random generation of relational bayesian networks

47
PRMs Random generation Population Conclusion & ongoing work Génération aléatoire de réseaux Bayésiens relationnels Mouna Ben Ishak 1,2 , Philippe Leray 2 and Nahla Ben Amor 1 1 Laboratoire de Recherche Opérationnelle de Décision et de Contrôle de Processus (LARODEC), ISG Tunis, Tunisie 2 Laboratoire d’Informatique de Nantes Atlantique (LINA), UMR CNRS 6241, Université de Nantes, France Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 1/27

Upload: univesity-of-nantes

Post on 04-Jul-2015

120 views

Category:

Science


2 download

DESCRIPTION

Only the title page (génération aléatoire de réseaux Bayésiens relationnels) is in French Presentation during JFRB’14 25-27 juin, IHP, Paris, France

TRANSCRIPT

Page 1: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Génération aléatoire de réseaux Bayésiensrelationnels

Mouna Ben Ishak1,2, Philippe Leray2 and Nahla Ben Amor1

1 Laboratoire de Recherche Opérationnelle de Décision et de Contrôle deProcessus (LARODEC), ISG Tunis, Tunisie

2 Laboratoire d’Informatique de Nantes Atlantique (LINA), UMR CNRS 6241,Université de Nantes, France

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 1/27

Page 2: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Motivation (1/3)

f1

f2

f3

… fm

x1

v1

v3

v2

… v1

x2

v2 v1 V3 … v1

x3

v1 v2 v3 … v2

… … … … … …

xn

v1 v3 v2 … v1

Learned model

Features

Observ

atio

ns

Training

set

Learning

algorithm

Flat data representation

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 2/27

Page 3: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Motivation (2/3)

Presentation

Data Data Business logic Data

Relational

representation!!!

How to use this data with classical machine learning algorithms?

Presentation

Data Data Business logic Data

Relationa

l

represent

ation!!!

How to use relational data with classical machine learning algorithms?

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 3/27

Page 4: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Motivation (3/3)

PropositionalizationIt has been shown that propositionalization is not alwaysappropriate to perform learning in relational domains (Maier etal., 10)

Relational transitionExtend classical machine learning techniques in the context ofrelational data representation

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27

Page 5: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Motivation (3/3)

PropositionalizationIt has been shown that propositionalization is not alwaysappropriate to perform learning in relational domains (Maier etal., 10)

Relational transitionExtend classical machine learning techniques in the context ofrelational data representation

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 4/27

Page 6: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Outline ...

1. PRMs2. Random generation

2.1. Relational schema random generation2.2. PRM random generation

3. Population4. Conclusion & ongoing work

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 5/27

Page 7: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Bayesian networks (BN) (Pearl, 85)

Definition

G qualitative description ofconditional dependences/ independencesbetween variablesdirected acyclic graph(DAG)

Θ quantitative descriptionof these dependencesconditional probabilitydistributions (CPDs)

Gender

Occupation

0.50.30.2High,M

0.20.50.3High,F

00.10.9Middle,M

0.40.40.2Middle,F

0.20.50.3Low,M

0.40.10.5Low,F

Oc3Oc2Oc1

OccupationAge

Gender

0.30.30.4

High Middle Low

Age

AgeGender

0.60.4

FM

Gender

0.30.30.4

High Middle Low

Age

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 6/27

Page 8: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

BN structure learning

Constraint-based methodsBN = independence model⇒ find cond. indep. (CI) in data in order to build the DAGex : IC (Pearl & Verma, 91), PC (Spirtes et al., 93)problem : reliability of CI statistical tests (ok for n < 100)

Score-based methodsBN = probabilistic model that must fit data as well aspossibleproblem : size of search space (ok for n < 1000)

Hybrid/ local search methodslocal search / neighbor identification (statistical tests)global (score) optimizationusually for scalability reasons (ok for high n)ex : MMHC algorithm (Tsamardinos et al., 06)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27

Page 9: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

BN structure learning

Constraint-based methodsBN = independence modelproblem : reliability of CI statistical tests (ok for n < 100)

Score-based methodsBN = probabilistic model that must fit data as well aspossible⇒ search the DAG space in order to maximize a scoringfunctionex : Maximum Weighted Spanning Tree (Chow & Liu, 68),Greedy Search (Chickering, 95), evolutionary approaches(Larranaga et al., 96) (Wang & Yang, 10)problem : size of search space (ok for n < 1000)

