simulation of the tonghae thermal power plant cfb by using ... · abstract −the 200 mwe tonghae...

9
HWAHAK KONGHAK Vol. 38, No. 1, February, 2000, pp. 53-61 (Journal of the Korean Institute of Chemical Engineers) 53 IEA-CFBC ˛ j ˇ ÿ z K B ~ F ÿ [ ² ~ W ¸ ˛ Ò - - (1999 4 10 , 1999 10 1 ) Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model - Determination of the CFB Combustor Performance with Cyclone Modification - Jong-Min Lee and Jae-Sung Kim Advanced Power Generation & Combustion Group, PGL, KEPRI, KEPCO (Received 10 April 1999; accepted 1 October 1999) 200 MWe , 1 , 2 '99 10 . , , . IEA-CFBC , . , . 98.7% , , freeboard . vortex finder , . Abstract - The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite coal for generation of electric power. The #1-unit CFB boiler has been operated commercially since October 1998, and the #2-unit CFB boiler, of which commercial operation will be achieved at October 1999, is under construction. The optimization and stabili- zation of the CFB operation have been carried out through the modification of the cyclones for the units of #1 and #2. How- ever the operation data for the large CFB combustor firing the anthracite coal are few, so it is necessary to predict the performance of the CFBC with variation of the operation conditions. Therefore, in this study, the development of the simula- tion scheme has been achieved by using IEA(International Energy Agency)-CFBC model, and the performance of the CFB combustor with variation of the cyclone efficiency has been determined. The improved performance of the modified cyclone, which have been carried out by increase of the vortex finder length and by decrease of the cross sectional area of the cyclone inlet, also has been determined. The cyclone efficiency has been evaluated 98.7%. As the cyclone efficiency increases, the upper differential pressure increases and the freeboard temperature becomes to be low and stable. The modifications of vortex finder and inlet duct of the cyclone have been predicted to improve the performance of the CFB combustor. Key words: CFBC, IEA Model, Tonghae Boiler, Anthracite Coal, Cyclone 1. 1993 . 200 MWe 2 , ABB-CE , . 1 1995 generator , 1997 , 1998 3 1998 10 . 2 , 1999 10 . E-mail: [email protected]

Upload: others

Post on 23-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000, pp. 53-61(Journal of the Korean Institute of Chemical Engineers)

53

IEA-CFBC Î�j �Ï� ÿ�zK B~Fÿ[ �²�~ WËÎÒ−Ò��� WËæzö V� B~Fÿ[ �²�~ WËÎÒ −

�«"†ÁfÒW

�* *K��ö B*�� �²�B*��(1999j 4ú 10¢ 7>, 1999j 10ú 1¢ j�)

Simulation of the Tonghae Thermal Power Plant CFB by using IEA-CFBC Model− Determination of the CFB Combustor Performance with Cyclone Modification−

Jong-Min Lee† and Jae-Sung Kim

Advanced Power Generation & Combustion Group, PGL, KEPRI, KEPCO(Received 10 April 1999; accepted 1 October 1999)

º £

ÿ�zK B~Fÿ[ �¢�º 200 MWe �Î�� �Ú Z�êj ÒÏ~º �& �Î~ B*Jj��, *Ò 1̂ V&

çëÚ*7ö ®b�, 2̂ V& '99j 10úö &�j Ï�� �J7ö ®. *Ò çëÚ*7ö ®º ÿ�zK B~Fÿ[

�¢�º Ò��� B�ö V� Ú* n;z 5 Ú* �'z¢ >¯7ö ®b¾, �& �Î~ Z�êÏ B~Fÿ[ö &

� Ú*¶òº �~ rJê :& ìÚ, �ö &� .G� jº~. �ö � ��öBº IEA-CFBC Î�j �Ï~� ÿ�

zK B~Fÿ[~ WËj ÎÒ� > ®º �Ò.�~ æj BB~&b�, �¢ �Ï~� Ò��� ÎN æzö V� B

~Fÿ[ WË æz¢ .G~&. 6� Ò��� B�� Ò���~ WË æz 5 ÒB~ï, �Ò� ��÷ «¶ï �j

.G~� B�ö V� WË Ëçj Ö;~&. � ��Ö" ÿ�zK Ò���~ WËf £ 98.7% ;ê� ¾æÒb�,

Ò��� ÎN� Ã&�ö V¢ �Ú ç¦N{� Ã&~º ãËj, �Ò� freeboard~ Nê& 6N Ôj^ n;z>º ©

b� ¾æÒ. ��� Ò��� ÎN~ çßj *� Ò��� vortex finder 5 «� ��' B�¢ >¯� ãÖ, B~F

ÿ[ WË Ëç� V&>º ©b� .G>î.

Abstract − The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite coal for

generation of electric power. The #1-unit CFB boiler has been operated commercially since October 1998, and the #2-unit CFB

boiler, of which commercial operation will be achieved at October 1999, is under construction. The optimization and stabili-

zation of the CFB operation have been carried out through the modification of the cyclones for the units of #1 and #2. How-

ever the operation data for the large CFB combustor firing the anthracite coal are few, so it is necessary to predict the

performance of the CFBC with variation of the operation conditions. Therefore, in this study, the development of the simula-

tion scheme has been achieved by using IEA(International Energy Agency)-CFBC model, and the performance of the CFB

combustor with variation of the cyclone efficiency has been determined. The improved performance of the modified cyclone,

which have been carried out by increase of the vortex finder length and by decrease of the cross sectional area of the cyclone

inlet, also has been determined. The cyclone efficiency has been evaluated 98.7%. As the cyclone efficiency increases, the

upper differential pressure increases and the freeboard temperature becomes to be low and stable. The modifications of vortex

finder and inlet duct of the cyclone have been predicted to improve the performance of the CFB combustor.

Key words: CFBC, IEA Model, Tonghae Boiler, Anthracite Coal, Cyclone

1.B �

��*KöBº �Ú Z�êj �Ï� *K�Öj *� 1993j .ö

B~Fÿ[ �²�~ Jê 5 �J *�CÞ¢ �·~&. B~Fÿ

[f 200 MWe 2V�� ÿ��ö �J>�, Jêº ABB-CEöB, �

Ò� "ê£ 5 �/f ��7�ëöB ��~� ��Úæ� ®.

