realization of a magnetically guided beammesuma04/contributions/lahaye.pdf · 2004. 10. 20. ·...

1
REALIZATION OF A MAGNETICALLY GUIDED BEAM IN THE COLLISIONAL REGIME T. Lahaye, Z. Wang, J. Dalibard and D. Guéry-Odelin Laboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris (France) MOTIVATION Atom lasers from BEC Injector MOT Magnetic guide and evaporation OUR PROJECT PULSED INJECTION REFERENCES Radiofrequency outcoupler [1] E. Mandonnet A. Minguzzi, R. Dum, I. Carusotto, Y. Castin and J. Dalibard, Eur. Phys. J. D 10, 9 (2000). [2] P. Cren, C. F. Roos, A. Aclan, J. Dalibard and D. Guéry-Odelin, Eur. Phys. J. D 20, 107 (2002). [3] C. F. Roos, P. Cren, J. Dalibard and D. Guéry-Odelin, Physica Scripta T105, 19 (2003) and cond-mat/0212060. [4] C. F. Roos, P. Cren, T. Lahaye, J. Dalibard and D. Guéry-Odelin, Laser Physics 13, 605 (2003) and cond-mat/0212147. [5] T. Lahaye, P. Cren, C.F. Roos and D. Guéry-Odelin, Comm. Nonlin. Sci. Num. Sim., 8, 315 (2003) and cond-mat/0211661. [6] C. F. Roos,P. Cren, D. Guéry-Odelin and J. Dalibard, EuroPhys. Lett., 61, 187 (2003). [7] J. M. Vogels, T. Lahaye, C. F. Roos, J. Dalibard and D. Guéry-Odelin, cond-mat/0404560. [8] T. Lahaye, J. M. Vogels, K. Günter, Z. Wang, J. Dalibard and D. Guéry-Odelin, to appear in Physical Review Letters, cond-mat/0405013. Transpose to an atomic beam the techniques used on atom clouds. Goal: achievement of a continuous and intense cold atomic beam, magnetically guided, with a low mean velocity. Apply transverse evaporative cooling [1]. If the initial collision rate is high enough, quantum degeneracy can be reached after a few meters. Low flux < 10 4 atoms/s 1 monolayer on 1 m 2 in 3 years Oven T= 140-170 °C Oven flux = 1.5 10 12 atoms/s Flux of slow atoms: 2. 10 11 atoms/s at a mean velocity of the order of 15 m/s. Anisotropic 3D magnetic gradient Six beams MOT Capture rate > 2. 10 10 atoms/s Adjustable launching velocity from 0.3 m/s to 3 m/s Pulsed injection in the guide, overlap after 70 cm propagation: 3 to 4 packets per second: Flux of the order of 7.10 9 atoms/s probe TEMPERATURE MEASUREMENT WITH ONE RF ANTENNA “Red” trajectory is not evaporated “Blue” trajectory is evaporated T=380 μK 1.0 0.5 0.0 0 10 20 30 N’/N d 1, ? ? A2, ? ? d A 1 A 2 EXPERIMENT WITH TWO ANTENNAS WITH COLLISIONS d=3 m WITHOUT COLLISIONS ν 1 = 8 MHz Radio frequency (MHz) N’’/N’ D. Guéry-Odelin, J. M. Vogels, K. Günter, A. Senger, T. Lahaye, J. Dalibard, Z. Wang Previous members: J. M. Vogels, K. Günter, C. F. Roos, A. Aclan, P. Cren Rubidium Oven Zeeman Slower Zeeman Slower beam, 780 nm Rb MOT beam, ν - MOT beam, ν - MOT beam, ν + MOT beam, ν + x y z Probing zone Magnetic guide MOT chamber 15 mm 400 A Magnetic gradient 300 G/cm 14 mm Atoms ENTRANCE OF THE MAGNETIC GUIDE OVEN AND ZEEMAN SLOWER MAGNETO-OPTICAL TRAP Antenna 1 Antenna 2 TAPERED SECTION OF THE MAGNETIC GUIDE d Time (s) 24 4 2 1 1.5 1.0 0.5 0.0 0 3 6 Area (a.u.) 0 0 8 5 10 15 20 25 Number of launches Absorption (a.u.) a) b) REALIZATION OF A CONTINUOUS BEAM OUTLOOK Slope to slow down the beam Start forced evaporative cooling with many antennas Dark line MOT. 4.5 meter 300 G/cm for I=400 A. 1000 G/cm for I=400 A. 0.4 meter EXPERIMENTAL SETUP 1.0 0.5 0.0 0 10 20 1.0 0.5 0.0 0 10 20 30 0 10 20 30 T=380 μK T=280 μK Heating Cooling 0.5 1.0 1.5 0 1 2 3 4 5 T 2 / T 1 η 1 THE TEAM 1.0 0.6 0.2 0 10 20 30 40 50 60 μ ν RF ν RF ν RF

Upload: others

Post on 04-Aug-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: REALIZATION OF A MAGNETICALLY GUIDED BEAMmesuma04/CONTRIBUTIONS/lahaye.pdf · 2004. 10. 20. · Transpose to an atomic beam the techniques used on atom clouds. Goal: achievement of

