démarrage d'un mas avec un variateur de vitesse

33
Université Mohamed Premier Faculté des Sciences et Techniques – Al Hoceima MIP – EEA / S6 Département Electroniques Electrotechniques Automatiques Démarrage avec variateur de vitesse Rapport d’exposé Réalisé par : MESSAOUDI Nabil ADARDAK Rida & MOUDOU Samir Encadré par :N.Benaya 1

Upload: rida-adardak

Post on 21-Feb-2017

85 views

Category:

Technology


8 download

TRANSCRIPT

Page 1: Démarrage d'un mas avec un variateur de vitesse

Université Mohamed PremierFaculté des Sciences et Techniques – Al HoceimaMIP – EEA / S6

Département Electroniques Electrotechniques Automatiques

Démarrage avec variateur de vitesse

Rapport d’exposé

Réalisé par : MESSAOUDI Nabil

ADARDAK Rida & MOUDOU Samir

Encadré par :N.Benaya

Année universitaire 2015-2016

Rapport d’exposé :démarrage avec variateur de vitesse d’un moteur asynchrone

1

Page 2: Démarrage d'un mas avec un variateur de vitesse

Listes des figures et tableaux:

Figure 1 : Le premier quadrant « moteur »

Figure 2 : Le quatrième quadrant « générateur »

Figure 3 : Le premier et troisième quadrants « moteur »

Figure 4 : Le 1 er et 2 eme quadrants « moteur et générateur »

Figure 5 : Le premier et le quatrième quadrants « moteur et générateur »

Figure 6 : Les quatre quadrants

Figure 7 : ATS 01N1** et ATS 01N2***

Figure 8 : ALTISTART U01

Figure 9 : Schéma de câblage en commande 2 fils

Figure 10 : Schéma de câblage en commande 3 fils

Figure11 : La courbe de BOOST de la tension nominale moteur

Figure12 : Câblage d’un ALTIVAR 11

Figure 13 : ALTIVAR58

Figure14 : Choix d’un ALTIVAR 58

Tableau1 :Les principales caractéristiques des technologies d’entraînements à vitesse variable pour moteurs asynchrones.

Rapport d’exposé :démarrage avec variateur de vitesse d’un moteur asynchrone

2

Page 3: Démarrage d'un mas avec un variateur de vitesse

Sommaire

I. INTRODUCTION……………………………………………………………………….…4

I I. GENERALITE………………………………………………………………………..…...5

1. Définition …………………………………………………………………...……...5

2. Constitution…………………………………………………………………….…..5

3. Fonctionnement……..…………………………………………………………… .5

4. Fonction des variateurs de vitesse……………………………………………...6

III. DEMARREURS POUR MOTEURS ASYNCHRONE……………………………….10

1. ALTISTART 01…………………………………………………………………….10

2. ALTISTART U01………………………………………………………………….12

IV. VARIATEURS DE VITESSE……………………………………………………………15

1. ALTIVAR 11……………………………………………………………………….15

2. ALTIVAR 58……………………………………………………………………….17

V. CHOIX D’UN VARIATEUR DE VITESSE ………………………………………….....20

1. Facteurs de choix…………………………………………………………………20

3

Page 4: Démarrage d'un mas avec un variateur de vitesse

2. Les différents types de variateurs électroniques de vitesse pour moteur asynchrone………………………………………………………………………...20

VI. PROTECTION……………………………………………………………………………23

1. Protection des composants du variateur de vitesse ………………………….23

2. Protection assurée par le variateur de vitesse………………………………...23

VI I. CONCLUSION……………………………………………………………………….....25

Rapport d’exposé :démarrage avec variateur de vitesse d’un moteur asynchrone

I. IntroductionAu cours des dix dernières années, les innovations technologiques dans le domaine de la microélectronique et des dispositifs de commande ont permis l'introduction sur le marché d'équipements permettant d'économiser de l'énergie en réglant la vitesse, et ce, à des prix abordables: les variateurs de vitesse.

Un variateur de vitesse est un dispositif électronique destiné à commander la vitesse d'un moteur électrique, il fait intervenir une machine électrique, son alimentation électronique s’obtient à partir d’une source d’alimentation, des capteurs, une régulation…

En effet, depuis la venue de la technologie des semi-conducteurs, la variation de vitesse électronique des moteurs électriques a pris le dessus sur les anciens systèmes devenus faibles

4

Page 5: Démarrage d'un mas avec un variateur de vitesse

tels que les groupes (Ward-Léonard), ainsi les machines électriques sont de plus en plus utilisées en vitesse variable.