B~Fÿ[ �²� 1̂ Vº 1995jöö Ê& generator¢ J~~&�,

.V 6z 5 Ê& B�f 1997j öö ��Úrb�, 1998j 3ú¦

V Vÿ Ú*j Û� 1998j 10úöº çëÚ*� ��Úr. 2̂ V

6� *Ò �J7ö ®b�, 1999j 10ú.ö &�� ��Úî .;

�.

ÿ�zK B~Fÿ[ �²�º Z�ê«j &çb� � �Î�öB†E-mail: [email protected]

Page 2: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

54 �«"ÁfÒW

z��� B38² B1̂ 2000j 2ú

�Ú�'b� &Ë �� ¾r �ê>º ©b� � &�êº Ö �

~Æ. ��� B~Fÿ[ �²�~ WË 5 �² ßW, V&Ê ßW

�f *Ò VÿÚ* data ��öº �² rJê ©� ìb� 6� �

b�~ ;çÚ* 7öê �� Ú* �� æzö V� çV ßW�

rJê :& �~ ìV r^ö �ö &� .G 5 ï&& jº~.

B~Fÿ[ �²�ö &� Î�çf V�ö 6Ò rJê V�Fÿ

[ Î�j "*b� 1990j .¦V �B® ê¯>Ú z. B~Fÿ

[ �²�~ Î�ç OËf �²� »OËòj �J~º 1Nö Î�

ç¦V[1-7] �²�¢ »OË 5 ÇOË ¢¦(coref annulus)� ¾*

º 1.5Nö~ Î�ç[9, 10], �Ò� »OË 5 ÇOËj Îv �J~

º 3Nö Î�çb� �ª>Ú B*>� ®[11, 12]. 3Nö Î�ç

~ ãÖöº �"ö ôf ��& ê¯7ö ®b¾ B wÏö ®Ú

Bº 'Ï~V ÚJÚ ¦ª� Îj ®Ú jçf BB�ê¢� ö�

> ®. �ö >� 1Nö 5 1.5Nöf ôf ��& ê¯>Ú zb

� �~ wÏ 5 'Ïê ç�¦ª ��Ú^ ®º ©b� ��>� ®

. � Î�ç~ V� ��º >K�' ßW, «¶ ª�, �² ßW

5 V&Ê ßW, �*�" �Ò� ÒB~ �~ �Ï� �W>Ú ®

b�, �~ Î�ç 'Ï.¢ Table 1ö ¾æÚî. ß® �B ö.æ

V�(IEA, International Energy Agency) Ö~ Fÿ[¦^*ö²~ Î�

ç ��öBê 1990j& .¦V �B* *�CÞ� V�~ V� F

ÿ[ Î�~ Ëçj Û� B~Fÿ[ Î� z�¢ BB~&b� �

~ B ÖëÏ B~Fÿ[ �²�~ 'Ïj Û� � �Ï &ËWj

{�~&[13].

�ö � ��öBº IEA-CFBC Î�j �Ï~� ÿ�zK B~F

ÿ[ �²�~ Ú* ��j ÎÒ� > ®º �Ò.�~ æj BB~

� �~ 'Ïj Û� Ú* WË .Gj >¯~�¶ �. ��� Ú

* WË .G~ � .� Ò��� B�¢ Û� B~ï~ Ã& 5 �

Ú~ Nê n;W �Ò� î� ÎN Ã&¢ êÎ~�¶ ~º ÿ�z

K B~Fÿ[~ ãÖö &� WË .G �Cj >¯~� � 'Ëj

�V~�¶ �.

2. IEA-CFBC � �W

�Bö.æV�(IEA) Ö~ Fÿ[ ��öB *�CÞz>Ú BB>

�, Hannes[10, 13]ö ~� ;Ò, *��ÎzB IEA-CFBC Î�f

�² r~ "º �Wº²� ��Ú^ ®.

2-1. Fluidization Pattern of Solid Flow

B~Fÿ[öB~ VÚ 5 �Ú~ ç^·Ï 5 vªf riserÚ~ ®

�¢� vªj ;W~�, �©f �² riser ~�¦öBº dense '�

j, ç� freeboard ��öBº transport '�j, �Ò� ç~�¦ ã

ê'�öBº *�'�~ �Vj &Ë~² �&. � Î�çöBº

' '�j Îv �J~&b�, *�'� 5 freeboard ��öB~ »

OË �Ú ³êæ�º Wen" Chen[14]� B�� ç&�j 'Ï~&

b�, denseç~ [¸� 5 �Ú ³ê ªNf {K B¦Ê~ ãê��

j ¢ê, r~ Rhodes[15]& B�� �b�¦V ' «¶�ö &�

êÖ~� Ö;~&.

(1)

�VB a(exponential decay constant)º Kuniif Levenspiel[16]� B

n� �²�Ú~ �÷³êf >jf &êö ®º r~ ç&�j '

Ï~&b�, ç>º Î�Úö �.æ>� «K>ê� �W>Ú ®.

(2)

¢>'b� ç>º ·f «¶� ãÖ 2-5 s−1, �Ò� � «¶� ãÖ

º 4-12 s−1� &V ��>¾, &Ë~� «¶~ ßWö V¢ þb�

�~º ©� �Ò'� ©b� B�>î. � ��öBº parameter

sensitivity �Vj Û� 5.5~ 8j 'Ï~&.

Two phase theory(Davidson" Harrison[17])~ V�æj 'Ï� dense

'�f emulsion" bubble '�b� ¾*Ú �V~&b�, denseçö

B~ V�ªNf Johnsson[18]� B�� ç&�j, �Ò� V��Vº

Darton �[19]� B�� ç&�j '' 'Ï~&. Freeboard ç~ Ç

OË �Ú ªN 5 core-annulus~ ãê Ö;&êº ­ &æ~ &;"

�þ Seiter 5 Rhodes& B�� ç&&êö ~� Ö;~&[13, 15].

�ç" ?� IEA-CFBC Î�öB �Úvª~ ãËf �² »OË

5 ÇOËb� ¾*Ú �V~&b�, ÇOËö ®ÚBº coref an-

nulus��b� ¾*Ú ï� ßWj 'Ï~&Vö ¢>'b� 1.5Nö

~ Î�ç ;�¢ �~� ®.

2-2. Development of Particle Size Distribution

B~Fÿ[Ú� "«>º «¶�f �² Cê, C²C 5 [bî(Î

¾)� �ªî > ®b�, ' «¶ö &� r" ?f mass balance

& ��î > ®.

