laboratoire de techniques aéronautiques et spatiales (asma)

51
Laboratoire de Techniques Aéronautiques et Spatiales (ASMA Milieux Continus & Thermomécanique Université de Liège Tel: +32-(0)4- 366-91-26 Chemin des chevreuils 1 Fax: +32-(0)4-366-91-41 B-4000 Liège – Belgium Email : [email protected] Contributions aux algorithmes d’intégration temporelle conservant l’énergie en dynamique non-linéaire des structures. Travail présenté par Ludovic Noels (Ingénieur civil Electro-Mécanicien, Aspirant du F.N.R.S.) Pour l’obtention du titre de Docteur en Sciences Appliquées 3 décembre 2004

Upload: kimberly

Post on 06-Jan-2016

48 views

Category:

Documents


5 download

DESCRIPTION

Laboratoire de Techniques Aéronautiques et Spatiales (ASMA). Milieux Continus & Thermomécanique. Contributions aux algorithmes d’intégration temporelle conservant l’énergie en dynamique non-linéaire des structures. Travail présenté par Ludovic Noels - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Milieux Continus & Thermomécanique

Université de Liège Tel: +32-(0)4-366-91-26 Chemin des chevreuils 1 Fax: +32-(0)4-366-91-41 B-4000 Liège – Belgium Email : [email protected]

Contributions aux algorithmes d’intégration temporelle conservant l’énergie

en dynamique non-linéaire des structures.

Travail présenté par

Ludovic Noels(Ingénieur civil Electro-Mécanicien, Aspirant du F.N.R.S.)

Pour l’obtention du titre de

Docteur en Sciences Appliquées3 décembre 2004

Page 2: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Introduction Industrial problems

Industrial context:– Structures must be able to resist to crash situations– Numerical simulations is a key to design structures– Efficient time integration in the non-linear range is needed

Goal: – Numerical simulation of blade off and wind-

milling in a turboengine – Example from SNECMA

Page 3: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Introduction Original developments

Original developments in implicit time integration:– Energy-Momentum Conserving scheme for elasto-plastic model

(based on a hypo-elastic formalism)– Introduction of controlled numerical dissipation combined with

elasto-plasticity– 3D-generalization of the conserving contact formulation

Original developments in implicit/explicit combination:– Numerical stability during the shift

– Automatic shift criteria

Numerical validation:– On academic problems

– On semi-industrial problems

Page 4: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives

Page 5: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations– Dynamics simulation

– Implicit algorithm: our opinion

– Conservation laws

– Explicit algorithms

– Implicit algorithms

– Numerical example: mass/spring-system

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives

Page 6: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsDynamics simulations

Scientific context:– Solids mechanics

– Large displacements

– Large deformations

– Non-linear mechanics

extint FFxM

0

int0

V

T JdVDF

f

: Cauchy stress; F: deformation gradient; f = F-1;

: derivative of the shape function; J : Jacobian

0xD

Spatial discretization into finite elements:– Balance equation

– Internal forces formulation

Page 7: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsDynamics simulations

Temporal integration of the balance equation 2 methods:

– Explicit method

– Implicit method

1,1deduction

1ionapproximat intext1

nxnxFFnx

nxnxnx

M

)1,,1,,(1

)1,,1,,(1iterations

1

1

1ionextrapolat

extint

nxnxnxnxnxfnxnxnxnxnxnxfnx

FFx

nxnxnx

nxnxnx

M

Very fast dynamics

Slower dynamics

• Non iterative• Limited needs in memory• Conditionally stable (small time step)

• Iterative• More needs in memory• Unconditionally stable (large time step)

Page 8: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsImplicit algorithm: our opinion

If wave propagation effects are negligibleImplicit schemes are more suitable

– Sheet metal forming (springback, superplastic forming, …)– Crashworthiness simulations (car crash, blade loss, shock

absorber, …)

Nowadays, people choose explicit scheme mainly because of difficulties linked to implicit scheme:– Lack of smoothness (contact, elasto-plasticity, …)

convergence can be difficult– Lack of available methods (commercial codes)