REALIZATION OF A MAGNETICALLY GUIDED BEAMIN THE COLLISIONAL REGIME

T. Lahaye, Z. Wang, J. Dalibard and D. Guéry-OdelinLaboratoire Kastler Brossel, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

MOTIVATIONAtom lasers from BEC

Injector MOT Magnetic guideand evaporation

OUR PROJECT

PULSED INJECTION

REFERENCES

Radiofrequency outcoupler

[1] E. Mandonnet A. Minguzzi, R. Dum, I. Carusotto, Y. Castin and J. Dalibard, Eur. Phys. J. D 10, 9 (2000).[2] P. Cren, C. F. Roos, A. Aclan, J. Dalibard and D. Guéry-Odelin, Eur. Phys. J. D 20, 107 (2002).[3] C. F. Roos, P. Cren, J. Dalibard and D. Guéry-Odelin, Physica Scripta T105, 19 (2003) and cond-mat/0212060.[4] C. F. Roos, P. Cren, T. Lahaye, J. Dalibard and D. Guéry-Odelin, Laser Physics 13, 605 (2003) and cond-mat/0212147.[5] T. Lahaye, P. Cren, C.F. Roos and D. Guéry-Odelin, Comm. Nonlin. Sci. Num. Sim., 8, 315 (2003) and cond-mat/0211661.[6] C. F. Roos,P. Cren, D. Guéry-Odelin and J. Dalibard, EuroPhys. Lett., 61, 187 (2003).[7] J. M. Vogels, T. Lahaye, C. F. Roos, J. Dalibard and D. Guéry-Odelin, cond-mat/0404560.[8] T. Lahaye, J. M. Vogels, K. Günter, Z. Wang, J. Dalibard and D. Guéry-Odelin, to appear in Physical Review Letters, cond-mat/0405013.

Transpose to an atomic beam the techniques used on atom clouds.Goal: achievement of a continuous and intense cold atomic beam, magnetically guided,

with a low mean velocity.Apply transverse evaporative cooling [1]. If the initial collision rate is highenough, quantum degeneracy can be reached after a few meters.

Low flux < 104 atoms/s1 monolayer on 1 m2 in 3 years

Oven T= 140-170 °C

Oven flux = 1.5 1012 atoms/s

Flux of slow atoms:

2. 1011 atoms/s

at a mean velocity of the order

of 15 m/s.

Anisotropic 3D magnetic gradient

Six beams MOT

Capture rate > 2. 1010 atoms/s

Adjustable launching velocityfrom 0.3 m/s to 3 m/s

Pulsed injection in the guide, overlap after 70 cm propagation:

3 to 4 packets per second: Flux of the order of 7.109 atoms/s

probe

TEMPERATURE MEASUREMENT WITH ONE RF ANTENNA

“Red” trajectory is not evaporated“Blue” trajectory is evaporated

T=380 µK

1.0

0.5

0.00 10 20 30

N’/N

d1, ? ? A2, ? ?dA1 A2

EXPERIMENT WITH TWO ANTENNAS

WITH COLLISIONS d=3 mWITHOUT COLLISIONS

ν1= 8 MHz

Radio frequency (MHz)

N’’/N’

D. Guéry-Odelin, J. M. Vogels, K. Günter, A. Senger, T. Lahaye, J. Dalibard, Z. Wang

Previous members: J. M. Vogels, K. Günter, C. F. Roos, A. Aclan, P. Cren

Rubidium Oven

Zeeman SlowerZeeman Slowerbeam, 780 nm

Rb

MOT beam, ν-MOT beam, ν-

MOT beam, ν+ MOT beam, ν+

x

yz

Probingzone

Magnetic guide

MOTchamber

15 mm400 A

Magnetic gradient300 G/cm

14 mmAtoms

ENTRANCE OF THE MAGNETIC GUIDE

OVEN AND ZEEMAN SLOWERMAGNETO-OPTICAL TRAP

Antenna 1

Antenna 2

TAPERED SECTIONOF THE MAGNETIC

GUIDE

d

Time (s)

24

42

1

1.5

1.0

0.5

0.0

0 3 6

Area

(a.u

.)

00

8

5 10 15 20 25Number of launches

Abso

rptio

n (a

.u.) a) b)

REALIZATION OF A CONTINUOUS BEAM

OUTLOOKSlope to slow down the beam

Start forced evaporative coolingwith many antennas

Dark line MOT.

4.5

met

er

300 G/cmfor I=400 A.

1000 G/cmfor I=400 A.

0.4 meter

EXPERIMENTAL SETUP

1.0

0.5

0.00 10 20

1.0

0.5

0.00 10 20 300 10 20 30

T=380 µK T=280 µK

Heating Cooling

0.5

1.0

1.5

0 1 2 3 4 5

T 2 / T1

η1

THE TEAM

1.0

0.6

0.20 10 20 30 40 50 60

µ

νRF

νRF

νRF