluzole)
• Therapeutical Plan (Rare Disease)
• Follow-up visit in 1-2 months
6) Progression of Disease
• ALSFRS-R
• BMI
• FVC/ Pulmonary functional test/ Blood
gas test
5) Confirmation of Disease
• After 3-6 months
• Second opinion

Diseases that can masquerade as ALS/MND Anatomical abnormalities/compression syndromes: Arnold-Chiari-1 and other hindbrain malformations Cervical, foramen magnum or posterior fossa region tumors Cervical disc herniation with osteochondrosis Cervical meningeoma Retropharyngeal tumour Spinal epidural cyst Spondylotic myelopathy and/or motor radiculopathy Syringomyelia
Acquired enzyme defects Adult GM2 gangliosidosis (hexosaminidase-A or B- deficiency) Familial amyloid polyneuropathy (FAP) Polyglucosan body disease
Autoimmune syndromes: Monocloncal gammopathy with motor neuropathy Multifocal motor neuropathy with/without conduction bloks (MMN) Dysimmune LMN syndromes (with GM1, GD1b, and asialo-GM1 antibodies) Other dys-immune LMN syndrome including CIDP Multiple sclerosis Myastenia gravis
Endocrine abnormalities Diabetic “amyotrophy” Insulinoma causing neuropathy Hyperthyroidism with myopathy Hyperparathyroidism Hypokalemia (Conn’s syndrome)
Exogenous toxins Lead (?), mercury (?), cadmium, aluminum, arsenic, thallium, manganese, organic, pesticides, neurolathyrism, konzo
EFNS Task Force, 2005

Diseases that can masquerade as ALS/MND (cont.) Infections: Acute poliomyelits Post-poliomyelitis progressive muscular atrophy HIV-1 (with vacuolar myelopathy) HTLV-1cassociated myelopathy (HAM, tropical spastic paraplegia) Neuroborreliosis Spinal encephalitis lethargica, varicells-zoster, brucellosis, cat-scratch disease,neuro-syphilis, prion disorders
Myopathies: Cachectic myopathy Carcinoid myopathy Dystrophin-deficient myopathy Inclusion body myositis (IBM) Inflammatory myopathies Polymyositis Sarcoid Myositis
Neoplastic syndromes: Chronic lymphocytic leukemia Intramedullary glioma Lymphoproliferative disorders with paraproteinemia and/or oligoclonal bands in the CSF Pancoast tumor syndromes Paraneoplastic Encephalomyelitis (PEM) with anterior horn cell involvement Stiff-Person-Plus syndromes
Physical injury: Electric shock neuronopathy Radiation-induced radiculo-plexopathies and/myelopathy
Vascular Disorders: Arterioveneous malformation Dejerine anteriori bulbar artery syndrome Stroke Vasculitis
EFNS Task Force, 2005

Diseases that can masquerade as ALS/MND (cont.)
Other neurological conditions: Wester pacific atypical forms of MND/ALS (Guam, New Guinea, Kii Peninsula Japan) Carribean atypical forms of MND-dementia-PSP (Guadeloupe) Madras-form of juvenile onset MND/ALS (South India) Frontotemporal dementia with MND/ALS (FTD, including Pick’s disease with amyotrophy) Multiple System Atrophy (MSA) Olivo-ponto cerebellar atrophy (OPCA/SCA) syndromes Primary lateral sclerosis (PLS; some subtypes not related to ALS) Progressive supranuclear palsy (PSP) Hereditary spastic paraplegia (HSP; many variants, some subtypes with distal amyotrophy) Progressive spinal muscular atrophy (PMA; some subtypes not related to ALS) Spinobulbar muscular atrophy with/without androgen receptor mutation (SBMA) SMA I-IV Brown-Vialetto-van Laere syndrome (early onset bulbar and spinal ALS with sensorineural deafness Fazio-Londe syndrome (infantile PBP) Harper-Young syndrome (laryngeal and distal SMA) Monomelic sporadic spinal muscular atrophy (BFA, including Hirayama Syndrome) Polyneuropathies with dominating motor symptoms (HMSN type 2) Benign fasciculations Myokymia
EFNS Task Force, 2005

The most important of the acquired
diseases of the spinal cord in
simulating ALS:
Spondylotic Myelopathy


Spondylotic Myelopathy • May lead to spinal cord compression and ischemia with/without nerve
root compromise.
• Neck pain common but not invariable clinical feature.
• Some patients develop UMN signs in the legs and, with central grey matter or nerve root involvement or both, they may have LMN signs in the arms (simulating ALS).
• 5% of ALS patients have had cervical or lumbar laminectomy early in their course.
• Unlike ALS, proprioceptive loss in the lower and upper extremities and sphincter abnormalities.
• Cervical MR often discloses abnormal signal on FLAIR sequences intrinsic to the spinal cord.
• EMG: active and cronic denervation in both arms and legs, bulbar and thoracic EMG should be normal.

Spinobulbar Muscular Atrophy (SBMA)
• X-linked SMA, CAG expansion (9-36 to 40-62), in men
• slowly progressive, at age 30-60 yrs
• muscle cramps/fasciculations, then bulbar and proximal limb
• atrophy/weakness, symmetrical, tendon reflexws <, no UMN signs
• whelchair in 2-3 decades
• rarely sensory symptoms at onset, then mild sensory < vibration
(feet) and < sensory nerve conduction potentials
• signs of mild androgen insensitivity (gynecomastia 50%, etc.)
• hand postural tremor early or late
• female carriers asymptomatic (minority with cramps or tremor)
DD: 1 in 35 patients initially diagnosed as having ALS may have SBMA

Spinobulbar Muscular Atrophy (SBMA)
• CK >
• EMG:
chronic denervation and partial reinnervation
fibrillation potentials not prominent
some patients: decrement of low-frequency repetitive nerve stimulation studies
• SURAL BIOPSY: loss of large-diameter axons
• MUSCLE BIOPSY:
signs of chronic denervation with grouped atrophy of myofibers
fiber-type grouping
• GENETIC TESTING: CAG repeat in the AR gene (Xq11-q12) (9-36 CAG to 40-62)
anticipation is not a prominent feature of SBMA
• PATHOLOGY: dorsal root ganglion cell loss + MN loss

