iwai iw-fnerc 2011

Upload: srsriram

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/2/2019 Iwai IW-FNERC 2011

    1/88

    Future of Nano CMOSTechnology

    December 26, 2011

    Hiroshi Iwai,

    Tokyo Institute of Technology 1

    International Workshop onThe Future of Nano Electronics

    Researchand Challenges Ahead

  • 8/2/2019 Iwai IW-FNERC 2011

    2/88

    y gy

    Founded in 1881, Promoted to Univ. 1929

    Tokyo Institute of Technology

  • 8/2/2019 Iwai IW-FNERC 2011

    3/88

  • 8/2/2019 Iwai IW-FNERC 2011

    4/88

    International StudentsInternational Students

    Asia847

    Europe 78 NorthAmerica 12

    SouthAmerica 24

    Oceania 5

    Africa 16

    Total 982

    Country Students

    China 403

    S. Korea 130

    Indonesia 64

    Thailand 55

    Vietnam 60

    Malaysia 28

    (As of May. 1,2005)

  • 8/2/2019 Iwai IW-FNERC 2011

    5/88

  • 8/2/2019 Iwai IW-FNERC 2011

    6/88

    6

  • 8/2/2019 Iwai IW-FNERC 2011

    7/88

    Lee De Forest

    Electronic Circuits started by the

    invention of vacuum tube

    (Triode) in 1906

    Cathode(heated) Grid

    Anode(Positive bias)

    Thermal electrons from cathode

    controlled by grid bias

    Same mechanism as that of transistor

  • 8/2/2019 Iwai IW-FNERC 2011

    8/88

    t Computer Eniac: made of huge number of vacuum tubes 1ig size, huge power, short life time filament

    Today's pocket PCmade ofsemiconductor hasmuch higherperformance withextremely lowpower consumption

    dreamed of replacing vacuum tube with solid-state devic

    8

  • 8/2/2019 Iwai IW-FNERC 2011

    9/88

    J.E.LILIENFELD

    J. E. LILIENFELD

    DEVICES FOR CONTROLLED ELECTRIC CURRENT

    Filed March 28, 1928

    9

  • 8/2/2019 Iwai IW-FNERC 2011

    10/88

    Electron

    Semiconductor

    Gate Electrode

    Gate Insulator

    Negative bias

    Positive bias

    Capacitor structure with notch

    No current

    Current flows

    Electricfield

    10

  • 8/2/2019 Iwai IW-FNERC 2011

    11/88

    Source Channel Drain

    0VN+-Si P-Si

    N-Si

    0V

    1V

    Negative

    Source Channel Drain

    N-Si

    1VN+-Si P-Si

    Surface Potential (Negative direction)

    Gate Oxd

    ChannelSource

    Drain

    Gate electrode

    S D

    G

    0 bias for gate Positive bias for gate

    Surface

    Electron flow

    Mechanism of MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

  • 8/2/2019 Iwai IW-FNERC 2011

    12/88

    However, no one could realizeMOSFET operation for more than

    30 years.Because of very bad interfaceproperty between the semiconductor

    and gate insulatorEven Shockley!

    12

  • 8/2/2019 Iwai IW-FNERC 2011

    13/88

    Very bad interface property betweenthe semiconductor and gate insulator

    Even Shockley!

    e

    Ge

    GeOElectric

    Shielding

    CarrierScattering

    InterfacialCharges

    Current was several orders of magnitude sexpected

    13

  • 8/2/2019 Iwai IW-FNERC 2011

    14/88

    1947: 1st transistor W. Bratten,

    W. ShockleyBipolar using Ge

    However, they found amplification phenomenon when investigatingGe surface when putting needles.This is the 1st Transistor:Not Field Effect Transistor,But Bipolar Transistor (another mechanism)

    J. Bardeen

    14

  • 8/2/2019 Iwai IW-FNERC 2011

    15/88

    1960: First MOSFET

    by D. Kahng and M. Atalla

    op View

    AlGate

    Source

    Drain

    Si

    Si

    Al

    SiO2

    Si

    Si/SiO2Interface is

    exceptionally15

  • 8/2/2019 Iwai IW-FNERC 2011

    16/88

    1970,71: 1st generation of LSIs

    1kbit DRAM Intel 1103 4bit MPU Intel 4004

    16

  • 8/2/2019 Iwai IW-FNERC 2011

    17/88

    17

    2011

    Most recent SD Card

  • 8/2/2019 Iwai IW-FNERC 2011

    18/88

    18

    Most Recent SD Card

    128GB (Bite)= 128G X 8bit = 1024Gbit

    = 1.024T(Tera)bit

    1T = 1012 = Trillion

    Brain Cell 10 100 BillionWorld Population 7 Billion

    Stars in Galaxy 100 Billion

  • 8/2/2019 Iwai IW-FNERC 2011

    19/88

    19

    Most Recent SD Card

  • 8/2/2019 Iwai IW-FNERC 2011

    20/88

    20

    2.4cm X 3.2cm X 0.21cm

    Volume 1. 6cm Weight 2g

    Voltage 2.7 - 3.6V

    Old Vacuum Tube 5cm X 5cm X 10cm, 100g,100W

    1Tbit = 10k X10k X 10k bit

    Volume = 0.5km X 0.5km X 1km

    = 0.25 km3 = 0.25X1012cm3

    Weight = 0.1 kgX1012 = 0.1X109ton = 100 M ton

    Power = 0.1kWX1012=50 TW

    Supply Capability of Tokyo Electric Power Company: 55 BW

  • 8/2/2019 Iwai IW-FNERC 2011

    21/88

    So, progress of ICtechnology is most

    important for the

    power saving!

