cours sar part2

30
1 Télédétection radar – 3A SICOM SIM SN INSIS Fundamentals of Remote Sensing: SAR Interferometry Notions fondamentales de télédétection : l’interférométrie RSO Gabriel VASILE Chargé de Recherche CNRS [email protected] 2 Télédétection radar – 3A SICOM SIM SN Range focusing Azimuth focusing range azimut SAR amplitude image ©SYTER, Telecom ParisTech SAR focusing: ERS-1, Chamonix valley, 512 × 512 pixels

Upload: alexis-pavon

Post on 03-Nov-2014

111 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cours SAR Part2

1 Télédétection radar – 3A SICOM SIM SN

INSIS Fundamentals of Remote Sensing: SAR Interferometry

Notions fondamentales de télédétection : l’interférométrie RSO

Gabriel VASILE Chargé de Recherche CNRS

[email protected]

2 Télédétection radar – 3A SICOM SIM SN

Range focusing

Azimuth focusing

range

azim

ut

SAR amplitude image ©SYTER, Telecom ParisTech

SAR focusing: ERS-1, Chamonix valley, 512 × 512 pixels

Page 2: Cours SAR Part2

3 Télédétection radar – 3A SICOM SIM SN

Range focusing

Azimuth focusing

azim

ut

range

SAR focusing: ERS-1, Chamonix valley, 512 × 512 pixels

SAR phase image ©SYTER, Telecom ParisTech

4 Télédétection radar – 3A SICOM SIM SN

Emission: H and V Reception: H and V

Penetration depth

Backscattering mechanisms

+

Propagation

2 phenomena -> differential measurements

Sinclair formula & differential measurements

Page 3: Cours SAR Part2

5 Télédétection radar – 3A SICOM SIM SN

  Two SLC images: kM (master), kS (slave)   Same target area   Slightly different viewing angles   Hermitian product -> complex cross-correlation

Internal coherence M&S intensities

Differential measurements – InSAR

6 Télédétection radar – 3A SICOM SIM SN

  Two SLC images: kM (master), kS (slave)   Same target area   Slightly different viewing angles   Hermitian product -> complex cross-correlation

  Normalized complex cross-correlation

INTERFEROMETRIC PHASE: φ = arg{C} INTERFEROMETRIC COHERENCE: c = ABS{C}

Differential measurements – InSAR

Page 4: Cours SAR Part2

7 Télédétection radar – 3A SICOM SIM SN

  Fully polarimetric SAR data   Cross-polar symmetrisation (monostatic case)

  Vectorisation on the Pauli basis (target vector): k=[SHH+SVV SHH-SVV 2SHV]T

  Hermitian product -> complex correlation Polarimetric coherency matrix

Differential measurements – POLSAR

8 Télédétection radar – 3A SICOM SIM SN

Polarimetric interferometric coherency matrix:

Polarimetric M&S coherency matrices:

Differential measurements – POL-InSAR

Page 5: Cours SAR Part2

9 Télédétection radar – 3A SICOM SIM SN

Radar Interferometry Outlines

 Overview of interferometry  Satellite Interferometry  Satellite InSAR geometry   InSAR processing

  measuring topography  Satellite Differential InSAR  D-InSAR processing

  measuring motion on the Earth’s surface  SAR examples

10 Télédétection radar – 3A SICOM SIM SN

Satellite Interferometry

 For satellite interferometry of the repeat-pass type, one image is taken one day, and a second image is taken of the same scene one or more days later.   More images can be taken at later intervals and used in the processing,

as long as the scene retains reasonable coherence over the longer time interval

  Because there is always a time delay, and usually parallax as well, assumptions must be made or processing must be done to remove the unwanted component of motion or topography

  In Feb. 2000, the Shuttle Radar Topography Mission obtained topographic (elevation) data of much of the Earth’s surface using single-pass interferometry, i.e., image pairs were acquired at the same time using two radar antennas separated physically to create a 60-m fixed baseline.