Spinal Muscular Atrophy (SMA)
Type I
Mild adult onset SMA

Focal Spinal Muscular Atrophy (SMA): Hirayama
• monomelic amyotrophy of the upper limb (oblique amyotrophy), rarely
bilateral, no UMN signs
• development in months, then stability
• lower limb rarer
• > male, in early adult life, no family history
• MR: cervical lesion in flexion
• DD: flail-arm syndrome, monomelic ALS, multifocal motor neurophaty
Dorsal interosseous muscles
Hirayama et al., 1987

Spinobulbar Muscular Atrophy: Brown-Vialetto-van Laere
• AD, AR, X-linked
• progressive weakness
• bilateral cranial nerves VII to XII
• bilateral sensoryneural deafness
• variable progression
• DD: Fazio-Londe (AR, rapidly progressive bulbar degeneration)

“ patients are not demented and cognition is spared “
1874 Jean-Martin Charcot,
SLA e Disturbi Cognitivi

Aran – doctoral thesis, 1850
ALS patient as “perfectly conscious of his condition, remember the most precise details of his disease, and all in all have normal functions
except those of movement”

Annali di Neurologia, 25, 273-287, 1907

Rassegna di Studi Psichiatrici, 30, 705-722, 1941
• frontal impairment clearly mentioned


Strong et al., 2009
5 to 15%
25 to 50%
Strong et al., 2099
5% dei Pazienti FTD hanno segni clinici o subclinici di sofferenza LMN

Phukan et al., 2007
Anomalie neuropsicologiche nella SLA
Phukan et al., 2007

2011

Terapia della SLA
Sintomatica Nutrizione
Respirazione
Fisioterapia
Palliazione

II° MN
(V, VII, IX, XII)
+/-
perdita
innervazione I°
Disfagia
PERDITA DI PESO & MALNUTRIZIONE
NUTRIZIONE
DISTURBI PSICOLOGICI
RITARDATO SVUOTAMENTO GASTRICO CONSTIPAZIONE
> DISPENDIO ENERGETICO GIORNALIERO

THE NUTRITIONAL STATUS IN ALS PATIENTS
SCIENTIFIC DATA
• Resting energy expenditure (REE) in 36 ALS patients on riluzole
(22.5 months)
• STATE OF HYPERMETABOLISM CONFIRMED (+ 16.9% + 14.5%
above the normal expected value)
• NO CORRELATION WITH THE VC
• COLLERATION WITH AGE, GENDER (>MEN), LEUCOCYTOSIS
INDEPENDENTLY
Desport et al., 2000

MALNUTRITION IN ALS
• 21% OF 47 ALS PATIENTS ARE MODERATELY OR SEVERELY MALNOURISHED
(tested using TSF, MAMC, DIETARY ANALYSIS)
• NO DIFFERENCES BETWEEN BULBAR- OR SPINAL-ONSET PATIENTS
• MEN MORE MALNOURISHED THAN WOMAN
CONCLUSION: MALNUTRITION MORE PREVALENT THAN APPRECIATED IN
ALS PATIENTS, INCLUDING THOSE WITH NO SWALLOWING DIFFICULTIES
Worwood and Leigh, 1998

NUTRITIONAL STATUS AS PROGNOSTIC FACTOR FOR SURVIVAL
(Desport et al., 1999)
SURVIVAL (Kaplan-Meier) WORSE FOR MALNURISHED ALS (p=<0.0001), with 7.7 fold increased risk of death
Only VC (p < 0,001) and MALNUTRITION (p < 0,01) have significant independent prognostic value

• CAREFUL HISTORY
• QUESTIONS REVEALING (MEAL DURATION, etc.) • PHYSICAL EXAMINATION
• EVALUATE SWALLOW DURING A MEAL
• ADMINISTER MODIFIED BARIUM - SWALLOW WITH VIDEOFLUOROSCOPY
BUT
• NO SINGLE TEST
• SWALLOWING STUDY INADEQUATE
HOW DETECT DYSPHAGIA?

NUTRIZIONE ENTERALE
NFT 55% prescribed EN, 90% failures
PEG
93% prescribed EN, no failure
PEJ Alternative strategy
RIG/PRG Better tolerated

Practice Parameter, AAN, 2009

Refeeding Syndrome
• Ipofosfatemia
• Ipomagnesemia
• Ipopotassiemia
• Deficit vitaminici (Tiamina)
• Ritenzione di liquidi
• Complessa sindrome con instabilità cardiovascolare
• Mortale nella SLA nel 1° mese, particolarmente nelle PEG tardive

Respirazione

Indicazioni per una NIV
Paziente con insufficienza respiratoria cronica clinicamente stabile o ad evoluzione lentamente progressiva:
Significativa ritenzione diurna di CO2 (>50 mmHg) a pH compensato
Aumento moderato diurno o notturno di CO2 (45 o 50 mmHg) associato a sintomi attribuibili ad ipoventilazione (cefalea diurna, sonno agitato, incubi notturni, nicturia, sonnolenza diurna….)
Ipoventilazione notturna significativa o desaturazione ossiemoglobinica

Indicazioni per una NIV
Devono però esser rispettate le seguenti condizioni:
La terapia farmacologica deve esser la più idonea al caso
Il paziente deve esser in grado di rimuovere adeguatamente le secrezioni
Devono esser trattate in modo congruo tutte le patologie reversibili associate (OSAS, ipotiroidismo, scompenso cardiaco, alterazioni elettrolitiche…)

NIV: vantaggi
Rapidità e facilità d’applicazione
Eliminazione dei rischi legati all’aggressione della trachea determinata dall’intubazione
L’alternarsi di periodi di ventilazione e di respirazione spontanea (ritmo d’applicazione variabile)
Durante la ventilazione
Diminuzione della CO2
Diminuzione dell’attività elettromiografica dei muscoli respiratori
All’arresto della ventilazione
Mantenimento della diminuzione di CO2
Diminuzione della dispnea
Aumento della forza inspiratoria massima

NIV: svantaggi
Instabilità dell’interfaccia
Impossibilità di garantire una ventilazione continua di lunga durata
La necessità di cooperazione da parte del paziente (Pz. Bulbari!)
Lesioni cutanee a livello della radice del naso
Insufflazione gastrica
Perdite d’aria
Congiuntiviti
Pause respiratorie (in caso di Bilevel senza frequenza di sicurezza) con vere e proprie apnee

2) When airways must be protected related to
swallowing disturbancies and repeated aspirations which are usually associated with a high ventilator dependency and
generalized motor impairment (ALS)
1) When ventilator dependency is quite total (20-24 h / d)
Then the quite continuous use of NIV, although non absolutely impossible (Bach), becomes difficult and more dangerous
What are the limits of NIV ?