  • 8/2/2019 Iwai IW-FNERC 2011

    22/88

    1900 1950 1960 1970 2000

    Vacuum

    Tube

    Transistor IC LSI ULSI

    10 cm cm mm 10 m 100 nm

    In 100 years, the size reduced by one million times.

    There have been many devices from stone age.

    We have never experienced such a tremendous

    reduction of devices in human history.

    10-1m 10-2m 10-3m 10-5m 10

    -7m

    Downsizing of the componentshas been the driving force for

    circuit evolution

    22

    i i

  • 8/2/2019 Iwai IW-FNERC 2011

    23/88

    sizingeduce CapacitanceReduce switching time of MOSFETs

    Increase clock frequency Increase circuit operation speedncrease number of Transistors

    Parallel processing Increase circuit operation speed

    us, downsizing of Si devices is

    most important and critical is23

    Downsizing contribute to the performance increase

    in double ways

  • 8/2/2019 Iwai IW-FNERC 2011

    24/88

    How far we can go

    with downscaling?

    Question:

  • 8/2/2019 Iwai IW-FNERC 2011

    25/88

    Late 1970s 1m: SCE

    arly 1980s 0.5m: S/D resistance

    rly 1980s 0.25m: Direct-tunneling of gate

    te 1980s 0.1m: 0.1m brick wall(variou

    000 50nm: Red brick wall (various

    00 10nm: Fundamental?

    Period Expected Causelimit(size)

    Many people wanted to say aboutthe limit.

    Past predictions were notcorrect!!

    25

    Hi t i ll di ti f th li it f

  • 8/2/2019 Iwai IW-FNERC 2011

    26/88

    Historically, many predictions of the limit ofdownsizing.VLSI text book written 1979 predict that

    0.25 micro-meter would be the limitbecause of direct-tunneling currentthrough the very thin-gate oxide.

  • 8/2/2019 Iwai IW-FNERC 2011

    27/88

    VLSI textbook

    Finally, there appears to be afundamental limit 10 ofapproximately quarter micronchannel length, where certainphysical effects such as thetunneling through the gateoxide ..... begin to make thedevices of smaller dimension

    unworkable. 27

  • 8/2/2019 Iwai IW-FNERC 2011

    28/88

    Potential Barrier

    Wave function

    irect-tunneling effect

    28

    G

    S

    D

    Gate Oxide

    Gate OxideGate

    Electrode

    Si

    Substrate

    Direct tunneling leakage

    current start to flow whenthe thickness is 3 nm.

    Direct tunneling

    current

    Lg

  • 8/2/2019 Iwai IW-FNERC 2011

    29/88

    Direct tunneling leakagefound to be OK! In 1994!

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    1.6

    1.2

    0.8

    0.4

    0.0

    -0.4

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.08

    0.06

    0.04

    0.02

    0.00

    -0.02

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.03

    0.02

    0.01

    0.00

    0.01

    -0.4

    0.0 0.5 1.0 1.5

    Vd (V)

    Id(mA/

    m)

    Lg = 10 m Lg = 5 m Lg = 1.0 m Lg = 0.1m

    Gateelectrode

    Sisubstrate

    Gateoxide

    MOSFETs with 1.5 nm gate oxide

    29

    G

    S D

    Lg

  • 8/2/2019 Iwai IW-FNERC 2011

    30/88

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    1.6

    1.2

    0.8

    0.4

    0.0

    -0.4

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    1.6

    1.2

    0.8

    0.4

    0.0

    -0.4

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.4

    0.3

    0.2

    0.1

    0.0

    -0.1

    0.0 0.5 1.0 1.5

    Vd (V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.08

    0.06

    0.04

    0.02

    0.00

    -0.02

    0.0 0.5 1.0 1.5

    Vd(V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.08

    0.06

    0.04

    0.02

    0.00

    -0.02

    0.0 0.5 1.0 1.5

    Vd(V)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.03

    0.02

    0.01

    0.00

    0.01

    -0.4

    0.0 0.5 1.0 1.5

    Vd(V)

    Id(mA/

    m)

    Vg = 2.0V

    1.5 V

    1.0 V

    0.5 V

    0.0 V

    0.03

    0.02

    0.01

    0.00

    0.01

    -0.4

    0.0 0.5 1.0 1.5

    Vd(V)

    Id(mA/

    m)

    Lg = 10 m Lg = 5 m Lg = 1.0 m Lg = 0.1m

    Gate leakage: Ig Gate Area Gate length (Lg)

    Id

    Drain current: Id 1/Gate length (Lg)

    Lg small,

    Then, Ig

    small, Id

    large, Thus, Ig/Id

    very small

    30

    G

    S D

    Ig Id

  • 8/2/2019 Iwai IW-FNERC 2011

    31/88

    Never Give Up!

    There would be a solution!

    Think, Think, and Think!

    Or, Wait the time!

    Some one will think for you

    No one knows future!

    Do not believe a text book statement, blindly!

    31

  • 8/2/2019 Iwai IW-FNERC 2011

    32/88

    Qi Xinag, ECS 2004, AM32

  • 8/2/2019 Iwai IW-FNERC 2011

    33/88

    what is the limitation

    for downsizing?