Hybrid/ local search methodslocal search / neighbor identification (statistical tests)global (score) optimizationusually for scalability reasons (ok for high n)ex : MMHC algorithm (Tsamardinos et al., 06)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27

Page 10: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

BN structure learning

Constraint-based methodsBN = independence modelproblem : reliability of CI statistical tests (ok for n < 100)

Score-based methodsBN = probabilistic model that must fit data as well aspossibleproblem : size of search space (ok for n < 1000)

Hybrid/ local search methodslocal search / neighbor identification (statistical tests)global (score) optimizationusually for scalability reasons (ok for high n)ex : MMHC algorithm (Tsamardinos et al., 06)Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 7/27

Page 11: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Evaluating structure learning algorithms

Standard practicegenerating data from a reference modelapplying a structure learning algorithm with this datacomparing the learned and reference models

Which reference model ?existence of reference benchmarks (e.g., Asia, Alarm, ...).randomly generated models (Ide et al., 04)arbitrarily large BN by tiling (Tsamardinos et al., 06)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27

Page 12: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Evaluating structure learning algorithms

Standard practicegenerating data from a reference modelapplying a structure learning algorithm with this datacomparing the learned and reference models

Which reference model ?existence of reference benchmarks (e.g., Asia, Alarm, ...).randomly generated models (Ide et al., 04)arbitrarily large BN by tiling (Tsamardinos et al., 06)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 8/27

Page 13: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Which kind of data ?

BN learning from data... but which kind of data ?

how to deal with structured data ?

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27

Page 14: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Which kind of data ?

BN learning from data... but which kind of data ?how to deal with structured data ?

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 9/27

Page 15: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Relational schema

Movie

User

Vote

Movie

User

Rating

Gender

Age

OccupationRealiseDate

Genre

A relational schema Rclasses + relational variables

reference slots (e.g.,Vote.Movie,Vote.User )slot chain = a sequence ofreference slots

allow to walk in the relationalschema to create new variablesex : Vote.User .User−1.Movie :all the movies voted by aparticular user

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27

Page 16: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Relational schema

Movie

User

Vote

Movie

User

Rating

Gender

Age

OccupationRealiseDate

Genre

A relational schema Rclasses + relational variablesreference slots (e.g.,Vote.Movie,Vote.User )

slot chain = a sequence ofreference slots

allow to walk in the relationalschema to create new variablesex : Vote.User .User−1.Movie :all the movies voted by aparticular user

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27

Page 17: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Relational schema

Movie

User

Vote

Movie

User

Rating

Gender

Age

OccupationRealiseDate

Genre

A relational schema Rclasses + relational variablesreference slots (e.g.,Vote.Movie,Vote.User )slot chain = a sequence ofreference slots

allow to walk in the relationalschema to create new variables

ex : Vote.User .User−1.Movie :all the movies voted by aparticular user

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27

Page 18: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Relational schema

Movie

User

Vote

Movie

User

Rating

Gender

Age

OccupationRealiseDate

Genre

A relational schema Rclasses + relational variablesreference slots (e.g.,Vote.Movie,Vote.User )slot chain = a sequence ofreference slots

allow to walk in the relationalschema to create new variablesex : Vote.User .User−1.Movie :all the movies voted by aparticular user

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 10/27

Page 19: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Probabilistic Relational Models

(Koller & Pfeffer, 98)

DefinitionA PRM Π associated to R :

a qualitative dependencystructure S (with possiblelong slot chains andaggregation functions)a set of parameters θS

Vote

Rating

MovieUser

RealiseDate

Genre

AgeGender

Occupation

0.60.4

FM

User.Gender

0.40.6Comedy, F

0.50.5Comedy, M

0.10.9Horror, F

0.80.2Horror, M

0.70.3Drama, F

0.50.5Drama, M

HighLow

Votes.RatingMovie.Genre

User.G

ender

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27

Page 20: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Probabilistic Relational Models

Definition

Vote

Rating

MovieUser

RealiseDate

Genre

AgeGender

Occupation

0.60.4

FM

User.Gender

0.40.6Comedy, F

0.50.5Comedy, M

0.10.9Horror, F

0.80.2Horror, M

0.70.3Drama, F

0.50.5Drama, M

HighLow

Votes.RatingMovie.Genre

User.G

ender

Aggregators

Vote.User .User−1.Movie.genre → Vote.ratingmovie rating from one user can be dependent with thegenre of all the movies voted by this user

how to describe the dependency with an unknown numberof parents ?solution : using an aggregated value, e.g. γ = MODE

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 11/27

Page 21: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Ground Bayesian Network