Who needs a tracheostomy ?
Tracheostomy is still used
1. When NIV reachs its limit
2.Or, even, still as an elective method due to its more constant and stable efficacy in term of ventilation

Symptomatic treatment
• Scialorrea
– Amitriptiline 25-50 mg oral x 3 a day
– Atropine drops (IV) 0.25-0.75 mg x 3 a day
– Glycopyrrolate (nebulized or iv form)
– Scopolamine (oral or dermal patch)
– Scopolamine transdermal (1.5 mg every 5 days (II)
– Benztropine (I)
– Botulinum toxin type A (IV)
– No study in type B
– Radiological intervention (IV): external irradiation or low dosage palliative radiation of single fraction of 7-8 Gy

Symptomatic treatment
• Pseudobulbar emotional lability
– Dextromethorphan and quinidine (IA)
– Fluvoxamine
– Amitriptyline
– Citalopram
– Dopamine
– Lithium

Symptomatic treatment
• Cramps
– Quinine sulphate 200 mg x 2 and vitamin E (I)
– Physiotherapy
– Carbamazepine
– Diazepam
– Phenytoin
– Verapamil
– Gabapentin

Symptomatic treatment
• Spasticity
– Physical therapy (IIB)
– Hydroterapy in heated pool (III)
– Cryoterapy
– Oral baclofen (up to 80 mg daily)
– Intrathecal baclofen
– Gabapentin (900-2400 mg daily)
– Tizanide (6-24 mg daily)
– Memantine (10-60 mg daily)
– Dantrolene (25-100 mg daily)
– Diazepam (10-30 mg daily)
– Botulin toxin A

Symptomatic treatment
• Depression, anxiety, and insomnia
– Amitriptyline
– Sertraline
– Fluoxetine
– Paroxetine
– Zolpidem
– Diazepam
– Sub-lingual lorazepam

Symptomatic treatment
• Pain
– Paracetamol
– Weak opioids (tramadol)
– Strong opioids (morphine
or ketobemidon)

ALS: Nutritional and Respiratory Issues
Both have potentially profound effects on survival:
PEG (left, from Mazzini et al) and BiPAP (right, from Kleopa et al.)

Impatto dei Centri Terziari sulla sopravvivenza dei pazienti SLA
Chiò et al., 2006

Terapia della SLA
Eziologica Farmacologica
Terapia genica?
Cellule staminali?
“Dopo quanto vi ho detto finora sulla malattia, dovrei forse trattenervi più a lungo riguardo al problema della terapia? I tempi non sono ancora maturi perché questo argomento
possa essere trattato seriamente”
J.M. Charcot, Leçons du Mardi à la Salpêtrière, 1869

1994

Traynor et al., 2006

Imputed placebo decline
CL201 Part 2: Slope estimates for
ALSFRS-R total scores
slope 50 mg = -1.283 slope 300 mg = -1.021 imputes placebo slope = -1.337 Relative slope reduction = 20.4%
KNS-760704 (dexpramipexole)

Includes all study deaths to Week 28.
Log rank test: p = 0.0708
KNS-760704: Survival estimates

Terapia Genica?
Determine Antisense oligo Distribution in
CNS Following ICV Administration
= Completed
Identification
of Human
SOD-1 ASO Candidates
Human
Test in Human Fibroblasts
from A4V Patients
Test in Primary Hepatocytes
from Transgenic
(A4V/G93A) Mice & Rats
Test Lead ASOs for
SOD-1 Inhibition in
Transgenic Mice/Rats via
Systemic & ICV TX
Select Human Candidate
Rat
Identification of
Rat SOD-1 ASOs
Demonstrate SOD-1
Inhibition in Liver Following
Systemic Administration
Demonstrate SOD-1
Inhibition in CNS Following
ICV Administration
Examine Dose
Schedule Requirements,
PK & Histopathology
Primate PK & Toxicology
ASO Medicinal
Chemistry
SOD1 A4V


Cova and Silani
3, 145-1456
Stem cells

Tg SOD1
Ilieva et al., 2009
SLA: malattia extramotoneuronale?

2010
Human Clinical
Trials (2010) Chen et al., 2007
Chew et al.,
2007
Mazzini et al., 2004-
2008
Cashman et al., 2008
Appel et al.,
2008
Huang et al.,
2000
Deda et al.,
2009
Martinez et al.,
2009
Huang et al.,
2009
Blanquer et al., 2010

1 PD , 14 yrs after grafting
TH VMAT2 DAT
No neuromelanin

GENETICA DELLA SLA

SLA familiare e SLA sporadica
Clinicamente e neuropatologicamente indistinguibili
UNICA MALATTIA
SALS 90%
FALS 10% SOD1 SOD1 FUS
TDP43
Altri
SOD1 Altri
geni
Fattori Genetici
+
Fattori Ambientali
Geni sconosciuti
Malattia
multifattoriale con
eziopatogenesi ignota
h2 = 0.38 – 0.78
Malattia monogenica
mendeliana con
eziopatogenesi nota

Perché studiare la SLA familiare?
Fattori
genetici
Invecchiamento
Tossine
ambientali
? ?
?
Mutazione in un
singolo gene
SALS
FALS
MODELLO
PATOGENETICO
Modello animale
(SOD1, TARDBP…)
TERAPIA
DELLA SLA