Little room for improvement in explicit methods Complex problems can take advantage of combining explicit and implicit

algorithms

Page 9: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsConservation laws

Conservation of linear momentum (Newton’s law)– Continuous dynamics

– Time discretization &

nodes

nnnodes nodes

nnnn Fxtxxxx ext2/12/111

MM

nodes

nnnnnnodes

nnnn xxFDWWxxxx ][2

1

2

11

ext2/1

intintint111

MM

nodes

nnodes

nn Ftxx ext2/11

MM

Wint: internal energy;

Wext: external energy;

Dint: dissipation (plasticity …)

extFt

x

M

extFxt

xx

M

intextint DWt

Wt

Kt

0int2/1

nodesnF

0int2/12/1

nodesnn Fx

nodes

nnnnn xxFDWW ][ 1int

2/1intintint

1

Conservation of angular momentum– Continuous dynamics

– Time discretization

&

Conservation of energy

– Continuous dynamics

– Time discretization &

Page 10: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivations Explicit algorithms

Central difference (no numerical dissipation)

nMnnnM xFFMx 1 intext11

11 ² 2

nnnnn xtxtxtxx

11 1 nnnn xtxtxx

int1

ext1

11

nnn FFMx

2/11 nnn xtxx

nnn xtxx 2/12/1

Hulbert & Chung (numerical dissipation) [CMAME, 1996]

Small time steps conservation conditions are approximated

Numerical oscillations may cause spurious plasticity

Page 11: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsImplicit algorithms

-generalized family (Chung & Hulbert [JAM, 1993])

– Newmark relations:

nnnnn xtxtxx

tx ²

2

1

²

111

nnnnn xtxtxx

tx ²

2

1 1

11

01

1

1

1 extintext1

int11

nnF

Fnnn

F

Mn

F

M FFFFxMxM

– M = 0 and F = 0 (no numerical dissipation)• Linear range: consistency (i.e. physical results) demonstrated

• Non-linear range with small time steps: consistency verified

• Non-linear range with large time steps: total energy conserved but without consistency (e.g. plastic dissipation greater than the total energy, work of the normal contact forces > 0, …)

– M 0 and/or F 0 (numerical dissipation)• Numerical dissipation is proved to be positive only in the linear range

– Balance equation:

Page 12: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

1. Scientific motivationsNumerical example: mass/spring-system

=10 m /s.

l =10 m0

²U l² =15 N /m/

m = 2 kg

x0

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

Example: Mass/spring system (2D) with an initial velocity perpendicular to the spring (Armero & Romero [CMAME, 1999])

– Newmark implicit scheme (no numerical damping)

– Chung-Hulbert implicit scheme (numerical damping)

t=1s t=1.5s t=1s t=1.5s

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

Explicit methodtcrit ~ 0.72s;

1 revolution ~ 4s

Page 13: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations2. Consistent scheme in the non-linear range

– Principle– Dissipation property– The mass/spring system– Formulations in the literature: hyperelasticity– Formulations in the literature: contact– Developments for a hypoelastic model– Numerical example: Taylor bar– Numerical example: impact of two 2D-cylinders– Numerical example: impact of two 3D-cylinders

3. Combined implicit/explicit algorithm4. Complex numerical examples5. Conclusions & perspectives

Page 14: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Principle

Consistent implicit algorithms in the non-linear range:

– The Energy Momentum Conserving Algorithm or EMCA

(Simo et al. [ZAMP 92], Gonzalez & Simo [CMAME 96]):

• Conservation of the linear momentum

• Conservation of the angular momentum

• Conservation of the energy (no numerical dissipation)

– The Energy Dissipative Momentum Conserving algorithm or

EDMC (Armero & Romero [CMAME, 2001]):

• Conservation of the linear momentum

• Conservation of the angular momentum

• Numerical dissipation of the energy is proved to be positive

Page 15: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Principle

0

02/1

02/1

02/1int

2/1V

nTnnn dVJDF

f ext

2/1nF

diss2/1nF

– EMCA:

• With and designed to verify

conserving equations• No dissipation forces and no dissipation velocities

t

xxxx nnnn

11

2

diss2/1

int2/1

ext2/1

1

2

nnnnn FFF

xxM

t

xxx

xx nnn

nn

1diss

11

2

– Balance equation

Based on the mid-point scheme (Simo et al. [ZAMP, 1992])

– Relations displacements/velocities/accelerations

diss1nx

– EDMC: • Same internal and external forces as in the EMCA

• With and designed to achieve positive numerical dissipation without spectral bifurcation

Page 16: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Dissipation property

Comparison of the spectral radius– Integration of a linear oscillator:

Low numerical dissipation High numerical dissipation

11

2

1 cosln

exp nnn ttt

x

: spectral radius;: pulsation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.01 0.1 1 10 100 1000

t

Sp

ectr

al r

adiu

s

CH implicitHHTNewmarkEDMC-1CH explicit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.01 0.1 1 10 100 1000

t

Sp

ectr

al r

adiu

s

CH implicitHHTNewmarkEDMC-1CH explicit

Page 17: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range The mass/spring system

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

Forces of the spring for any potential V

F n 1/ 2

int V (ln 1) V (ln )

ln 12 ln

2

x n 1

x n

– Without numerical dissipation (EMCA) (Gonzalez & Simo [CMAME, 1996])

– The consistency of the EMCA solution does not depend on t

– The Newmark solution does-not conserve the angular momentum

-250

-200

-150

-100

0 100 200 300 400 500

Time (s)

An

gu

lar

mo

me

ntu

m (

kg

m²/

s)

ConservingNewmark

EMCA, t=1s EMCA, t=1.5s

-20

-10

0

10

20

-20 -10 0 10 20

X (m)

Y (

m)

Page 18: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range The mass/spring system

-250

-200

-150

-100

-50

0

0 100 200 300 400 500

Time (s)

An

gu

lar

mo

men

tum

(kg

m²/

s)

EDMC

HHT

2

1

1

1diss1

nn

nn

nn

n

xx

xx

xxx

2

''1

1

21

diss2/1

1 nn

nn

llnlnl

n

xx

ll

VF

nn

– With numerical dissipation (EDMC 1st order ) with dissipation parameter 0< (Armero&Romero [CMAME, 2001]), here = 0.111

– Only EDMC solution preserves the driving motion:• The length tends towards the equilibrium length

• Conservation of the angular momentum is achieved

Length at rest

Equilibrium length

8

9

10

11

12

0 100 200 300 400 500Time (s)

Len

gth

(m

)

EDMC

HHT

Page 19: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeFormulations in the literature: hyperelasticity

Hyperelastic material (stress derived from a potential V):– Saint Venant-Kirchhoff hyperelastic model (Simo et al. [ZAMP, 1992])

– General formulation for hyperelasticity (Gonzalez [CMAME, 2000]):

0xD

00),,(

2

100

2

100int

2/1

20

10

VdVD

O

pvmVf

nnV

nn

nF

nn

GLGL

GLGL

GL

FF

F: deformation gradient

GL: Green-Lagrange strain

V: potential

: shape functions

– Hyperelasticity with elasto-plastic behavior: energy dissipation of the algorithm corresponds to the internal dissipation of the material (Meng & Laursen [CMAME, 2001])

– Classical formulation:

00

int

VdVD

VF

GLF

Page 20: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeFormulations in the literature: contact

Description of the contact interaction:n: normal

t: tangent

g: gap

Fcont: force

n

t

g<0

Fcont

Computation of the classical contact force:

– Penalty method

– Augmented Lagrangian method

– Lagrangian method

ngkF N

cont

ngknF Nk

)(cont

nF

cont

kN: penalty

: Lagrangian

Page 21: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeFormulations in the literature: contact

– Computation of a dynamic gap for slave node x projected on master surface y(u)

)()( 2/12/1112/1dd

1 nnnnnnnnn uyuyxxngg

2/1dd

1

dd1cont

2/1

n

nn

nnn n

gg

gVgVF

Penalty contact formulation (normal force proportional to the penetration “gap”) (Armero & Petöcz [CMAME, 1998-1999]):