(3)

�VB mfeedº �� fragmentationj �J� feeding flow��, oº

«¶j ©ÚªÒº «¶�j, �Ò� Áº «¶j Aº «¶�j

¾æÞ ©�.

pρs ρg–( )g

----------------------- = εs d, Hd 0

H hd–

∫ εs ∞, εs d, εs ∞,–( )+ ah–( )exp[ ]dh+

a uo⋅ constant=

0 m· feedwi feed, 1 ηi exit,–( ) 1 ηi cyc,–( ) m· bagwi– ηsegm· disch earg wi–=

1ni o

----- kio attr,i o

nio

∑ uo umf–( )mtotwio ki attr, uo umf–( )mtotwi–+

kio shrk, mtotwi o( )wi o i, kio shrk, mtotwi–+

Table 1. Overall models for circulating fluidized bed combustors

Ref. Fluid dynamics Size distrib. Coal comb. SO2 NOx Heat trans. Steam proc. Recirc. State

Siegen[1] 1-dim + + + + + + + stdZhang[2] 1-dim - + + + + - + dynMori[8] block - + - - - - + stdBasu[9] 1.5-dim - + + + + - - stdXu[3] 1-dim + + + + + + + stdLin[4] 1-dim - + + - - - - stdHalder[5] 1-dim + - - - - - - stdIST[6] 1-dim - + + + + - - stdAlstrom[7] 1-dim - + - + + - - dynHaider[10] 1.5-dim - + - + + - - stdHiller[11] 1.5-dim - + + - - - - stdIEA[12] 1.5-dim + + + + + - + std

std : steady-state, dyn : dynamical, + : consideration, - : no consideration

Page 3: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

IEA-CFBC Î�j �Ï� ÿ�zK B~Fÿ[ �²�~ WËÎÒ 55

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000

� Î�çöBº «¶~ "«� �ÏÏö ~� �æº fragmenta-

tion 5 Vê' îÎ(attrition), z�>wö ~� «¶ »²(shrinking)

�j �J~&. �JB �Vê «¶º *Ú [{K"~ ãê��j

V&b� �~¦�~ V 5 filter�~ V 5 �÷, �Ò� ÒB~

�b� �ª>Ú mass balance& ��Úê.

2-3. Gas Flow

ªÖ6j Û� "«B �Vº core, annulus 5 bubble �Ò�

emulsion çb� ¾~Ú vªj �W~� ' vªöB ÇOË~ VÚ

b�f ' çöB~ VÚ v~ ³êö ~� Ö;B. Bubble" emulsion

ç~ VÚb�f Johnsson �[18]� B�� ç&�j, �Ò� coref

annulus*~ VÚb�f Kruse �[20]� B�� ç&�j 'Ï~�

�J~&.

6� � Î�çöBº �N�V~ "« 5 V&Ê~ ÒB~ �j

�J� > ®ê� �W>Ú r.

2-4. Coal Conversion

Cê «¶ö &� �²>w~ ¢>zB ��� ìV r^ö Cê

«¶~ ;;zB �²Î�çf Ö Ú[. � Î�çöBº Cê

«¶~ �²�Ú~ R«� ��Úæ�, «¶~ &� 5 ��, �Ò�

î>B 5 J~ �W �Ò� �WJ~ �² >wb� ��Úê. �

�� ¢N~ >wöB VÚ {Ö 5 >w ï; �Ò� >w� �W

�f J~ �²³ê 5 «¶ Nê¢ Ö;~�, «¶Nêö V¢ çV

>wf BN'b� ¢Ú¾�, J ³êº Vç~ Ö² ³êf ï;

j ��ê� Î�ç çö iteration loopj ;W~ê� �W>Ú ®.

«¶~ &� 5 ��º «¶�~ �Ò(radiation) 5 &~(convection)

�Ò� ÃB�vª(evaporation heat flows)j �J� ç&�j 'Ï

~&b�[13], Cê «¶~ î>Bf ö²ªCö "�¢ v� þ',

Ûê' �Vj Û� áf Merrick[21]~ ç&�j 'Ï~� �J~&

. î>Bê º�J~ �²º >wÖ²~ {Ö 5 «¶��öB~

�² �Ò� «¶~ Nêæz �j �J� Field[22] �� B�� ç

&�j 'Ï~&b�, �7 ÒÏB Cê~ �Wz ö.æ 5 frequency

factorº adjustable variable� �.>ê� J;>Ú ®. ÿ�zKö

ÒÏ>º �Ú Z�ê~ ãÖ Î�~ sensitivity study¢ Û� �Wzö

.æº 158 kJ/mol(=19000/R[K]), �Ò� frequency factorº 0.79[kg/

(m2sPa)]¢ 'Ï~&b�, >wN>º 1N>wb� &;~� 'Ï~&

. � 8f Z�êö &� V�~ ��¶~ 8" jÝ� 8b�

¾æÒ[26].

2-5. Homogeneous and Heterogeneous Gas Reactions

Vç>wf CO, CO2, H2O, NO, N2O, SO2, O2 �ö &� � >

w 'Ëj �J~&b�, ÇOË Vçb�� ' çöB j*~� &

;~� êÖ~&. SO2 �W 5 C²C î�>wö &�Bº Schouten

" van den Bleek[23]& BB� V�Fÿ[öB~ Î�� SURE Î

�j Wolff[24] �� Bï B*�Î SURE2 Î�j 'Ï~&. Ni-

trogen~ >wb� �W>º NOx z�bö &�Bº Johnsson �[25]

� ��� homogeneous 5 heterogeneous >w kinetics Î�j 'Ï

~&b�, � <~ Vç�Wb~ Ò�² >wf Howard � 5 Hautman

�� B�� Î�j ÒÏ~&[13, 26]. �Þ, N2O 5 NO~ �Wj

º *Ò ôf ��& ��Úææ pj IEA-CFBC Î�ÚöBº �

.ç> 8b� «K~ê� �W>î.

2-6. Heat Transfer

B~Fÿ[öB~ �*� ßWf «¶~ convection 5 radiationö ~

� wall membraneb� *�>º �� " �v~� >�, � <öê

�¦ �v~V 5 ash cooler �öB *�>º �� �Ò� > ®.

� Î�çöBº çV ' partê �*�j Wirth 5 VDI-Warmeatlasö

B B�� Î��b� 'Ï, �J~&b�, 6� �*� tube& �Úö

immersedB ãÖê �J� > ®ê� �W>Ú ®[13, 27].