ALS-type
Onset Inheritance Locus Gene Protein
ALS1 Adult AD (AR) 21q22.1 SOD1 Cu/Zn superoxide dismutase
ALS2 Juvenile AR 2q33-35 ALS2 Alsin
ALS3 Adult AD 18q21 Unknown -
ALS4 Juvenile AD 9q34 SETX Senataxin
ALS5 Juvenile AR 15q15-21 SPG11 Spatacsin
ALS6 Adult AD2 16p11.2 FUS Fused in sarcoma
ALS7 Adult AD 20p13 Unknown -
ALS8 Adult AD 20q13.33 VAPB VAMP-associated protein B
ALS9 Adult AD 14q11 ANG Angiogenin
ALS10 Adult AD 1q36 TARDBP TAR DNA-binding protein
ALS11 Adult AD 6q21 FIG4 PI(3,5)P(2)5-phosphatase
ALS12 Adult AR/AD 10p15-p14 OPTN Optineurin
ALS-FTD1 Adult AD 9q21-22 Unknown -
ALS-FTD2 Juvenile AD 9p13.2-21.3 Unknown -
ALS Adult AD 12q24 DAO D-amino acid oxidase
ALS Adult AD 7q21.3 PON Paraoxonase
ALS Adult AD 9p12-13 VCP Valosin Containing Protein
Genetica della SLA Familiare

Pure
UMN
Pure
LMN
PLS PMA
ALS HSP/SPG HMN CMT
SOD1 ALSIN
Dynactin (DCTN1)
HSP 27
Glycyl tRNA synthetase
Senataxin
VAPB
NF-L Spastin
Paraplegin
Atlastin
NIPA1
HSP 60
KIF5A
Spartin
HSP 22
Seipin (BSCL2)
SMN1
IGHMBP2
Androgen receptor
SBMA
FTD
CHMP2B
MAPT
VCP
FUS
TARDBP
OPTN
FIG4 PON

~150 mutazioni
>>> mutazioni missenso, AD
Correlazione genotipo/fenotipo
Non correlazione tra
stabilità/attività dell’enzima
mutato e fenotipo clinico
Superossido Dismutasi 1 • Chr 21q22.1 - 5 esoni
• Enzima citoplasmatico Cu/Zn dipendente
• Omodimero di 32 kDa
• Monomero di 153 amminoacidi
• Otto β-foglietti disposti a cilindro
• Espressione costitutiva e ubiquitaria
• Catalizza la trasformazione del radicale
superossido in ossigeno molecolare e
perossido di idrogeno
SOD-Cu1+ SOD-Cu2+
(ridotta) (ossidata)
2H+ + O2- H2O2 H2O + ½ O2
GSH perossidasi catalasi
O2 O2-

Mutazioni di SOD1: effetti biologici
Proteine Cellulari
Proteasoma Chaperone
Mitochondria
Citoscheletro Dimero SOD1
Mutazioni
Aggregati Proteici
Oligomerizazzione
GAIN OF FUNCTION: • I topi transgenici per SOD1
enzimaticamente attiva (hSODG93A) e inattiva (hSOD1G85R) sviluppano la malattia
• I topi mSOD1 -/- non sviluppano la malattia
• La delezione di mSOD1 non modifica la progressione nel topo hSOD1G85R
• I topi che iperesprimono hSODwt sono sani
• L’iperespressione di hSOD1wt nel topo hSOD1G85R non modifica la progressione di malattia
STRESS OSSIDATIVO
DISFUNZIONE MITOCONDRIALE
ECCITOTOSSICITÀ GLUTAMMATERGICA
DISFUNZIONE DEL TRASPORTO ASSONALE
RIDUZIONE DI FATTORI TROFICI
DISFUNZIONE GLIALE
ATTIVAZIONE DELLE CASPASI
AGGREGAZIONE PROTEICA

A4V
L84F
G93D F45C
L144F
G41S
D90A
SLA familiare A4VL84FL144FG93DV5MA95GG12RF45CV47FD101G
SLA sporadica
Q22RF45CA95TV97LI113TD90A
Coorte studiata: FALS 18/156 11% (25 Pz.) SALS 6/566 1%

Mutazioni di SOD1: correlazioni genotipo-fenotipo
Completa PENETRANZA
DECORSO DI MALATTIA
SITO DI ESORDIO
Incompleta
Spinale
Bulbare
Variabile
Rapido
Medio
Lento
Variabile
A4V, G41S, H43R, H46R, L84F, L84V, D90Ahom, E100G, L144F
A4T, L8Q, N19S, E21G, N65S, D76Y, D90Ahet, G93S, I113T
G37R, H46R, D76V, L84F, L84V, D90Ahom, E100K, E100G
A4T, C6G, L8Q, D76Y, V148I, I151T
A4V, G41S, N86S, D90Ahet, I113T, L144F
A4T, A4V, C6F, C6G, V7E, L8Q, G10V, G41S, G93A, I112T G127X
G85R, G93R, G93V, E100G, D101G, G108D, L126X
G41D, H46R, D76V, A89V, D90Ahom, G93D, E100K
E21G, G37R, L38V, D76Y, L84F, D90Ahet, G93R, I113T, L144F

- eterozigote (pochi), anche in casi SALS
- fenotipo molto variabile e più aggressivo
- progressione rapida della malattia
- mutazioni D90A descritte in Francia, UK, Belgio, Bielorussia, USA
- penetranza variabile
AD
Mutazione D90A
- omozigote o composta (D96N)
- fenotipo caratteristico e uniforme (inizio con paresi agli arti inferiori)
- progressione lenta della malattia e lungo tempo di sopravvivenza (14 anni)
- allele D90A molto frequente nella popolazione della Scandinavia del Nord (2.5%)
- pazienti D90A omozigoti descritti anche in Italia, Germania, Francia, Russia
- penetranza completa
AR

SLA D90Ahom:
1. Due geni malattia
2. Un fenotipo uniforme
3. Progressione lenta
4. In popolazioni isolate (”inbred”)
SLA D90Ahet:
1. Un gene malattia
2. Fenotipo variabile
3. Più aggressiva
4. In popolazioni ”outbred”
Effetto fondatore della D90Ahom
Mutazione D90A originale (895 generazioni fa)
pazienti SLA D90Ahet
pazienti SLA D90Ahom in
Scandinavia e Russia
pazienti SLA D90Ahom
in Francia e Italia
(43-45 generazioni fa)
Allele fondatore D90Ahom
con fattore modificatore
“protettivo” in cis
(promotore?)
(63 generazioni fa)

