réaction au feu de bois massifs en parements extérieurs

61
RAPPORT D’ETUDE REACTION AU FEU DE BOIS MASSIFS EN PAREMENTS EXTERIEURS ET INTERIEURS Demandeur(s) de l'étude Direction de l’Habitat de l’Urbanisme et des Paysages Arche de la Défense Arche Sud FR-92055 Paris La Défense Cedex 04 L’interprofession France Bois Forêt 10, Avenue de Saint-Mandé FR-75012 Paris Auteur(s) Vérificateur(s) Version Date Jean-Marie GAILLARD (FCBA) Martial BONHOMME (CSTB) Stéphane HAMEURY (CSTB) Serge LENEVE (FCBA) 1.0 31/12/2011

Upload: vuongkhanh

Post on 05-Jan-2017

222 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Réaction au feu de bois massifs en parements extérieurs

RAPPORT D’ETUDE

REACTION AU FEU DE BOIS MASSIFS EN PAREMENTS EXTERIEURS ET INTERIEURS

Demandeur(s) de l'étude

Direction de l’Habitat de l’Urbanisme et des Paysages Arche de la Défense – Arche Sud

FR-92055 Paris La Défense Cedex 04

L’interprofession France Bois Forêt 10, Avenue de Saint-Mandé

FR-75012 Paris

Auteur(s) Vérificateur(s) Version Date

Jean-Marie GAILLARD (FCBA)

Martial BONHOMME (CSTB)

Stéphane HAMEURY

(CSTB)

Serge LENEVE (FCBA)

1.0 31/12/2011

Page 2: Réaction au feu de bois massifs en parements extérieurs

2

Jean-Marie GAILLARD

Pôle Industrie Bois Construction

Service Consultance Innovation et Appui Technique

Institut Technologique FCBA Allée de Boutaut – BP 227

33 028 Bordeaux Cedex

: 05.56.43.63.98 @ : [email protected] : www.fcba.fr

Martial BONHOMME

Département Sécurité, Structure et Feu Division Etudes et Essais Réaction Feu

Centre Scientifique et Technique du Bâtiment 84 avenue Jean Jaurès - Champs-sur-Marne FR-77447 Marne-la-Vallée Cedex 2

: 01.64.68.83.30 @ : [email protected] : www.cstb.fr

Page 3: Réaction au feu de bois massifs en parements extérieurs

3

SOMMAIRE 1. Introduction ................................................................................................................... 4

1.1 Contexte de l’étude ................................................................................................. 4 1.2 Objectif de l’étude ................................................................................................... 4 1.3 Contributions et partenaires de l’étude ................................................................... 5

2. Documents de référence .............................................................................................. 5

3. Exigences réglementaires à satisfaire .......................................................................... 6 3.1 Etat réglementaire et harmonisation européenne ................................................... 6

3.2 Protocole d’essai européen SBI.............................................................................. 9

3.3 Les classements conventionnels des lames en bois massifs ............................... 12 4. Méthode ...................................................................................................................... 15

4.1 Approche méthodologique .................................................................................... 15 4.2 Paramètres retenus et choix effectués ................................................................. 16

4.3 Montage des éprouvettes ..................................................................................... 17 4.4 Référencement des éprouvettes ........................................................................... 19

4.5 Epreuve de Vieillissement .................................................................................... 22 5. Résultats ..................................................................................................................... 26

5.1 Résultats des essais sans vieillissement .............................................................. 26

5.1.1 Mesures SBI : Phase 1 .................................................................................. 26 5.1.2 Mesures du Pouvoir Calorifique Supérieur (PCS). ......................................... 28

5.1.3 Décisions du comité technique. ...................................................................... 29 5.1.4 Mesures SBI : Phase 2 .................................................................................. 29

5.2 Résultats des essais sans vieillissement .............................................................. 31 5.2.1 Mesures d’humidité de l’air et du bois ............................................................ 31

5.2.2 Mesures SBI ................................................................................................... 34 6. Analyse ....................................................................................................................... 35

6.1 Impact/influence des paramètres de l’étude sur le classement SBI ...................... 35 6.1.1 Essence de bois ............................................................................................. 35 6.1.2 Masse volumique des lames de bois massifs ................................................ 37

6.1.3 Profil d’usinage/ Géométrie des lames ........................................................... 37 6.1.4 Etat de surface/ Usinage ................................................................................ 40

6.1.5 Sens du montage vertical ou horizontal ......................................................... 41 6.1.6 Humidité du bois ............................................................................................ 42

6.1.7 Mode de séchage ........................................................................................... 44 6.1.8 Vieillissement du bardage extérieur ............................................................... 45

7. Conclusion Générale .................................................................................................. 47 8. Annexes 1 : Profils d’usinage ..................................................................................... 49 9. Annexes 2 : débit calorifiques (RHR) .......................................................................... 52

9.1.1 Epicéa ............................................................................................................ 52 9.1.2 Douglas .......................................................................................................... 53 9.1.3 Comparatif essence ....................................................................................... 57 9.1.4 Influence du séchage ..................................................................................... 58 9.1.5 Essais Influence du vieillissement accéléré ................................................... 59

10. Annexes 3 : –ccartographie des ambiances climatiques en france .......................... 60

Page 4: Réaction au feu de bois massifs en parements extérieurs

4

1. INTRODUCTION

1.1 Contexte de l’étude

Dans le cadre des politiques de soutien au développement des matériaux bio-sourcés dans le

bâtiment, les Pouvoirs Publics souhaitent recenser les actions potentielles de stimulation du

développement d‟une offre à base de solutions bois, à l‟adresse des constructeurs et des

industriels, tant sur le champ du neuf que pour celui de la rénovation. Cette orientation

volontariste, cohérente avec les conclusions du Grenelle de l‟environnement, se heurte au

constat de faiblesses de la filière bois française à soutenir la R&D, en particulier en matière de

sécurité incendie des ouvrages faisant appel au matériau bois.

Dans ce contexte, la Direction de l'Habitat, de l'Urbanisme et des Paysages a confié au CSTB et

à l‟Institut Technologique FCBA en 2009, un programme d'étude pour identifier les obstacles

réglementaires et normatifs en France à l‟usage du bois construction. Ce programme d‟étude a

abouti à la publication d‟un rapport en juin 2009 :

http://www.logement.gouv.fr/IMG/pdf/Rapport_Obstacles_Bois_construction_cle2527d1.pdf

Ce rapport propose un faisceau d‟actions susceptibles de nourrir l‟engagement de l‟État

transcrit dans l‟article 29 du projet de loi de programme des engagements du Grenelle

Environnement, ou « Grenelle 1 », engagement visant entre autre « à adapter les normes de

construction à l‟usage du bois […] ».

Un frein recensé dans ce rapport concerne plus particulièrement la performance de réaction au

feu des systèmes de revêtement extérieur (bardage) et/ou intérieur (lambris) en lames de bois

massif, qui n‟atteint pas systématiquement l‟exigence requise en fonction de la destination

dans l‟ouvrage, notamment pour les bâtiments de plus de trois niveaux à usage privatif, les

façades des Etablissements Recevant du Public ne répondant pas à l‟exigence du C+D, ou

encore les revêtements intérieurs verticaux des Etablissements Recevant du Public (exigence

M2).

Un levier d‟action potentiel consiste à étudier la susceptibilité de certaines essences de bois

massifs à atteindre la performance de réaction au feu requise M2 (ou Euroclasse C) par un

mode de préparation spécifique de l‟état de surface et/ou du profil d‟usinage sans recourir aux

traitements d‟ignifugation.

1.2 Objectif de l’étude

L‟objet de la présente étude est d‟évaluer la performance de divers bardages en matière de

réaction au feu établie selon le système de classification européen harmonisé, dit des

Euroclasses. Celui-ci est utilisé pour exprimer la performance réaction au feu des produits de

construction, mis sur le marché sous marquage CE, afin d‟attester leur aptitude à être

incorporés dans des ouvrages qui satisfont les exigences essentielles de la Directive

européenne (89/106/CEE).

L‟objectif premier consiste à établir, la performance de réaction au feu de divers revêtements

extérieurs, constitués de lames de bardage en bois massif en jouant sur les différents

Page 5: Réaction au feu de bois massifs en parements extérieurs

5

paramètres précités afin d‟éclairer les choix judicieux pouvant potentiellement permettre

d‟atteindre une performance de réaction au feu M2 (Euroclasse C).

En complément du premier objectif, nous avons mesuré l‟influence du vieillissement à

l‟extérieur selon une norme européenne reconnue, sur la réaction au feu d‟un système (un

profil et une essence : douglas) et l‟évolution du taux d‟humidité du bois pendant un an

d‟exposition en configuration de bardage extérieur.

1.3 Contributions et partenaires de l’étude L‟Institut Technologique FCBA et le CSTB, ont œuvré en complémentarité sur 2010 et 2011

pour mener à terme cette étude.

Un Comité Technique a été constitué afin de suivre et d‟orienter les travaux en fonction des

résultats intermédiaires obtenus. Ce Comité Technique a associé des professionnels collectant

la CVO (Contribution Volontaire Obligatoire), les experts des deux organismes techniques

(CSTB, FCBA) ainsi que les représentants de la Direction de l‟Habitat, de l‟Urbanisme et des

Paysages.

Les professionnels suivants ont contribué à l‟étude, en tant que membres du Comité

Technique :

France Bois Forêt / Le Commerce du Bois (représenté par Mr Richard CLOUARD) ;

Syndicat FRANCE Douglas (représenté par Mr Sylvain LE PETIT).

Le présent rapport a été rédigé par les personnes suivantes:

Le Centre Scientifique et Technique du Bâtiment (CSTB), représenté par M. Martial

BONHOMME & M. Stéphane HAMEURY ;

L'Institut Technologique Forêt Cellulose Bois-construction Ameublement (FCBA),

représenté par Mme Véronique GEORGES, M Jean Marie GAILLARD, M. Serge LENEVE &

M. David BETTOIA.

2. DOCUMENTS DE REFERENCE

Arrêté du 31 janvier 1986 relatif à la protection contre l'incendie des bâtiments d'habitation.

Arrêté du 25 juin 1980 portant approbation des dispositions générales du règlement de

sécurité contre les risques d'incendie et de panique dans les établissements recevant du public.

Arrêté du 21 Novembre 2002 relatif à la réaction au feu des produits de construction et

d‟aménagement.

Arrêté du 24 septembre 2009 portant approbation de diverses dispositions modifiant le

règlement de sécurité contre les risques d‟incendie et de panique dans les établissements

recevant du public.

Arrêté du 24 mai 2010 portant approbation de diverses dispositions complétant et modifiant

le règlement de sécurité contre les risques d‟incendie et de panique dans les établissements

recevant du public.

Page 6: Réaction au feu de bois massifs en parements extérieurs

6

NF EN 13501-1 novembre 2002 : classement de réaction au feu des produits et éléments

de construction.

NF EN ISO 11925-2 : Essais de réaction au feu des produits de construction - Allumabilité

des produits de bâtiment soumis à l'incidence directe de la flamme (Partie 2 : Essai à l'aide

d'une source à flamme unique).