– Normal forces derived from a potential V

Augmented Lagrangian and Lagrangian consistent contact formulation (Chawla & Laursen [IJNME, 1997-1998]):– Computation of a gap rate

)()( 2/12/1112/1r

2/1 nnnnnnnn uyuyxxngt

Page 22: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeDevelopments for a hypoelastic model

Hypoelastic model:– stress obtained incrementally from a hardening law– no possible definition of an internal potential!– Idea: the internal forces are

established to be consistent on a loading/unloading cycle

The EMCA or EDMC for hypoelastic constitutive model:– Valid for hypoelastic formulation of (visco) plasticity– Energy dissipation from the internal forces corresponds to the

plastic dissipation

Page 23: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeDevelopments for a hypoelastic model

Incremental strain tensor:

E nn 1

1

2ln F

nn 1T

Fnn 1

E: natural strain tensor; F: deformation gradient

Elastic incremental stress:

nn 1 H : E n

n 1

: Cauchy stress; H: Hooke stress-strain tensor

Plastic stress corrections:(radial return mapping: Wilkins [MCP, 1964], Maenchen & Sack [MCP, 1964], Ponthot [IJP, 2002])

scnn 1

f ( vm, p )

sc: plastic corrections; vm: yield stress; p: equivalent plastic strain

Final Cauchy stresses: (final rotation scheme: Nagtegaal & Veldpaus [NAFP, 1984], Ponthot [IJP, 2002])

n 1 Rnn 1 n n

n 1 sc Rnn 1T

R: rotation tensor;

Classical forces formulation:

0

10

1int1 0V

Tnnn JdVDF

f

f = F-1; D derivative of the shape function; J : Jacobian

Page 24: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeDevelopments for a hypoelastic model

00**1*1

4

1int2/1

110

10

VdVJDn

nJDnnnF nTnnnTnn

fCfIfCFI

111

10

int*

:

:/

n

nnn

nn

nplnn

nJDGL

GLGL

GLC

111

1110

int**

:

:/

n

nnn

nn

nplnn

nJDA

AA

AC

Dint: internal dissipation due to the plasticity; A: Almansi incremental strain tensor (A = Apl + Ael); GL: Green-Lagrange incremental strain (GL = GLpl + GLel)

EMCA (without numerical dissipation):

– New internal forces formulation:

– Correction terms C* and C**: (second order correction in

the plastic strain increment)

int2/1

ext2/1

1

2

nnnn FF

xxM

– Balance equation

F: deformation gradient; f: inverse of F; D derivative of the shape function; J : Jacobian = det F; : Cauchy stress

– Verification of the conservation laws

0int2/1

nodesnF

0int

2/12/1 nodes

nn Fx

cycle nodes

nnn xxFD ][ 1int

2/1int

&

Page 25: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeDevelopments for a hypoelastic model

00

114

1diss2/1

10

**0

*

VdVDn

nDnnnF

TnTn fDfIfDFI

111

01el1el

*

:

::2

nnn

nnn

nnn

nn JH

GLGLGL

EED

111

10

1el1el**

:

::/2

nnn

nnn

nnn

nn JH

AAA

EED

EDMC (1st order accurate with numerical dissipation):

– New dissipation forces formulation:

– Dissipating terms D* and D**:

diss2/1

int2/1

ext2/1

1

2

nnnnn FFF

xxM

– Balance equation

– Verification of the conservation laws

0diss2/1

nodesnF

0diss

2/12/1 nodes

nn Fx

][][ 1diss

2/11diss

2/1num

nnnnodes

nnn xxxxxFD M

&

Dnum: numerical dissipation

Page 26: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Numerical example: Taylor bar

Impact of a cylinder :– Hypoelastic model

– Elasto-plastic hardening law

– Simulation during 80 µs

Page 27: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeNumerical example: Taylor bar

-0.6

-0.4

-0.2

0

0.2

0.1 1

Time step size (µs)