Distribuzione dell’allele SOD1 D90A

Neuropathology of ALS and TDP-43
• Extensive loss of anterior horn cells • Degeneration of Betz cells and other pyramidal neurons in the primary motor
cortex • Degeneration of corticospinal tracts • Reactive gliosis in the motor cortex and spinal cord • Presence of various inclusion bodies in degenerating neurons and surrounding
astrocytes
Bunina Bodies UBIs HCIs
Skein-like Lewy body-like
80-100% SALS ~100% SALS less specific
Cystatin-C neurofilaments

Ubiquitinated TDP-43 in ALS and FTLD
• TDP-43 is the major protein component of UBIs in SALS, non-SOD1 FALS and FTLD-U
• Biochemical signature: – Disease specific
hyperphosphorylated protein at ~45 kDa
– Ubiquitinated HMW smear
– Truncated C-terminal fragments at ~25 kDa
• Clearing of nuclear TDP-43 from UBI-bearing neurons
ALS AD PD C AP+ P anti-TDP
TDP UBI
Neumann et al, Science 2006

2006
TDP-43

• TDP-43 is encoded by the TARDBP gene on chromosome 1
• TDP-43 belongs to the hnRNP family
• TDP-43 known functions – Trascriptional regulation (HIV-1 TAR DNA element, mouse SP-10 promoter)
– Splicing regulation (CFTR exon 9, Apo A-II exon 3, SMN2 exon 7)
– mRNA stabilization (hNFL) and transport
– mRNA translation and SG formation
TAR DNA binding protein 43
Mackenzie et al., Lancet Neurology 2010

Coorte studiata:
FALS 6/125 4.8%
SALS 12/541 2.2%
Upper limb onset (Millecamps et al., 2010)

• 149 French FTLD-MND (71 familial – 78 sporadic)
• 3 variants in 9 patients

first evidence of pathogenic mutation as causative of behavioural
variant of FTD without MND – 74 y/o - bvFTD

TDP-43 toxicity: key events
Ticozzi et al., CNS&ND-DT 2010
• Cytoplasmic redistribution
• Aggregate formation
GAIN OF FUNCTION vs LOSS OF FUNCTION

Effects of TARDBP mutations: gain of function?
WT
Q331K
M337V
G294A
Johnson et al, J Biol Chem 2009
Nonaka et al, Hum Mol Genet 2009
TDP-43 is intrinsecally aggregation prone
in vitro
ALS-associated TARDBP mutants accelerate
aggregation in vitro
ALS-associated TARDBP mutants increase
aggregation and toxicity in cell models

Hoechst GFP Caspase-3 Merge
GF
P-T
DP
-25 G
FP
-TD
P-4
3
Hoechst GFP Flag Merge
GF
P-T
DP
-25 G
FP
-TD
P-4
3
Fla
g-T
DP
-43
F
lag-D
TP
-43
Zhang et al, PNAS 2009
Effects of TDP-43 aggregation: gain of function?
Full lenght TDP-43 is not recruited into cytoplasmic
aggregates and its nuclear function is not
impaired
C-terminal fragments are toxic to cells and increase apoptosis

DsRed-TDP wt
GFP-TDP wt DsRed-TDP wt
GFP-TDP 162-414
DsRed-TDP wt
GFP-TDP 218-414
1 162 218 274 315 414
GFP WT 162
414
218
414
274
414
315
414 1
314
1
273
1
217
1
161
360 bp
177 bp
Full lenght TDP-43 may be recruited into
cytoplasmic aggregates of C-terminal fragments
C-terminal fragments may impair TDP-43
nuclear localization and function
Effects of TDP-43 aggregation: loss of function?
Nonaka et al, Hum Mol Genet 2009

Loss of function - other evidences
• Flies lacking the Drosophila TDP-43 homolog TDBH present deficient locomotor behaviors, reduced life span and anatomical defects at the neuromuscular junctions. The expression of human TDP-43 rescues the phenotype (Feiguin et al., FEBS Lett 2009)
• Prp-TDP-43A315T transgenic mice develop a disorder reminiscent of
ALS and FTLD-U, with formation of UBIs, but cytoplasmic aggergates are NOT positive for TDP-43 (Wegorzewska et al., PNAS 2009)
• Loss of TDP-43 leads to CCDK6 activation and phosphorylation of
pRb resulting in deformation of the nuclear membrane, dysregulation of the cell cycle and apoptosis (Iguchi et al., J Biol Chem 2009)
• The knockdown of TDP-43 in N2A cells inactivates Rho-GTPases,
inhibits neurite outgrowth and causes cell death (Ayala et al., PNAS 2008)

FUS/TLS (2009)

• FUS/TLS belongs to a family of DNA/RNA binding proteins (TET) – cancer-associated fusion genes – highly conserved structure – N-terminal transactivating domain – RNA binding domain (GGUG) – C-terminal NLS
FUsed in Sarcoma
Mackenzie et al., Lancet Neurology 2010

FUS/TLS biological activities
SYQG-rich
RNA Pol II
Nuclear hormone receptors
TFIID
NF-kB
YB-1
SFRS2
TASR1/2
RGG
RGG
RRM
ZnF
RNA
dsDNA
ssDNA
Transcriptional regulation and start-site recognition Splicing regulation mRNA maturation
Nucleo-cytoplasmic RNA shuttling mRNA transport Genome stability
CBP

FUS/TLS and genome stability
Wang et al, Nature 2008
• High-level of chromosomal instability in FUS -/- mice (Hicks et al, Nat Genet 2000)
• Male FUS -/- mice are sterile and display defects in meiotic process, increased sensitivity of fibroblasts to ionizing radiations (Kuroda et al, EMBO J 2000)
• FUS is a target of ATM (Gardiner et al, Biochem J 2008)
• FUS promotes DNA repair after double-stand breaks (Baechtold et al, J Biol Chem 1999)
• FUS inhibites CBP/p300-mediated histone acetylation in response to DNA damage signals (Wang et al, Nature 2008)