Page 6: Cours SAR Part2

11 Télédétection radar – 3A SICOM SIM SN

Radar Interferometry from Space

SRTM

TANDEM ERS-1/2

12 Télédétection radar – 3A SICOM SIM SN

Radar Interferometry from Space

SRTM

TANDEM ERS-1/2

Page 7: Cours SAR Part2

13 Télédétection radar – 3A SICOM SIM SN

Radar Interferometry from Space : SRTM mission

NASA / DLR

14 Télédétection radar – 3A SICOM SIM SN

Coverage of 11-day SRTM Mission (Feb. 2000)

NASA / DLR

Page 8: Cours SAR Part2

15 Télédétection radar – 3A SICOM SIM SN

SRTM Perspective View with Landsat Overlay

NASA / DLR

Elevation data from C-band across-track interferometric radar, SRTM Acquired Feb. 16, 2000 Height exaggeration 2x Landsat overlay Acquired: Dec. 14, 1984 View toward the North 34.42°N 119.17°W

Santa Clara River Valley, California

16 Télédétection radar – 3A SICOM SIM SN

ERS –1 and ERS – 2 TANDEM Mission (1995-2000)

ESA •  Repeat pass interferometric SAR uses two antenna positions to acquire two SAR images.

•  Vertical height is determined by comparing phase measurements.

•  Observable terrain shifts are on the order of the radar wavelength or smaller.

Page 9: Cours SAR Part2

17 Télédétection radar – 3A SICOM SIM SN

Radar Interferometry from Space

18 Télédétection radar – 3A SICOM SIM SN

ERS –1 and ERS – 2 TANDEM Mission • Colour: Interferogram Phase, 16

steps from 0 to 2π radians •  Intensity: Interferogram Magnitude • Saturation: Coherence •  Interferogram Magnitude is the

background black-and-white image - similar to regular SAR image.

• Coherence (colour brightness) indicates the degree of phase correlation. Low coherence indicates greater change (lakes at upper left). High coherence indicates least change (exposed rocks at lower left).

• Colour-coded interferogram phase: a phase change of 2π radians corresponds to an altitude change of 232 m

Schefferville, Québec

Page 10: Cours SAR Part2

19 Télédétection radar – 3A SICOM SIM SN

Satellite Repeat-pass InSAR Geometry

• A radar is essentially a distance or range measuring sensor

•  It can measure range in 2 ways: • Time delay:

R=c/2B = 8 m • Phase:

R=λ/100 = 1 mm • Phase is much more accurate • but is a relative measurement only

20 Télédétection radar – 3A SICOM SIM SN

How a SAR Measures Phase

Page 11: Cours SAR Part2

21 Télédétection radar – 3A SICOM SIM SN

Phase after Scattering from a Random Surface

22 Télédétection radar – 3A SICOM SIM SN

Interferometer Phase

Page 12: Cours SAR Part2

23 Télédétection radar – 3A SICOM SIM SN

How Differential Phase Measures Topography

24 Télédétection radar – 3A SICOM SIM SN

 Interferometric phase ambiguity

 Wrapped phase φ = φ (mod 2π)

 Nyquist criterion | φ(N) − φ(M)| < π

 Unwrapped phase φ

φ

  “Automatic’’ methods:   local approach : cuts positioning, propagation   global approach: least squares (phase or local frequencies)

Phase Unwrapping

φc (M,N) =

φ(N) −φ(M) if φ(N) −φ(M) < π

+2π if φ(N) −φ(M) ≤ −π−2π if φ(N) −φ(M) ≥ π

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 13: Cours SAR Part2

25 Télédétection radar – 3A SICOM SIM SN

 2 images single look complex (SLC):

 After co-registration:

 Complex multi-looking: (m,n) (i,j)

