aorc-cigre technical meetingapplication of real-time phasor domain simulation for wide area...

19
Application of Real-time Phasor Domain Simulation for Wide Area Protection in Large-Scale Power Systems Nik Sofizan Nik Yusuf Transmission Division Tenaga Nasional Berhad Malaysia AORC - CIGRE TECHNICAL MEETING 16 th to 21 st August 2015 The Magellan Sutera Resort, Kota Kinabalu, Sabah, MALAYSIA

Upload: others

Post on 10-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Application of Real-time Phasor Domain Simulation for

Wide Area Protection in Large-Scale Power Systems

Nik Sofizan Nik Yusuf

Transmission Division

Tenaga Nasional Berhad

Malaysia

AORC-CIGRE TECHNICAL MEETING16th to 21st August 2015

The Magellan Sutera Resort, Kota Kinabalu, Sabah, MALAYSIA

Pow

er S

yste

mP

he

no

me

na

Tim

e R

ange

of

WA

MPA

CC

on

tro

l Act

ion

s

Electromagnetic Transient

Transient Stability (Angle & Voltage)

Small Signal Stability

Long Term Voltage Stability

Thermal Stability

Protection System

Automatic Control Action

Manual Action

Underfreq Load Shed

Generator Rejection

HVDC Power Change

Undervoltage Load Shed

Stability Control

Overload Protection

AGC / Generation Change

Time (sec) .001 .01 .1 1 10 100 1000

Introduction: Application Time Frame

Highlights

• Real Time Power System Simulator

• Features and Capability

• Example Hardware in Loop Testing

Why Real-Time Simulation?

Virtual controller Real devices

• Rapid Control Prototyping

– Motor Control

– Power Electronics

Control

Real controller Virtual Devices

• Hardware-In-the-Loop Testing

– Power Electronics

Controllers

– (MMC, Drives, PV, Plugin

Hybrid, Etc.)

– WAMPAC system

• Real-Time Simulation of Power Systems & Power Electronics

Real-Time Simulation Model Time Step

Application Typical

Frequency

Typical

Time Step

Simulation

Technology

Transient Stability Simulation

(PHASOR)

100 Hz 1-10 ms

Intel CPU

3.3 Ghz

Robotics / Aircraft simulation 1 000 Hz 1 ms

Electromagnetic Transients

Simulation (EMT)

20 000 Hz 50 us

Low frequency

Power Electronics Simulation

100 000 Hz 10 us

FEM PMSM Motor with Inverter 2 500 000

Hz

0,4 us

FPGAHigh Frequency

Power Electronics Simulation

5 000 000

Hz

0.2 us

ePHASORsim

Real-time transient stability simulator

• Large-scale power systems

• Transmission, distribution and

generation

Phasor domain solution

• Nominal frequency

• Positive sequence (balanced

systems) OR

• 3-phase (unbalanced systems)

• Time-step in the range of few

milliseconds

00 )(

),,(0

),,(

xtx

tVxg

tVxfx

Machines, Controllers, Dynamics

Network side algebraic equations

+

Discretization of

differential equations

Solving linear algebraic

equations

Explicit Euler

LU Factorization

What is ePhasorSim?

Offline Phasor Tools time-step: millisecond

PSS/e

ETAP

EUROSTAG

CYME

Real-time Simulatorstime-step: microsecond

eMEGAsim

Hypersim

RTDS

ePHASORsim

ePhasorsim…

ePHASORsim is a TS-type simulation tool that not only runs offline

but also runs in real-time on RT-LAB enabled simulators

• High performance computation:

– systems in size of 20k buses on single core CPU

• Built-in positive sequence and 3-phase library:

– Machine, Sources, Transformers

– Simulation of Transmission and Distribution Systems

• Flexible data input format:

– Excel and PSS/e

• Interactive, On-the-fly changes of parameters: Loads,

Generators, Create Faults, Transformer Taps etc

• Parallel processing

– Automatic decomposition of network

• Ethernet protocols and I/Os

– DNP3, C37.118, Modbus, IEC 61850, IEC 870-5-101 and 104

– Analogue and Digital Input Output

• Support User Define Model , FMI: Functional Mock-up Interface

Features of ePhasorsim

• FMI for Modelica based FMUs

– FMU generation for both Windows

and Linux OS

– FMI is compatible with

OpenModelica: an open source

Modelica tool

– A library of models are developed

based on PSS/e components

Functional Mock-up Interface

ePHASORsim FMU Creator

FMUs are loadable directly from• Excel Template • PSS/e *.dyr file

Preparing the Real Time Simulator

Interface pins

Network & Dynamic models

Offline tool

Out Of Step Protection System Test Setup

Amplifier

3 CTs + 3 VTs

Low levelAnalogue signals

ePhasorSim RTAP®PDC + OOSP(Angular Acceleration Method)

Dedicated OOSP(SCV Method)