II.GENERALITESPour les systèmes nécessitant un contrôle de débit ou de pression, et plus particulièrement pour les systèmes à fortes pertes par frottement, la méthode permettant les plus fortes économies d’énergie est le contrôle de la vitesse par variateur de vitesse.Bien que les machines à courant alternatif soient connues depuis le XIXe siècle, c'est l’amélioration des variateurs de vitesse (grâce aux progrès de l'électronique de puissance) qui va leur permettre de s'imposer sur les machines à courant continu. En particulier, la machine synchrone était autrefois difficile à commander faute de dispositif garantissant la condition de synchronisme entre le rotor et le stator. On réalisait alors un accrochage, c'est-à-dire un entraînement du rotor à l'aide d'une génératrice à la vitesse souhaitée avant d'alimenter le stator. Il existait aussi certaines machines synchrones équipées de bobines rotoriques en court-circuit pour permettre un démarrage en machine asynchrone puis un fonctionnement en mode synchrone.

1. Définition

Un variateur de vitesse est un dispositif électronique destiné à commander la vitesse d'un moteur électrique.

2. Constitution

Les variateurs de vitesse sont constitués principalement d'un convertisseur statique et d'une électronique de commande. Les variateurs récents contiennent aussi un étage de correctiondu facteur de puissance afin de respecter les normes de compatibilité électromagnétique.En général, le convertisseur statique est un hacheur ou un onduleur.

5

Page 6: Démarrage d'un mas avec un variateur de vitesse

L'électronique de commande réalise la régulation et l'asservissement de la machine à travers le convertisseur statique de sorte que l'utilisateur puisse commander directement une vitesse. Sa conception dépend essentiellement de la stratégie de commande choisie(commande vectorielle, commande scalaire, etc.)

3. Fonctionnement

Depuis la venue de la technologie des semi-conducteurs, la variation de vitesse électronique des moteurs électriques a pris le dessus sur les anciens systèmes tels que les groupes Ward-Léonard.

Cette technologie, devenue fiable, part toujours du même principe: à partir d'une source, la plupart du temps triphasée alternative pour les ascenseurs, le variateur de vitesse va recréer en sortie :

Une tension triphasée variable en fréquence et en amplitude pour les moteurs à courant alternatif.

Une tension continue variable en amplitude pour les moteurs à courant continu.

La vitesse mécanique du rotor est liée à la fréquence des courants au stator. Ce lien mathématique rend possible une commande de la vitesse du rotor par la commande de la fréquence du courant au stator. C'est ce que l'on appelle la condition de synchronisme qui s'exprime différemment selon que l'on considère une machine synchrone ou une machine asynchrone.

Pour une machine synchrone, la condition de synchronisme est :

Avec :

Ns : la vitesse de synchronisme en tours par minute

f : la fréquence d'alimentation en hertz

p : le nombre de paires de pôles

Pour une machine asynchrone, la condition de synchronisme est :

g : le glissement en %

Ns: la vitesse de synchronisme en tours par minute

6

Page 7: Démarrage d'un mas avec un variateur de vitesse

N : la vitesse de l'arbre (vitesse réelle) en tours par minute

Ainsi, il existe une relation directe entre le pilotage de la fréquence du courant au stator et la vitesse mécanique du rotor qui permet, pour toute vitesse mécanique souhaitée, de fixer la fréquence statorique correspondante. C'est sur ce principe que se base le fonctionnement du variateur de vitesse : commander une vitesse de rotation mécanique en commandant la fréquence du courant statorique.

4. Fonction des variateurs de vitesse

a. L'accélération contrôlée

Le profil de la courbe de démarrage d'un moteur d'ascenseur est avant tout lié au confort des utilisateurs dans la cabine. Il peut être soit linéaire ou en forme de "s". Ce profil ou "rampe" est la plupart du temps ajustable en permettant de choisir le temps de mise en vitesse de l'ascenseur.

b. La décélération contrôlée

Les variateurs de vitesse permettent une décélération contrôlée sur le même principe que l'accélération. Dans le cas des ascenseurs, cette fonction est capitale dans sens où l'on ne peutpas se permettre de simplement mettre le moteur hors tension et d'attendre son arrêt complet suivant l'importance du couple résistant (le poids du système cabine/contre-poids varie en permanence); Il faut impérativement contrôler le confort et la sécurité des utilisateurs par le respect d'une décélération supportable, d'une mise à niveau correcte, ...On distingue, au niveau du variateur de vitesse deux types de freinage :

En cas de décélération désirée plus importante que la décélération naturelle, le freinage peut être électrique soit par renvoi d'énergie au réseau d'alimentation, soit par dissipation de l'énergie dans un système de freinage statique.

