contsys1 l3 laplace trans

Upload: umer-abbas

Post on 03-Jun-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 ContSys1 L3 Laplace Trans

    1/29

    19/03/20141

    Mechanical Engineering Science 8

    Dr. Daniil Yurchenko

    Laplace Transform

  • 8/12/2019 ContSys1 L3 Laplace Trans

    2/29

    19/03/20142

    Block Diagram

    +

    Y

    Y

    X

    X

    Closed-Loop

    Open Loop

    ?

    ?

    ?

    Here we consider systems described by ODEs

    ya xadt

    xd a

    dt xd

    a nn

    nn

    n

    n

    011

    1

    1 .......

  • 8/12/2019 ContSys1 L3 Laplace Trans

    3/29

    19/03/20143

    Definition of the Laplace

    Transform For the given real f(t)

    0)()( dt et f s F st

    F(s) Laplace transform of f(t)

    Capital letters Laplace transform f(t)

    )]([)( t f L s F

  • 8/12/2019 ContSys1 L3 Laplace Trans

    4/29

    19/03/20144

    Examples of Laplace Transform

    Unit Step Function

    f(t)

    t0 t,00 t,1)()( t ut f

    s se

    sdt e s F st st 1)1(011)(

    00

    st u L /1)]([

  • 8/12/2019 ContSys1 L3 Laplace Trans

    5/29

    19/03/20145

    Examples of Laplace Transform

    Exponential Function 0,)( t t t f

    20

    200

    00

    10

    1

    1)(

    s s

    edt e

    s s

    te

    tde s

    dt te s F

    st st

    st

    st st

    1

    !][ n

    n

    s

    nt L

  • 8/12/2019 ContSys1 L3 Laplace Trans

    6/29

    19/03/20146

    Examples of Laplace Transform

    Exponential Function 0,)( t et f at

    a sa se

    a sdt ee s F t sa st at

    1)

    1(0

    1)(

    0

    )(

    0

    a se L at

    1][

  • 8/12/2019 ContSys1 L3 Laplace Trans

    7/2919/03/20147

    Properties of L - Transform

    Theorem 1if k is a constant, then

    )()]([ skF t kf L

    )()()]()([ sG s F t g t f L

    Theorem 2if F(s) and G(s) are L-transform of f(t) and g(t), then

  • 8/12/2019 ContSys1 L3 Laplace Trans

    8/2919/03/20148

    Properties of L - Transform

    Theorem 3 (Initial Value of f(t))

    )(lim)0()(lim0

    s sF f t f st

    Theorem 4 (Final Value of f(t))

    )(lim)()(lim 0 s sF f t f st

  • 8/12/2019 ContSys1 L3 Laplace Trans

    9/2919/03/2014

    9

    Properties of L - Transform

    Theorem 5 (L-transform of differentiation)

    )0()()(

    f s sF dt

    t df L

    For higher order derivatives

    )0(')0()()(

    )0()()( 2

    0

    2

    2

    2

    f sf s F sdt

    t df sf s F s

    dt

    t f d L

    t

    )0(.. .)0()0()()( )1()1(21 nnnn

    n

    n

    f f s f s s F sdt

    t f d L

  • 8/12/2019 ContSys1 L3 Laplace Trans

    10/2919/03/2014

    10

    Properties of L - Transform

    Theorem 6 (L-transform of integration)

    s s F

    d f L

    t )()(

    0

    )()( a s F t f e L at

    Theorem 7

    Table of Laplace transform is attached

  • 8/12/2019 ContSys1 L3 Laplace Trans

    11/2919/03/2014

    11

    ExampleVibration of a Single-Degree-of-Freedom System

    b xa x

    t y Kx xC x M

    )0(,)0(

    ),(

    Y(s) X(s)?