FUS/TLS activities in CNS • FUS is involved in mRNAs translocation to the dendritic spines for
local translation and may play a role in synaptic plasticity: – FUS is recruited and accumulated in mouse dendritic spines of
excitatory post-synaptic sites – FUS is localized in RNA -containing particles and associates with
actin-stabilizing protein Nd1-L mRNA – FUS colocalizes with NMDAR complexes in mice brain tissue – mGluR5 activation reversibly increases FUS recruitment and
accumulation – FUS -/- mice show an abnormal dendrite morphology and reduced
spine density
(Fujii et al, Cell Biol 2005 and Fujii et al, J Biol Chem 2005))
• FUS is a major nuclear aggregate-interacting protein in HD – FUS binds polyQ aggregates in vivo and in vitro – FUS colocalizes with polyQ aggregates in HD human brain tissues – SYQG-rich domain is essential for binding
(Doi et al, J Biol Chem 2008)

FUS/TLS in Italian FALS
FTD

94 Pazienti FALS SOD1, TARDBP e ANG negativi
4 mutazioni identificate in 5 Pazienti (5.3%)
2 mutazioni in NLS R521G, R521C
2 nuove mutazioni missenso G156E (SYQG-rich domain)
R234L (G-rich domain)
IDENTIFICAZIONE DI UN FENOTIPO COMUNE:
Esordio prossimale simmetrico Coinvolgimento precoce della muscolatura
assile Prevalenza di segni di interessamento di LMN
UN PAZIENTE CON ALS-FTD
J Med Genet, in press
964 Pazienti SALS 45 Pazienti FALS
6 mutazioni identificate in 7 SALS (0.6%) 2 mutazioni identificate in 2 FALS (4.4%)
1 mutazione in NLS R521C
6 nuove mutazioni missenso G191S, R216C, G225V, G230C, R234C
(G-rich domain) G507D
(RGG-rich domain)
CONFERMA DEL FENOTIPO COMUNE NEI DUE PAZIENTI CON p.R521C

R521C

• Mutations cause FUS redistribution from nuceus to cytoplasm • Mutations cause aggregates in neural cell lines • Mutations in NLS do not alter FUS RNA binding properties
Effects of FUS/TLS mutations
NeuN FUS DAPI Merge
C
TR
L
F
AL
S
FALS CTRL
N
2A
S
KN
AS
GFP-FUS(WT) GFP-FUS(R521G)
WT H517Q R521G WT H517Q R521G
Kwiatkowski et al, Science 2009

Splicing defects and Neurodegenerative diseases
• Alternative splicing is highly abundant in brain relative to other tissues, where it allows cells to modulate their protein composition in response to different stimuli.
• Alternative splicing patterns are dependent on the interaction between different RNA binding proteins and common regulatory elements in the pre-mRNAs.
• Disrupting the function of a single RNA binding protein can affect many alternatively spliced transcripts, a phenomenon that is increasingly recognized as having a role in human diseases.

cis-Acting Splicing Disorders
• Neurofibromatosis type I, Ataxia-Teleangiectasia – 50% of mutations are associated with pre-mRNA
splicing defects
• Muscular Dystrophy – some mutations induce exon skipping
• Frontotemporal Dementia with Parkinsonism – 17 – alternative splicing of exon 10 regulates relative levels
of tau isoforms (4R – 3R)
– several mutations are clustered around exon 10
• Spinal Muscular Atrophy

• Disruption of Spliceosome assembly – Spinal Muscular Atrophy
• Lack of SMN leads to defective assembly of snRNPs
– Retinitis Pigmentosa • Mutations in genes encoding snRNPs-associated factors
• Indirect Targeting of RNA binding proteins – Myotonic Dystrophy type 1 and 2
• CUG/CCUG expanded mRNAs bind and sequester alternative splicing modulators MBNL and CUG-BP1
• Alterations in splicing of CLCN1, NMDAR1, MAPT and APP
– Fragile-X-associated Tremor Ataxia Syndrome • sequestration of MBNL and hnRNP A1
• Direct Targeting of RNA binding proteins: ALS? FTLD-U?
trans-Acting Splicing Disorders

RNA metabolism in neurodegeneration

ALS Neuropathology
UBIs
SOD1 positive TDP-43 positive
ALS1 (SOD1) SALS
ALS10 (TARDBP)
ALS6 (FUS)
FUS positive
ALS9 (ANG)
ALS12 (OPTN)
non-SOD1 FALS
Unknown
ALS2 (alsin)
ALS4 (SETX)
ALS5 (SPG11)
ALS8 (VAPB)
OPTN positive?

FTLD Neuropathology
FTLD-tau FTLD-U
Pick’s disease
PSP
CBD
AGD
MSTD
TDP-43 positive TDP-43 negative
Type 1
Type 2
Type 3
Type 4
SD
bvFTD, FTD-MND
bvFTD, PNFA (GRN)
FTD-VCP
FUS positive FUS negative
aFTLD-U
NIFID
BIBD
FTD3 - CHMP2B

The ALS – FTLD Continuum
Seelar et al., JNNP 2010

Genetica della SLA Sporadica
Genome-wide Association Studies
Ricerca varianti rare


Whole Genome Association Studies (GWA) Lavoro Anno Paese SALS CTRL Associazione Significatività
statistica
Conferma
Schymick 2007 USA 276 271 no n/a n/a
Dunckley 2007 USA 386
(901)
542
(1025)
FGGY Sì? No
Van Es 2007 Svezia,
Belgio
Olanda
461
(876)
450
(906)
ITPR2 Sì? No
Van Es 2007 Svezia,
Belgio
Olanda, USA
1767 1916 DPP6 Sì Dubbia
Cronin 2008 Irlanda, USA,
Olanda
958 932 DPP6 No Dubbia
Chiò 2009 USA, Italia 553
(2160)
2338
(3008)
SUNC1 No n/a
Landers 2009 USA, Francia
UK, Olanda
1821 2258 KIFAP3 Sì No
Van Es 2009 Europa, USA
2323
(2532)
9013
(5940)
UNC13A Sì Si
Shatunov 2010 Europa, USA 4312 8425 9p21 Sì Si