Fig. 1f IEA-CFBC Î�j Û� �Ò.�~ procedure¢ ¾æÞ

©�. �ç" ?� IEA-CFBC Î�f B~Fÿ[öB jv' �J

>Ú¢ � ¦ªj &¦ª <¾ Î� z��� � FÏ�� Ö �

~Æ.

3.ÿ�zK Jê 5 Ú* ¶ò

� ��öBº çV IEA-CFBC Î�z�¢ ÒÏ~� Ò���~

ÎN æzö V� ÿ�zK B~Fÿ[ �²�~ WË 5 �² ßW

Fig. 1. IEA-CFBC model procedure.

Page 4: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

56 �«"ÁfÒW

z��� B38² B1̂ 2000j 2ú

j �V~�¶ �. ÿ�zK B~Fÿ[ �²�º Fig. 2ö ¾æÞ

:f ?� �² Cê 5 C²C R«Ë~ 5 silo, �V"«¦, "�

²�¦(�²�, Ò���, loopseal, FBHE 5 FBAC) �Ò� back-

pass� �W>Ú ®. �²�º rectangular(32×19×7 m) ��� ªÖ

6*�¦V 7 m æ6öB ~�¦� 15o~ taperedB ;�¢ ��.

ªÖ6f ' �� 62B~ T-type four jet �¶� 12�ö '' vN

>Ú ®º ;�¢ ��. B~ «¶¢ �÷~� ÒB~�ʺ Ò�

��(7.6 m I.D.×15.7 m Height)f 3B& J~>Ú ®b�, ' Ò�

��� ''~ loopseal" FBHE¢ �W~² B. Loopsealöº ash

control valve& J~>Ú ®Ú FBHE� split >º ·j �.~² B

. �²� ~�¦öº [bîj FBAC� VÂ�ʺ ^2& J~>

Ú � ·j �.~² >Ú ®b�, �¢ �Ï� *Ú �Ú~ {Kj

�.~² B. �²�� "«>º Cê"«�º C 6B� ��Ú^

®� �N�Vº C 16B~ �¶j Û� "«B. ªÖ6b�¦V

4.3 m æ6ö J¢ ª. 2V&, �Ò� dense[ö Lance ª. 5V&

J~>Ú ®b�, �¢ Û� [bî~ &� 5 &¦~öB~ Nê¢

Fæ�. FBHE 5 FBACö ÒÏ>º FÿVÚº �²�Ú� �

B~B.

ÿ�zK B~Fÿ[ �¢�ö ÒÏ>º Cêf �Ú Z�êb�

ash& 39%, �;ê²& 53.7%, >ª� 3.3% �Ò� >Bª� 4%

�F>Ú ®b�, ��ê V&b� S 5 N~ �Fï� '' 0.6 5

0.2% �F>Ú ®º jv' �² >wW� ¾� Cê�¢ rJ^ ®

[28]. 6� Cê~ «ê ª�º Jê~ V&b� 0.1-3.0 mm Ò�

~ «¶& 95% �ç>Ú¢ ~¾, ÿ�zK~ ãÖ Jê~� ·�

¾ _f � «ê& ç�ï �Ò~º ©b� ¾æÒb�, ��� Cê

�ò~ >wW 5 «êö &� 'Ëf .V B~Fÿ[ Vÿ� ê�

¦(sealpot 5 cyclone)~ Nê¢ ¸�º Ö"¢ &^f Ú*ö ç�

® ®n;� º�b� ·Ï~º ©b� C&r[29]. Table 2ö Cê

ªC~ 5 V& «ê ª�¢ ¾æÚî.

�²�Ú~ î�>wj *� "«>º C²Cf �Ú B�B ©b�

CaCO3 �Fï� 90%, �Ò� MgCO3& 4.2% ;ê �F>Ú ®b�,

1 mm �~ «ê& 100%, 0.7 mm �~& 95%, �Ò� 0.5 mm �~

& 90% >º jv' ·f «ê ª�¢ <º C²C� ÒÏB.

�Ò.�~ö ÒÏB ÿ�zK B~Fÿ[ �²�ö �/>º ¢N

�Vï 5 �N�Vï, �Ò� loopseal 5 FBHE, FBACöB ÒB

~>º �Vï 5 feeder� �/>º �Vï �j ' ¦~ê� Table

Fig. 2. Schematic diagram of the Tonghae CFB boiler.

Table 2. Analysis of design coal in the Tonghae CFBC

Proximate analysis wt% Ultimate analysis wt%(dry basis) Size distribution(mm) wt%

MoistureVolatile matterFixed carbonAshHeating value

(dry basis)

03.304.053.739.04600

(kcal/kg)

CHONS

Ash

54.700.303.800.200.640.4

>9.55.6-9.54.75-5.62.8-4.75

2-2.81.0-2.00.6-1.00.25-0.60.1-0.250.075-0.1<0.075

00.000.001.002.016.031.016.017.010..002.005.0

Table 3. Operation data for the Tonghae CFBC

#Height

[m]Width[m]

Length[m]

Addition air[m3/s] Tap.1=y, 0=n

WallratioBMCR MGR 100%NR 75%NR 50%NR 30%NR

1 00.00 19.05 3.35 87.22 87.22 87.22 76.30 65.58 68.34 1 12 00.43 19.05 3.58 14.60 14.01 10.26 04.40 04.40 04.40 1 13 01.37 19.05 4.09 00.93 00.93 00.93 00.93 00.93 00.93 1 14 01.70 19.05 4.26 09.14 09.14 09.14 09.14 09.14 07.34 1 15 02.44 19.05 4.66 22.19 21.75 18.94 14.54 14.54 14.54 1 16 04.48 19.05 5.75 32.86 31.52 23.09 09.90 09.90 09.90 1 17 31.90 19.05 7.09 0 0 0 00.00 000.0 000.0 0 18 Coal[kg/s] 30.10 29.70 27.30 20.70 14.50 07.909 Lime[kg/s] 00.92 00.91 00.83 00.63 00.44 00.38

#1: Primary Air, #2: Secondary Air(4), #3: Feeder(Coal and Lime) Transport Air, #4: Loopseal+FBHE Returned Air, #5: Secondary Air(3), #6: SecondaryAir(9), #7 Top of Combustor, #8, #9, Coal, Lime Feed Rate, # Wall Ratio: [Membrane wall area]/[wall area], # Tap.: Tapered type, yes=1, no=0

Page 5: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

IEA-CFBC Î�j �Ï� ÿ�zK B~Fÿ[ �²�~ WËÎÒ 57

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000

3ö ¾æÚî. � �Ò.�~öBº 100% NR(Nominal Rate) V&

b� Ò���~ WËæzö V� B~Fÿ[ WËÎÒ¢ ~&.