En cas de décélération désirée moins importante que la décélération naturelle, le moteur peut développer un couple moteur supérieur au couple résistant de l'ascenseur et continuer à entraîner la cabine jusqu'à l'arrêt.

c. L'inversion du sens de marche

Sur la plupart des variateurs de vitesse, il est possible d'inverser automatiquement le sens de marche. L'inversion de l'ordre des phases d'alimentation du moteur de l'ascenseur s'effectue :

Soit par inversion de la consigne d'entrée, Soit par un ordre logique sur une borne, Soit par une information transmise par une connexion à un réseau de gestion.

d. Le freinage d'arrêt

C'est un freinage de sécurité pour les ascenseurs :

Avec des moteurs asynchrones, le variateur de vitesse est capable d'injecter du courant continu au niveau des enroulements statoriques et par conséquent stopper net le champ

7

Page 8: Démarrage d'un mas avec un variateur de vitesse

tournant; la dissipation de l'énergie mécanique s'effectuant au niveau du rotor du moteur (danger d'échauffement important).

Avec des moteurs à courant continu, le freinage s'effectue au moyen d'une résistance connectée sur l'induit de la machine. La variation de vitesse proprement dite où la vitesse du moteur est définie par une consigne d'entrée (tension ou courant) sans tenir compte de la valeur réelle de la vitesse du moteur qui peut varier en fonction de la charge, de la tension d'alimentation, ... On est en boucle "ouverte" (pas de feedback).

La régulation de vitesse où la consigne de la vitesse du moteur est corrigée en fonction d'une mesure réelle de la vitesse à l'arbre du moteur introduite dans un comparateur. La consigne et la valeur réelle de la vitesse sont comparées, la différence éventuelle étant corrigée. On est en boucle "fermée".

e. Mode de fonctionnement

1 quadrant (non réversible)

Figure1   : le premier

Seul le fonctionnement moteur est ici possible le ralentissement ne peut avoir lieu que par dissipation de l’énergie cinétique de rotation dans la charge. Dans ce mode de fonctionnement on peut contrôler le fonctionnement on peut contrôler l’accélération mais non le ralentissement on adjoint parfois un frein au moteur.

1 quadrant générateur

8

Page 9: Démarrage d'un mas avec un variateur de vitesse

Figure2   :Le quatrième quadrant « générateur »

Seul le fonctionnement en génératrice de la machine est ici possible. La machine ne peut démarrer de manière électrique. Elle doit être entrainé par le coté mécanique depuis la vitesse nulle.

2 quadrants I+III

Figure3   : Le premier et troisième

quadrants « moteur »

Mode de fonctionnement 2 quadrants I+III (non réversible) avec convertisseur non réversible il est possible en passant par l’arrêt d’obtenir une inversion du couple de la vitesse de rotation on obtient alors un fonctionnement deux quadrants moteur

2 quadrant I+II

Figure4   : Le 1 er et 2 ème quadrants

Ce type de variateur utilise un convertisseur réversible 2 quadrants à l’arrêt de couple résistant peut ne pas être nul.

9

Page 10: Démarrage d'un mas avec un variateur de vitesse

2 Quadrant I+IV

Figure5   : Le premier et le quatrième quadrants « moteur et générateur »

Ce type de fonctionnement correspond par exemple à l’entrainement d’un véhicule) par moteur électrique il faut pouvoir accélérer le véhicule puis le freiner électriquement.

4 Quadrant

Figure6   : Les quatre quadrants

Mis à part l’inversion de signe des deux grandeurs couple et vitesse (en général à l’arrêt) des fonctionnements deux quadrants on doit parfois choisir une véritable solution quatre quadrants ou le passage d’un quadrant à l’autre peut avoir lieu n’importe où1 quadrant + inversion mécanique ou électrique +frein mécanique ou 2 quadrants réversible + inversion mécanique ou électrique ou 4 quadrants purs.

C’est la solution la plus performante mais souvent la plus onéreuse.

III. DEMARREURS POUR MOTEURSASYNCHRONES

10

Page 11: Démarrage d'un mas avec un variateur de vitesse

1. ALTISTART 01

a. Principe

Le démarreur progressif Altistart 01 est soit un limiteur de couple au démarrage, soit undémarreur progressif ralentisseur pour les moteurs asynchrones.L’utilisation de l’Altistart 01 améliore les performances de démarrage des moteursasynchrones en permettant un démarrage progressif sans à-coup et contrôlé. Son utilisation permet la suppression des chocs mécaniques cause d’usure, d’entretien et de temps d’arrêt de production.L’altistart 01 limite le couple de décollage et les pointes de courant au démarrage, sur des machines pour lesquelles un couple de démarrage élevé n’est pas nécessaire.