    So,

  • 8/2/2019 Iwai IW-FNERC 2011

    34/88

    Source Channel Drain

    N+-Si P-Si

    N-Si

    0V

    1V

    Negative

    Surface Potential (Negative direction)

    Gate Oxd

    Channel

    Source

    Drain

    Gate electrode

    0 bias for gate

    Surface

    34

    Tunneling

    3nm

    @Vg=0V,

    Transistor cannotbe switched off

  • 8/2/2019 Iwai IW-FNERC 2011

    35/88

    Tunnelingdistance

    3 nm Lg = Sub-3nm?

    Below this,no one knows future!

    Prediction now!

    Limitation for MOSFET operation

    H f f

  • 8/2/2019 Iwai IW-FNERC 2011

    36/88

    How far can we go forproduction?

    0m 8m 6m 4m 3m 2m 1.2m 0.8m 0.5m0.35m 0.25m 180nm 130nm 90nm 65nm 45nm 32nm

    1970

    (28nm) 22nm 16nm 11.5 nm 8nm 5.5nm? 4nm? 2.9 nm

    Past 0.7 times per 3 years NowIn 40 years: 18 generations,Size 1/300, Area 1/100,000

    Future

    ver oxide thickness is now around 1n

  • 8/2/2019 Iwai IW-FNERC 2011

    37/88

    By Robert Chau, IWGI 20

    ver, oxide thickness is now around 1n

    .8 nm: 2 mono-layer thickness!!

    37

  • 8/2/2019 Iwai IW-FNERC 2011

    38/88

    So, we are now

    Facing the limi

    of downsizing?38

    h i l i K Di l i C

  • 8/2/2019 Iwai IW-FNERC 2011

    39/88

    here is a solution!o use high-k dielectrics

    Thin gate SiO2Thick gate high-k dielectri

    Almost the sameelectric characteristics

    owever, very difficult and big challenge!

    Remember MOSFET had not been realize

    without Si/SiO2!

    K: Dielectric Constan

    Physical

    ly thick

    39

    K=4K=20

    Sameelectric

    al

    5 nm gate length CMOS

  • 8/2/2019 Iwai IW-FNERC 2011

    40/88

    5 nm gate length CMOS

    H. Wakabayashiet.al, NEC

    IEDM, 2003

    ngth of 18 Si atoms

    Is a Real Nano Device!!

    5nm

    40

  • 8/2/2019 Iwai IW-FNERC 2011

    41/88

    how far we can go

    with downscaling?

    So, again,

    H f f

  • 8/2/2019 Iwai IW-FNERC 2011

    42/88

    How far can we go forproduction?

    0m 8m 6m 4m 3m 2m 1.2m 0.8m 0.5m0.35m 0.25m 180nm 130nm 90nm 65nm 45nm 32nm

    1970

    (28nm) 22nm 16nm 11.5 nm 8nm 5.5nm? 4nm? 2.9 nm

    Past 0.7 times per 3 years NowIn 40 years: 18 generations,Size 1/300, Area 1/100,000

    Future

    At least 4,5 generations to 8nm

    Hopefully 8 generations to 3nm

  • 8/2/2019 Iwai IW-FNERC 2011

    43/88

    43

    Vg

    Id

    Vth

    (Threshold Voltage)

    Vg=0V

    Subthreshould

    Leakage Current

    Subtheshold leakage current of MOSFET

    ONOFF

    Ion

    Ioff

    Subthreshold

    region

    Log scale Id plotVth cannot be decreased anymore

  • 8/2/2019 Iwai IW-FNERC 2011

    44/88

    4444

    Vg (V)

    10-7A

    Vg = 0V

    Vth = 300mVVth

    = 100mV

    Vth

    down-scaling

    Subthreshold slope (SS)

    = (Ln10)(kT/q)(Cox+CD+Cit)/Cox> ~ 60 mV/decade at RT

    SS value:

    Constant and does not become small with down-scaling

    10-3A

    10-4A

    10-5A

    Vdd=0.5V Vdd=1.5V

    Ion

    Ioff

    Ioff

    10-6A

    10-8A

    10-9A

    10-10ALogIdperunitgatewidth(

    =1

    m)

    Vdd

    down-scaling

    Log scale Id plot

    Ioff increaseswith 3.3 decades

    (300 100)mV/(60mv/dec)

    = 3.3 dec

    Vth cannot be decreased anymore

    Vth: 300mV100mV

    significant Ioff increase

  • 8/2/2019 Iwai IW-FNERC 2011

    45/88

    45

    Vg

    Id

    Vth

    (Threshold Voltage)

    Vg=0V

    Subthreshould

    Leakage Current

    Subtheshold leakage current of MOSFET

    Subthreshold Current

    Is OK at Single Tr. level

    But not OKFor Billions of Trs.

    ONOFF

    Ion

    Ioff

    Subthreshold

    region

    The limit is deferent depending on application

  • 8/2/2019 Iwai IW-FNERC 2011

    46/88

    46

    Subthreshold Leakage (A/m)

    OperationFrequency

    (a.u.)

    e)

    100

    10

    1

    Source: 2007 ITRS Winter Public Conf.

    The limit is deferent depending on application

    Th d li f MOSFET i till ibl f t

  • 8/2/2019 Iwai IW-FNERC 2011

    47/88

    The down scaling of MOSFETs is still possible for at

    least another 10 years!

    1. Thinning of high-k gate oxide thickness

    beyond 0.5 nm

    2. Metal S/D

    3. Wire channel

    3 important technological items for down scaling.