Inte

rnal

en

erg

y (J

)

Newmark

EMCA with corrections (C*, C**)

EMCA without corrections

0.1%

1.0%

10.0%

100.0%

1000.0%

0.1 1Time step size (µs)

Inte

rnal

en

erg

y er

ror

NewmarkEMCA with corrections (C*, C**)EMCA without correctionsSecond order

0

500

1000

1500

2000

2500

0.1 1

Time step size (µs)

New

ton

-Rap

hso

n i

tera

tio

ns

Newmark

EMCA with corrections (C*, C**)

EMCA without corrections

Simulation without numerical dissipation: final results

50

52

54

56

58

60

0.1 1Time step size (µs)

To

tal

ener

gy

(J)

NewmarkEMCA with corrections (C*, C**)EMCA without correctionsInitial energy

Page 28: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeNumerical example: Taylor bar

-0.6

-0.4

-0.2

0

0.2

0.1 1

Time step size (µs)

Inte

rnal

en

erg

y (J

)

NewmarkEDMC-1HHTCH

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

Spectral radius at infinity pulsation

Inte

rnal

en

erg

y (J

)

NewmarkEDMC-1HHTCH

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

Spectral radius at infinity pulsation

New

ton

-Rap

hso

n i

tera

tio

ns

NewmarkEDMC-1HHTCH

Simulations with numerical dissipation: final results

0.1%

1.0%

10.0%

100.0%

1000.0%

0.1 1

Time step size (µs)

Err

or

on

th

e in

tern

al e

ner

gy

Newmark EDMC-1HHT CHFirst order

– Constant spectral radius at infinity pulsation = 0.7

– Constant time step size = 0.5 µs

Page 29: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Numerical example: impact of two 2D-cylinders

Impact of 2 cylinders (Meng&Laursen) :– Left one has a initial velocity (initial kinetic energy 14J)

– Elasto perfectly plastic hypoelastic material

– Simulation during 4s

Page 30: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeNumerical example: impact of two 2D-cylinders

Results comparison at the end of the simulationNewmark(t=1.875 ms)

Newmark(t=15 ms)

EMCA (with cor., t=1.875 ms)

EMCA (with cor., t=15 ms)

0 0.089 0.178 0.266 0.355Equivalent plastic strain Equivalent plastic strain

Equivalent plastic strain

0 0.090 0.180 0.269 0.359

0 0.305 0.609 0.914 1.22Equivalent plastic strain

0 0.094 0.187 0.281 0.374

Page 31: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeNumerical example: impact of two 2D-cylinders

Results evolution comparison

0

2

4

6

8

10

0 2 4Time (s)

En

erg

y p

last

ical

ly

dis

isp

ated

(J)

Newmark

EMCA

Meng & Laursen0

1

2

3

4

5

6

0 2 4Time (s)

En

erg

y p

last

ical

ly

dis

sip

ated

(J)

Newmark

EMCA

Meng & Laursen

-0.50

0.51

1.52

2.53

0 1 2 3 4Time (s)

Wo

rk o

f th

e co

nta

ct

forc

es (

J)Newmark

EMCA

-0.1

-0.05

0

0.05

0.1

0 1 2 3 4Time (s)

Wo

rk o

f th

e c

on

tac

t f

orc

es

(J)

Newmark

EMCA

t=15 mst=1.875 ms

Page 32: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear range Numerical example: impact of two 3D-cylinders

Impact of 2 hollow 3D-cylinders:– Right one has a initial

velocity (

)

– Elasto-plastic hypoelastic material (aluminum)

– Simulation during 5ms

– Use of numerical dissipation

– Frictional contact

xz

y

YX xx 00 10

Page 33: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

2. Consistent scheme in the non linear rangeNumerical example: impact of two 3D-cylinders

– At the end of the simulation:

Results comparison with a reference (EMCA; t=0.5µs):– During the simulation:

25

50

75

100

0 0.0025 0.005

Time (s)

X-l

inea

r m

om

entu

m o

f ri

gh

t cy

lin

der

(kg

m/s

)