GBNBN created from onePRM and aninstantiateddatabase= relational skeleton

+ probabilisticdependenciesused for probabilisticinference

Age

Rating

Age

Gender

Occupation

Age

Gender

Occupation

Gender

Occupation

Genre

RealiseDate

Genre

Genre

Genre

Genre

U1

U2

U3

M1

M2

M3

M4

M5

#U1, #M1

Rating

#U1, #M2

Rating

#U2, #M1

Rating

#U2, #M3

Rating

#U2, #M4

Rating

#U3, #M1

Rating

#U3, #M2

Rating

#U3, #M3

Rating

#U3, #M5

RealiseDate

RealiseDate

RealiseDate

RealiseDate

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27

Page 22: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Ground Bayesian Network

GBNBN created from onePRM and aninstantiateddatabase= relational skeleton+ probabilisticdependenciesused for probabilisticinference

Age

Rating

Age

Gender

Occupation

Age

Gender

Occupation

Gender

Occupation

Genre

RealiseDate

Genre

Genre

Genre

Genre

U1

U2

U3

M1

M2

M3

M4

M5

#U1, #M1

Rating

#U1, #M2

Rating

#U2, #M1

Rating

#U2, #M3

Rating

#U2, #M4

Rating

#U3, #M1

Rating

#U3, #M2

Rating

#U3, #M3

Rating

#U3, #M5

RealiseDate

RealiseDate

RealiseDate

RealiseDate

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 12/27

Page 23: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRM structure learning

Constraint-based methodsrelational PC (Maier et al., 10) relational CD (Maier et al.,13)don’t deal with aggregation functions

Score-based methods

Hybrid methods

Critics - previous works

Propositiona synthetic approach to randomly generate and populate PRMsand databases

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27

Page 24: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRM structure learning

Constraint-based methods

Score-based methodsgreedy search (Getoor et al., 07)

Hybrid methods

Critics - previous works

Propositiona synthetic approach to randomly generate and populate PRMsand databases

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27

Page 25: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRM structure learning

Constraint-based methods

Score-based methods

Hybrid methodsrelational MMHC (Ben Ishak et al., in progress)

Critics - previous works

Propositiona synthetic approach to randomly generate and populate PRMsand databases

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27

Page 26: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRM structure learning

Constraint-based methods

Score-based methods

Hybrid methods

Critics - previous workslack of evaluation process, in a common frameworkabsence of relational benchmarks for evaluation algorithmsabsence of relational data generation process

Propositiona synthetic approach to randomly generate and populate PRMsand databases

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27

Page 27: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRM structure learning

Constraint-based methods

Score-based methods

Hybrid methods

Critics - previous works

Propositiona synthetic approach to randomly generate and populate PRMsand databases

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 13/27

Page 28: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

PRMs random generation

Related work(Maier et al., 10, 13)

relational schemas are generated as tree structure ... toosimple

(Wuillemin et al., 12)object-oriented paradigm rather than relational oneno population nor interaction with a relational database

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 14/27

Page 29: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

The overall process

DB instanceDB instance

PRMPRM

Instantiate

Sample

Relational SchemaRelational Schema Probabilistic dependenciesProbabilistic dependencies

Ground BNGround BNRelational SkeletonRelational Skeleton Probabilistic dependenciesProbabilistic dependencies

Model generation

Instance generation

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 15/27

Page 30: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

The overall platform

RDB

Visualization

InferenceLearning PRM

PRM API

Parameters learning Structure learning

+

score-based

+

constraint-based

+

Hybrid

Statistical learning

+

Bayesian learning

Benchmarking

Evaluation

+

FIGURE: PRM API under the PILGRIM platform

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 16/27

Page 31: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Outline ...

1. PRMs2. Random generation

2.1. Relational schema random generation2.2. PRM random generation

3. Population4. Conclusion & ongoing work

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 17/27

Page 32: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Generating the relational schema

Hypotheseswith respect to the relational model definition (Date, 08) :avoid referential cycles when generating constraints∀Xi ,Xi ∈ X there exist a referential path from Xi to Xj :searching for DAG structures with a single connectedcomponent