NF EN 13823 : Essais de réaction au feu des produits de construction - Produits de

construction à l'exclusion des revêtements de sol exposés à une sollicitation thermique

provoquée par un objet isolé en feu.

NF EN 13238 : Essais de réaction au feu des produits de construction - Mode opératoire du

conditionnement et règles générales de sélection des substrats.

NF EN 14915 : Lambris et bardages en bois - Caractéristiques, évaluation de conformité et

marquage – 2006.

Cahier du CSTB 3168 - Livraison 404 : Les Euroclasses de réaction au feu, les essais

retenus pour leur attribution, les conséquences pour les produits de construction français -

1999.

Cahier du CSTB 3372 - Livraison 423 : situation des revêtements en bois massifs dans le

système des Euroclasses de réaction au feu.

Cahier du CSTB 3468 - Livraison 441 : Traitements ignifugés pour revêtements en bois

massifs employés à l‟extérieur et durabilité – Analyse détaillée de quelques exemples - Juillet-

août 2003.

Irabois : Réaction au feu des bois massifs – 2004.

Report CWFT 055 : Fire tests of wood panelling and cladding according to EN 13823:2002

(SBI) test procedure, VTT Research Reports No RTE 2236 /03 and RTE 4212 /03, 2003.

NF EN 927-3 : Peintures et vernis –produits de peintures et systèmes de peinture pour le bois

en extérieur Partie 3 : essai de vieillissement naturel.

DTU 51-4 : Platelages extérieurs en bois.

3. EXIGENCES REGLEMENTAIRES A SATISFAIRE

3.1 Etat réglementaire et harmonisation européenne Comme le précise le Cahier du CSTB 3468, en France, dans le secteur du bâtiment, la notion

de réaction au feu est définie par le Code de la construction et de l'habitation (articles R.121-2

et R.121-3). Celui-ci précise que « les différentes catégories de la classification, les conditions

d'essais et la compétence des différents laboratoires chargés d'y procéder, sont fixées par des

arrêtés du ministre de l'Intérieur ».

Cette classification comporte cinq niveaux de performance, répertoriés par une lettre unique M

(matériau) et un chiffre, nombre entier compris entre 0 et 4.

Les matériaux classés en catégorie M0 sont ceux dont le pouvoir calorifique supérieur est

faible, c'est-à-dire inférieur ou égal à 2,5 MJ.kg-1. Cette catégorie de matériaux très peu

combustibles n'est bien évidemment pas accessible aux différentes essences de bois ou aux

matériaux dérivés du bois, lesquels contiennent en moyenne, à l'état anhydre, 50% de

Page 7: Réaction au feu de bois massifs en parements extérieurs

7

carbone, 42% d'oxygène, 6% d'hydrogène, 1% d'azote et 1% de cendres. De ce fait, les bois

présentent des valeurs de PCS voisines de 16 MJ.kg-1.

Les matériaux combustibles sont donc classés dans l'une des catégories de performance M1 à

M4, voire non classés s'ils ne satisfont pas aux critères d'accession à la catégorie M4.

Ces quatre catégories correspondent à un couple (inflammabilité/combustibilité) dont l'une des

composantes au moins s'aggrave lorsque le chiffre catégoriel croit.

Ainsi, les planches et avivés de bois massif, provenant d'essences issues de régions

tempérées, sont majoritairement classés en catégorie M3 ou M4.

De ce fait, une annexe (n° 3) à l'arrêté de 2002, relatif à la réaction au feu, attribuait aux

matériaux bois un classement conventionnel sans recourir à essai de justification. Pour ce

faire, on distingue les essences de bois de feuillus et de résineux, ainsi qu'un seuil d'épaisseur

de planches. Au-delà de ce seuil (18 mm pour les bois résineux,14 mm pour les bois feuillus)

le classement conventionnel passe de M4 à M3.

Cette amélioration de classement peul apparaître paradoxale car la masse surfacique

combustible augmente avec l'épaisseur. Cette amélioration résulte du fait que, au-delà d'une

certaine épaisseur, les planches de bois, issues d'une essence donnée, ne percent pas durant

les 20 minutes d'épreuve de rayonnement dite « à l'épiradiateur » (NF P 92-501) ; aussi,

l'absence d'inflammation au dos des planches leur permet de passer de la catégorie M4 à la

catégorie M3.

La mise en application du système des Euroclasses est par la suite devenue effective en 2003

suivant l'enchaînement événementiel suivant :

La mise en application du système des Euroclasses est par la suite devenue effective en 2003

suivant l'enchainement événementiel suivant:

23 février 2000 publication au Journal officiel des Communautés européennes d'une

décision de la Commission (2000/147/CE) qui définit la classification de réaction au feu

en termes d'Euroclasses ;

5 novembre 2002 : prise d'effet de la norme NF EN 13501-1, laquelle transpose, dans

le système normatif français, la norme européenne qui explicite le système des

Euroclasses et qui avait été publiée en version anglaise en février 2002 ;

21 novembre 2002 : signature du nouvel arrêté ministériel relatif à la réaction au feu,

20 décembre 2002 : prise d'effet de la norme NF EN 13823, laquelle transpose, dans le

système normatif français, la norme européenne qui décrit la procédure d'essai SBI,

l'appareillage et les grandeurs à mesurer ou à calculer en vue de prononcer le

classement ;

31 décembre 2002 : publication au Journal officiel de la République française du nouvel

arrêté ministériel relatif à la réaction au feu, signé conjointement par les ministres de

l'intérieur et de l'industrie.

La classification principale est relative à l'évaluation de la contribution des produits de

construction au développement du feu. Elle comporte six classes de performance. A1 et A2,

Page 8: Réaction au feu de bois massifs en parements extérieurs

8

dédiées aux produits peu combustibles, ne sont pas accessibles aux bois massifs qui très

généralement seront classés D.

On constate qu'en regard de l„exigence M2, la classification européenne correspondante est

l'Euroclasse C. Ces niveaux de performance impliquent à priori ignifugation pour les bois

massifs, cas mis à part du Mélèze, essence tempérée dont la performance de réaction au feu

a été mesurée sous certaines conditions M2 ou Euroclasse C sans traitement d‟ignifugation

conféré.

Dans les règlements de sécurité incendie précités, l'aspect production fumigène n'est pas

considéré, d'où l'acceptation de l'une quelconque des trois classes « fumée » (s1, s2, s3) des

Euroclasses.

Quant à la chute de matière enflammée (classification d), trois cas sont considérés par le

système européen : son absence (d0), son observation effective avec persistance, faible (d1)

ou plus durable (d2), de la combustion avec flamme des débris tombés au sol. Pour les bois

massifs, la performance est très généralement d0, voire d1 dans certains cas de résineux qui

brûlent avec projection de débris enflammés.

Figure 1 : Tableau de transposition Euroclasse et classement M (extrait de l’arrêté du 21 nov. 2002)

Page 9: Réaction au feu de bois massifs en parements extérieurs

9

3.2 Protocole d’essai européen SBI

L‟appareil d‟essai SBI (Single Burning Item) a été créé spécifiquement pour les besoins de

l‟harmonisation européenne. Ainsi, contrairement aux autres appareils d‟essais qui sont des

adaptations de normes internationales préexistantes utilisées dans différents états membres,

celui-ci est totalement nouveau. L‟appareil d‟essai SBI est utilisé pour évaluer les

performances de réaction au feu des produits utilisés en parois verticales, plafonds et

rampants.

Il s‟agit d‟un essai pour produits de construction exposés à une sollicitation thermique

provoquée par un Objet isolé en feu (OIF ou SBI). Le protocole d‟essai est défini dans la norme

européenne NF EN 13823.

On utilise un appareil d'essai constitué d'un chariot, d'un bâti, de brûleurs, d'une hotte… Une

éprouvette, constituée de deux ailes verticales formant un angle droit, est exposée à la

flamme d'un brûleur placé au pied de l‟angle formé par les 2 ailes (“brûleur principal”). La

flamme est due à la combustion de gaz propane injecté au travers d'un lit de sable de manière

à produire un débit calorifique de (30,7 2,0) kW.

La performance de l‟éprouvette est évaluée sur une durée de 20 minutes. Les critères de

performance sont les suivants : production de chaleur, production de fumée, propagation

horizontale du front de flamme et chute de gouttelettes ou débris enflammés.

Une courte période avant allumage du brûleur principal est nécessaire pour mesurer le débit

calorifique du brûleur seul ; cette mesure est réalisée en utilisant un brûleur identique, placé à

distance de l'éprouvette (“brûleur auxiliaire”).

Certaines mesures sont réalisées automatiquement, d‟autres résultent de l'observation

visuelle. Le conduit d‟extraction est équipé de capteurs destinés à mesurer la température,

l‟atténuation de la lumière, les fractions molaires O2 et CO2, ainsi qu‟une pression différentielle

induite par le débit des effluents gazeux qui s'écoulent dans le conduit d'extraction. Ces

grandeurs sont enregistrées automatiquement et exploitées pour calculer le débit volume, le

débit calorifique (RHR en anglais) et le débit de fumée (RSP en anglais).

La propagation horizontale du front de flamme et la chute de gouttelettes ou particules

enflammées font l‟objet d'une observation visuelle et sont notées sur la fiche d'enregistrement.

Le rapport d‟étude utilise par la suite des terminologies propres à l‟essai SBI qui sont définies

ci-après:

THR600s : quantité de chaleur due à la combustion de l‟éprouvette pendant les 600 premières

secondes d‟exposition à la flamme du brûleur ;

LFSedge : propagation de flamme latérale le long de la grande aile de l‟éprouvette jusqu‟à la

rive externe de cette dernière à une hauteur comprise entre 500 et 1000 mm durant les

premières 1500 secondes ;

TSP600s : quantité de fumée produite par l‟éprouvette pendant les 600 premières secondes

d‟exposition à la flamme du brûleur ;

FDP : chute au sol de gouttelettes / particules enflammées hors de la zone du brûleur ;

Page 10: Réaction au feu de bois massifs en parements extérieurs

10

FIGRA : Indice de vitesse de développement du feu ;

SMOGRA : Indice de vitesse de développement des fumées.

Figure 2 : Principe de l’essai SBI.

Critères de performance :

Les contributions énergétique et fumigène du produit sont déterminées en soustrayant aux

valeurs mesurées la contribution du brûleur. On représente l‟évolution en fonction du temps du

débit calorifique et du débit de fumées. On détermine alors des critères relatifs à l‟accélération

de la production de chaleur ou de fumées et à la quantité totale produite en dix minutes.

Figure 3 : Représentation graphique des grandeurs physiques mesurées dans l’essai SBI.

Page 11: Réaction au feu de bois massifs en parements extérieurs

11

Détermination de l’Euroclasse à partir des résultats à l’essai SBI :

Les résultats obtenus à l‟essai SBI sont placés dans le plan FIGRA- THR600s, comme

représenté sur le diagramme de la Figure 4.