Ils sont destinés aux applications simples suivantes : Convoyeurs, Tapis transporteurs, Pompes, Ventilateurs, Compresseurs, Portes automatiques, Les petits portiques, Machines à courroies...

L’offre des démarreurs progressifs Altistart 01 se décompose en 3 gammes : Démarreurs progressifs ATS 01N1***

Contrôle d’une phase d’alimentation du moteur (monophasé ou triphasé) pour la limitation de couple au démarrage.

Les puissances moteur sont comprises entre 0,37 kW et 5,5 kW. Les tensions d’alimentation moteur sont comprises entre 110 V et 480 V, 50/60

Hz. Une alimentation externe est nécessaire pour la commande du démarreur.

Démarreurs progressifs ralentisseurs ATS 01N2*** Contrôle de deux phases d’alimentation du moteur pour la limitation de

courant au démarrage et pour le ralentissement. Les puissances moteur sont comprises entre 0,75 kW et 75 kW. Les tensions d’alimentation moteur sont les suivantes : 230 V, 400 V, 480 V et

690 V,50/60 Hz. Sur les machines ou l’isolement galvanique n’est pas nécessaire ils évitent

l’utilisation d’un contacteur de ligne. Démarreurs progressifs ralentisseurs ATSU 01N2***

11

Page 12: Démarrage d'un mas avec un variateur de vitesse

b. Description

figure7   : ATS 01N1** et ATS 01N2***

Les démarreurs progressifs Altistart 01 (ATS 01N1***) sont équipés :

D’un potentiomètre de réglage 1 du temps de démarrage, D’un potentiomètre 2 pour ajuster le seuil de tension de démarrage en fonction de

la charge du moteur, De 2 entrées 3 : 1 entrée z 24 V ou 1 entrée a 110…240 V pour l’alimentation du

contrôle qui permet la commande du moteur.

Les démarreurs progressifs ralentisseurs Altistart 01 (ATS 01N2***) sont équipés :

D’un potentiomètre de réglage 6 du temps de démarrage, D’un potentiomètre de réglage 8 du temps de ralentissement, D’un potentiomètre 7 pour ajuster le seuil de tension de démarrage en fonction de

la charge du moteur, 1 DEL verte 4 de signalisation :

produit sous tension, 1 DEL jaune 5 de signalisation :

moteur alimenté à la tension nominale,

D’un connecteur 9

Démarreurs progressifs ralentisseurs ATSU 01N2***

2. ALTISTART U01

a. Présentation

12

Page 13: Démarrage d'un mas avec un variateur de vitesse

L’Altistart U01 est un démarreurprogressif ralentisseur pour les moteursasynchrones. Il est principalementdestiné aux associations avec lesdémarreurs contrôleurs TeSys modèle U.

Associé à un contrôleur TeSys modèle U1 par l’intermédiaire d’un connecteur 2,l’Altistart U01 3 est une option puissancequi assure la fonction “Démarreurprogressif ralentisseur”. Cette associationoffre un départ-moteur unique etinnovant.L’utilisation de l’Altistart U01 amélioreles performances de démarrage desmoteurs asynchrones en permettant undémarrage progressif sans à-coup etcontrôlé. Son utilisation permet lasuppression des chocs mécaniques caused’usure, et limite l’entretien et les tempsd’arrêt de production.L’Altistart U01 limite le couple dedécollage et les pointes de courant audémarrage, sur des machines pourlesquelles un couple de démarrage élevén’est pas nécessaire.

Figure8 : ALTISTART U01L’Altistart U01 est destiné aux applications simples suivantes :

Convoyeurs, Tapis transporteurs, Pompes, Ventilateurs, Compresseurs, Portes automatiques, Les petits portiques, Machines à courroies

b. Description

Les démarreurs progressifs ralentisseurs Altistart U01 sont équipés :

D’un potentiomètre de réglage du temps de démarrage 6, D’un potentiomètre de réglage du temps de ralentissement 8,

13

Page 14: Démarrage d'un mas avec un variateur de vitesse

D’un potentiomètre pour ajuster le seuil de tension de démarrage en fonction de la charge du moteur 7,

1 DEL verte de signalisation 4: produit sous tension, 1 DEL jaune de signalisation 5: moteur alimenté à la tension nominale, d’un connecteur 9

2 entrées logiques pour les ordres de Marche/Arrêt, 1 entrée logique pour la fonction BOOST, 1 sortie logique pour signaler la fin du démarrage, 1 sortie à relais pour signaler un défaut d’alimentation du

démarreur ou l’arrêt du moteur en fin de ralentissement.

c. Fonctions du bloc démarreur progressif ATSU01N2ppLT

Commande 2 fils : La marche et l'arrêt sont commandés par une seule entrée logique.