4.Ö" 5 �V

Fig. 3(a)f (b)º Ò���~ WËæzö V� ÿ�zK B~Fÿ[

Ú~ »OË solid hold-up 5 {Kª�¢ ¾æÞ ©�. Ò���~

*Ú �÷ ÎNf r" ?� ;~F > ®. ÖF, Ò��� «�

öB «¶ßW"º Z&~² �æ �V~ �z ÚÇK(saturation car-

rying capacity)j >º ·� ªÒ>º *çö ~� ÎN�� �Û «

� ÎN(entrance efficiency or vortex efficiency)�¢ ;~>º ©",

ªÒ>æ p� Îj®º «¶ö &� centrifugal force 5 drag force

balanceö ~� ;~>º �¢ «¶ ÎN(single particle efficiency)�

®. �¢ «¶� iö &� >�b� �*~� r" ?[10, 13].

(4)

�VB saturation carrying capacity� µs,satº r~ (5) �b� �*

� > ®b�, 6� � IEA-CFBC Î�öB single particle efficiency

5 critical particle diameterº r~ (6), (7)�j 'Ï~&.

(5)

(6)

(7)

IEA-CFBC Î�öBº çV Ò���~ Î�j B B~Fÿ[ö

'Ï�ö ®Ú kcye¢ �. æ>� ÒÏÆ� >Ú ®. � Î�ç~

ãÖ Ò��� B�¢ Û� WËæz� ��' æz >~öò jî

¢, ÎNæzö � 'Ëj "º kcyc,e~ 8j æz(0.01-0.34)�B

B Ò���~ ÎN æz� *Ú B~Fÿ[ �²�~ WËö �~º

'Ëj ÚÚ�~. Fig. 3(a)öB �º :f ?� kcyc,e~ 8~ �.j

Û� Ò��� ÎN~ Ã&(99.99-98.67)ö V¢ dense [~ solid hold

up� 6N 6²(0.187-0.059)~� >�ö freeboard(lean phase)öBº

6N Ã&(0.005-0.014)~º ãËj ��� ®. 6� dense [~ [

¸�& Ò��� ÎN� Ã&�ö V¢ 6N ¸jæ� ®rj r >

®. �¢ Û� Ò��� ÎN� Ã&�ö V¢ B~Fÿ[ �²�

Ú~ �Ú³ê ª� 5 B~ï� � 'Ëj Arj r > ®b�, ß

® Fig. 3(b)öB �º :f ?� B plantöB Ú* ¶ò� áº

{Kö � 'Ëj "º ©j r > ®. B ÿ�zK CFBCöB

ẠÚ* {K ¶òº �² ªÖ6 {K;~¢ ��� *Ú {KN

f �Ò� ªÖ6b�¦V 0.9 m *¦V ç¦ 28.5 m Ò�~ {KN,

�Ò� ªÖ6 5.2 m *¦V ç¦ 28.5 m Ò�~ {KN¢ G; ª

C~� ®. �7 ç¦N{�¢ ¢�º ªÖ6 5.2 m *¦V ç¦

28.5 m Ò�~ {KN�º �Ú B~~ �¦¢ 6ê~º V&b� â

� ®b� ;çÚ* 7ö £ 140-170 mmH2O~ {KN¢ ��� ®

. 6� 7*N{� ªÖ6 *� 0.9-28.5 m Ò�~ {KN�º £

340-490 mmH2O~ 8j ¾æÚ� ®. Fig. 3(b)öB �º :f ?

� çV {K º*ö �º Ò��� ÎN~ 8j º;� �� *Ò

ÿ�zK~ Ò��� ÎNf 98.7%;ê� ©b� ¾æÂ. ÿ�z

K B~Fÿ[ �¢�~ V� Jê¶� ABB-CEöBº *Ò~ Ò�

�� ÎNj 96.4%� êÖ~� ®b¾ �º 'ÏB Ò���~ Î�

5 B~ï~ êÖ� 'Ïö~ N�& ®Ú �B jvº ÚJÚ ©b

� ¾æÒ. 6� Ò��� ÎNçß� dense[öB~ {KNº 6

N 6²~� >�ö lean phaseöB~ {KNº 6N Ã&~º ãË

j ¾æÚ� ®Ú B~ï~ Ã&¢ .ç� > ®b�, Ò��� ÎN

ö V� ' {KG;~öB~ {KN¢ .ç� > ®.

Fig. 4º �~ ¸�ö V� annulus 5 coreöB~ Nêª�¢ ¾æ

Ú� ®. Dense[öB~ Nêª�º annulus 5 core~ Nêª�&

£ 900oCöB jv' �¢�j " > ®b� B Nê G;~(sym-

bol)fê jv' ¾ �rj " > ®. ��¾ lean phaseöB~

annulus 5 core~ Nêª�º Ò��� ÎNö V¢ �² ªj "

> ®b�, Ò��� ÎN� Ã&�ö V¢ 6N Nê& Ôjöj "

> ®. �º Ò��� B�� �Ú~ ê�¦ Nê n;ö � Î"

¢ * > ®rj ~��. Annulus Nê ª�~ ãÖ, dense[j

æ¾ Nê& /Ï® Ôjæ& �ç¦öB � Ã&~º ;�¢ �

�� ®b�, �º annulus~ ~Ëvª �Úö ~� membrane wall

tube�~ �*�� ¢Ú¾V r^b� �'� > ®. ¯, � ç¦ö

B~ �N~ ~Ëvª �Ú& �*�� �� 6N Nê& Ôjæ

& dense[~ �Ú[" &ròæ�B � Ã&~º ;�¢ ¾æêj

ηcyc i, 1µs sat,

µs-----------

µs sat,

µs-----------ηpart i,+–=

µs sat, kcyc e, λ

Rcyc

Rcyc vort,

------------------

πAcyc e, kcyc acc,1.5

-------------------------------------- ucyc e,

ut

------------=

ηpart i,1

1 ds i, ds crit,–

ds crit,

------------------------– exp+

----------------------------------------------------=

ds crit,18uin

2------ µguradrin

ρ2 ρg–( )--------------------=

Fig. 3. Effect of cyclone efficiency on (a) solid fraction, and (b) pressurealong the combustor height.