Euroclasse E : lorsque FIGRA est supérieur à 750 W·s-1, le produit peut être classé E

sous réserve d‟avoir satisfait aux critères de l‟essai d‟allumabilité (NF EN ISO 11925 -

2).

L‟obtention des Euroclasses B, C et D repose sur les résultats de deux essais :

allumabilité (NF EN ISO 11925 -2) et essai SBI ; pour ce dernier les critères de

classement sont les suivants :

o Euroclasse D : FIGRA ≤ 750 W·s-1

o Euroclasse C : FIGRA ≤ 250 W·s-1, THR600s ≤ 15 MJ et la propagation latérale

du front de flamme n‟atteint pas l‟arête verticale de la grande aile de

l‟éprouvette.

o Euroclasse B* : FIGRA ≤ 120 W·s-1, THR600s ≤ 7,5 MJ et la propagation latérale

du front de flamme n‟atteint pas l‟arête verticale de la grande aile de

l‟éprouvette.

Classement « gouttes ou débris enflammés » :

Classe d0 = pas de goutte ou débris enflammé avant 600s ;

Classe d1 = pas de goutte ou débris enflammé persistant plus de 10s avant 600 s

Classe d2 = produits qui ne sont ni d0 ni d1, ou pour lesquels le papier a été enflammé

lors de l‟essai d‟allumabilité (NF EN ISO 11925-2).

* ou mieux en fonction des résultats aux essais de non-combustibilité (NF EN ISO 1182) et de

mesure du pouvoir calorifique supérieur (voir NF EN ISO 1716).

Figure 4 : Plan FIGRA – THR600s

Page 12: Réaction au feu de bois massifs en parements extérieurs

12

Détermination de la classe de fumées à partir des résultats à l’essai SBI :

Les résultats obtenus à l‟essai SBI sont placés dans le plan SMOGRA-TSP600s, comme

représenté en Figure 5.

Classe s1 : produits dont le SMOGRA ≤ 30 m²·s-2 et le TSP600s ≤ 50 m²

Classe s2 : produits dont le SMOGRA ≤ 180 m²·s-2 et le TSP600s ≤ 200 m² ;

Classe s3 : produits qui ne sont ni s1 ni s2.

Figure 5 : Plan SMOGRA – TSP600s

3.3 Les classements conventionnels des lames en bois massifs A ce jour, les lames en bois massif sont généralement classées conventionnellement

Euroclasse D (M3). Pour satisfaire les exigences de réaction au feu M2, un traitement ignifuge

est systématiquement appliqué aux bardages en bois. Ce traitement est efficace pour les

parements intérieurs mais implique certaines contraintes (esthétique) et peut constituer un

obstacle à la prescription du bois dans un contexte d‟exigences environnementales. Par contre

pour les parements extérieurs, l‟efficacité du traitement n‟a pas fait, pendant des décennies,

l‟objet d‟études permettant de valider sa durabilité dans le temps. Cette piste est seulement

investiguée depuis peu de temps (demande du Ministère de l‟intérieur courant 2011).

Les parements extérieurs doivent, notamment pour les bâtiments de plus de trois niveaux à

usage privatif, satisfaire les exigences réglementaires « feu » appliquées aux façades, soit le

niveau M2 (selon le référentiel national de réaction au feu) qui peut être obtenu par une

évaluation basée sur les Euroclasses (niveau C). En ce qui concerne les établissements

recevant du public, il est systématiquement exigé un classement C (M2) si le bâtiment a plus

d‟un étage, excepté en cas d‟application de la règle du C+D au travers de laquelle l‟exigence

Euroclasse D (M3) est requise.

Page 13: Réaction au feu de bois massifs en parements extérieurs

13

Les parements intérieurs doivent également être classés Euroclasse C (M2) pour satisfaire les

exigences des parois verticales des établissements recevant du public.

La norme harmonisée NF EN 14915 définit pour les parements intérieurs ou extérieurs des

classements conventionnels. La Figure 6, reprise de la norme NF EN 14915, permet aux

industriels de commercialiser les produits avec un marquage CE et de déclarer la Classe de

réaction au feu D-s2,d0 ou D-s2,d2 sans avoir à réaliser d‟essais privés en respectant les

conditions associées à ce classement : masse volumique, épaisseur nominale et minimale

(élégie), montage,…

Le montage a une importance primordiale sur l‟atteinte ou non de la performance, il est à

noter que sur la figure 6, il apparaît uniquement des classement conventionnel Euroclasse D-

S2, d0 pour une configuration avec lame d‟air ouverte sur un support (sous couche dans le

texte de la norme) classé A2-S1,do. Ce qui valide des bardages bois sur supports

incombustibles tels que Béton, Brique, Parpaing….

Par contre dans les systèmes constructifs à ossature bois (montage avec support D-S2,d0) et

bardages bois rapportés, le tableau de la norme NF EN 14915 (figure 6 ) n‟apportent pas de

solution conventionnelle.

Page 14: Réaction au feu de bois massifs en parements extérieurs

14

Figure 6 : NF EN 14915 - Classe de performance de réaction au feu

Remarque : pour les lambris et bardage d‟épaisseur 18mm, il faut lire dans les conditions

d‟utilisations finales : sans ou avec lames d‟air à cavité ouverte conformément à la décision de

la Commission Européenne du 06 mars 2006 (2006/213/EC).

Page 15: Réaction au feu de bois massifs en parements extérieurs

15

4. METHODE

4.1 Approche méthodologique

Le programme d‟étude s‟articule autours de 4 étapes clés définies ci-après :

Le contenu technique de l‟étude est réparti en 4 tâches précisées ci-après :

Tâche 1 : Analyse de l‟influence des caractéristiques du matériau bois, potentiellement

influentes sur le comportement en réaction au feu (densité, mode de débit, présences

aubieuses..).

Tâche 2 : Analyse de l‟influence de la géométrie des profils sur les parements extérieurs

et intérieurs en vue d‟obtenir un comportement en réaction au feu du niveau de

l‟Euroclasse C.

Tâche 3 : Vérification de la performance de réaction au feu des bardages après un an

de vieillissement naturel.

Tâche 4 : Exploitation des résultats et définition du profil recherché répondant aux

critères associés à un classement Euroclass C.

Page 16: Réaction au feu de bois massifs en parements extérieurs

16

4.2 Paramètres retenus et choix effectués

Cette phase préalable a résulté d'une définition paramétrique menée en concertation avec le

Comité Technique de l'étude.

L‟étude porte sur quatre essences: Douglas (Pseudotsuga-menziessi), Mélèze (Larix decidua),

Châtaignier (Castanea sativa) et épicéa (Picea excelsa).

Pour chacune des essences, différents profils d‟usinage ont été retenus comme définis dans le

Tableau 1.

DOUGLAS EPICEA MELEZE CHATAIGNIER

Elégie STD

PROTO ROND

FOREZ

Elégie-arrondie

(19MM)

Elégie-arrondie

(21mm)

EMBREVEMENT

(Type Mi Bois)

Tableau 1 : Profils d’usinage et essence de bois.

La géométrie de chaque profil de bardage du Tableau 1 est définie en annexe 1 de ce

rapport.

Seuls des bois bruts de finition sont étudiés sans traitement d‟ignifugation particulier. Les

lames d‟épicéa font l‟objet d‟un traitement de préservation certifié CTB A +, appliqué par

pulvérisation en filière pour un usage en classe d‟emploi 3.

Par ailleurs, l‟‟influence des paramètres suivants a été étudiée:

Sens de montage en lames verticales ou horizontales ;

Masse volumique ;

Taux d‟humidité par l‟intermédiaire d‟un conditionnement préalable avant essai des

lames de bois massifs :

o 23°C et 50%HR conformément à la norme NF EN 13238, correspondant à une

humidité d‟équilibre du bois de 9,5 à 10% ;

o 23°C et 85%HR correspondant à l‟humidité d‟équilibre des bardages extérieurs ;

o 20°C et 65%HR correspondant à une humidité d‟équilibre du bois à 12% ;

o 18°C et 70%HR correspondant à une humidité d‟équilibre du bois à 14% ;

Mode d‟usinage de la surface :

o Rabotage qui conduit à une surface lisse ;

o Rabotage et Brossage qui conduit à une surface structurée et légèrement en

relief ;

Mode de séchage ;

L‟influence du mode de séchage sur le comportement en réaction au feu des lames de bois

massifs est regardée sur 2 types de séchages pour une seule essence (Douglas):

Page 17: Réaction au feu de bois massifs en parements extérieurs

17

Séchoirs à température ambiante (TA); durant tous le cycle de séchage la température

du séchoir est maintenue constante (25 à 40 °C maxi) et l‟humidité relative de l‟air

fluctue.

Séchoirs (HT). Au début du cycle de séchage il est appliqué des températures comprises

entre 60 et 80°C pendant 2 Jours suivi d‟un cycle à température ambiante.

La technique de séchage Haute Température (HT) a été éprouvée pour exsuder la résine du

bois et améliorer la tenue des produits de finition surtout en période estivale. L‟idée de cette

expérimentation est de diminuer la teneur en résine du Douglas et donc de diminuer la

quantité totale de calories lors de l‟essai, Le PCS de la résine représentant environ 37 à 40 MJ

comparé au 17 à 19 MJ du PCS du matériau bois.

4.3 Montage des éprouvettes

Pour l‟ensemble des essais SBI, les conditions de montage sont les suivantes :

Orientation des lames horizontale :

Figure 7 : Schéma de montage des éprouvettes orientation des lames horizontale

Les lames de bardage sont fixées au moyen de pointes sur tasseaux de 40 X 40 mm2, la

contre paroi (support) est en silicate de calcium conformément à la norme NF EN 13238.

Page 18: Réaction au feu de bois massifs en parements extérieurs

18

Pour l‟essai de 21 mm en Mélèze, profil Elégie-arrondie de la phase 2 (référence MO21TAH -

50), la contre-paroi est en panneaux de particules non ignifugés (D-s2,d0) conformément à la

norme NF EN 13238.

Orientation des lames verticale :

Figure 8 : Schéma de montage des éprouvettes - orientation des lames Verticale

Les lames de bois sont fixées à l‟aide de pointes sur double-tasseaux de 20 X 20 mm, la contre

paroi est en silicate de calcium conformément à la norme NF EN 13238.

Les configurations testées relèvent d‟une mise en œuvre conforme au DTU 41.2 NF P 65-210

(travaux du bâtiment, revêtements extérieurs en bois).

Lames horizontales Lames verticales

Figure 9 : Vue de face arrière des éprouvettes.

Page 19: Réaction au feu de bois massifs en parements extérieurs

19

4.4 Référencement des éprouvettes Les références des éprouvettes testées figurent dans les tableaux 2 et 3 en différenciant deux

phases de l‟étude. Concernant la phase 1, un seul type de profil (Elégie-Std L), un seul type de

séchage et une épaisseur nominale de 20mm ont été testés. Concernant la phase 2, un seul

type d‟orientation des lames a été testé (orientation horizontale).