L'état 1 de l'entrée logique LI2 commande la marche et l'état 0 l'arrêt.

Figure9   : Schéma de câblage en

Commande 3 fils : La marche et l'arrêt sont commandés par 2 entrées logiques différentes. L'arrêt est obtenu à l'ouverture de l'entrée LI1 (état 0). L'impulsion sur l'entrée LI2 est mémorisée jusqu'à l'ouverture de l'entrée LI1.

Figure10   : Schéma de câblage en commande 3 fils

Temps de démarrage : Le réglage du temps de démarrage permet d’ajuster le temps de la rampe de tension appliquée au moteur et d’obtenir un temps de démarrage progressif dépendant du niveau de charge du moteur.

Fonction BOOST en tension par entrée logique : L'activation de l’entrée logique BOOST valide la fonction qui permet de fournir un sur-couple de “décollage” pour vaincre les frottements mécaniques. Lorsque l'entrée est à l'état 1, la fonction est

14

Page 15: Démarrage d'un mas avec un variateur de vitesse

activée (entrée reliée au + 24 V), le démarreur applique au moteur une tension fixe pendant une durée limitée avant le démarrage

Fin de démarrage : Fonction d'application de la sortie logique LO1. Les démarreurs progressifs ralentisseurs ATSU 01N2ppLT sont équipés d’une sortie logique LO à collecteur ouvert qui signale la fin de démarrage quand le moteur a atteint la vitesse nominale.

Relais de défaut : Les démarreurs progressifs ralentisseurs ATSU 01N2ppLT possèdent un relais qui s’ouvre à la détection d’un défaut. Le contact R1A-R1C du relais se ferme avec l'ordre de commande LI2 et s'ouvre au voisinage de 0 de la tension moteur sur un arrêt décéléré ou instantanément sur défaut.

Cette information peut-être utilisée pour commander le contacteur de ligne et obtenir leralentissement du moteur (maintien du contacteur de ligne jusqu'à l'arrêt moteur).

IV. VARIATEURS DE VITESSE 1. ALTIVAR 11

a. Description et application

La gamme de variateurs de vitesse Altivar 11 permet de satisfaire une tranche des exigences des clients dans le domaine, grâce à différents types de commandes moteur et à de nombreuses fonctionnalités intégrées.La gamme de variateurs de vitesse Altivar 11 couvre les puissances moteurs triphasées comprises entre 0,18kW et 2,2kW avec trois types d'alimentation :

100 V à 120 V monophasé. 200 V à 240 V monophasé. 200 V à 230 V triphasé.

L'Altivar 11 intègre des fonctionnalités spécifiques pour les marchés locaux et a adaptés pour la plus courante applications, notamment:

Le matériel de manutention horizontale (convoyeur) Ventilation, pompe, contrôle d'accès, les portes automatiques.

15

Page 16: Démarrage d'un mas avec un variateur de vitesse

Les machines spéciales (mélangeurs, machines à laver, centrifugeuses, etc.)

b. Fonction

Les principales fonctions intégrées dans le lecteur Altivar 11 sont:

Démarrage et contrôle de vitesse. Inversion de sens de marche. Accélération, décélération, arrêt. Protection du moteur et de la conduite. 4 vitesses présélectionnées. Sauvegarde de la configuration dans la conduite

c. Caractéristiques

Utilisations spéciales Puissance du moteur inférieure à la puissance du variateur :

Le variateur Altivar 11 peut alimenter tout moteur de puissance inférieure à celle pour laquelle il est prévu. Cette association permet de répondre à des applications nécessitant de forts sur-couples intermittents.

Association de moteurs en parallèle :

Le courant nominal du variateur doit être supérieur ou égal à la somme des courants des moteurs à commander. Lors d’une utilisation en parallèle de plusieurs moteurs, 2 cas sont possibles :

Les moteurs sont de puissances équivalentes, dans ce cas les performances de couple restent optimales après réglage du variateur,

Les moteurs sont de puissances différentes, dans ce cas les performances de couple ne seront pas optimales pour l’ensemble des moteurs.

Commutation du moteur en sortie du variateur :

La commutation peut être réalisée variateur verrouillé ou non. Lors d’une commutation à la volée (variateur déverrouillé), le moteur est piloté et accéléré jusqu’à la vitesse de consigne sans à-coup en suivant la rampe d’accélération. Cette utilisation nécessite de configurer le rattrapage automatique (“reprise à la volée”) et de configurer la fonction perte phase moteur à coupure aval.

d. Mise en œuvre

1 - Fixer le variateur

2 - Raccorder au variateur :

Le réseau d’alimentation, en s’assurant qu’il est :

16

Page 17: Démarrage d'un mas avec un variateur de vitesse

Dans la plage de tension du variateur Hors tension

Le moteur en s’assurant que son couplage correspond à la tension du réseau La commande par les entrées logiques La consigne de vitesse par les entrées logiques ou analogiques

3- Mettre sous tension sans donner d’ordre de marche

4- Configurer :

La fréquence nominale (bFr) du moteur, si elle est différente de 50 Hz pour la gamme E ou différente de 60.