    New structures

    New materials

  • 8/2/2019 Iwai IW-FNERC 2011

    48/88

    1. High-k

    beyond 0.5 nm

    Choice of High-k elements for oxide

  • 8/2/2019 Iwai IW-FNERC 2011

    49/88

    R. Hauser, IEDM Short Course, 1999

    Hubbard and Schlom, J Mater Res 11 2757 (1996)

    Gas or liquid

    at 1000 K

    H Radio active He

    Li

    Be

    B C N O F Ne

    Na

    Mg Al Si P S Cl Ar

    KCaSc Ti V Cr MnFc Co Ni Cu Zn Ga Ge As Se Br Kr

    Rh SrYZr NbMo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe

    Cs BaHf

    Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

    Fr Ra Rf HaSg Ns Hs Mt

    LaCePrNdPmSmEuGdTbDyHoErTmYLu

    Ac Th Pa U NpPu AmCmBk Cf Es FmMdNo Lr

    Candidates

    Na Al Si P S Cl Ar

    K Sc Ti V Cr MnFc Co Ni Cu Zn Ga Ge As Se Br Kr

    Ac Th Pa U NpPu AmCmBk Cf Es FmMdNo Lr

    Unstable at Si interfaceSi + MOX M + SiO2

    Si + MOX MSiX + SiO2Si + MOX M + MSiXOY

    Choice of High-k elements for oxide

    HfO2 based dielectrics

    are selected as the

    first generationmaterials, because of

    their merit in

    1) band-offset,

    2) dielectric constant

    3) thermal stability

    La2O3 based

    dielectrics are thought

    to be the next

    generation materials,

    which may not need a

    thicker interfacial

    layer

    49

    Conduction band offset vs Dielectric Consta

  • 8/2/2019 Iwai IW-FNERC 2011

    50/88

    0 1 0 2 0 3 0 4 0 5 0

    D i e l e c t r i c C o n s t a n t

    4

    2

    0

    - 2

    - 4

    - 6

    S i O2

    B

    a

    n

    d

    D

    is

    c

    o

    n

    tin

    u

    ity

    [e

    V

    ]

    S i

    XPS measurement by Prof. T. Hattori, INFOS 2003

    Conduction band offset vs. Dielectric Consta

    Bandoffset

    Oxide

    Leakage Current by Tunneling

    50

    igh-k gate insulator MOSFETs for Intel: EOT=1nm

  • 8/2/2019 Iwai IW-FNERC 2011

    51/88

    51

    PMOS

    igh-k gate insulator MOSFETs for Intel: EOT=1nm

    HfO2 based high-k

    (Sc MetalF th t 45

  • 8/2/2019 Iwai IW-FNERC 2011

    52/88

    52Year

    P

    owerperM

    OSFET(P)

    P

    L

    g 3

    Scaling)

    EOT Limit

    0.7~0.8 nm

    EOT=0.5nm

    Today

    EOT=1.0nm

    Now

    45nm node

    One order of Magnitude

    Si

    HfO2

    Metal

    SiO2/SiON

    Si

    High-k

    Metal

    Direct Contact

    Of high-k and Si

    Si

    Metal

    SiO2/SiON

    0.5 0.7nm

    Introduction of High-k

    Still SiO2 or SiON

    Is used at Si interface

    For the past 45 years

    SiO2 and SiON

    For gate insulator

    EOT can be reduced further beyond 0.5 nm by using direct contact to Si

    By choosing appropriate materials and processes.

  • 8/2/2019 Iwai IW-FNERC 2011

    53/88

    SiO IL th t HfO /Si I t f

  • 8/2/2019 Iwai IW-FNERC 2011

    54/88

    54

    1837184018431846

    Binding energy (eV)

    Intensity(a.u

    )

    Si sub.

    Hf SilicateSiO2

    500 oC

    1837184018431846

    Binding energy (eV)

    Intensity(a.u

    )

    Si sub.

    Hf SilicateSiO2

    500 oC

    SiOx-IL

    HfO2

    W

    1 nm

    k=4

    k=16

    SiOx-IL growth at HfO2/Si Interface

    HfO2 + Si + O2 HfO2 + Si + 2O*HfO2+SiO2

    Phase separator

    SiOx-IL is formed after annealing

    Oxygen control is required for optimizing the reaction

    Oxygen supplied from W gate electrode

    XPS Si1s spectrum

    D.J.Lichtenwalner, Tans. ECS 11, 319

    TEM image 500 oC 30min

    H. Shimizu, JJAP, 44, pp. 6131

    La Silicate Reaction at La O /Si

  • 8/2/2019 Iwai IW-FNERC 2011

    55/88

    55

    La-Silicate Reaction at La2O3/Si

    La2

    O3

    La-silicate

    W

    500 oC, 30 min

    1 nm

    k=8~14

    k=23

    1837184018431846

    Binding energy (eV)

    Intensity

    (a.u

    )

    as depo.

    300

    o

    C

    La-silicate

    Si sub.

    500 oC

    1837184018431846

    Binding energy (eV)

    Intensity

    (a.u

    )

    as depo.

    300

    o

    C

    La-silicate

    Si sub.