Essence Profil Usinage Orientation

des lames

Conditionnement

avant essai

Référence

PHASE 1 :

Douglas

Rabotage

Vitesse 130

m/mn

Verticale 23°C -50% HR DRV-50

Verticale 23°C -85% HR DRV-85

Horizontale 23°C -50% HR DRH-50-A

Horizontale 23°C -50% HR DRH-50-B

Epicéa

Rabotage

Vitesse 140

m/mn

Verticale 23°C -50% HR ERV-50

Horizontale 23°C -85% HR ERH-85

Horizontale 23°C -50% HR ERH-50

Rabotage et

Brossage

Horizontale 23°C -50% HR EBH -50

Mélèze Rabotage

Vitesse 90

m/mn

Horizontale 23°C -50% HR MRH -50

Tableau 2 : Configurations testées phase 1.

NOTE :

La première lettre correspond à l‟essence : D (Douglas) ; E (Epicéa) M (Mélèze)

La deuxième lettre au type d‟usinage de surface : R raboté ; B raboté et Brossé ;

La troisième lettre correspond à l‟orientation des lames : H Horizontale ; V Verticale

Les deux chiffres correspondent à l‟humidité relative de l‟air en % de l‟enceinte de stockage

des lames de bardage avant essai : 50 – 65- 85

La présence d‟une dernière lettre A ou B signifie qu‟il y a deux masses volumiques différentes.

Page 20: Réaction au feu de bois massifs en parements extérieurs

20

Essence Profil Séchage Orientation

des lames

Conditionnement

avant essai

Référence

PHASE 2 : Rabotage Vitesse 60-80 m/mn pour toutes les références;

Douglas

19mm

TA

Horizontale

20°C -65% HR DO19TAH -

65

18°C -70% HR DO19TAH -

70

23°C -50% HR DO19TAH -

50

Epicéa

19mm TA

20°C -65% HR EO19TAH -

65

Douglas

19mm HT

20°C -65% HR DO19HTH -

65

Douglas

21mm TA

20°C -65% HR DO21TAH -

65

HT 20°C -65% HR DO21HTH -

65

Mélèze

21mm TA

23°C -50% HR MO21TAH -

50

Douglas

21 mm

HT 20°C -65% HR DF21HTH -

65

TA 20°C -65% HR DPR21TAH

-65

Châtaignier

23mm

TA 23°C -50% HR CMB23TAH

-50

Tableau 3 : Configurations testées phase 2.

Page 21: Réaction au feu de bois massifs en parements extérieurs

21

NOTE :

La première lettre correspond à l‟essence : D (Douglas) ; E (Epicéa) C (Châtaignier) M

(Mélèze)

La deuxième lettre au profil : O Elégie-arrondie; F Forez; PR Proto rond ; MB mi bois

Les deux chiffres correspondent à l‟épaisseur nominale du bardage ; 19 ou 21 mm

La troisième lettre correspond au type de séchage : TA (ambiant) HT (haute température)

La quatrième lettre correspond à l‟orientation des lames : H Horizontale

Les deux chiffres correspondent à l‟humidité relative de l‟air en %de l‟enceinte de stockage des

lames de bardage avant essai : 50 - 65 -70.

Avant chaque essai SBI, la masse volumique de chaque lame et mesurée ainsi que 10 mesures

de taux d‟humidité à l‟aide d‟un hydromètre à pointe.

Le mode de débit de sciage des éprouvettes est complètement aléatoire (présence de dosse,

quartier et faux quartier).

Figure 10: Prise de mesure du taux d’humidité dans les lames de bois

Dans le tableau 4 ci-dessous figurent les mesures de masse volumique ainsi que l‟humidité par

référence testée en phase 1.

Référence Essence Masse volumique des

éprouvettes [kg/m3]

Humidité [%]

N°1 N°2 N°3 MOYENNE Min-Max MOYENNE

DRV-50 Douglas 499 501 508 503 11,5-12,8 12,1

DRV-85 528 495 501 510 15,0-17,0 16,2

DRHA-50 462 464 462 462 11,0-12,5 12,3

DRHB -50 523 527 527 525 11,0-12,0 11,8

ERV-50 Epicéa 469 483 482 478 10,5-12,8 11,8

ERH-85 521 532 531 529 19,1-20.7 20.0

ERH-50 490 474 506 490 11,2-11,9 11,6

EBH -50 502 482 482 489 11,4-12,6 12,1

MRH -50 Mélèze 617 620 621 620 9.4-10,5 10,0

Tableau 4 : Caractéristiques des essences de bois testées pour la phase 1

Page 22: Réaction au feu de bois massifs en parements extérieurs

22

A noter des masses volumiques de l‟essence Epicéa relativement élevées. Les valeurs

habituelles sont de 430 à 470 kg/m3, ces valeurs de 480 à 520 kg /m3 peuvent s‟expliquer par

l‟imprégnation du produit de traitement en vue de lui conférer une classe d‟emploi 3.

Pour l‟épicéa et le Mélèze aucune différenciation entre le duramen et l‟aubier n‟a pu être notée.

Référence Essence Masse volumique des

éprouvettes [kg/m3]

Humidité [%]

Min-Max MOYENNE Min-Max MOYENNE

DO19TAH -65 Douglas

Masse

volumique

[kg/m3]

500-530 520 11,5-12,5 12.0

DO19TAH -70 530-550 525 12,0-14,0 13.0

DO19TAH -50 500-510 505 9,7-10,5 10.0

EO19TAH -65 Epicéa 400-445 415 11,7-12,5 12.2

DPR21TAH -65 Douglas 500-530 520 11,8-12,8 12.4

DO21TAH -65 Douglas 500-520 510 11,4-12.4 12.0

DO21HTH -65 Douglas 460-505 475 11,2-11,9 11.5

DF21HTH -65 Douglas 470-500 480 11,4-12,8 12.2

DO19HTH -65 Douglas 455-495 475 11.8-12.7 12.3

CMB23TAH -50 Châtaignier 520-580 550 9.0-9.9 9.5

MO21TAH -50 Mélèze 565-695 635 10.-10.5 10.2

Tableau 4bis : Caractéristiques des essences de bois testées pour la phase 2.

Pour le Douglas, toutes les éprouvettes comportaient entre 15 et 20 % d‟aubier.

En complément des essais SBI, des mesures du PCS (Pouvoir Calorifique Supérieur) des

essences de bois ont été réalisées selon la norme NF EN ISO 1716.

4.5 Epreuve de Vieillissement

Des essais de performance de réaction au feu des lames de bois massif ont été réalisés après

vieillissement naturel accéléré suivant la norme NF EN 927-3. Les maquettes ont été exposées

sur le site du FCBA à Bordeaux (exposition Sud : ouest angle de 45°C).

Le Comité Technique a retenu la réalisation de ces essais sur des éprouvettes en Douglas avec

le profil utilisé pour la phase 1 et avec un profil amélioré de la phase 2 (O). Durant le cycle

de vieillissement naturel, l‟évolution au cours d‟une année de l‟humidité des parements

extérieurs a pu être mesurée sur une éprouvette Douglas profil phase 1 (L) ;

Les maquettes ont été exposées pendant les périodes suivantes avant de réaliser les essais

SBI:

3 Maquettes à profil phase 1 (L) exposées de décembre 2010 à décembre 2011 ;

1 Maquette à profil Phase 2 (O) exposée de juin 2011 à décembre 2011.

Les photos ci-après montrent l‟évolution au cours d‟une année d‟un bardage Douglas en profil

L. Les éprouvettes ont les dimensions requises pour l‟essai selon la norme NF EN 13823

(grande aile et petite aile).

Page 23: Réaction au feu de bois massifs en parements extérieurs

23

Figure 11: Aspect des éprouvettes Douglas et profil Elégie-Std après 1 mois d’exposition.

Figure 12: Aspect des éprouvettes après 6 mois d’exposition

Page 24: Réaction au feu de bois massifs en parements extérieurs

24

Figure 13: Aspect des éprouvettes après 12 mois d’exposition

Le suivi de l‟humidité pendant la période d‟exposition a été réalisée selon deux méthodes :

Mesure par humidimètre de contact (Figure 10 et Figure 14) ;

Mesure de la masse totale sur la masse anhydre ;

L‟appareil de mesure par humidimètre est un hydromètre à mesure capacitive de référence.

« scangaule.HD5».

Figure 14: Mesure par humidimètre de contact

Page 25: Réaction au feu de bois massifs en parements extérieurs

25

S‟agissant de la mesure par prise de masse, de petites éprouvettes (500 mm x largeur de la

lame) ont été exposées dans les mêmes conditions (exposition sud-ouest et inclinaison de

45°) que les lames de bois massif devant subir l‟essai de réaction au feu. La masse des

éprouvettes est mesurée environ 2 fois par mois. A la fin de l‟exposition, le 10 décembre 2011

les éprouvettes ont été conditionnées dans une étuve à 103°C en accord avec la norme NF

EN 322 jusqu‟à masse constante afin de mesurer la masse anhydre de l‟éprouvette.

Par l‟intermédiaire du site national de météorologie, les données de température et d‟humidité

relative de l‟air quotidiennes (moyennes sur la journée) sont enregistrées.

(http://www.meteorologic.net/metar-climato_LFPO.html).

Page 26: Réaction au feu de bois massifs en parements extérieurs

26

5. RESULTATS

5.1 Résultats des essais sans vieillissement

5.1.1 Mesures SBI : Phase 1 Les résultats des essais SBI de la phase 1 sur les échantillons non vieillis sont synthétisés dans

le Tableau 5 ci-dessous.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DRV-50 397 17 Non atteint

6.7 98

312 14.2 Non atteint

8.9 41

363 14 Non atteint

2.7 47

DRV-50 [MOY] 357 15.1 Non atteint

6.1 62

DRV-85 232 10.3 Non atteint

4.1 47

246 10.6 Non atteint

4.6 49

216 10.1 Non atteint

8.0 55

DRV-85 [MOY] 231 10.3 Non atteint

5.6 50

DRHA-50 339 13.6 Non atteint

3.3 32

336 11.8 Non atteint

5.1 36

313 -* Non atteint

* *

DRHA-50 [MOY] 329 12.7 Non atteint

4.2 34

DRHB -50 286 13.5 Non atteint

3.2 45

318 13.8 Non atteint

6.8 40

341 14.3 Non atteint

4.1 40

DRHB -50 [MOY] 315 13.9 Non atteint

4.7 42

ERV-50 361 15 Non atteint

6.8 79

353 15 Non atteint

4.9 63

468 17.4 Non atteint

6.2 50

Page 27: Réaction au feu de bois massifs en parements extérieurs

27

ERV-50 [MOY] 394 15.8 Non atteint

6.0 64

ERH-85 237 11.1 Non atteint

4.7 72

229 11.9 Non atteint

5.5 85

215 12 Non atteint

5.7 81

ERH-85 [MOY] 227 11.7 Non atteint

5.3 79

ERH-50 400 17.3 Non atteint

7.1 99

446 17.7 Non atteint

7.1 107

383 17.2 Non atteint

8.8 105

ERH-50 [MOY] 410 17.4 Non atteint

7.7 104

EBH -50 412 20.9 Non atteint

5.9 71

420 24.9 Non atteint

14.4 178

396 16.6 Non atteint

7.6 116

EBH -50 [MOY] 409 20.8 Non atteint

9.3 122

MRH -50 258 14.4 Non atteint

2.6 38

258 14 Non atteint

2.5 40

254 13 Non atteint

2.7 33

MRH -50 [MOY] 257 13.8 Non atteint

2.6 37

Tableau 5 : Mesures des essais SBI sur des lames de bois sans vieillissement en phase 1.