Hz pour la gamme U (n’apparaît qu’à la première mise sous tension). Les paramètres ACC (Accélération) et dEC (Décélération). Les paramètres LSP (Petite vitesse quand la consigne est nulle) et HSP(Grande vitesse

quand la consigne est maximale). Le paramètre ItH (Protection thermique moteur). Les vitesses présélectionnées SP2-SP3-SP4. La consigne de vitesse si elle est différente de 0 - 5 V (0 -10V ou 0 -20mA ou 4 -

20mA).

5 - Configurer dans le menu drC :

Les paramètres moteurs, seulement si la configuration usine du variateur ne convient pas.

6– Démarrer

e. Câblage

17

Page 18: Démarrage d'un mas avec un variateur de vitesse

Figure12 : Câblage d’un ALTIVAR 11

2. ALTIVAR58

Figure13   : ALTIVAR58

a. Application de l’Altivar 58

L'Altivar 58 est un convertisseur de fréquence asynchrone triphasé à cage d'écureuil quiintègre les derniers développements technologiques et les fonctions approprié pour lesapplications les plus courantes, y compris:

La manutention horizontale et verticale du matériel Emballage / conditionnement Machines spéciales Ventilation / climatisation Pompes et compresseurs Ses nombreuses options intégrées permettent de l'adapter aux systèmes de contrôle

avancés.

b. Fonctions de l’Altivar 58

Les principales fonctions sont les suivantes:

Le freinage dynamique et le freinage à l'arrêt, et le contrôle de vitesse Frein séquence Economies d'énergie, régulateur PI (débit, pression, etc) Rattrapage automatique avec recherche de vitesse Adaptation de limitation de courant selon l'une vitesse de ventilation pour des

18

Page 19: Démarrage d'un mas avec un variateur de vitesse

applications Limitation automatique de la vitesse de fonctionnement

c. Choix du Variateur

(1) Valeur typique sans inductance additionnelle.

(2) Ces puissances sont données pour une fréquence de découpage de 0,5 à 4 kHz, et une

utilisation en régime permanent.

(3) Pendant 60 secondes.

(4) Les variateurs commandés sous les références ATV-58E•••M2 et ATV-58E•••N4 sontlivrés avec un terminal d'exploitation.

(5) Tensions nominales d'alimentation mini U1, maxi U2.

d. Caractéristiques du Couple

1 -Moteur autoventillé :couple utile permanent2-Moteur motoventilé : couple utile permanent

19

Page 20: Démarrage d'un mas avec un variateur de vitesse

3-Surcouple transitoire, pendant 60 secondesmaxi.4-Couple en survitesse à puissance constante

Figure14 : Caractéristiques du Couple d’un ALTIVAR 58

e. Régime permanent

Pour les moteurs auto-ventilés, le refroidissement du moteur est lié à sa vitesse. Il en résulte un déclassement pour les vitesses inférieures à la moitié de la vitesse nominale

V. Choix du variateur de vitesse :Les technologies d’entraînements à vitesse variable pour moteurs asynchrones sont

nombreuses et viennent compléter les technologies disponibles pour les moteurs à courant

continu et les moteurs synchrones.

Le choix de la technologie et de la structure du convertisseur dépend de nombreux facteurs

liés à l’application visée.

1- Facteurs de choix :

a. Facteurs techniques :

Parmi les principaux facteurs techniques de choix figurent :

La puissance et la vitesse nominales.

Le régime d’utilisation (utilisation en régime permanent ou intermittent).

20

Page 21: Démarrage d'un mas avec un variateur de vitesse

La plage de variation de vitesse et le domaine de fonctionnement dans le plan

puissance-vitesse (1 quadrant, 2 quadrants, 4quadrants).

Le type de machine entraînée (inertie, caractéristique de couple résistant selon la

vitesse).

La précision de contrôle de couple et de vitesse.

La tension du réseau d’alimentation.

Les contraintes d’installation (place disponible, degrés de protection, etc.).

b. Facteur économique :

Enfin, un critère essentiel est bien sûr le coût total d’investissement de l’entraînement

comprenant le coût du variateur, du moteur et de leur installation.

Le coût d’exploitation de l’entraînement (maintenance, coût d’indisponibilité, pertes

énergétiques) est un critère économique supplémentaire de choix .