1821 SALS e 2258 controlli (US e Europa) 288,357 SNP
Associazione con rs1541160 (p=1.84x10-8) Incremento di sopravvivenza di 14 mesi per genotipo CC
rs1541160 (introne 8): non varianti in regioni codificanti rs1541160 in LD con rs522444 nel promotore di KIFAP3
Creazione sito Sp1 (allele C) Ridotta espressione di KIFAP3 (~40%)

Kinesin-Associated Protein 3
KIF3A KIF3B
KIFAP3
KIF3 KIFAP3 è parte del complesso KIF3 (kinesina II)
Trasporto di organelli cellulari verso l’estremità positiva del microtubulo
Eterotrimero: 2 subunità motorie (KIF3A e KIF3B) ed una subunità di legame per il cargo (KIFAP3)
KIFAP3 lega mutSOD1, ma non wtSOD1
KIFAP3 è presente negli aggregati neuronali nel topo hSOD1G93A
STUDIO DI REPLICA:
273 SALS Italiani CC=3.83 yrs. (22) CT=2.75 yrs. (111) TT=2.29 yrs. (140)
AUMENTO DELLA SOPRAVVIVENZA 18.5 mesi
(p=0.017) unpublished data

CC
TC
TT
Courtesy Orsetti et al., 2011
SNP rs1541160
KIFAP-3

Cromosoma 9

Consorzio SLAGEN CENTRI FONDATORI:
IRCCS Istituto Auxologico Italiano IRCCS Istituto Neurologico Besta
IRCCS Istituto Neurologico Mondino Università degli Studi del Piemonte Orientale
A.O. Ospedale Niguarda IRCCS Ospedale Maggiore Policlinico
Centro Clinico NEMO Università degli Studi di Padova
CENTRI PARTECIPANTI: Università degli Studi di Pisa
Università degli Studi di Brescia CNR di Cosenza
Università degli Studi di Ferrara Università degli Studi di Firenze Università Federico II di Napoli Università La Sapienza di Roma
OBIETTIVO: WGAS su 2000 SALS di origine Italiana e 2000 controlli
Human660W-Quad 550.000 SNP 100.000 CNV
Suscettibilità Età di esordio Sito di esordio Sopravvivenza

SALS: genetic risk factors

Paraoxonases
9 exons, 354-5 residues
Homology between PONs >80%
Six-bladed b-propeller (6 x 4 b-sheets)
Three a-helix regions
Ca2+-dependent enzyme
Expression modified by genetic and
environmental factors
(drugs, diet, smoke, alcoohl, Pb)

Paraoxonases and SALS Five independent reports showed an association between haplotypes in
the PON cluster and SALS susceptibility…
...HOWEVER
No association from GWAs
Metanalysis was negative
(Wills et al. 2009)
Other studies were negative

Nucleotide Mutation Position FALS (260)
c.55>G N19D Ex 1 2
c.74+3>G Splicing Int 1 1
c.124T>G C42R Ex 2 1
c.269T>C L90P Ex 4 1
c.437T>G M127R Ex 5 2
c.438G>T M127I Ex 5 1
c.602C>T A201V Ex 6 4
c.943C>A P315T Ex 9 1
SALS (1184) CTRL (1159)
6 3
0 0
0 0
1 0
6 2
0 0
3 3
0 0
Total 13 5
PON1 and FALS COHORT STUDIED:
-1st step (direct sequencing) 260 FALS (US and Italian)
188 SALS
188 CTRLs
-2nd step (genotyping) 996 SALS
971 CTRLs

COHORT STUDIED:
-1st step (direct sequencing) 166 FALS (US and Italian)
-2nd step (genotyping) 996 SALS
971 CTRLs
Nucleotide Mutation Position FALS (166) SALS (1184) CTRL (1159)
c.95G>A C42Y* Ex 2 1 0 0
c.286delA R96GfsX5 Ex 4 1 6 4
PON2
PON3
c.361G>A D121N Exon 4 1 1 0
c.688G>A D230N Exon 6 2 1 0
c.971G>A G324D Exon 9 2 1 3
Total 7 4
* Mutation homozygous in a proband whose parents were
asymptomatic first cousins (suggesting AR)
PON2-3 and FALS

Novel PON variants: Disease specific mutations?
Gene FALS SALS CTRL
N % N % N %
PON1 5/260 1.9 1/1184 0.1 0/1159 0.0
PON2 1/166 0.6 0/1184 0.0 0/1159 0.0
PON3 3/166 1.8 2/1184 0.2 0/1159 0.0
Total 9 4.3 3 0.3 0 0.0
In total, from 9 FALS and 3 SALS, 8 coding sequence mutations
present in PON genes but not in controls -mutation in an AR pedigree
• PON mutations affect highly conserved residues
• In silico analysis predicts that mutations are deleterious
• C42 residue is mutated both in PON1 and PON2 (cysteine bond)
• homozygous C42Y mutation in progeny of first-cousin marriage
• three mutations are present in unrelated FALS cases
Pathogenic mutations?