* mauvaise fixation de l’éprouvette qui a conduit à des valeurs non retenues :

THR =28.8 MJ et TSP=121 m²

Le Tableau 5 met en évidence que seuls les profils DRV-85, ERH-85 peuvent a priori prétendre

à un classement C. Il s‟agit des éprouvettes testées à un taux d‟humidité stabilisé à 85%

d‟humidité relative.

Les courbes de RHR (Rate of Heat Release) qui figurent dans le graphe ci-dessous montrent

par ailleurs que le débit calorifique de l‟épicéa traité augmente dès 900 à 1000s (voir annexe 4

paragraphe 13-1) et les valeurs de RHR dépassent 190 kW en fin d‟essai.

Page 28: Réaction au feu de bois massifs en parements extérieurs

28

Débit Calorifique profil Louisiane

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

MoyenneDouglas _10%

Moyenne Epicéa_10%

Moyenne Mélèze_10%

Figure 15: Débit calorifique mesurés sur les profils Elégie-Std

En fin d‟essai pour l‟épicéa avec des lames horizontales et verticales, des chutes de morceaux

de l‟éprouvette ont été constatés, ces débris conduisant à un classement additionnel d2.

5.1.2 Mesures du Pouvoir Calorifique Supérieur (PCS). En complément des essais SBI, les mesures de PCS réalisées sur chacune des essences de bois

étudiées ont été réalisées selon la norme NF EN ISO 1716. Les résultats sont donnés dans le

Tableau 6 ci-dessous.

Essence de bois Pouvoir Calorifique Supérieur [MJ]

Douglas (duramen) 16.4

Epicéa 18.5

Mélèze 17.6

Châtaignier 17.1 Tableau 6 : Valeurs PCS des essences de bois.

Les écarts mesurés de PCS entre essences ne montrent pas une différence significative et ne

peuvent expliquer la différence des paramètres THR mesurée entre les essences.

Page 29: Réaction au feu de bois massifs en parements extérieurs

29

5.1.3 Décisions du comité technique.

Suite aux résultats de la phase 1 montrant des valeurs THR600s satisfaisantes pour les essences

Douglas et Mélèze mais une valeur du Figra0.4 encore trop important, le Comité Technique a

décidé de concentrer la phase 2 essentiellement sur l‟essence Douglas et d‟explorer les pistes

suivantes :

Profil d‟usinage plus arrondi et influence de l‟épaisseur ;

Influence du taux d‟humidité ;

Influence du type de séchage avant usinage du bois.

5.1.4 Mesures SBI : Phase 2

Les résultats des essais SBI de la phase 2 sur les échantillons non vieillis sont synthétisés dans

le Tableau 7 ci-dessous.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DO19TAH -65 251 13.2 Non atteint

5.9 67

239 12.9 Non atteint

5 49.5

255 14.4 Non atteint

5.2 46.5

DO19TAH -65 [MOY] 248 13.5 Non atteint

5.37 54

DO19TAH -70 214 12 Non atteint

6.2 88

270 13 Non atteint

13.5 145

212 14.1 Non atteint

7.4 87,5

DO19TAH -70 [MOY] 232 13 Non atteint

9.03 107

DO19TAH -50 308 15.2 Non atteint

4.8 75

275 18.2 Non atteint

6.5 84

302 16.5 Non atteint

5.4 72

DO19TAH -50 [MOY] 295 16.6 Non atteint

5.57 77

EO19TAH -65 383 15.8 Non atteint

12.3 74

384 16.9 Non atteint

31.5 138

- - Non atteint

- -

EO19TAH -65 [MOY] 384 16.4 Non atteint

21.90 106

DPR21TAH -65 261 10.2 Non atteint

8.1 72

Page 30: Réaction au feu de bois massifs en parements extérieurs

30

275 9.8 Non atteint

21.5 198

246 10.7 Non atteint

9.6 108

DPR21TAH -65

[MOY] 261 10.2

Non atteint 13.07 126

DF21HTH -65 338 10.2 Non atteint

3.9 54

318 12.3 Non atteint

5.9 78

330 10.2 Non atteint

3.5 57

DF21HTH -65 [MOY] 329 10.9 Non atteint

4.43 63

DO21TAH -65 252 10.2 Non atteint

5.1 51

287 11.7 Non atteint

5.1 55

- - Non atteint

- -

DO21TAH -65 [MOY] 270 11 Non atteint

5.10 53

DO21HTH -65 310 10.3 Non atteint

6.9 64

291 12.3 Non atteint

3.4 56

- - Non atteint

- -

DO21HTH -65 [MOY] 301 11.3 Non atteint

5.15 60

DO19HTH -65 301 11.8 Non atteint

8.9 67

294 12 Non atteint

5.5 46

- -

DO19HTH -65 [MOY] 298 11.9 Non atteint

7.0 57

CMB23TAH -50 301 10 Non atteint

3.0 52

325 9 Non atteint

2.9 40

- -

CMB23TAH 50 [MOY] 313 10 Non atteint

3.0 46

MO21HTA-50 233 14.4 Non atteint

2.7 48

(montage sur

support D-S2,do) 223 12.7

Non atteint 4.3 39

238 13.9 Non atteint

2.2 28

MO21TA-50 [MOY] 231 13.7 Non atteint

3.1 38

Tableau 7 : Mesures essais SBI des lames de bois sans vieillissement en phase 2.

Les données ci-dessus mettent en évidence l‟influence des paramètres suivants :

Page 31: Réaction au feu de bois massifs en parements extérieurs

31

Essence

Profil d‟usinage et usinage

Humidité

Type de séchage.

L‟analyse détaillée de ces résultats figure en chapitre 6.

5.2 Résultats des essais sans vieillissement

5.2.1 Mesures d’humidité de l’air et du bois Durant la période d‟exposition des maquettes, les conditions climatiques ont été relevées sur la

station de Mérignac. La Figure 16 indique l‟évolution de la température et la figure 17 indique

l‟humidité relative de l‟air de janvier à fin novembre 2011.

Température BORDEAUX 2011

-5

0

5

10

15

20

25

30

01/0

1/20

11

15/0

1/20

11

29/0

1/20

11

12/0

2/20

11

26/0

2/20

11

12/0

3/20

11

26/0

3/20

11

09/0

4/20

11

23/0

4/20

11

07/0

5/20

11

21/0

5/20

11

04/0

6/20

11

18/0

6/20

11

02/0

7/20

11

16/0

7/20

11

30/0

7/20

11

13/0

8/20

11

27/0

8/20

11

10/0

9/20

11

24/0

9/20

11

08/1

0/20

11

22/1

0/20

11

05/1

1/20

11

19/1

1/20

11

HR

%

Figure 16: température de l’air sur Bordeaux en 2011.

Moyenne quotidienne

Moyenne mensuelle

Page 32: Réaction au feu de bois massifs en parements extérieurs

32

Humidité relative BORDEAUX 2011

20

30

40

50

60

70

80

90

100

01/0

1/20

11

15/0

1/20

11

29/0

1/20

11

12/0

2/20

11

26/0

2/20

11

12/0

3/20

11

26/0

3/20

11

09/0

4/20

11

23/0

4/20

11

07/0

5/20

11

21/0

5/20

11

04/0

6/20

11

18/0

6/20

11

02/0

7/20

11

16/0

7/20

11

30/0

7/20

11

13/0

8/20

11

27/0

8/20

11

10/0

9/20

11

24/0

9/20

11

08/1

0/20

11

22/1

0/20

11

05/1

1/20

11

19/1

1/20

11

HR

%

Figure 17: Humidité Relative de l’air sur Bordeaux en 2011.

Moyenne quotidienne

Moyenne mensuelle

L‟humidité relative moyenne mensuelle est toujours supérieure à 60% pendant 11 mois de

l‟année et supérieure à 65% HR pendant 9 mois de l‟année.

Pour des températures comprises entre 5 et 35°C nous pouvons appliquer l‟équation

simplificatrice suivante permettant d‟évaluer le taux d‟humidité équivalent dans le bois :

humiditéHR

5

%

En conséquence, l‟humidité moyenne du bardage bois serait supérieure à 13% pendant 9 mois

et supérieure ou égale à 12% pendant 11 mois. Ce point a pu être confirmé par les mesures

de taux d‟humidité relevées sur une maquette DOUGLAS profil Elégie-Std que ce soit par

humidimètre électrique (maquette n°1 Figure 18) ou par suivi de masse (Maquette n°2 Figure

19).

Page 33: Réaction au feu de bois massifs en parements extérieurs

33

Evolution humidité bardages exposé Extérieur

8,0

10,0

12,0

14,0

16,0

18,0

20,0

05/0

1/2

011

19/0

1/2

011

02/0

2/2

011

16/0

2/2

011

02/0

3/2

011

16/0

3/2

011

30/0

3/2

011

13/0

4/2

011

27/0

4/2

011

11/0

5/2

011

25/0

5/2

011

08/0

6/2

011

22/0

6/2

011

06/0

7/2

011

20/0

7/2

011

03/0

8/2

011

17/0

8/2

011

31/0

8/2

011

14/0

9/2

011

28/0

9/2

011

12/1

0/2

011

26/1

0/2

011

09/1

1/2

011

23/1

1/2

011

07/1

2/2

011

date

%

mini moyenne maxi

Figure 18: Mesure d’humidité par humidimètre maquette N°1

Evolution Humidité méthode anhydre 2011 Bordeaux

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

20,0%

22,0%

25/0

1/20

11

08/0

2/20

11

22/0

2/20

11

08/0

3/20

11

22/0

3/20

11

05/0

4/20

11

19/0

4/20

11

03/0

5/20

11

17/0

5/20

11

31/0

5/20

11

14/0

6/20

11

28/0

6/20

11

12/0

7/20

11

26/0

7/20

11

09/0

8/20

11

23/0

8/20

11

06/0

9/20

11

20/0

9/20

11

04/1

0/20

11

18/1

0/20

11

01/1

1/20

11

15/1

1/20

11

29/1

1/20

11

ponctuelle moyenne annuelle

Figure 19: Humidité par mesure de masse de la maquette°2

Page 34: Réaction au feu de bois massifs en parements extérieurs

34

La moyenne annuelle du taux d‟humidité mesurée dans le bois de la maquette 1 suivant les

deux méthodes est d‟environ 14%.

La moyenne annuelle du taux d‟humidité mesurée dans le bois de Douglas de la maquette 2

est de 13.9 %.

Les deux méthodes confirment que l‟humidité annuelle moyenne du bois est d‟environ 13-14%

et que l'équilibre hygroscopique du bois accompagne l‟humidité de l‟air ambiant.