3 CTs + 3 VTs

21ZRelay + + OOSP (Impedance Method)+ PMU

Interactive, on the fly parameter changes

I/O Boards

Phasor Domain to Time Domain Simulation

Amplifier

3 CTs + 3 VTs

Low levelsignals

3 CTs + 3 VTs50 μs

+ve Sequence

10 ms

OOS Relay1

OOS Relay2

Rate transition enable sinusoidal waveform calculation for output for actual IED testing

sin

sin

ePH_b101.mat

To File

Subtract2

Subtract1

Subtract

Va_rms

Va_ang

Vb_rms

Vb_ang

Vc_rms

Vc_ang

Ia_re

Ia_im

Ib_re

Ib_im

Ic_re

Ic_im

Subsystem

Step1

Step

Va_abs

Va_ang

Vb_abs

Vb_ang

Vc_abs

Vc_ang

Ia_abs_101_102

Ia_ang_101_102

Ib_abs

Ib_ang

Ic_abs

Ic_ang

CurrInj_re_a

CurrInj_im_a

CurrInj_re_b

CurrInj_im_b

CurrInj_re_c

CurrInj_im_c

Active_Flt_102

Solver

Scope8

Scope7

Scope6

Scope5

Scope4

Scope3

Scope2

Scope1

Copy

1/z

1/z

1/z

1/z

1/z

1/z

ZOH

ZOH

ZOH

ZOH

ZOH

1/z

ZOH

ZOHCopy

Copy

Copy

1/z

OpComm

Ts = Ts_f

OpComm

[abs_Va_204]

[abs_Vb_204]

[ang_Vc]

[ang_Vb]

[ang_Va]

[abs_Vc]

[abs_Vb]

[ang_Ib]

[abs_Ib]

[ang_Ia]

[abs_Ia]

[abs_Va_101]

[ang_Va_101]

[im_c]

[abs_Va]

[ang_Ic]

[abs_Ic][re_c]

[im_b]

[re_b]

[im_a]

[re_a]

[abs_Vc_204]

[ang_Va_204]

[ang_Vc_204]

[ang_Vb_204]

sqrt(2)

2*pi*60

sqrt(2)

pi/180

pi/180

[ang_Vb_204]

[ang_Va_204]

[abs_Vb_204]

[ang_Vc]

[abs_Vc]

[ang_Vb]

[im_c]

[re_c]

[abs_Vb]

[ang_Ia]

[ang_Va]

[abs_Ia]

[ang_Va_101]

[abs_Va_101]

[im_b]

[re_b]

[ang_Vc_204]

[im_a]

[re_a]

[abs_Va_204]

[abs_Vc_204]

[abs_Va]

Divide1

Divide

117.6

Display6

-2.449

Display5

-122.3

Display4

7412

Display3

7407

Display2

7407

Display1

180

180

180

Clock1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2

ePhasorSim 10 ms

50 μs

Testing a Synchrophasor-Based System

3 CTs + 3 VTs

Low levelsignals

Phasor Data Concentrator

C37.118C

37

.11

8Virtual PMU Synchrophasor: -

• Practically unlimited number of PMU data available• New WAMPAC concept and methodology can be prototyped and thoroughly tested before actual deployment• Testing of actual PMU specification compliance and phasor calculation latency

ePhasorSim

GPS Clock

Out Of Step Protection System HiL Test

Amplifier

21ZRelay + OOSP + PMU

3 CTs + 3 VTs

Low levelsignals

ePhasorSimPDC + OOSP(Angular Acceleration Method)

Dedicated OOSP(SCV Method)

GO

OSE

3 CTs + 3 VTs

C3

7.1

18

0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5x 10

4

Time (s)

Vo

lta

ge

(V

)

0 0.5 1 1.5-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1x 10

4

Time (s)

Cur

rent

(A)

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14

-250

-200

-150

-100

-50

0

50

100

Time (s)

An

gle

(D

eg

.)

Generator Rotor Angle After Out-Of-Step Control

OOS Condition

OOS Resolve

Generator Shedding

Sample Test Results

No Control Action With Generator Shedding Action

8 9 10 11 12 13 14

0

2000

4000

6000

Time (s)

An

gle

(ra

d)

Rotor Angle Without Out-of-Step Control Measure

8 9 10 11 12 13 140

0.2

0.4

0.6

0.8

1

Time (s)

Vo

lta

ge

(p

.u

.)

Bus Voltages Without Out-of-Step Control Measure

8 9 10 11 12 13 14

-300

-200

-100

0

100

Time (s)

An

gle

(ra

d)

Rotor Angle With Out-of-Step Control measure

8 9 10 11 12 13 140

0.2

0.4

0.6

0.8

1

Time (s)

Vo

lta

ge

(p

.u

)

Bus Voltages With Out-of-Step Control Measure

Summary

• Enable comprehensive functional and performance

testing of WAMPAC under controlled environment

be actual deployment

– Entire grid model can be included

– Various grid conditions, loads and generation

patterns

– Testing scenarios not possible in actual system

test

• Operator training on newly develop WAMPAC

applications

• Rapid prototyping of new concepts or ideas

• Increase collaboration between utility and

universities

Summary

• Continuous improvement and tuning of the models

shall be carried out to ensure the simulation results

are as close as possible to actual grid

– Every time when grid disturbance occurs

– Using data from PMU-Based dynamic recorder

– Perform model and model parameters validation