Page 6: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

58 �«"ÁfÒW

z��� B38² B1̂ 2000j 2ú

" > ®. Annulus 5 core~ Nêª�º dense[j æ¾B free-

board ��öB Ò��� ÎN� Ã&�ö V¢ 6N Ôjæº ãË

j ���, �º ÒB~>º �Úï� Ã&~�B �Ú~ Nê¢ Ô

ºº ��j ~V r^�. *Ò ÿ�zK B~Fÿ[~ ãÖ(ηcyc

=98.7%), core~ Nêª�º �~ ¸�& Ã&�ö V¢ 6N Nê&

Ã&~º *çj ���, Ò��� inlet~ Nê(symbol)& £ 950-

1,000oCÒ�ö ®Ú ÎÒ� Ö"~ �ËFöB ÚÚ" ãÖ Ö j

Ý� º*ö ®rj r > ®. �º �Ú Z�ê~ �²ßWç

Ö Ôf �²>wWöB j�>º ©b� ��F > ®b�, Ò��

� inlet~ ãÖ, ��ª~ �^«¶ _f V&Ê7~ COf �>wB

Ö²~ Ò�²& ��Ú^ �Ú~ Nê�º ² ¸f Nê¢ ¾

æÚ� ®rj r > ®. �º jv' VÚvª� �B� �ÚöB

�>wB Ö² 5 CO �Ò� ��ª� Ò��� inlet ¦"öB ÏR

® b�>� ÷£>º ©b�� ��F > ®. Fig. 4öB �º :f

?� Ò��� ÎN~ Ã&º �ç¦~ Nê¢ Ôºº ��j ~º ©

b� ¾æ¾, Ò��� B�¢ Û� �÷ ÎNj ¸¢ ãÖ, jv' ¸

f Nê~ Ú*��j n;~² Ôºº Î"¢ V&� > ®.

Fig. 5º Ò��� ÎNö V� B~Fÿ[ ' ¦*öB~ «êª�

¢ ¾æÞ ©�. Feedº B~Fÿ[Ú� "«>º Cê 5 C²C

~ b� «ê��, filter� �VB ¦ªf Ò���öB ��÷>Ú

VÂ>º «êª�¢, �Ò� overflowº [öB VÂ>º «êª�

¢ ¾æÚ�, recirculation 5 bed-contentº '' ÒB~>º «ê

5 [Úö ®º «êª�¢ ¾æÚ� ®. �âöB " > ®��

Ò��� ÎN� Ã&�ö V¢ �÷, ÒB~>º «ê& *>'b�

·j^ Î� ¦ªöB «êª�& 6N ·jöj r > ®. �âö

B symbolf ÿ�zK B~Fÿ[öB þ2çj �� ªC� «ê�

�, «êª�º ÎÒ Ö"(ηcyc= 98.7%)f ¾ ¢~~º ©b� ¾æ

Ò. �æ, ÒB~ «ê~ ãÖº FBHE ç¦öB þ2ç� «ê¢

��� ©b� ÎÒB ÒB~ «ê�º jv' ·f «êª�¢ ¾

æÚ� ®. �º FBHEÚ~ �VF³� jv' Ô² Ú*>ê� J

ê>Ú ®Ú( −∼ 0.3 m/s), j* b�� ��Úææ p� Ú¶;ê~ ÞC

(segregation)� �Vº ©b� ��� > ®.

Fig. 6f Ò��� ÎNæzö V� �Ú «¶~ ÒB~ï 5

bottom ash� VÂ>�¾ _f Ò���öB ��÷>Ú ÷êV� V

Â>º ·j ¾æÞ �â�. �âöB " > ®�� * ÿ�zK~

�Ú ÒB~f Ò��� ÎNj 98.7% £ 500 kg/s� .G>�, VÂ

>º ash~ ;�º bottom ash& £ 410-420 ton/day, �Ò� fly ash

& £ 560-590 ton/day� .ç>Ú fly ash~ VÂï� �. z ¸f

©b� .G>î. Ò��� ÎN� Ã&�ö V¢ ÒB~ïf 6N

Ã&~º ©j " > ®b�, 6� bottom ash~ ·" fly ash~ V

Âï ;�& B� Ê:2º ©j �V� > ®. �º *Ú �²�

~ Ú*j ¢;� *Ú {KN� Ú*~V r^ö B~ï� Ã&�

>� bottom ash;�� VÂ>º ashï� Ã&~V r^�. * ÿ

�zK~ ash VÂïf fly ashf bottom ash~ j& £ 6-5 : 4-5� �

V>� ®b�, � ·ê fly ash& £ 550-600 ton/day� G;>� ®Ú

�Ò.�~ .G~& jv' ¾ �rj r > ®.

Fig. 7f Ò��� ÎNæzö V� �²� Â�öB~ V&Ê ßW

5 �² ÎNj ¾æÞ ©�. Ò��� ÎN� Ã&�ö V¢ CO

5 O2 �Ò� NOx& Ã&~º ãËj, �Ò� CO2 5 SO2 �Ò�

�² ÎN� 6²�j " > ®. CO~ Ã&º Ò��� �÷ÎN

Fig. 4. Temperature vs. combustor height with variation of cycloneefficiency.

Fig. 5. Effect of cyclone efficiency on particle separation.

Fig. 6. Effect of cyclone efficiency on the recirculation and ash dischargerate.