    500 oC

    La2O3 + Si + nO2 La2SiO5, La2Si2O7,

    La9.33Si6O26, La10(SiO4)6O3,

    etc.La2O3 can achieve direct contact of high-k/Si

    XPS Si1s spectra TEM image

    Direct contact high-k/Si is possible

  • 8/2/2019 Iwai IW-FNERC 2011

    56/88

    1.E-05

    1.E-04

    1.E-03

    1.E-02

    1.E-01

    1.E+00

    1.E+01

    0 0.5 1 1.5 2 2.5 3

    EOT ( nm )

    Currentdensity(A/cm

    2)

    Al2O3

    HfAlO(N)

    HfO2HfSiO(N)

    HfTaO

    La2O3

    Nd2O3

    Pr2O3

    PrSiO

    PrTiO

    SiON/SiN

    Sm2O3

    SrTiO3

    Ta2O5

    TiO2

    ZrO2(N)

    ZrSiO

    ZrAlO(N)

    Gate Leakage vs EOT, (Vg=|1|V)

    La2O3

    HfO2

    56

    L O t 300oC k b 0 4 EOT MOSFET

  • 8/2/2019 Iwai IW-FNERC 2011

    57/88

    57

    0.0E+00

    5.0E-04

    1.0E-03

    1.5E-03

    2.0E-03

    2.5E-03

    3.0E-03

    3.5E-03

    0 0.2 0.4 0.6 0.8 1

    Vg=0V

    Vg=0.2V

    Vg=0.4V

    Vg=0.6V

    Vg=0.8V

    Vg=1.0V

    Vg=1.2V

    0 0.2 0.4 0.6 0.8 1

    Vg=0V

    Vg=0.2V

    Vg=0.4V

    Vg=0.6V

    Vg=0.8V

    Vg=1.0V

    Vg=1.2V

    0 0.2 0.4 0.6 0.8 1

    Vg=0V

    Vg=0.2V

    Vg=0.4V

    Vg=0.6V

    Vg=0.8V

    Vg=1.0V

    Vg=1.2VId(V)

    W/L = 50m /2.5m

    Vd (V) Vd (V) Vd (V)

    EOT=0.37nm

    Vth=-0.04VVth=-0.05VVth=-0.06V

    EOT=0.37nm EOT=0.40nm EOT=0.48nm

    W/L = 50m /2.5m W/L = 50m /2.5m

    0.48

    0.37nm Increase of Id at 30%

    La2O3 at 300oC process make sub-0.4 nm EOT MOSFET

    However high-temperature anneal is necessary

  • 8/2/2019 Iwai IW-FNERC 2011

    58/88

    58

    2

    1.5

    1

    0.5

    0

    Capacitance[F/cm

    2]

    -1 -0.5 0 0.5 1Gate Voltage [V]

    10kHz100kHz1MHz

    20 x 20m2

    1.5

    1

    0.5

    0

    Capacitanc

    e[F/cm

    2]

    -1.5 -1 -0.5 0 0.5Gate Voltage [V]

    20 x 20m2

    10kHz100kHz1MHz

    2

    1.5

    1

    0.5

    0

    Capacitanc

    e[F/cm

    2]

    -1.5 -1 -0.5 0 0.5Gate Voltage [V]

    20 x 20m2

    10kHz100kHz1MHz

    FGA500oC 30min FGA700oC 30min FGA800oC 30min

    A fairly nice La-silicate/Si interface can be obtained

    with high temperature annealing. (800oC)

    However, high temperature anneal is necessary

    for the good interfacial property

    Physical mechanisms for small DitPhysical mechanisms for small Dit

  • 8/2/2019 Iwai IW-FNERC 2011

    59/88

    59

    silicate-reaction-formedfresh interface

    metal

    Si sub.

    metal

    Si sub.

    La2O3 La-silicateSi Si

    Fresh interface with

    silicate reaction

    J. S. Jur, et al., Appl. Phys. Lett.,Vol. 87, No. 10, (2007) p. 102908

    stress relaxation at interfaceby glass type structure of La

    silicate.

    La atom

    La-O-Si bonding

    Si sub.

    SiO4tetrahedronnetwork

    FGA800oC is necessary to

    reduce the interfacial stress

    S. D. Kosowsky, et al., Appl. Phys. Lett.,Vol. 70, No. 23, (1997) pp. 3119

    Physical mechanisms for small DitPhysical mechanisms for small Dit

  • 8/2/2019 Iwai IW-FNERC 2011

    60/88

    60

    500

    400

    300

    200

    100

    0

    ElectronMo

    bility[cm

    2/Vsec]

    10.80.60.40.20Eeff [MV/cm]

    FGA 800oC

    FGA 700oC

    FGA 500oC

    Universal

    Nsub = 3 x 1016

    cm-3

    T = 300K

    EOT~1.3nm

    Pulse input

    10-9

    10-8

    10-7

    10-6

    Chargepum

    pingcurrent[A]

    10

    4

    10

    5

    10

    6

    Frequency [Hz]

    Dit = 2 x 1012 [cm-2/eV]

    Dit = 5 x 1011 [cm-2/eV]

    Dit = 1.6 x 1011 [cm-2/eV]

    500oC

    700oC

    800oC

    A small Dit of1.6x1011 cm-2/eV, results in better

    electron mobility.

    EOT growth suppression by Si coverage

  • 8/2/2019 Iwai IW-FNERC 2011

    61/88

    61

    4

    3

    2

    1

    0Gate-ChannelC

    apacitance[F/cm

    2]

    10.50-0.5-1

    Gate Voltage [V]

    at 1MHz

    L / W = 20 / 20m

    FGA 800oC 30min

    Si sub.

    La-silicate

    W

    Si sub.

    La-silicate

    W

    TiN

    Si sub.