En Annexe 3 figurent les données climatiques issues du DTU 51-4. Ces valeurs indiquent les

humidités moyennes de stabilisation de l‟air et du bois en fonction de la localisation

géographique et des saisons.

5.2.2 Mesures SBI

Le tableau 8 ci-dessous indique les valeurs obtenues sur les 3 maquettes Douglas Elégie-Std

après 11 mois d‟exposition selon EN 927-3 et stabilisation pendant 1 mois à 23°C et 50%

d‟Humidité Relative.

Une seule éprouvette Douglas Elégie-arrondie vieillie a été testée. (La durée de vieillissement

est de 6 mois).

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DL20 H 50-vieilli 334 15.9 Non atteint

5.8 81

383 18.6 Non atteint

12.5 111

343 18.7 Non atteint

10.1 100

DL20 H 50-vieilli

[MOY] 353 17.7

Non atteint

DO19H 50-vieilli 282 16.4 Non atteint

11.1 124

Tableau 8 : Mesures essais SBI des lames de bois après vieillissement.

L‟analyse comparative avant et après vieillissement figure au chapitre 6.1.8.

Page 35: Réaction au feu de bois massifs en parements extérieurs

35

6. ANALYSE

6.1 Impact/influence des paramètres de l’étude sur le classement SBI

6.1.1 Essence de bois

Epicéa : (voir Graphe RHR en 9.1.1)

De façon générale le dégagement calorifique de l‟Epicéa conduit à des valeurs trop éloignées

des limites imposées pour obtenir un classement C dans les conditions d‟essais préconisés par

la norme. (Stabilisation des éprouvettes avant essai pendant 4 semaines à 23°c et 50% HR).

Douglas : (voir Graphe RHR en 9.1.2)

Contribution énergétique

Sur les 12 éprouvettes testées une seule dépasse la valeur de 15 MJ. (limite de l'euroclasse C)

Pour ce paramètre l‟essence peut satisfaire l‟exigence du classement C.

Mélèze : (voir graphique RHR en 9.1.3)

Ces premiers résultats confirment globalement les résultats de l‟étude Irabois et de l‟étude

CSTB cahier 3372 - Livraison 423 . Cette essence a globalement un meilleur comportement

que les autres essences testées dans les mêmes conditions (voir en annexe les exemples de

graphe RHR essences).

Le tableau 9 ci-après indique les valeurs des contributions énergétiques et fumigènes des

différentes essences.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

CMB23TAH -50

Châtaignier

Profil mi-bois

301 10 Non atteint

3.0 52

325 9 Non atteint

2.9 40

- -

CMB23TAH 50 [MOY] 313 10 Non atteint

3.0 46

ERH-50

Epicéa

Profil L

400 17.3 Non atteint

7.1 99

446 17.7 Non atteint

7.1 107

383 17.2 Non atteint

8.8 105

ERH-50 [MOY] 410 17.4 Non atteint

7.7 104

DRHA-50

Douglas MV A

Profil L

339 13.6 Non atteint

3.3 32

336 11.8 Non atteint

5.1 36

Page 36: Réaction au feu de bois massifs en parements extérieurs

36

313 -* Non atteint

* *

DRHA-50 [MOY] 329 12.7 Non atteint

4.2 34

DRHB -50

Douglas MV B

Profil L

286 13.5 Non atteint

3.2 45

318 13.8 Non atteint

6.8 40

341 14.3 Non atteint

4.1 40

DRHB -50 [MOY] 315 13.9 Non atteint

4.7 42

MRH -50

Mélèze profil L 258 14.4

Non atteint 2.6 38

258 14 Non atteint

2.5 40

254 13 Non atteint

2.7 33

MRH -50 [MOY] 257 13.8 Non atteint

2.6 37

MO21HTA-50

(montage sur

support D-S2,do)

profil O

233 14.4 Non atteint

2.7 48

223 12.7 Non atteint

4.3 39

238 13.9 Non atteint

2.2 28

MO21TA-50 [MOY] 231 13.7 Non atteint

3.1 38

Tableau 9 : Comparatif des résultats SBI entre essences de bois à 10% d’humidité.

L‟analyse permet de mettre en évidence les classements suivants :

Pour le paramètre Figra (du plus performant au moins performant) :

1. Mélèze

2. Douglas

3. Châtaignier

4. Epicéa

Pour le paramètre THR600S (du plus performant au moins performant) :

1. Châtaignier

2. Douglas

3. Mélèze

4. Epicéa

Le profil d‟usinage du Châtaignier (Voir Annexe 1) avec l‟épaisseur de 23 mm supérieur de 2 à

4 mm aux autres essences et l‟absence d‟élégie (Mi Bois) explique en majeure partie ce THR

bas.

Les graphiques de débits calorifiques figurent en Annexe 2, paragraphe 9.1.3.

Page 37: Réaction au feu de bois massifs en parements extérieurs

37

6.1.2 Masse volumique des lames de bois massifs Le tableau 10 ci-après indique les valeurs des contributions énergétiques et fumigènes des

deux masses volumiques de Douglas.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DRHA-50

Douglas MV A 339 13.6

Non atteint 3.3 32

336 11.8 Non atteint

5.1 36

313 -* Non atteint

* *

DRHA-50 [MOY] 329 12.7 Non atteint

4.2 34

DLHB -50

Douglas MV B 286 13.5

Non atteint 3.2 45

318 13.8 Non atteint

6.8 40

341 14.3 Non atteint

4.1 40

DRHB -50 [MOY] 315 13.9 Non atteint

4.7 42

Tableau 10 : Comparatif des résultats SBI en fonction de la masse volumique Douglas à 10%

d’humidité.

L‟analyse permet de mettre en évidence les points suivants :

Les résultats obtenus avec deux masses volumiques de 525kg/m3 et 462kg /m3 ne

mettent pas en évidences des différences significatives.

6.1.3 Profil d’usinage/ Géométrie des lames Le tableau 11 ci-dessous indique les valeurs des contributions énergétiques pour l‟essence

Douglas avec différents profils d‟usinage et d‟épaisseur totale.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DO19TAH -65 251 13.2 Non atteint 5.9 67

239 12.9 Non atteint 5 49.5

255 14.4 Non atteint 5.2 46.5

DO19TAH -65 [MOY] 248 13.5 Non atteint 5.37 54

Page 38: Réaction au feu de bois massifs en parements extérieurs

38

DO19TAH -50 308 15.2 Non atteint 4.8 75

275 18.2 Non atteint 6.5 84

302 16.5 Non atteint 5.4 72

DO19TAH -50 [MOY] 295 16.6 Non atteint 5.57 77

DLHB -50

Douglas MV B 286 13.5 Non atteint 3.2 45

318 13.8 Non atteint 6.8 40

341 14.3 Non atteint 4.1 40

DLHB -50 [MOY] 315 13.9 Non atteint 4.7 42

DF21HTH -65 338 10.2 Non atteint 3.9 54

318 12.3 Non atteint 5.9 78

330 10.2 Non atteint 3.5 57

DF21HTH -65 [MOY] 329 10.9 Non atteint 4.43 63

DO21TAH -65 252 10.2 Non atteint 5.1 51

287 11.7 Non atteint 5.1 55

- - Non atteint - -

DO21TAH -65 [MOY] 270 11 Non atteint 5.10 53

DPR21TAH -65 261 10.2 Non atteint 8.1 72

275 9.8 Non atteint 21.5 198

246 10.7 Non atteint 9.6 108

DPR21TAH -65 MOY] 261 10.2 Non atteint 13.07 126

Tableau 11 : Comparatif des résultats SBI pour différents profils.

L‟analyse permet de mettre en évidence le classement suivant :

Pour le paramètre Figra 0.4 (du plus performant au moins performant) :

1. Elégie-arrondie 2 _ épaisseur 19 mm

2. Proto Rond

3. Elégie-arrondie 2 _ épaisseur 21 mm

4. Elégie-Std Scierie du Forez

Page 39: Réaction au feu de bois massifs en parements extérieurs

39

figra 0.4 MJ

100

150

200

250

300

350

400

D. Lou

20mm

50%

D. Ont

19mm

50%

D. Ont

21mm

50%

D. Ont 19

mm 65%

D. Ont

21mm 65%

D. Rond Pr

21 mm 65%

D. For 21

mm ( HT)

65 %

W/s

Eprouvette 1

Eprouvette 2

Eprouvette 3

Moyenne

limite C

Figure 20: Douglas influence du profil sur le paramètre Figra 0.4

On note que le Figra0.4 du profil Elégie-arrondie 2 d‟épaisseur 21 mm est supérieur au Figra0.4

du profil Elégie-arrondie 2 d‟épaisseur 19mm. Ce résultat peut s‟expliquer du fait que le RHR

(correspondant au Figra max) se produit à un temps inférieur.

THR 600s

7

9

11

13

15

17

19

D. Lou

20mm

50%

D. Ont

19mm

50%

D. Ont

21mm

50%

D. Ont 19

mm 65%

D. Ont

21mm 65%

D. Rond Pr

21 mm 65%

D. For 21

mm ( HT) 65

%

MJ Eprouvette 1

Eprouvette 2

Eprouvette 3

Moyenne

limite C

Figure 21: Douglas influence du profil sur le paramètre THR600s

Page 40: Réaction au feu de bois massifs en parements extérieurs

40

Pour le paramètre THR600S (du plus performant au moins performant :

1. Proto Rond

2. Elégie-arrondie 2 _ 21mm -Scierie du Forez

3. Elégie-arrondie 2 _ 19 mm

Ce classement correspond à un de taux d’humidité dans le bois stabilisé à 12%.

A 10% de taux d‟humidité dans le bois, la valeur de 18.2 MJ pour l‟Elégie-arrondie 19 mm est

due à un percement prématurée de l‟éprouvette durant l‟essai du à une mauvaise fixation.

Les mesures des débits calorifiques figurent en Annexe 2, paragraphe 9.12.

6.1.4 Etat de surface/ Usinage

L‟analyse est réalisée sur une seule essence : l‟épicéa.

L‟augmentation de surface susceptible d‟être attaquée par la flamme (surface brossée) conduit

à un résultat moyen en paramètre Figra identique à celui d‟une surface lisse (rabotée).

Néanmoins les paramètres THR600 s et les TSP600 s sont sensiblement supérieurs pour la

surface Brossée, de l‟ordre de +20%.

Toutes les configurations testées sont Classées D-s2,do.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

ERH-50 400 17.3 Non atteint

7.1 99

446 17.7 Non atteint

7.1 107

383 17.2 Non atteint

8.8 105

ERH-50 [MOY] 410 17.4 Non atteint

7.7 104

EBH -50 412 20.9 Non atteint

5.9 71

420 24.9 Non atteint

14.4 178

396 16.6 Non atteint

7.6 116

EBH -50 [MOY] 409 20.8 Non atteint

9.3 122

Tableau 12 : Comparatif des résultats SBI sur l’état de surface des lames en épicéa profil L.