Reference

EDCM-1

HHT

0

50

100

150

200

0 0.0025 0.005

Time (s)

Z-a

ng

ula

r m

om

entu

m o

f ri

gh

t cy

lin

der

(kg

m²/

s)

Reference

EDCM-1

HHTx

zy x

zy

-5000

-4500

-4000

-3500

-3000

1 10Time step size (µs)

Wo

rk o

f fr

icti

on

al

con

tact

fo

rces

(J)

Reference

EDMC-1

HHT-0.1

0.0

0.1

0.2

0.3

1 10Time step size (µs)

En

erg

y n

um

eric

ally

d

issi

pat

ed (

%)

Reference

EDMC-1

HHT

Page 34: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm– Automatic shift– Initial implicit conditions– Numerical example: blade casing interaction

4. Complex numerical examples

5. Conclusions & perspectives

Page 35: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

3. Combined implicit/explicit algorithmAutomatic shift

Shift from an implicit algorithm to an explicit one:

– Evaluation of the ratio r*stepexplicit1

stepimplicit1*

CPU

CPUr

maxexpl

bt

5.21

intoldimpl

newimpl 2

Tol

e

t

t

expl

*

impltr

t

– Explicit time step size depends on the mesh

– Implicit time step size depends on the integration error (Géradin)

– Shift criterion

b: stability limit;

max: maximal eigen pulsation

eint: integration error; Tol: user tolerance

: user security

ref

2impl

3int e

xtxte

inodesi

Page 36: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

3. Combined implicit/explicit algorithmAutomatic shift

Shift from an explicit algorithm to an implicit one:

– Evaluation of the ratio r*

maxexpl

bt

expl*

impl trt

– Explicit time step size depends on the mesh

– Implicit time step size interpolated form a acceleration difference

– Shift criterion

b: stability limit;

max: maximal eigen pulsation

Tol: user tolerance

: user security

stepexplicit1

stepimplicit1*

CPU

CPUr

52

explrefimpl

2

x

teTolt

inodesi

Page 37: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

3. Combined implicit/explicit algorithmInitial implicit conditions

– Dissipation of the numerical modes: spectral radius at bifurcation equal to zero.

diss2/*

int2/*

ext2/*

*

2 rnrnrn

nrn FFFxx

M

Stabilization of the explicit solution:

– Consistent balance of the r* last explicit steps:

tn tn+r* tn+ r*+ 1

texp l

explic it im plic it

t im p l tim p l

tn -r*

d issipa tion balance

Page 38: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

3. Combined implicit/explicit algorithmNumerical example: blade casing interaction

Blade/casing interaction :– Rotation velocity

3333rpm

– Rotation center is moved during the first half revolution

– EDMC-1 algorithm

– Four revolutions simulation

Page 39: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

3. Combined implicit/explicit algorithmNumerical example: blade casing interaction

Final results comparison:

Explicit part of the combined method

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

0 1 2 3 4Round

Co

nta

ct f

orc

e (N

)

Implicit (EDMC-1)

Combined

Explicit

050

100150200250300350400

CPU (min)

Implicit (EDMC-1) Combined

Explicit

Page 40: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples– Blade off simulation

– Dynamic buckling of square aluminum tubes

5. Conclusions & perspectives

Page 41: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

4. Complex numerical examplesBlade off simulation

Numerical simulation of a blade loss in an aero engine

casing

blades

disk

bearing

flexible shaft

Front view

Back view

0 680 1360

Von Mises stress (Mpa)

Page 42: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

4. Complex numerical examplesBlade off simulation

Blade off :– Rotation velocity

5000rpm

– EDMC algorithm

– 29000 dof’s

– One revolution simulation

– 9000 time steps

– 50000 iterations (only 9000 with stiffness matrix updating)

Page 43: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

4. Complex numerical examplesBlade off simulation

Final results comparison:

0

200000

400000

600000

800000

0.0 0.2 0.4 0.6 0.8 1.0

Round

Fo

rce

on

bea

rin

g (

N)

Implicit (EDMC-1)