2. Les différents types de variateurs électroniques de vitesse pour moteur asynchrone:

Les principaux types de convertisseurs employés pour les moteurs asynchrones sont des

convertisseurs indirects de fréquence, c’est-à-dire qui utilisent un étage intermédiaire à

fréquence nulle (tension ou courant continu) par l’association d’un convertisseur alternatif

continu (redresseur) et d’un convertisseur continu alternatif (onduleur).

Plusieurs technologies de convertisseurs reposent sur ce principe, selon que l’étage à

fréquence nulle est constitué d’une source de tension ou d’une source de courant et selon les

formes d’ondes produites par l’onduleur.

Des convertisseurs directs de fréquence, dénommés cyclo-convertisseurs, qui réalisent la

conversion de la fréquence sans recourir à un étage intermédiaire à fréquence nulle, sont aussi

utilisés pour des cas particuliers d’entraînements par moteurs asynchrones de forte puissance

(quelques mégawatts).

Les convertisseurs indirects de fréquence sont aujourd’hui les plus utilisés, avec

essentiellement le convertisseur MLI.

Le tableau suivant présente les principales caractéristiques des technologies d’entraînements à

vitesse variable pour moteurs asynchrones.

21

Page 22: Démarrage d'un mas avec un variateur de vitesse

Technologies

d’entraînement

Convertisseur

avec onduleur de

tension à M.L.I

Convertisseur

avec onduleur à

pleine onde de

tension

Convertisseur

avec onduleur de

tension M.L.I à 3

niveaux

Convertisseur avec

Onduleur autonome

de courant

Nature du moteur Asynchrone à cage Asynchrone à cage Asynchrone à cage

haute tension

Asynchrone à cage

basse tension

Nature du

convertisseur

Redresseur-

onduleur de

tension à

commutation

forcée et M.L.I

Redresseur-

onduleur de

tension à

commutation

forcée

Redresseur-

onduleur de

tension à 3 niveaux

à commutation

forcée et M.L.I

Redresseur-onduleur

autonome de courant

Redresseur Diodes Thyristors Diodes Thyristors

Onduleur G.T.O ou

transistors et

diodes

G.T.O G.T.O et diodes Thyristors et diodes

Gamme de puissance De 1KW à 3MW Jusqu’à 3MW Jusqu’à 12 MW 0.1 à 3 MW

Gamme de tension

du variateur et du

moteur

380 à 660 V et

jusqu’à 1500 V

380 à 660 V et

jusqu’à 1500 V

3.3 à 6.6 KV Inférieur à 1000 V

Gamme de vitesse

nominale

Jusqu’à plusieurs

milliers de tr/min

(inf à400 Hz)

Jusqu’à plusieurs

milliers de tr/min

(inf à 1000 Hz)

Jusqu’à 8000

tr/min (inf à 120

Hz)

inférieur à 6000 tr/min

(inf à 100 Hz)

Plage de variation de

vitesse

1à 100 % 10 à 100 % 1 à 100 % 2 à 100 %

Domaine de

fonctionnement

2 quadrants

(4 quadrants en

option)

2 quadrants

4 quadrants

2 quadrants

(4 quadrants en

option)

4 quadrants

Applications

principales

Technologie de

référence pour

toutes applications

industrielles de

faible et moyenne

puissance

Pompes,

ventilateurs,

compresseurs,

extrudeuses,

malaxeuses

Pompes,

ventilateurs,

compresseurs,

extrudeuses,

mlaxeuses,

laminoirs

Applications spécifiques

(levage, manutention)

Observations Contrôle vectoriel

disponible pour

pilotage précis du

couple

Adapté à

l’entraînement

direct de machines

à grande vitesse

Pour machine de

forte puissance

Technologie de moins

en mois utilisé

22

Page 23: Démarrage d'un mas avec un variateur de vitesse

Technologies

d’entraînement

Convertisseur avec Onduleur de

courant assisté

Cascade hypo synchrone et hyper

synchrone

Cycloconvertisseur pour moteur asynchrone

Nature du

moteur

Asynchrone à cage Asynchrone à rotor bobiné

Asynchrone à cage

Nature du

convertisseur

Redresseur-onduleur de

courant à commutation

assisté

Redresseur-onduleur de courant assisté

Raccordé au rotor

Convertisseur direct de fréquence à commutation assistée

Redresseur Thyristors Thyristors Thyristors

Onduleur Thyristors Thyristors ou G.T.O et diodes

Thyristors

Gamme de

puissance

0.5 à 20 MW Hypo synchrone

20 MW

Hyper synchrone

60 MW

10 MW

Gamme de

tension du

variateur et du

moteur

0.5 à 7.2 KV Inférieur à 18 KV

Gamme de

vitesse nominale

4000 tr/min 1500 tr/min

1900 tr/min

600 tr/min

Plage de

variation de

vitesse

10 à 100 % 50 à100 %

70 à130 %

0 à 100 %

Domaine de

fonctionnement

2 quadrants 1 ou 2 quadrants moteurs

4 quadrants

Applications

principales

Pompes, ventilateurs,

compresseurs centrifuges

Entraînements de pompes, ventilateurs,

compresseurs centrifuges

Applications faible vitesse fort couple (laminoirs, propulsion de

navires)