    La-silicateW

    TiN

    Si

    EOT=1.02nm

    EOT=1.63nm

    EOT=0.71nm

    10-12

    10-11

    10-10

    10-9

    10

    -8

    10-7

    10-6

    10-5

    10-4

    10-3

    Drain

    Current[A]

    -1 -0.5 0 0.5 1

    Vg - Vth [V]

    L / W = 2.5 / 50m

    Vds = 0.05V

    EOT = 0.71nmEOT = 1.02nmEOT = 1.63nm

    65~70mV/dec

    Increasing EOT caused by high temperature annealing can

    be dramatically suppressed by Silicon masked stacks

    g pp y g

  • 8/2/2019 Iwai IW-FNERC 2011

    62/88

    62

    No interfacial layer can be confirmed with Si/TiN/W

    MIPSW TiN/W

    Kav ~ 8 Kav ~ 12 Kav ~ 16

    Si 2nm2nm2nm

    HK

    MG

    La2O3

    Si/TiN/W

    MOSFET ith EOT f 0 62

  • 8/2/2019 Iwai IW-FNERC 2011

    63/88

    63

    4

    3

    2

    1

    0Gate-ChannelCapacitance[F/c

    m2]

    10.50-0.5

    Gate Voltage [V]

    FGA 800oC 30min

    L / W = 10 / 10m

    10kHz100kHz1MHz

    200

    150

    100

    50

    0

    ElectronM

    obility[cm

    2/Vsec]

    1.510.50

    Eeff [MV/cm]

    L / W = 10 / 10m

    Nsub = 3 x 1016

    cm-3T = 300K

    EOT=0.62nmEOT=0.62nm

    No frequency

    dispersion

    EOT of 0.62nm and 155 cm2/Vsec at 1MV/cm can be achieved

    nMOSFET with EOT of 0.62nm

  • 8/2/2019 Iwai IW-FNERC 2011

    64/88

    64

    10-2

    10-1

    100

    101

    102

    103

    104

    Jg

    atV

    g=1V[A/cm

    2]

    0.80.750.70.650.60.550.5

    EOT [nm]

    A = 10 x 10m2

    ITRS requirements

    MIPS Stacks

    300

    250

    200

    150

    100

    50

    0

    ElectronM

    obility[cm

    2/Vsec]

    1.31.21.110.90.80.70.60.5

    EOT [nm]

    at 1MV/cmT = 300KThis work

    (MIPS Stacks)

    Open : Hf-based oxides

    T. Ando et al., IEDM2009

    Gate leakage is two orders

    of magnitude lower than

    that of ITRS

    Electron mobility is comparable

    to record mobility with Hf-based

    oxides

    Benchmark of La-silicate dielectrics

  • 8/2/2019 Iwai IW-FNERC 2011

    65/88

    Metal (Silicide) S/D

  • 8/2/2019 Iwai IW-FNERC 2011

    66/88

    Extreme scaling in MOSFET Lphy

    DopantCo

    nc.

    Gate

    MetalC

    onc.

    Gate

    Lphy = Leff- Atomically abrupt junction

    - Lowering S/D resistances

    - Low temperature process for S/D

    Metal Schottky S/D junctions

    - Dopant abruptness at S/D

    - Vt and ION variation

    - GIDL

    Schottky Barrier FET is a strong

    candidate for extremely scaled

    MOSFETS DChannel

    S DChannel

    n+-Sin+-Si

    Metal

    Silicide

    Metal

    Silicide

  • 8/2/2019 Iwai IW-FNERC 2011

    67/88

    67

    Surface or interface control

    Diffusion species:

    metal atom (Ni, Co) Rough interface at silicide/Si

    - Excess silicide formation

    - Different Bn presented

    at interface

    - Process temperature

    dependent composition

    Diffusion species: Si atom (Ti)

    Surface roughness increases- Line dependent

    resistivity change

    Line widthof 0.1 m

    H. Iwai et al., Microelectron. Eng., 60, 157 (2002).

    Top view

    Epitaxial NiSi2

    O. Nakatsuka et al., Microelectron. Eng.,

    83, 2272 (2006).

    Si(001) sub.

    Annealing: 650 oC

  • 8/2/2019 Iwai IW-FNERC 2011

    68/88

    68

    Unwanted leakage current

    - Atomically flat interface with smooth surface- Suppressed leakage current

    - Stability of silicide phase and interface

    in a wide process temperature

    Specification for metal silicide S/D

    - Edge leakage current at periphery

    - Generation current due to

    defects in substrate

    Length of a contact side (m)Currentdensity(A/c

    m2)

    10-3

    10-2

    10 102

    Vapp = -0.2V Bn = ~0.57 eV

    Variable leakage current

    in smaller contactNi silicide/Si diodes

    Annealing: 500 oC

  • 8/2/2019 Iwai IW-FNERC 2011

    69/88

    69

    Si substrate

    Ni-silicide

    Si substrate

    Si substrate

    Ni-silicide

    Si substrate

    Deposition

    of Ni film

    Depositionfrom

    NiSi2 source Annealing Flat interface

    Rough

    interface

    No Si substrateconsumption

    Annealing

    Deposition of Ni-Si mixed films from NiSi2 source

    - No consumption of Si atoms from substrate

    - No structural size effect in silicidation process

    - Stable in a wide process temperature range

    SEM views of silicide/Si interfaces

  • 8/2/2019 Iwai IW-FNERC 2011

    70/88

    70

    NiSi2 source

    Ni source (50nm)

    rough

    rough

    roughflat

    flat

    flat

    STI500nm

    NiSi2 source (50nm)