L‟analyse permet de mettre en évidence le point suivant :

Les résultats obtenus ne mettent pas en évidences des différences significatives sur

le classement de réaction au feu en fonction de l’état de surface des lames de

bardage.

Page 41: Réaction au feu de bois massifs en parements extérieurs

41

6.1.5 Sens du montage vertical ou horizontal

L’analyse des essais SBI met en évidence que le sens du montage en lames

verticales ou horizontales pour le profil d’usinage testé n’influence pas

significativement le classement et la contribution énergétique.

Toutes les configurations Douglas ou Epicéa sont Classées D-s2,do.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DRV-50 397 17 Non atteint

6.7 98

312 14.2 Non atteint

8.9 41

363 14 Non atteint

2.7 47

DRV-50 [MOY] 357 15.1 Non atteint

6.1 62

DRHB -50 286 13.5 Non atteint

3.2 45

318 13.8 Non atteint

6.8 40

341 14.3 Non atteint

4.1 40

DRHB -50 [MOY] 315 13.9 Non atteint

4.7 42

ERV-50 361 15 Non atteint

6.8 79

353 15 Non atteint

4.9 63

468 17.4 Non atteint

6.2 50

ERV-50 [MOY] 394 15.8 Non atteint

6.0 64

ERH-50 400 17.3 Non atteint

7.1 99

446 17.7 Non atteint

7.1 107

383 17.2 Non atteint

8.8 105

ERH-50 [MOY] 410 17.4 Non atteint

7.7 104

Tableau 13 : Comparatif des résultats SBI en fonction de l’orientation des lames Douglas et

épicéa - profil L.

Page 42: Réaction au feu de bois massifs en parements extérieurs

42

6.1.6 Humidité du bois Le tableau 14 ci-dessous indique l‟ensemble des valeurs mesurées lors des essais SBI pour

l‟essence Douglas uniquement stabilisée à différents taux d‟humidité.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DO19TAH -65 251 13.2 Non atteint

5.9 67

239 12.9 Non atteint

5 49.5

255 14.4 Non atteint

5.2 46.5

DO19TAH -65 [MOY] 248 13.5 Non atteint

5.37 54

DO19TAH -70 214 12 Non atteint

6.2 88

270 13 Non atteint

13.5 145

212 14.1 Non atteint

7.4 87,5

DO19TAH -70 [MOY] 232 13 Non atteint

9.03 107

DO19TAH -50 308 15.2 Non atteint

4.8 75

275 18.2 Non atteint

6.5 84

302 16.5 Non atteint

5.4 72

DO19TAH -50 [MOY] 295 16.6 Non atteint

5.57 77

DLV-85 232 10.3 Non atteint

4.1 47

246 10.6 Non atteint

4.6 49

216 10.1 Non atteint

8.0 55

DL-85 [MOY] 231 10.3 Non atteint

5.6 50

DLV-50 397 17 Non atteint

6.7 98

312 14.2 Non atteint

8.9 41

363 14 Non atteint

2.7 47

DLV-50 [MOY] 357 15.1 Non atteint

6.1 62

Tableau 14 : Influence du taux d’humidité sur les résultats SBI pour l’essence Douglas.

Les résultats à 18-20% d‟humidité (conditionnement à 23°C et 85%HR) montrent une nette

amélioration des performances et les seuils du classement C peuvent être atteints.

Page 43: Réaction au feu de bois massifs en parements extérieurs

43

Le résultat à une humidité de 14% (conditionnement à 20°C et 70%HR) correspondant à

l‟humidité d‟équilibre à l‟air extérieur abrité) satisfait les deux limites FIGRA0.4 et THR600s du

classement C pour l‟essence Douglas.

Pour le profil Elégie-arrondie 2 à partir de 12% de taux d‟humidité du bois, nous obtenons un

classement C (limite en Figra 248 W/s et un THR avec un peu plus de sécurité 13,5 MJ).

Nous obtenons une valeur anormalement haute pour une éprouvette à 14 % d‟humidité (270

w/s et 14.1 MJ) L'analyse des résultats ne nous a pas permis de trouver une explication

particulière à ce résultat.

figra 0.4 MJ

150

200

250

300

350

D. Ont 19 mm 50

%

D. Ont 19 mm

65%

D. Ont 19 mm

70%

D. Lou 20mm V

85%

D. Lou 20 mm V

50%

W/s

Eprouvette 1 Eprouvette 2 Eprouvette 3 moyenne limite C

c

Figure 22: Influence du taux d’humidité sur le paramètre Figra 0.4

THR 600s

5

7,5

10

12,5

15

17,5

20

D. Ont 19 mm 50

%

D. Ont 19 mm 65% D. Ont 19 mm

70%

D. Lou 20mm V 85% D. Lou 20 mm V

50%

MJ

Eprouvette 1 Eprouvette 2 Eprouvette 3 moyenne limite C

Figure 23: Influence du taux d’humidité sur le paramètre THR 600

Page 44: Réaction au feu de bois massifs en parements extérieurs

44

6.1.7 Mode de séchage

Le tableau 15 ci-dessous indique les valeurs des contributions énergétiques pour l‟essence

Douglas uniquement à une humidité unique de 12% (Conditionnement des éprouvettes avant

essai de 20°c et 65%HR) mais avec des modes de séchage différents.

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DO21TAH -65 252 10.2 Non atteint 5.1 51

287 11.7 Non atteint 5.1 55

- - - -

DO21TAH -65 [MOY]

270 11 Non atteint 5.10 53

DO21HTH -65 310 10.3 Non atteint 6.9 64

291 12.3 Non atteint 3.4 56

- - - -

DO21HTH -65 [MOY]

301 11.3 Non atteint 5.15 60

DO19HTH -65 301 11.8 Non atteint 8.9 67

294 12 Non atteint 5.5 46

- -

DO19HTH -65

[MOY] 298 11.9 Non atteint 7.0 57

DO19TAH -65 251 13.2 Non atteint 5.9 67

239 12.9 Non atteint 5 49.5

255 14.4 Non atteint 5.2 46.5

DO19TAH -65

[MOY] 248 13.5 Non atteint 5.37 54

Tableau 15 : Influence du type de séchage sur les résultats d’essai SBI: Douglas profil O

Page 45: Réaction au feu de bois massifs en parements extérieurs

45

L‟analyse permet de mettre en évidence les points suivants :

Pour le paramètre Figra 0.4:

Les valeurs mesurées sont systématiquement supérieures à la limite de la classe C

(quelque soit l’épaisseur de bardage et le taux d’humidité), avec les éprouvettes

issues de lames séchées Haute température (HT), contrairement à un mode de

séchage plus traditionnel.

Pour le paramètre THR600S:

Au regard des résultats, il n’est pas possible de conclure sur l’influence du mode de

séchage sur le paramètre THR600s.

Les graphiques de débit calorifique figurent en annexe 2.

6.1.8 Vieillissement du bardage extérieur

Le tableau 16 ci-dessous indique les valeurs des contributions énergétiques pour l‟essence

Douglas testés à un taux d‟humidité de 10% (conditionnement des éprouvettes avant essai :

23°C et 50%HR).

DESIGNATION FIGRA0,4 W/s

THR600s

MJ LFS edge SMOGRA

m²/s² TSP600s

EUROCLASSE C-s2 ≤250 ≤15 Non atteint ≤180 ≤200

DRHA-50

Douglas MV A

Avant vieillissement

339 13.6 Non atteint

3.3 32

336 11.8 Non atteint

5.1 36

313 -* Non atteint

* *

DRHA-50 [MOY] 329 12.7 Non atteint

4.2 34

DLHB -50

Douglas MV B

Avant vieillissement

286 13.5 Non atteint

3.2 45

318 13.8 Non atteint

6.8 40

341 14.3 Non atteint

4.1 40

DRHB -50 [MOY] 315 13.9 Non atteint

4.7 42

DLH-50

Douglas

Après Vieillissement

334 15.9 Non atteint 5.8 82

383 18.5 Non atteint 12.3 111

333 18.7 Non atteint 18.6 128

D-EN 927-3 -50

[MOY] 353 17.7 Non atteint 12.2 107

Tableau 16 : Influence du vieillissement des bardages sur les résultats d’essai SBI.

Page 46: Réaction au feu de bois massifs en parements extérieurs

46

* mauvaise fixation de l‟éprouvette qui à conduit à des valeurs non retenues : THR =28.8 MJ

et TSP=121 m²

L‟analyse permet de mettre en évidence les points suivant :

Pour le paramètre Figra 0.4:

Après 1 an de vieillissement, les résultats mettent en avant une augmentation du

paramètre Figra avant et après vieillissent de l’ordre de 10%. Ce phénomène peut

être imputable au développement de microfissurations en surface de bardage après

vieillissement.

Pour le paramètre THR600S:

De la même manière, nous notons une augmentation sensible du paramètre THR

supérieur à 20%.

Les graphiques de débit calorifique figurent en annexe 2.

Page 47: Réaction au feu de bois massifs en parements extérieurs

47

7. CONCLUSION GENERALE

En synthèse, nous pouvons conclure que la variabilité de la masse volumique et le sens

d‟exposition de la lame de bardage ne paraissent pas être des paramètres influents sur les

performances de réaction au feu mesurées pour unes essence de bois donnée (en l‟occurrence

le Douglas).

Les résultats de l‟étude confirment que l‟essence « Epicéa » présente des valeurs trop

éloignées des seuils de l‟Euroclasse C, les modifications des géométries de lame ne permettant

pas non plus d‟améliorer son comportement.

Concernant l‟essence « Douglas », les paramètres influents permettant d‟approcher voir

d‟atteindre un niveau Euroclasse C sont :

Pour le paramètre Figra : profils d‟usinage, taux d‟humidité du bois, et type de

séchage ;

Pour le paramètre THR : épaisseur des lames, taux d‟humidité du bois, type de

séchage.

En ce qui concerne le profil des lames, les industriels devront tenir compte impérativement

des dimensions suivantes (en mm) afin d‟espérer obtenir un classement C-S2,d0 des lames

de bardage sur un support bois.

Figure 24: Profil d’usinage pertinent dans le but d’améliorer la performance de réaction au feu

Arrondi R>3

Epaisseur 21m Epaisseur> 13 mm

D > 16

Ouverture < 10 mm

Page 48: Réaction au feu de bois massifs en parements extérieurs

48

Sur support bois, à l‟extrême, au droit des usinages spécifiques (rainure, épaisseur d‟élégie)

des épaisseurs trop faibles peuvent conduire à un classement inférieur à D-s2,d0.

Il ressort de l‟étude que le taux d‟humidité du bois est également un paramètre influent dans

la performance de réaction au feu, ce point n‟étant pas particulièrement étonnant. Toutefois,

ce paramètre est à ce jour fixé par la norme européenne NF EN 13238 qui impose un

conditionnement à 23°C 50%HR (correspondant à un taux d‟humidité du bois de 10%

représentative d‟un emploi des lames en climat intérieur)

Néanmoins l‟étude permet de mettre en évidence les taux d‟humidités attendus dans les lames

de bois soumises à un climat extérieur du type océanique (Bordeaux). Le taux d‟humidité des

bardages ainsi exposé à l‟extérieur est en moyenne mesuré à 13-14 %, correspondant à un

conditionnement des éprouvettes à 20°C et 70%HR. Des relevés prélevés sur le site Météo

France et indiqués par le DTU 51-4 confortent également les taux d‟humidité moyen de l‟air

supérieurs en moyenne à 65% sur une grande partie du territoire de France métropolitaine.