SLC 1

Coh. Phase

Amp 1 Amp 2

SLC 2

Interferogram Estimation

26 Télédétection radar – 3A SICOM SIM SN

 Distribution of the sample coherence d as function of theoretical coherence value D and the number of looks L>1:

Distribution function of L, D = 0.5 Bias function of L

Coherence Estimation

Page 14: Cours SAR Part2

27 Télédétection radar – 3A SICOM SIM SN

 Distribution of the sample phase φ as function of theoretical coherence value D and the number of looks L>1:

Distribution function of D β = 0, L = 4

Distribution function of L β = 0, D = 0.7

D

Phase Estimation

28 Télédétection radar – 3A SICOM SIM SN

Measuring Coherence

 Coherence must always be measured to assess the suitability of the data set for InSAR processing

 Coherence magnitude is closely related to the local standard deviation of differential phase

 High coherence magnitude tells us:   images have good SNR   phase centres of scatterers are stable   any motion is spatially “organized”

 Coherence magnitude:   0.3 - 0.5 is useable, but noisy   0.5 - 0.7 is good   0.7 - 1.0 is excellent

 Coherence has also been successfully used as a terrain classification parameter: water, vegetation, desert, city

Page 15: Cours SAR Part2

29 Télédétection radar – 3A SICOM SIM SN

InSAR Processing

 Process data to SLC images  Register the two images to 1/10 pixel  Over-sample by a factor of 2 in both dimensions  Filter common bands in spectrum  Conjugate multiply to form interferogram  Smooth the interferogram  Measure coherence  Unwrap phase  Estimate geometry parameters (especially baseline)  Remove flat-earth fringes  Convert unwrapped phase to height and/or motion

30 Télédétection radar – 3A SICOM SIM SN

InSAR Processing: Chitina River Valley, S.E. Alaska

ERS images acquired Feb. 1994

• B⊥ = 40 m • Flat-earth fringes were

removed. • Phase is still wrapped. • Each revolution of the colour

wheel represents an increase of 200 m in altitude.

Page 16: Cours SAR Part2

31 Télédétection radar – 3A SICOM SIM SN

Topography Contours from Interferogram: ERS-1, 1991

Franklin Bluffs and Sagavanirktok River on the North Slope of Alaska Perspective view generated from an interferometrically derived DEM

32 Télédétection radar – 3A SICOM SIM SN

Radar Differential Interferometry from Space

Page 17: Cours SAR Part2

33 Télédétection radar – 3A SICOM SIM SN

Radar Differential Interferometry from Space

The information contained in the D-InSAR phase can be decomposed in:

34 Télédétection radar – 3A SICOM SIM SN

Radar Differential Interferometry from Space

Page 18: Cours SAR Part2

35 Télédétection radar – 3A SICOM SIM SN

D-InSAR: orbital compensation

36 Télédétection radar – 3A SICOM SIM SN

D-InSAR: topographic compensation (DTM)

Page 19: Cours SAR Part2

37 Télédétection radar – 3A SICOM SIM SN

D-InSAR: adaptive filtering

38 Télédétection radar – 3A SICOM SIM SN LISTIC/LAPI 38

Glaciology: temperate glaciers Location

French Alps – “Chamonix Mont-Blanc” test site

Mer-de-Glace Argentière Location 45°55’15’’ N/ 6°55’45’’ E 45°56’15’’’N / 7°00’30’’ E

Area / Length 3,5 (km²) / 4.7 (km) 15 (km²) / 9 (km)

Mean slope ~ 9° (17%) ~14° (26%)

Page 20: Cours SAR Part2

39 Télédétection radar – 3A SICOM SIM SN

ERS ascending (image panchromatic SPOT-1) ERS descending

ERS - 1/2: visibility assessment

40 Télédétection radar – 3A SICOM SIM SN

ERS-1/2 Interferogram (March 1996)

TANDEM ERS (Mer-de-glace)