• Altered metabolism of xenobiotics:
– Reduced metabolism of organophosphate compounds and/or
other neurotoxins
– Altered activity for specific substrates
• Loss of physiological properties:
– Loss of antioxidant activity is neurotoxic
– Increased lipoperoxidation of cell membranes
– Increased ER-stress
– Acceleration of motor neuron aging
PON mutations - Multiplicity of PON substrates – Properties shared by mutated PONs :
Possible relations to ALS pathogenesis

“Geni mancanti”: Approcci classici allo studio delle malattie mendeliane
Linkage analysis
• whole-genome analysis
• rapida ed efficace
• relativamente economica
• SOD1, ALS2, SETX, VAPB, OPTN, FUS
MA:
• necessarie famiglie con numerosi
individui affetti in più generazioni
• difficoltosa in malattie ad esordio adulto
e rapido decorso come la SLA
Screening di geni candidati
• possibile in piccole famiglie o coorti di Pz.
• TARDBP, ANG, PON, FIG4
MA:
• analisi lenta e costosa
• non whole-genome
• scarsi risultati (selection bias)
IMPOSSIBILE STUDIARE VARIANTI
RARE SU SCALA GENOMICA IN
COORTI NUMEROSE

Next Generation Sequencing
Pyrosequencing
(Genome Sequencer FLX System –
454 LifeSciences, Roche)
Sequencing by Ligation
(SOLiD System – Applied Byosystem)
Sequencing by synthesis,
reversible chain termination methods
(Solexa – Genome Analyzer, Illumina)
Miglior rapporto qualità/prezzo
40.000 USD per genoma
15 Gb per microarray
Rapido
7 giorni per microarray
Disponibili molti software per l’analisi
bioinformatica dei dati
Problemi:
Sequenziare l’intero genoma in una coorte
di pazienti è ancora troppo costoso
Il whole-genome sequencing produce
“troppi” dati, difficili da interpretare con i
modelli esistenti

Exome Sequencing
L’ESOMA è la parte del genoma formata da
esoni, cioè da quelle porzioni di geni che sono
espresse e che forniscono il modello genetico
utilizzato nella sintesi di proteine e di altri
prodotti genici funzionali. È la parte
funzionalmente più rilevante del genoma, con
maggiori probabilità di contribuire al fenotipo di
un organismo.
L’esoma rappresenta circa l’1% del genoma umano (30 Mb su 3Gb)
La maggior parte (>85%) delle malattie mendeliane sono causate da mutazioni
nell’esoma
Le nostre consocenze attuali sulle conseguenze funzionali delle mutazioni al di fuori
dell’esoma sono molto limitate
L’exome sequencing è molto più economico del whole genome sequencing
L’esoma è quindi una regione ideale per la ricerca di mutazioni rare con alta
penetranza in coorti numerose

Exome Sequencing e malattie mendeliane
Malattie monogeniche
Generalmente malattie rare, ma 200.000 affetti negli USA e 35.000 in Italia
7.000 malattie mendeliane descritte
mutazione patogenetica sconosciuta in >2.000
• l’esoma rappresenta l’1% del genoma
• la maggior parte delle malattie
mendeliane sono causate da mutazioni in
regioni codificanti
• costi 10 volte inferiori al whole-genome
sequencing
• non individua mutazioni in regioni non
codificanti
• ogni individuo ha ~600 nuovi SNPs
codificanti non precedentemente descritti
• necessari metodi di “filtraggio” per
identificare mutazioni patogenetiche
(+ individui)
VANTAGGI SVANTAGGI

Exome Sequencing: proof of concept
4 individui affetti da Sindrome di Freeman-Sheldon (artrogriposi distale 2A)
Mutazione nel gene MYH3

2009
Jan-Apr May-Aug Sept-Dec Jan-Apr May
2010 2011
Freeman-Sheldon sy
Bartter sy
Miller sy
Fowler sy
Perrault sy
Kabuki sy
Severe brain malformation
Sesenbrenner sy
Hyperphosphatasia MRS
Retinal-renal ciliopathy
Van Den Ende-Gupta sy
Anal atresia
Carnevale sy
Severe hypercholesterolemia
Familial hypolipidemia
Complex I deficiency
SCA
FAD deficiency
VCP-ALS
Seckel sy
Retinitis pigmentosa
Familial hypercolesterolemia
Intractable IBD
CMT
Dilated cardiomiopathy
Osteogenesis imperfecta
Haidu-Cheney sy
Failure of tooth eruption
Hereditary hypotrichosis
X-linked leucoencephalopathy
Acne inversa
Ochoa sy
Novel skeletal dysplasia
Non-syndromic MRS
Primary limphoedema
Primary microcephaly
Distal artrogriposis
HSP
HSN - dementia - hearing loss
Hereditary progeroid sy
Chondrodysplasia
Amelogenesis imperfecta
Infantile mt cardiomiopathy
Mosaic variegated aneuploidy
Exome Sequencing: stato dell’arte
2
14
18
7
mutazione nel gene
DHODH

ExomeFALS - Dati preliminari
Tra il 1995 e il 2010 è stata raccolta un’ampia casistica di DNA di
pazienti Italiani, fenotipicamente caratterizzati:
200 FALS
1300 SALS
Con il Partner americano, il consorzio EXOMEFALS dispone di:
450 FALS
3000 SALS
Tale coorte FALS è fino ad oggi la più grande raccolta al mondo
Lo studio di questa coorte ha prodotto informazioni essenziali
sull’epidemiologia genetica della SLA in Italia
(SOD1, ANG, TARDBP, FUS, PON, OPTN, VCP)
Partnership Istituto Auxologico - Istituto Besta - Università del Massachusetts

SNPs Totale Nuovi %
TUTTI 13,805 946 6.8
non sinonimi 6,411 603 9.4
sinonimi 7,394 343 4.6
ETEROZIGOSI 8,736 911 10.4
non sinonimi 4,096 583 14.2
sinonimi 4,640 328 7.1
OMOZIGOSI 5,069 35 0.7
non sinonimi 2,315 21 0.9
sinonimi 2,755 15 0.5
ExomeFALS: Dati preliminari
25 Individui sequenziati
numerose varianti in alcuni
“geni malattia” (?)
Exome sequencing come
“controllo” di precedenti
studi di genetica medica
Necessità di creare
Database condivisi

Istituto Auxologico Italiano
Università degli Studi di Milano
Laboratorio di Neuroscienze
Antonia Ratti
Claudia Colombrita
Clarissa Colciago
Lidia Cova
Valentina Diana
Maura Figini
Elisa Onesto
Jenny Sassone
Cinzia Tiloca
Unità Operativa di Neurologia
Vincenzo Silani
Laura Adobbati
Luca Campana
Andrea Ciammola
Barbara Corrà
Alberto Doretti
Riccardo Doronzo
Carolina Lombardi
Luca Maderna
Niccolò Mencacci
Stefano Messina
Claudia Morelli
Barbara Poletti
Davide Sangalli
Federico Verde