    500nm

    500nm

    STI

    500nmSTI STI

    500nmSTI

    500nmSTI

    600oC , 1min

    700oC , 1min

    800oC , 1min

    - Rough interfaces

    - Consumed Si substrate

    - Thickness increase ~100 nm

    Ni source

    - Atomically flat interfaces

    - No Si consumption

    - Temperature-independent

    Si substrate

    Ni-silicide

    Ni source

    Ni-silicide

    Si substrate

    NiSi2 source

    STI

  • 8/2/2019 Iwai IW-FNERC 2011

    71/88

    71

    Ideal characteristics (n = 1.00, suppressed leakage current)

    Suppressed reverse leakage current

    - Flat interface and No Si substrate consumption

    - No defects in Si substrate

    Ni

    NiSi2

    -0.8 -0.6 0.0 0.2

    Diode voltage (V)

    -0.4 -0.210-5

    10-4

    10-3

    10-2

    Diode

    current(A/cm

    2)

    1.001.08

    n

    0.659NiSi2

    0.676Ni

    Bn (eV)Source

    1.001.08

    n

    0.659NiSi2

    0.676Ni

    Bn (eV)Source

    Generation current

    RTA500oC, 1min

    Schottky diode structures

    Leakage current

    Al contact

    Ni source

    Al contact

    NiSi2 source

    Si substrate

    Si substrate

    NiSi2 source Applied Voltage (V)

    Curren

    tdensity(A/cm2)

  • 8/2/2019 Iwai IW-FNERC 2011

    72/88

    Wire channel

    S i f bth h ld l k

  • 8/2/2019 Iwai IW-FNERC 2011

    73/88

    73

    1V0V

    0V

    S

    0V

    0V V 1V

    1V0V

    0V

    0V

    0VS D

    G

    G

    G

    Suppression of subthreshold leakage

    by surrounding gate structure

    Planar Surrounding gate

    B f ff l k t l

  • 8/2/2019 Iwai IW-FNERC 2011

    74/88

    Planar Nanowire

    Source Drain

    Gate

    Wdep

    1

    Leakage current

    S D

    Planar FETFin FET

    Nanowire FET

    Because of off-leakage control,

    V1

    V1V1

    V1

    V1

    S

    D

    G

    G

  • 8/2/2019 Iwai IW-FNERC 2011

    75/88

    75

    Fin Tri-gate -gate All-around

    G G G

    G

    G

    Nanowire structures in a wide meaning

    Si nanowire FET as a strong candidate

    1S D

  • 8/2/2019 Iwai IW-FNERC 2011

    76/88

    76

    1. Compatibility with

    current CMOS process

    2. Good controllability of IOFF

    3. High drive current

    1D ballistic

    conduction

    Multi quantum

    Channel High integration

    of wires

    k

    E

    Quantum channel

    Quantum channelQuantum channel

    Quantum channelk

    E

    Quantum channel

    Quantum channelQuantum channel

    Quantum channel

    Off

    Gate:OFF

    Drain Source

    cut-off

    Gate: OFF

    drainsource

    Off

    Gate:OFF

    Drain Source

    cut-off

    Gate: OFF

    drainsource

    Wdep

    Leakage current

    S D

    Increase the Number of quantum channels

  • 8/2/2019 Iwai IW-FNERC 2011

    77/88

    Increase the Number of quantum channels

    Energy band of Bulk Si

    Eg

    By Prof. Shiraishi of Tsukuba univ.

    Energy band of 3 x 3 Si wire

    4 channels can be used

    Eg

    77

    Device fabrication

  • 8/2/2019 Iwai IW-FNERC 2011

    78/88

    Device fabrication

    Si/Si0.8Ge0.2superlattice

    epitaxy on SOI

    Anisotropic

    etching

    of these layers

    Isotropic

    etching

    of SiGe

    Gate depositions S/D implantation

    Spacer formationActivation anneal

    Salicidation

    BOX

    SiSiGe

    Si

    SiGeSi

    SiGe

    SiN

    BOX BOX

    BOX

    Gate

    BOX

    Gate

    Gate etchingStandard

    Back-End

    of-LineProcess

    HfO2 (3nm)

    TiN (10nm)Poly-Si (200nm)

    C. Dupre et al.,

    IEDM Tech. Dig., p.749, 2008

    7

    SiN HM

    Process Details :

    The NW diameteris controllable

    down to 5 nm

    by self limited oxidation.

    ( )

    3D stacked Si NWs with Hi k/MG

  • 8/2/2019 Iwai IW-FNERC 2011

    79/88

    Cross-section

    50nm

    SiN HM

    Wire direction :

    50 NWs in parallel

    3 levels vertically-stackedTotal array of 150 wires

    EOT ~2.6 nm

    NWs

    8

    3D-stacked Si NWs with Hi-k/MG

    BOX

    500 nm

    Source

    Drain

    Gate

    Top view

    C. Dupre et al.,

    IEDM Tech. Dig., p.749, 2008

    SiNW FET Fabrication

  • 8/2/2019 Iwai IW-FNERC 2011

    80/88

    Sacrificial Oxidation

    SiN sidewall support formation

    Ni SALISIDE Process (Ni 9nm / TiN 10nm)