Observations Références en conversion de moteurs à la

vitesse variable

Technologie ancienne pénalisée par

l’utilisation d’un moteur à bagues

Convertisseur utilisé aussi pour moteurs synchrones pour les

mêmes applications

Tableau 1   : Les principales caractéristiques des technologies d’entraînements à vitesse variable pour moteurs asynchrones.

Donc la meilleure solution est de choisir un variateur de vitesse de type convertisseur de

fréquence avec onduleur de tension à M.L.I.

23

Page 24: Démarrage d'un mas avec un variateur de vitesse

VI. Protection 1. Protection des composants du variateur de vitesse :

Il faut assurer la protection contre :

les surchauffes de leurs composants électroniques qui pouvant entraîner leur

destruction. Un capteur placé sur le dissipateur thermique provoque l’arrêt du

variateur, lorsque la température dépasse un certain seuil.

les surtensions à fréquence industrielle du réseau : il s’agit d’éviter les destructions

éventuelles de leurs composants. Cette protection est assurée par une résistance et un

condensateur en parallèle avec les composants.

Les surintensités qui sont assuré par une inductance en série.

2. Protection assurée par le variateur de vitesse:

a. Protection contre les surcharges :

Le convertisseur assure la protection du moteur contre les surcharges :

Par une limitation instantanée du courant efficace à 1,5 fois le courant nominal

environ,

Par un calcul permanent du courant thermique (I².t), avec pris en compte de la vitesse

(la plupart des moteurs étant auto-ventilés, le refroidissement est moins efficace à

basse vitesse).

A noter que lorsqu’un départ n’alimente qu’un moteur et son variateur, cette protection de

surcharge du moteur assure simultanément la protection de surcharge de l’ensemble

appareillage et câblage.

b. Protection contre les courts-circuits moteurs ou ligne en aval du

variateur de vitesse :

En cas de court-circuit entre phases en sortie de variateur (aux bornes du moteur ou à un

endroit quelconque de la ligne entre le variateur et le moteur), la surintensité est détectée au

sein du variateur et un ordre de blocage est envoyé très rapidement aux semi-conducteur

commandé. Le courant de court-circuit est interrompu en quelques microsecondes, ce qui

assure la protection du variateur-moteur, ce courant très bref est essentiellement fourni par le

24

Page 25: Démarrage d'un mas avec un variateur de vitesse

condensateur de filtrage associé au redresseur, et est donc indiscernable dans la ligne

d’alimentation.

VII. ConclusionLes variateurs de vitesse s'adaptent sur toutes les applications utilisant des moteurs asynchrones. Leur utilisation se justifie essentiellement lorsque l'application présente un profil de charge variable comme dans le cas des systèmes d'air à volume constant ou variable, dans les systèmes de contrôle de débit ou de pression.

L'avantage principal de ce système est l'importante économie d'énergie réalisable. Il est courant d'obtenir des économies d'énergie de 30 à 50 % avec des temps de retour de moins de deux ans. Cet intérêt est souvent combiné à l'amélioration de la qualité du processus commandé.

Le principe de base des variateurs de vitesse est relativement simple. Cependant derrière ce principe simple se cache une technologie poussée faisant intervenir des composants électroniques de puissance ainsi que des circuits de commande de plus en plus complexes. C’est pourquoi la configuration d’une installation équipée d’un variateur de vitesse n’est pas une opération simple. Il est important de bien s’informer et de recourir à des installateurs compétents.

25

Page 26: Démarrage d'un mas avec un variateur de vitesse

Chaque cas demande une analyse et un paramétrage particulier qui conditionneront l’économie réalisée. Le choix du variateur, lui-même, demande une grande attention. Il dépendra notamment de l’application à commander. Il faudra définir les fonctionnalités de commande souhaitées et être attentif à limiter les effets néfastes des variateurs sur le réseau électrique : qualité des filtres, position du variateur, qualité du câblage, …

Il ne faut pas que par un mauvais choix ou un mauvais paramétrage, l’intérêt de la variation de vitesse sur les moteurs soit remis en cause et le principe abandonné encours de l’exploitation.

26