(c) 100 km

5 km

SAR amplitude

InSAR coherence InSAR phase

Page 21: Cours SAR Part2

41 Télédétection radar – 3A SICOM SIM SN

Mer-de-glace [660 × 361 pixels]

amplitude coherence phase

IDAN ML amplitude IDAN ML coherence IDAN ML phase

42 Télédétection radar – 3A SICOM SIM SN

Measuring Glacier Velocity by D-InSAR

filtered coherence

filtered phase

2D local frequencies

mesures In situ DTM

velocity field

TANDEM ERS, 10/11-March-1996 Chamonix Mont-Blanc

Page 22: Cours SAR Part2

43 Télédétection radar – 3A SICOM SIM SN

IDAN ML unwrapped phase IDAN ML phase mod 2π

Mer-de-glace [618 × 405 pixels]: weighted least-square phase unwrapping

44 Télédétection radar – 3A SICOM SIM SN

From Slant Range to Ground Range DTM (Lat/Lon, WGS 1984):

  separating relief / displacement   geocoding

D-InSAR scalar measurement:   slant range displacement

Page 23: Cours SAR Part2

45 Télédétection radar – 3A SICOM SIM SN

Glacier Velocity Field: Argentière & Mer-de-glace “In situ” measurements:

  unknown offset   ablation sticks   differential GPS

D-InSAR/DTM measurements:   3D displacement field   glacier flow direction (SPF,MSF)

46 Télédétection radar – 3A SICOM SIM SN

Page 24: Cours SAR Part2

47 Télédétection radar – 3A SICOM SIM SN

48 Télédétection radar – 3A SICOM SIM SN

Page 25: Cours SAR Part2

49 Télédétection radar – 3A SICOM SIM SN

50 Télédétection radar – 3A SICOM SIM SN

Page 26: Cours SAR Part2

51 Télédétection radar – 3A SICOM SIM SN

52 Télédétection radar – 3A SICOM SIM SN

Page 27: Cours SAR Part2

53 Télédétection radar – 3A SICOM SIM SN

54 Télédétection radar – 3A SICOM SIM SN

Page 28: Cours SAR Part2

55 Télédétection radar – 3A SICOM SIM SN 55

TerraSAR-X StripMap Acquisition (3m res) of the Pyramids of Giza, Egypt Prel. Image recorded during calibration phase

56 Télédétection radar – 3A SICOM SIM SN 56

"  South Nigeria, 3m res

TerraSAR-X Basic Image Products

City of Warri

Warri airport

Page 29: Cours SAR Part2

57 Télédétection radar – 3A SICOM SIM SN 57

TerraSAR-X Basic Image Products

"  Cape Town (South Africa) – 1m res

International airport

58 Télédétection radar – 3A SICOM SIM SN 58

TerraSAR-X Basic Image Products

Mombasa (Kenya) – 1m res

Page 30: Cours SAR Part2

59 Télédétection radar – 3A SICOM SIM SN 59

TerraSAR-X Basic Image Products

"  Addis Abeba (Ethiopia), 3m res

60 Télédétection radar – 3A SICOM SIM SN

Bibliography

  H. Maître, Traitement des images de RSO, Hermes Sciences Publications, 2001

 L. Lliboutry, Sciences Géométriques et Télédétection, Masson, 1992  C. Elachi, Introduction to the Physics and Techniques of Remote Sensing,

Wiley Series in Remote Sensing, 1987  Tutoriel du Centre Canadien de Télédétection (CCT):

http://www.ccrs.nrcan.gc.ca/resource/index_f.php#tutor  Trouvé E., Imagerie Radar à Synthèse d’Ouverture, cours ETASM,

Université de Savoie, 2004  Faller N., TerraSAR-X: Surveying, Mapping & Infrastructure Development,

Map Africa 2007  Hajnsek I. at al., TerraSAR-X Mission: Application and Data Access,

Int. Summer School on Very High Resolution Remote Sensing, 2009