    S/D & Fin Patterning

    Gate Oxidation & Poly-Si Deposition

    Gate Lithography & RIE Etching

    Gate Sidewall Formation

    30nm

    30nm

    30nm

    Oixde etch back

    Standard recipe for gate stack formation

    Backend

    Recent results to be presented by ESSDERC 2010 next week in Sevile

  • 8/2/2019 Iwai IW-FNERC 2011

    81/88

    Lg=65nm, Tox=3nm

    1.E-12

    1.E-11

    1.E-10

    1.E-09

    1.E-08

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    -1.5 -1.0 -0.5 0.0 0.5 1.0

    0.E+00

    1.E-05

    2.E-05

    3.E-05

    4.E-05

    5.E-05

    6.E-05

    7.E-05

    -1.0 -0.5 0.0 0.5 1.0

    0

    10

    20

    30

    40

    50

    60

    70

    DrainCu

    rrent(A)

    Drain Voltage (V)

    Vg-Vth=1.0 V

    Vg-Vth= -1.0 V

    0.8 V

    0.6 V

    0.4 V

    0.2 V

    (a)

    10

    -12

    Gate Voltage (V)

    pFET nFET

    (b)

    10-11

    10-10

    10-910-8

    10-7

    10-6

    10-5

    10-4

    10-3

    DrainC

    urrent(A)

    Vd=-50mV

    Vd=-1V

    Vd=50mV

    Vd=1V

    1.E-12

    1.E-11

    1.E-10

    1.E-09

    1.E-08

    1.E-07

    1.E-06

    1.E-05

    1.E-04

    1.E-03

    -1.5 -1.0 -0.5 0.0 0.5 1.0

    0.E+00

    1.E-05

    2.E-05

    3.E-05

    4.E-05

    5.E-05

    6.E-05

    7.E-05

    -1.0 -0.5 0.0 0.5 1.0

    0

    10

    20

    30

    40

    50

    60

    70

    DrainCu

    rrent(A)

    Drain Voltage (V)

    Vg-Vth=1.0 V

    Vg-Vth= -1.0 V

    0.8 V

    0.6 V

    0.4 V

    0.2 V

    (a)

    10

    -12

    Gate Voltage (V)

    pFET nFET

    (b)

    10-11

    10-10

    10-910-8

    10-7

    10-6

    10-5

    10-4

    10-3

    DrainC

    urrent(A)

    Vd=-50mV

    Vd=-1V

    Vd=50mV

    Vd=1V

    On/Off>106 60uA/wire

    Wire cross-section: 20 nm X 10 nm

    Bench Mark

  • 8/2/2019 Iwai IW-FNERC 2011

    82/88

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    (12)

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    0

    10

    20

    30

    40

    50

    60

    70

    Gate Length (nm)

    ION

    (A/

    wire)

    nMOS

    pMOS

    (5)

    (5)

    (10)

    (10)

    (12)

    (12x19)

    (12)

    (12x19)

    (13x20)

    (9x14)(10)

    (10)

    (10)

    (8)

    (8)

    (16)

    (13)

    (34)

    (3)(3)

    (30)

    (19)

    VDD: 1.0~1.5 V

    (12)

    (10x20)102A

    Our Work

    Bench Mark

    IIONON/I/IOFFOFF Bench markBench mark

  • 8/2/2019 Iwai IW-FNERC 2011

    83/88

    Y. Jiang, VLSI 2008, p.34H.-S. Wong, VLSI 2009, p.92

    S. Bangsaruntip, IEDM 2009, p.297

    C. Dupre, IEDM 2008, p. 749

    S.D.Suk, IEDM 2005, p.735

    G.Bidel, VLSI 2009, p.240

    Si nanowireFET

    Planer FET

    S. Kamiyama, IEDM 2009, p. 431P. Packan, IEDM 2009, p.659

    1.2 1.3V

    1.0 1.1V

    Lg=500 65nm

    Thiswork

  • 8/2/2019 Iwai IW-FNERC 2011

    84/88

  • 8/2/2019 Iwai IW-FNERC 2011

    85/88

    Distance from SiNW Surface (nm)

    6

    5

    4

    3

    2

    1

    0

    (x019cm-3)Electron Density

    Edge portion

    Flat portion

    Primitive estimation !

  • 8/2/2019 Iwai IW-FNERC 2011

    86/88

    0

    2000

    4000

    6000

    8000

    10000

    12000

    2008 2010 2012 2014 2016 2018 2020 2022 2024 2026

    Year

    ION

    (A

    /m)

    SiNW (12nm 19nm)

    MGFD

    bulk

    IONLg-0.5 Tox

    -1(20)

    (11)

    (33)

    (15)

    (26)

    ION

    1m

    S/D

    pMOS

    EOT

    Compact model

    Small EOT for high-k

    P-MOS improvement

    Low S/D resistance

    # of wires /1m

    Assumption

    ITRS

    Na

    nowire

    Primitive estimation !

    Our roadmap for R &DSource: H. Iwai, IWJT 2008

    Current Issues

    Si Nanowire

  • 8/2/2019 Iwai IW-FNERC 2011

    87/88

    Source: H. Iwai, IWJT 2008

    III-V & Ge Nanowire

    High-k gate insulator

    Wire formation technique

    CNT:

    Width and Chirality controlGrowth and integration of CNT

    Graphene:

    Graphene formation technique

    Suppression of off-current

    Very small bandgap or

    no bandgap (semi-metal)

    Control of ribbon edge structure

    which affects bandgap

    Chirality determines conduction

    types: metal or semiconductor

    87

    Control of wire surface property

    Compact I-V model

    Source Drain contact

    Optimization of wire diameter

  • 8/2/2019 Iwai IW-FNERC 2011

    88/88