Page 7: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

IEA-CFBC Î�j �Ï� ÿ�zK B~Fÿ[ �²�~ WËÎÒ 59

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000

~ Ã&� �ªê~ ÒB~ï~ Ã&& � º���, �º Ahlstorm

Ò~ �� Pensylvaniaö ®º B~Fÿ[ �¢�~ �ªê 'Ë

þö ®ÚBê � Ö"& ��>� ®[30]. SO2~ 6²º jv'

«ê& ·f �>w C²C� Ò��� �÷ ÎN~ Ã&� ÒB~

>º ·� Ã&~�B î�ÎN� Ã&~º ©b� ��F > ®b

�, >�ö NOx~ VÂï� �^~¾î Ã&~º ãËj ��"� ®

. �º �²� n~ C²C~ Ã&& ¢;ï~ NOx~ Ã&¢ &^

Jº Ö"� ��F > ®b�, ��� Òf Jones �[31]~ ��

~ Scrbrass B~Fÿ[ �ëãþ ��öBê ÚÚ" > ®. 6�

Ò��� �÷ ÎN~ Ã&� �� �ª²Ò~ ÒB~ Ã&º jv

' ¸f �²�~ ç¦Nê¢ Ôºº Ö"¢ &^Z" ÿ�ö �*

~ê~ bottomb�~ VÂj Ã&�Úb�� �² ÎN 5 CO2~ V

Âj Ôºº Î"¢ &^Jº ©b� .G>î.

Fig. 8f Ò��� ÎN Ã& 5 Ca/S Öjö V� SO2 V 5

î� ÎNj ¾æÞ ©�. SO2 V 6² 5 î� ÎNf Ò��

� ÎN 5 Ca/S Öj& Ã&�ö V¢ 6N Ã&~º ©b� ¾æ

Ò. 6� Ò��� ÎN� ¸f ãÖ& Ôf ãÖö j� Ca/S Ö

jö V¢ z �² î� ÎN� Ã&�j " > ®b�, �º î�

ÎN~ Ã&¢ *�B �ëç~ Ca/S Öj¢ Ã&�ʺ� �ê& ®

Fig. 7. Cyclone efficiency vs. exit gas concentration and combustionefficiency.

Fig. 8. Effect of Ca/S mole ratio on SO2 concentration and sulfur cap-ture efficiency with cyclone efficiency.

Fig. 9. Effect of cyclone modification on the performance of the cyclone.

Page 8: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

60 �«"ÁfÒW

z��� B38² B1̂ 2000j 2ú

º ãÖ, '.� Ò��� B�¢ Û� î� ÎNj ¸¢ > ®j ©

b� V&B. 6� �âöB �*� Nêº dense[~ Nêª��

�, �~ Fig. 4öBê " > ®�� Ò��� ÎN~ Ã&º � ç¦

~ ¸f Nê¢ Ôºº ��j ~V r^ö î�B~ �N sintering

ö ~� î� ÎN 6²¢ Oæ~º ©b� ¾æÒ. ÿ�zK B~

Fÿ[~ ãÖ �� Ca/S Öj(1.0-3.6) 5 C²C «ê æzö &�

'Ëj �V~&b�, .V Ú*¶ò¢ �� &Û Öjö V¢ 140-

350 ppm ;ê& VÂ>º ©b� ¾æ¾ �Ò.�~ Ö"(ηcyc=

98.7%)f �~ ¢~~º ©b� ¾æÒ.

�Þ, ÿ�zK B~Fÿ[~ ãÖ, Ò���Ú~ vortex finder~

^� Ã& 5 «� ��' 6²~ B�¢ Û� fly ash Ú~ ��ª

j 6²�Ê� �ë Nê¢ n;z�Ê� V&ÊÚ~ SO2 &6 �~

�' Ú*j êÂ~º ·ëj >¯7ö ®. Fig. 9º Ò��� B�

ö V� Ò��� cut-diameter æz 5 ��÷ «¶~ VÂïj, �

Ò� ÒB~ïjö &� .G~¢ ¾æÞ ©b� B�>º vortex

finder~ ^�æz 5 Ò��� «�~ ¸� 5 .j æzº .ç>º

B�~ º* ÚöB ¾æÞ ©�. �âöB " > ®�� vortex

finder~ ^�Ã&ö &� *Ò ÿ�zK~ V&^�� 1.28 m� ^

Úæº ãÖ, cut-diameter 5 ��÷ «¶~ VÂïjº 6²~º ã

Ëj ¾æÚîb�, >�ö ÒB~ïjº Ã&~º ãËj ¾æÚî

. �º vortex finder~ ^�Ã&& Ò���ÚöB~ ö�OË~ ³

ê¢ Ã&�Ê�, ç7 Ò��� Â�� ¾&º VÚvªj Ú¶;ê

ïj"V r^b� ��F > ®. >�ö Ò��� «�öB~ V

ÚF³j Ã&�B Ò��� ÎN~ çßj <�¶ ~º Ï'b� Ò

��� «�~ ��'(̧ � _~ .j¢ *�º ãÖ)j *�º ãÖ

öº �âöB �º :f ?� £*~ Î"º ��æò vortex finder~

^�Ã&ö j� Ôf Î"¢ ¾æÚº ©b� ¾æÒ. ��¾

vortex finder 5 Ò��� «�B�º «¶ö ~� Vê' îÎö ~

� vÚ, vortex finder~ ææ 5 Ò��� inlet-ductöB~ fouling

�~ 'Ëj �J~� F;>Ú¢ � ©�.

�çöB ÚÚ� :f ?�, Ò��� ÎNæzº *Ú B~Fÿ[

WË 5 Ú* ¶òö � 'Ëj �~�, ��� 'Ë~ .Gj Û�

'.� Ò��� B�º B~Fÿ[ WË~ Ëçj �� > ®º ©

b� ¾æÒ.

5.Ö �

IEA-CFBC Î�j �Ï~� ÿ�zK B~Fÿ[~ Ò��� WË

æzö V� 'Ëj �V~&. ÿ�zK~ * Ò��� ÎNf £

98.7% ;ê� ¾æÒb�, Ò��� ÎN� Ã&�ö V¢ solid hold-

up 5 �Ú {KN& dense[~ ãÖ 6N 6²~� >�ö freeboard

~ solid hold-up 5 �Ú {KN& Ã&~º ©b� ¾æÒ. 6�

�Ú Nêª�º Ò��� ÎN~ Ã&ö V¢ ÒB~ï~ Ã&� ç

¦ freeboard~ Nê& 6N Ôj^ n;z>º ©b� ¾æÒb� «

êª� 6� 6N ·f «êª�� æ�>º ©b� .G>î. N

ê n;z 5 �Ú ÒB~~ Ã&� î� ÎNê Ã&~¾, >�ö

Ò��� ÎN� Ö ¸j ãÖöº CO VÂï� ¾�, �² ÎN�

Ôjæº *ç� .G>î. 6� ��� Ò��� ÎN~ çßj *

� Ò��� vortex finder 5 «� ��' B�¢ >¯� ãÖ, B~

Fÿ[ WË Ëç� V&>º ©b� .G>î.