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 18/27

Page 33: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Example

Clazz0

Clazz1

Clazz2

Clazz3n1

n0

n2n3

Clazz0

Clazz1

Clazz2

Clazz3att0att1

att0att1att2

att0att1att2att3

att0

Clazz0

Clazz1

Clazz2

Clazz3

clazz0id

clazz1idclazz3id

clazz2id

clazz1id

clazz0id

clazz3id

clazz2id

Clazz0

Clazz1

Clazz2

Clazz3att0att1

att0att1att2

att0att1att2att3

att0

clazz1id

clazz0id

clazz3id

clazz2id

#clazz0fkatt03

#claszz1fkatt13

#clazz2fkatt23

#clazz1fkatt12

#clazz1fkatt10

G

generate primary keys

generate attributes

generate foreign keys

generate foreign keys

1

2

3

3

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 19/27

Page 34: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Generating the PRM

Goalrandomly generating probabilistic dependencies Sbetween the attributes of the classes structuresampling CPDs like for usual BNs

Hypothesis

Principle

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27

Page 35: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Generating the PRM

Goal

Hypothesisthe dependency structure S should be a DAGone descriptive attribute is dependent with another one,but with which slot chain ?we need a user-defined maximum slot chain length Kmax

Principle

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27

Page 36: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Generating the PRM

Goal

Hypothesis

Principlestep I : add dependencies while keeping a DAG structure,first into classes, then intra classesstep II : random choice of a legal slot chain weighted by itslength

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 20/27

Page 37: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Example

Clazz0

Clazz1

Clazz2

Clazz3

att0

att1

att0

att0

att0

clazz1fkatt10

clazz0fkatt03

claszz1fkatt13

clazz2fkatt23

clazz1fkatt12

att2

att1

att3

att1

att2

[Clazz0.clazz1fkatt10]

[Clazz2.clazz1fkatt12]

[Calzz2.clazz2fka

tt23-1 ]

MODE

[Clazz2.clazz1fkatt12. clazz1fkatt12-1]

MODE

[Ca

lzz2.clazz2fka

tt23-1.

claszz1fka

tt13. clazz1fka

tt10-1]

MODE

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 21/27

Page 38: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Outline ...

1. PRMs2. Random generation

2.1. Relational schema random generation2.2. PRM random generation

3. Population4. Conclusion & ongoing work

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 22/27

Page 39: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

GBN creation and sampling

Generating the relational skeleton

by generating a random number of objects per classadding links between objects : all referencing classes havetheir generated objects related to objects from referencedclasses

Creating the GBN

Populating the database

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27

Page 40: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

GBN creation and sampling

Generating the relational skeleton

Creating the GBN

the GBN is constructed by using the CPDs already definedby the PRM

Populating the database

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27

Page 41: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

GBN creation and sampling

Generating the relational skeleton

Creating the GBN

Populating the database

sampling from the GBN

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 23/27

Page 42: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Example

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 24/27

Page 43: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Outline ...

1. PRMs2. Random generation

2.1. Relational schema random generation2.2. PRM random generation

3. Population4. Conclusion & ongoing work

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 25/27

Page 44: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Conclusion - Perspectives

Conclusionwe proposed one process to randomly generate PRMs andinstantiate them to populate a relational database

Ongoing work

propose a new approach to learn PRM structure fromrelational datacomparing it with existing state-of-the-art approaches, withdatabases using our random generation processextend our generation approach to address other relationalprobabilistic graphical models (e.g., DAPER)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27

Page 45: Random Generation of Relational Bayesian Networks

PRMs Random generation Population Conclusion & ongoing work

Conclusion - Perspectives

Conclusionwe proposed one process to randomly generate PRMs andinstantiate them to populate a relational database

Ongoing work

propose a new approach to learn PRM structure fromrelational datacomparing it with existing state-of-the-art approaches, withdatabases using our random generation processextend our generation approach to address other relationalprobabilistic graphical models (e.g., DAPER)

Génération aléatoire de réseaux Bayésiens relationnels JFRB’14 25-27 juin, IHP, Paris, France 26/27

Page 46: Random Generation of Relational Bayesian Networks

A suivre :-)Jeudi 9h30 - Ghada Trabelsi -Evaluation des algosd’apprentissage de structure desRB dynamiquesJeudi 10h - Anthony Coutant -Apprentissage d’une extensiondes PRMVendredi 10h30 - MarouaHaddad - Apprentissage desréseaux possibilistes

DDonnéesData

UtilisateursUser

UConnaissancesKnowledge

Ke

Page 47: Random Generation of Relational Bayesian Networks

A suivre :-)Jeudi 9h30 - Ghada Trabelsi -Evaluation des algosd’apprentissage de structure desRB dynamiquesJeudi 10h - Anthony Coutant -Apprentissage d’une extensiondes PRMVendredi 10h30 - MarouaHaddad - Apprentissage desréseaux possibilistes

Any question ?