    )]([][ t y L Kx xC x M L

    )()()]0()([)]0()0()([][][][ 2

    sY s KX x s sX C x sx s X s M x KL xCL x ML

  • 8/12/2019 ContSys1 L3 Laplace Trans

    12/2919/03/2014

    12

    Example

    )()()}0()({)}0()0()({ 2 sY s KX x s sX C x sx s X s M

    )()(})({})({ 2 sY s KX a s sX C b sa s X s M

    )(}{)(}{ 2 sY b sa M Ca s X K Cs Ms

    K Cs Ms sY s X

    sY s X K Cs Ms

    when

    2

    2

    1)()(

    )()(}{

    0, ba

  • 8/12/2019 ContSys1 L3 Laplace Trans

    13/2919/03/2014

    13

    Example

    K Cs Ms sY s X

    2

    1)()(

    Y(s) X(s)

    By definition Transfer Function is the ratioof the L-transform of the output variable tothe L-transform of the input variable (with

    zero ICs)

    K Cs Ms 21

    How to find x(t) ? Use inverse L-transform

  • 8/12/2019 ContSys1 L3 Laplace Trans

    14/2919/03/2014

    14

    Inverse Laplace Transform

    const cdse s F i

    t f ic

    ic

    st -,)(2

    1)(

    )]([)( t f L s F )]([)( 1 s F Lt f

    Instead of using this formula, wewill use Partial-Fraction expansion

    or the table of L-transform

  • 8/12/2019 ContSys1 L3 Laplace Trans

    15/29

    19/03/201415

    Example: Response to a unit step

    K Cs Ms sY

    s X 2)(

    )(

    Y(s) X(s)

    K Cs Ms 21

    s sY t U t y

    1)( ),()(

    23

    ,2,3,122 s s K Cs Ms

    K C M Let

  • 8/12/2019 ContSys1 L3 Laplace Trans

    16/29

    19/03/201416

    Example: Response to a unit step

    0232 s s

    To find the roots of this quadratic equation we equateit to zero

    Roots of a quadratic equation

    02 cbsasare found as:

    a

    acbb s

    a

    acbb s

    2

    4 ;

    2

    4 2

    2

    2

    1

    In our case a=1,b=3,c=2, thus

    22

    833 ;1

    2

    833 22

    2

    1 s s

  • 8/12/2019 ContSys1 L3 Laplace Trans

    17/29

    19/03/201417

    Example: Response to a unit step

    s s s s X

    1)1)(2(

    1)(

    Look in the table of L-transform

    t t ee s s s

    Lt x s X L 2121

    )1)(2(1

    )()( 211

    The response of the system to a unit step excitation

    0)0(,0)0(

    ),(23

    x x

    t u x x x t t eet x 212

    1)( 2

  • 8/12/2019 ContSys1 L3 Laplace Trans

    18/29

    19/03/201418

    Partial-Fraction Expansion

    )1)(2(1

    )( s s s

    s X

    What to do if we do not have L-transform tables?

    mmmm

    nnnn

    m

    n

    b sb sb sba sa sa sa

    s B s A

    s F 1

    110

    11

    10

    ...

    ...)()(

    )(

    In general, if:

    We consider the case n

  • 8/12/2019 ContSys1 L3 Laplace Trans

    19/29

    19/03/201419

    Partial-Fraction ExpansionIf F(s) involves distinct real poles

    m

    m

    p sq

    p sq

    p sq

    s F ...)(2

    2

    1

    1

    Then

    There are two ways of calculating unknown coefficients

    mnn

    nn

    mmmm

    nnnn

    p s p s p sa sa sa sa

    b sb sb sba sa sa sa

    ......

    ...

    ...

    21

    11

    10

    11

    10

    11

    10

  • 8/12/2019 ContSys1 L3 Laplace Trans

    20/29

    19/03/201420

    Partial-Fraction Expansion1) Get F(s) to the common denominator

    )...(...))...(())...((

    )(21

    1221

    m

    mm

    p s p s p s p s p sq p s p sq

    s F

    And compare the numerator to the original one, sothat

    Equating the coefficients with the same power we obtain aset of linear equations with respect to q 1,q2, q3,, qm

    nnnn

    mm

    a sa sa sa

    p s p sq p s p sq

    11

    10

    1221

    ...