Combined

Explicit

CPU time comparison before and after code optimization:

0

5

10

15

20

25

30

35

CPU (days)

Implicit (EDMC-1)CombinedExplicit

Before optimization After optimization

0

1500000

3000000

4500000

0.0 0.2 0.4 0.6 0.8 1.0

Round

Fo

rce

on

cas

ing

(N

)

Implicit (EDMC-1)

Combined

Explicit

0

5

10

15

20

25

30

35

CPU (days)

Implicit (EDMC-1)CombinedExplicit

Page 44: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

4. Complex numerical examplesDynamic buckling of square aluminum tubes

98.27 m/s 64.62 m/s 25.34 m/s 14.84 m/sImpact velocity :

Absorption of 600J with different impact velocities : – EDMC algorithm– 16000 dof’s / 2640 elements– Initial asymmetry– Comparison with the

experimental results of Yang, Jones and Karagiozova [IJIE, 2004]

Page 45: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

4. Complex numerical examplesDynamic buckling of square aluminum tubes

Final results comparison:

Time evolution for the 14.84 m/s impact velocity:Explicit part of the combined method

-6000

-4500

-3000

-1500

0

0.0E+00 4.0E-03 8.0E-03 1.2E-02

Time (s)

Fo

rce

on

1/4

of

the

tub

e (N

)

Implicit (EDMC-1)

Combined

Explicit

1.0E-08

1.0E-07

1.0E-06

1.0E-05

0.0E+00 4.0E-03 8.0E-03 1.2E-02

Time (s)

Tim

e st

ep (

s)

Implicit (EDMC-1) Combined Explicit

0

10

20

30

40

50

60

14.84 25.34 64.62 98.27

Impact velocity (m/s)

CP

U (

day

s)

Implicit (EDMC-1)CombinedExplicit

0

20

40

60

80

14.84 25.34 64.62 98.27

Impact velocity (m/s)

Cru

shin

g d

ista

nce

(m

m)

Implicit (EDMC-1)CombinedExplicitExperimental (Yang)Jones et al (shells, explicit)

Page 46: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Scope of the presentation

1. Scientific motivations

2. Consistent scheme in the non-linear range

3. Combined implicit/explicit algorithm

4. Complex numerical examples

5. Conclusions & perspectives

– Improvements

– Advantages of new developments

– Drawbacks of new developments

– Futures works

Page 47: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Original developments in consistent implicit schemes:– New formulation of elasto-plastic internal forces

– Controlled numerical dissipation

– Ability to simulate complex problems (blade-off, buckling)

5. Conclusions & perspectivesImprovements

Original developments in implicit/explicit combination:– Stable and accurate shifts

– Automatic shift criteria

– Reduction of CPU cost for complex problems (blade-off, buckling)

Page 48: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Advantages of the consistent scheme:– Conservation laws and physical consistency are verified for each

time step size in the non-linear range

– Conservation of angular momentum even if numerical dissipation is introduced

Advantages of the implicit/explicit combined scheme:– Reduction of the CPU cost– Automatic algorithms– No lack of accuracy– Remains available after code optimizations

5. Conclusions & perspectivesAdvantages of new developments

Page 49: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Drawbacks of the consistent scheme:– Mathematical developments needed for each element, material…

– More complex to implement

5. Conclusions & perspectivesDrawbacks of new developments

Drawback of the implicit/explicit combined scheme:– Implicit and explicit elements must have the same formulation

Page 50: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

5. Conclusions & perspectivesFuture works

Development of a second order accurate EDMC scheme Extension to a hyper-elastic model based on an

incremental potential Development of a thermo-mechanical consistent scheme Modelization of wind-milling in a turbo-engine ...

Page 51: Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Laboratoire de Techniques Aéronautiques et Spatiales (ASMA)

Milieux Continus & Thermomécanique

Université de Liège Tel: +32-(0)4-366-91-26 Chemin des chevreuils 1 Fax: +32-(0)4-366-91-41 B-4000 Liège – Belgium Email : [email protected]

Merci de votre attention