Les normes relatives aux bardages utilisés en extérieur ne prévoient pas de conditionnement

spécifique pour ces usages.

Par ailleurs, après un an d‟exposition au vieillissement naturel accéléré, il est mis en évidence

que les paramètres Figra et THR mesurés sur l‟essence Douglas et le profil Elégie-Std

augmentent, le classement européen restant toutefois identique à celui obtenu lors des essais

sur des lames de bardages non vieillies.

Nous rappelons que l‟objectif visé de l‟étude était de démontrer la susceptibilité d‟autres

essences de bois que le mélèze à atteindre le niveau Euroclasse C. A ce stade nous pouvons

conclure que ce niveau est atteignable concernant l‟essence « Douglas » dans les conditions

spécifiques suivantes : profil d‟usinage particulier et un taux d‟humidité de supérieur à 12%.

Deux axes de travail peuvent être explorées suite à cette étude:

Essence « Châtaignier » : comportement de cette essence en réaction au feu

considérant un profil géométrique adéquat ; dans le cadre de cette étude, il n‟a pas été

testé par exemple l‟usinage type élégie arrondie.

Dans le cadre de l'évolution normative (Groupe miroir P92) il pourrait par ailleurs être

discuté/envisagé la modification du conditionnement normalisé des lames de bardages

avant essai SBI, ceci afin de se rapproches de conditions limites plus représentatives

d‟un usage en extérieur des ces lames. (c‟est-à-dire un conditionnement de 20°C et

60%HR avant essai de réaction au feu)

Nota : Il est précisé ici que les différents classements obtenus durant l’étude ne peuvent pas

être considérés comme des classements conventionnels, chaque système de bardage (géométrie des profils, essences de bois, fabricants,…), devant faire l’objet d’une évaluation normalisée avec délivrance d’un rapport de classement européen.

Page 49: Réaction au feu de bois massifs en parements extérieurs

49

8. ANNEXES 1 : PROFILS D’USINAGE

ELÉGIE-STD

Épaisseur 20 mm

Epaisseur minimale : 12 mm (élégie)

Largeur utile : 135 à 140 mm

Proto ROND

Epaisseur nominale : 22 mm

Epaisseur minimale : 11.6 mm (élégie)

Page 50: Réaction au feu de bois massifs en parements extérieurs

50

ELÉGIE-ARRONDIE

Deux épaisseurs :

Epaisseur nominale : 19 mm et 21 mm

Epaisseur minimale : 11.6 mm et 12.2 (élégie)

Largeur utile : 120 à 130 mm

Page 51: Réaction au feu de bois massifs en parements extérieurs

51

SCIERIE DU FOREZ

Epaisseur nominale : 22 mm

Epaisseur minimale : 11.6 mm (élégie)

Profil Châtaignier

Profil à mi bois ou à embrèvement simple.

Epaisseur 23 mm

Pas d‟épaisseur minimale (car recouvrement assemblage à mi-bois)

Page 52: Réaction au feu de bois massifs en parements extérieurs

52

9. ANNEXES 2 : DEBIT CALORIFIQUES (RHR)

9.1.1 Epicéa

Epicéa essais sur les profils ELÉGIE-STD, humidité 10%

Débit Calorifique Epicéa

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

Moyenne EBH Louisiane

Moyenne ERV Louisiane

Moyenne ERH Lousiane

Figure 26: Epicéa courbe RHR totalité de l‟essai

EBH : Epicéa brossé-lames horizontales

ERH : Epicéa raboté-lames horizontales ERV : Epicéa raboté-lames Verticales

Débit Calorifique Epicéa entre 300 et 900 s

0

5

10

15

20

25

30

35

40

45

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KW

Moyenne EBH Louisiane

Moyenne ERV Louisiane

Moyenne ERH Lousiane

Figure 27: Epicéa ; courbe RHR zoom sur les 600 s

Page 53: Réaction au feu de bois massifs en parements extérieurs

53

9.1.2 Douglas Douglas essai sur les profils ELÉGIE-STD humidité 10%

Débit Calorifique Douglas

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

DRH-MVA- 3DRHMV A- 1DRH MV A- 2DRH B 1DRH B- 2DRH-B- 3

Figure 28: courbe RHR totalité de l‟essai

Graphe de courbes RHR de chaque essai, lames Horizontales Rabotées.

(DRHA Douglas 525 kg/m3 et DRHB Douglas M.V. B=462kg/m3)

Page 54: Réaction au feu de bois massifs en parements extérieurs

54

RHR : influence de l’état de surface (brosse ou raboté)

Débit Calorifique Douglas

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

DRH-MV-A Moyen

DRH-MV-B Moyen

DRV Moyen

Figure 29: courbe RHR totalité de l‟essai

Graphe de courbes RHR moyen, lames Horizontales Rabotées.

(DRHA Douglas 525 kg/m3 et DRHB Douglas M.V. B=462kg/m3)

DRV Lames verticales rabotées.

Page 55: Réaction au feu de bois massifs en parements extérieurs

55

RHR Influence des différents profils d’usinage

Débit Calorifique Douglas 12%

0

20

40

60

80

100

120

140

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KWMoyenne Forez_21 mm

Moyenne Ontario 2_19 mm

moyenne Proto Rond_21 mm

Moyenne Ontario 2_21 mm

Figure 30: courbe RHR totalité de l‟essai

Débit Calorifique Douglas à 12% entre 300 et 900 s

0

5

10

15

20

25

30

35

40

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KWMoyenne Forez_21 mmMoyenne Ontario 2_19 mmmoyenne Proto Rond_21 mmMoyenne Ontario 2_21 mm

Figure 31:Courbe RHR : zoom sur les 600 s

Page 56: Réaction au feu de bois massifs en parements extérieurs

56

RHR : Influence du taux d’humidité (profil Elégie-arrondie 2 essence Douglas)

Débit Calorifique Douglas Ontario 2

0

20

40

60

80

100

120

140

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

Moyenne 9-10%

Moyenne 12%

moyenne 14%

Figure 32: courbe RHR totalité de l‟essai

Débit Calorifique Douglas Ontario 2 entre 300 et 900 s

0

5

10

15

20

25

30

35

40

45

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KWMoyenne 9-10%

Moyenne 12%

moyenne 14%

Figure 33:Courbe RHR : zoom sur les 600 s

Page 57: Réaction au feu de bois massifs en parements extérieurs

57

9.1.3 Comparatif essence

RHR : Influence des essences de bois ( profil différents)

Débit Calorifique Essences

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

MoyenneDouglas _10%

Moyenne Epicéa_10%

Moyenne Mélèze_10%

Moyenne Chataîgnier_10%

Figure 34: courbe RHR totalité de l‟essai

Débit Calorifique Essences entre 300 et 900 s

0

5

10

15

20

25

30

35

40

45

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KW

MoyenneDouglas _10%

Moyenne Epicéa_10%

Moyenne Mélèze_10%

Moyenne Chataîgnier_10%

Figure 35:Courbe RHR : zoom sur les 600 s

Page 58: Réaction au feu de bois massifs en parements extérieurs

58

9.1.4 Influence du séchage

Débit Calorifique Douglas 12%

0

20

40

60

80

100

120

140

160

180

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

Moyenne Ontario 2_(HT)19 mm Moyenne Ontario 2_19 mm Moyenne Ontario 2_21 mm Moyenne Ontario 2_(HT)21 mm

Figure 36: courbe RHR totalité de l‟essai

Débit Calorifique Douglas à 12% entre 300 et 900 s

0

5

10

15

20

25

30

35

40

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KW

Moyenne Ontario 2_(HT)19 mm Moyenne Ontario 2_19 mm Moyenne Ontario 2_21 mm Moyenne Ontario 2_(HT)21 mm

Figure 37:Courbe RHR : zoom sur les 600 s

Page 59: Réaction au feu de bois massifs en parements extérieurs

59

9.1.5 Essais Influence du vieillissement accéléré

Débit Calorifique Douglas

0

25

50

75

100

125

150

175

200

300 390 480 570 660 750 840 930 1020 1110 1200 1290 1380 1470

TEMPS( S)

RHR KW

DRH-MV-A Moyen

DRH-MV-B Moyen

D-1an expo-Moyen

Figure 38: courbe RHR totalité de l‟essai

Débit Calorifique Douglas entre 300 et 900 s

0

10

20

30

40

50

60

300 330 360 390 420 450 480 510 540 570 600 630 660 690 720 750 780 810 840 870 900

TEMPS( S)

RHR KW

DRH-MV-A Moyen

DRH-MV-B Moyen

D-1an expo-Moyen

Figure 39:Courbe RHR : zoom sur les 600 s

Page 60: Réaction au feu de bois massifs en parements extérieurs

60

10. ANNEXES 3 : –CCARTOGRAPHIE DES AMBIANCES CLIMATIQUES EN FRANCE

Humidité relative Paris 2011

20

30

40

50

60

70

80

90

100

01/0

1/20

11

08/0

1/20

11

15/0

1/20

11

22/0

1/20

11

29/0

1/20

11

05/0

2/20

11

12/0

2/20

11

19/0

2/20

11

26/0

2/20

11

05/0

3/20

11

12/0

3/20

11

19/0

3/20

11

26/0

3/20

11

02/0

4/20

11

09/0

4/20

11

16/0

4/20

11

23/0

4/20

11

30/0

4/20

11

07/0

5/20

11

14/0

5/20

11

21/0

5/20

11

28/0

5/20

11

04/0

6/20

11

11/0

6/20

11

18/0

6/20

11

25/0

6/20

11

02/0

7/20

11

09/0

7/20

11

16/0

7/20

11

23/0

7/20

11

30/0

7/20

11

06/0

8/20

11

13/0

8/20

11

20/0

8/20

11

27/0

8/20

11

03/0

9/20

11

10/0

9/20

11

17/0

9/20

11

24/0

9/20

11

01/1

0/20

11

08/1

0/20

11

15/1

0/20

11

22/1

0/20

11

29/1

0/20

11

05/1

1/20

11

12/1

1/20

11

19/1

1/20

11

26/1

1/20

11

HR %

Figure 40 : Humidité Relative relevée sur Paris en 2011

Bordeaux

0

10

20

30

40

50

60

70

80

90

100

01-janv 20-févr 11-avr 31-mai 20-juil 08-sept 28-oct 17-déc

H% 2010 H% 2011

Figure 41 : Comparatif humidité relative de l‟air, année 2010-2011 relevée sur Bordeaux

Page 61: Réaction au feu de bois massifs en parements extérieurs

61

Cartographie issus du DTU 51.4

Figure 42 : Cartographie issue du DTU 51.4