    ...))...(())...((

  • 8/12/2019 ContSys1 L3 Laplace Trans

    21/29

    19/03/201421

    Partial-Fraction Expansion

    )1)(2(1

    )( s s s

    s X If

    )1)(2()2()1()1)(2(

    12)1)(2(1

    321

    321

    s s s s sq s sq s sq

    sq

    sq

    sq

    s s sThen

    12:

    023:

    0:

    10

    3211

    3212

    q s

    qqq s

    qqq s

    1

    2/1,2/1

    3

    2

    1

    q

    qq

  • 8/12/2019 ContSys1 L3 Laplace Trans

    22/29

    19/03/201422

    Partial-Fraction Expansion

    11

    22/1

    21

    )1)(2(1

    )( s s s s s s

    s X Thus

    Then

    t t t t eeee s s s

    L s X Lt x

    2121

    21

    21

    11

    22/1

    21

    )()(

    22

    11

  • 8/12/2019 ContSys1 L3 Laplace Trans

    23/29

    19/03/201423

    Partial-Fraction Expansion2) To multiply the original F(s) ))((lim k p sk p s s F q k

    In our case of

    1)2(

    1lim)1(

    )1)(2(

    1lim

    ,21

    )1(1

    lim)2()1)(2(

    1lim

    ,21

    )1)(2(1

    lim)1)(2(

    1lim

    113

    222

    001

    s s s

    s s sq

    s s s

    s s sq

    s s s

    s s sq

    s s

    s s

    s s

    12)1)(2(

    1)( 321

    s

    q

    s

    q

    s

    q

    s s s s X

  • 8/12/2019 ContSys1 L3 Laplace Trans

    24/29

    19/03/201424

    Partial-Fraction Expansion If the second order polynomial has two complexroots, we DO NOT EXPAND it. LEAVE it as is.

    1)1(1)( 2

    3212 s s

    q sq sq

    s s s s X

    The polynomial in the numerator has to be of the

    first order. CLASS! GET UNKNOWN COEFFICIENTS If the denominators roots are multiple, the process offinding the coefficients is slightly more complicated.

  • 8/12/2019 ContSys1 L3 Laplace Trans

    25/29

    19/03/201425

    Partial-Fraction Expansion formultiple poles

    na s s X

    )(1

    )(If

    nn

    n a sq

    a sq

    a sq

    a sq

    a s ...

    )(1

    33

    221

    Then

    For instance

    3

    2

    )1(32

    )( s

    s s s X

  • 8/12/2019 ContSys1 L3 Laplace Trans

    26/29

    19/03/201426

    Partial-Fraction Expansion formultiple poles

    Then

    3:

    22:

    1:

    3210

    211

    12

    qqq s

    qq s

    q sThus

    33

    221

    3

    2

    111)1(32

    )( s

    q s

    q s

    q s

    s s s X

    3

    322

    13

    2

    1)1(1

    )1(32

    sq sq sq

    s s s

    201

    3

    2

    1

    qqq

  • 8/12/2019 ContSys1 L3 Laplace Trans

    27/29

    19/03/201427

    Partial-Fraction Expansion formultiple poles

    n

    nnn

    bas s

    p sq

    bas s

    p sqbas s

    p sqbas s 222

    222

    112 ...)(

    1

    Then

    nbas s s X

    )(1

    )( 2If

    and0

    2

    bas shas complex-conjugate roots

  • 8/12/2019 ContSys1 L3 Laplace Trans

    28/29

    19/03/201428

    Partial-Fraction Expansion Guide

    Y X

    b sb sb sba sa sa sa

    s B s A

    s F

    mm

    mmnn

    nn

    m

    n

    1

    1

    10

    11

    10

    ...

    ...)()(

    )(

    1. Equate the denominator to zero and find roots ofthe equation.

    2. You will write your denominator as multiplicationof first and second order terms.

    3. If the second order polynomial has two complexroots, we DO NOT EXPAND it! LEAVE it as is!

    0... 11

    10 mmmm b sb sb sb

    )...()( 222

    21 k c sc sb sac s

  • 8/12/2019 ContSys1 L3 Laplace Trans

    29/29

    19/03/201429

    Partial-Fraction Expansion Guide

    has

    4. Use the Laplace transform table or partialfraction expansion to get inverse Laplace transform

    To recover the system response )(t x

    042

    acb

    0222

    2 c sb sa

    This happens when