ÒÏV̂

a : exponential decay constant [1/m]

Acyc,e: cross section area of cyclone entry [m2]

ds,crit : critical particle diameter [m]

ds,i : particle diameter of i class [m]

H : height [m]

Hd : dense bed height [m]

kcyc,acc : acceleration coefficient of cyclone [-]

kcyc,e : cyclone entrance efficiency coefficient [-]

ki,attr : attrition constant of i class [1/m]

ki,shrk : shrinking constant of i class [1/s]

: mass flow rate [kg/s]

wi : particle size fraction [-]

p : pressure [Pa]

Rcyc : radius of cyclone [m]

Rcyc,vort: radius of vortex finder [m]

rin : radius of cyclone inlet [m]

ucyc,e : entrance gas velocity in cyclone [m/s]

uo : superficial gas velocity [m/s]

uin : inner directional gas velocity in cyclone [m/s]

urad : tangential gas velocity in cyclone [m/s]

: terminal velocity of mean particle size [m/s]

�Ò�Ê ^¶

: average solid volume fraction in dense bed [-]

: average solid volume fraction at infinite height [-]

λ : wall friction coefficient [-]

ηcyc,i : cyclone separation efficiency of i class [-]

ηpart,i : eddy separation efficiency of i class [-]

ηseg : segregation function [-]

µg : dynamic gas viscosity [kg/ms]

µs : solid load in gas [kg/kg]

µs,sat : saturation solid load in gas [kg/kg]

ρg : gas density [kg/m3]

ρs : solid density [kg/m3]

�̂̂ ò

1. Heinbockel, I.: Ph. D. Dissertation, Siegen University, Germany(1995).

2. Zhang, L., Li, T. D., Zhen, Q. Y. and Lu, C. D.: 11th Int. Conf. on

FBC, Montreal, Canada, 1289(1991).

3. Xu, X. and Mao, J.: Proc. 4th Int. Conf. on CFB, Somerset, PA, USA,

104(1993).

4. Lin, X. and Li, Y.: Proc. 4th Int. Conf. on CFB, Somerset, PA, USA,

547(1993).

5. Halder, P. K. and Datta, A.: Proc. 4th Int. Conf. on CFB, Somerset,

PA, USA, 696(1993).

6. Saraiva, P. C., Azevedo, J. L. T. and Cavalho, M. G.: 12th Int. Conf.

on FBC, San Diego, CA, USA, 375(1993).

7. Hypannen, T., Lee, Y. Y., Ketunen, A. and Riiali, J.: 12th Int. Conf.

on FBC, San Diego, CA, USA, 1121(1993).

8. Mori, S., Narukawo, K., Yamada, I., Takebayashi, T., Tanii, H., To-

moyasu, Y. and Mii, T.: 11th Int. Conf. on FBC, Montreal, Canada,

1261(1991).

9. Sengupta, S. P. and Basu, P.: 11th Int. Conf. on FBC, Montreal, Can-

ada, 1295(1991).

10. Hannes, J. P., van den Bleek, C. M. and Renz, U.: Proceedings of the

13th Int. Cong. on FBC, Orlando, FL, USA, 287(1995).

11. Prichett, J. W., Blake, T. R. and Garg, S. K.: AIChE Symp. Ser., 74,

ut

εs d,

εs ∞,

Page 9: Simulation of the Tonghae Thermal Power Plant CFB by using ... · Abstract −The 200 MWe Tonghae thermal power plant CFB(2-units) is the largest boiler to fire a Korean anthracite

IEA-CFBC Î�j �Ï� ÿ�zK B~Fÿ[ �²�~ WËÎÒ 61

HWAHAK KONGHAK Vol. 38, No. 1, February, 2000

134(1978).

12. Balzer, G. and Simonin, O.: Proc. 5th Int. Symp. on Refined Flow

Modelling and Turbulence Measurements, Paris, France(1993).

13. Hannes, J. P.: Ph. D. Dissertation, Delft University of Technology,

The Netherlands(1996).

14. Wen, C. Y. and Chen, L. H.: AIChE J., 28, 117(1982).

15. Rhodes, M.: Powder Technology, 53, 155(1987).

16. Kunii, D. and Levenspiel, O.: “Fluidization Engineering,” Robert E.

Krieger Publishing Company, Huntington, New York(1977).

17. Davidson, J. F. and Harrison, D.: “Fluidized Particles,” Cambridge

University Press, New York(1963).

18. Johnsson, F., Andersson, S. and Leckner, B.: Powder Techonlogy,

68, 117(1991).

19. Darton, R. C., LaNauze, R. D., Davidson, J. F. and Harrisson, D.:

TransIChemE, 55(1977).

20. Kruse, M., Hartge, E. U. and Werther, J.: Powder Technology, 70,

293(1992).

21. Merrick. D.: Fuel, 62, 534(1983).

22. Field, M. A., Gill, D. W., Morgan, R. B. and Hawksley, P. G. W.:

“Combustion of Pulverized Coal,” British Coal Utilization Research

Association, Great Britain(1967).

23. Schouten, J. C. and van den Bleek, C. M.: Chemical Engineering

Science, 43, 2051(1988).

24. Wolff, E. H. P.: Ph. D. Dissertation, TU-Delft University, The Neth-

erlands(1991).

25. Johnsson, J. E.: Presented at the 21th IEA-AFBC Meeting in Beo-

grad(1990).

26. Hautman, D. J., Dryer, F. L., Schug, K. P. and Glasman, I.: Combus-

tion Science and Technology, 25, 219(1981).

27. Wirth, K. E.: Chemical Engineering Science, 50, 2137(1995).

28. Sun, D. W., Bae, D. H., Hee, K., Son, J. E., Kang, Y., Wee, Y. H.,

Lee, J. S. and Ji, P. S.: HWAHAK KONGHAK, 34, 321(1996).

29. Lee, J. M. and Kim, J. S.: Proceedings of the 6th Asian Conference

on Fluidized-Bed and Three-Phase Reactor, CheJu Island, Korea, 501

(1998).

30. Cheliand, P. K. and Gamble, R.: “Fluidized Bed Combustion Volume-

1,” ASME, 535(1995).

31. Jones, P. A., Syngle, D. V. and Sinn, B. T.: “Fluidized Bed Combus-

tion Volume-2,” ASME, 1211(1995).