ga2015 sar applicazioni frane parte2

Post on 22-Jul-2016

220 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Dispense telerilevamento radar per frane e subsidenza, parte 2

TRANSCRIPT

Monte Beni

Failure forecasting

Department of Earth Sciences CENTRE OF COMPETENCE OF THE CIVIL PROTECTION DEPARTMENT

PRESIDENCY OF THE COUNCIL OF MINISTERS

Montebeni (Italy) April 19th 2002

Perimetral crack

debris cone debris cone debris cone

MASSIVE BASALTS

BASALT BRECCIAS

DISTURBED BRECCIAS

LIMESTONES

THRUST SURFACE WITH LAMINATED CHERTS

VEGETATED SLOPE DEPOSITS

talus

Tectonically disturbed breccias

Bedded limestones

Caothic clay shales

Basalt

Basalt breccias

Thrust fault

bedding

Monitoring with distometers

Target visibility

LiSA can operate in any condition of visibility (eg. during night, rainstorms and fog)

LISA Applications: Monte Beni landslide

Start: 8/5/2002 13:59

End: 13/5/2002 18:12 Interval: 124 h

Acquisition time: 40 min

Peak velocity: 0.48 mm/h

Mean Velocity: 0.16 mm/h

08/05/2002 13:59 08/05/2002 17:10 08/05/2002 20.28 08/05/2002 23:37 09/05/2002 00:07 09/05/2002 04:00 09/05/2002 06:35 09/05/2002 08:40 09/05/2002 11:20 09/05/2002 14:05 09/05/2002 16:50 09/05/2002 19:20 09/05/2002 23:55 10/05/2002 03:10 10/05/2002 05:50 10/05/2002 09:45 10/05/2002 11:52 10/05/2002 13:50 10/05/2002 16:45 11/05/2002 19:00 11/05/2002 21:20 11/05/2002 23:42 11/05/2002 19:00 11/05/2002 21:20 11/05/2002 23:42 12/05/2002 02:45 12/05/2002 06:00 12/05/2002 08:30 12/05/2002 11:20 12/05/2002 14:30 12/05/2002 17:35 12/05/2002 20:10 12/05/2002 22:40 13/05/2002 02:15 13/05/2002 05:46 13/05/2002 08:55 13/05/2002 12:40 13/05/2002 12:40 13/05/2002 15:40 13/05/2002 18:12

LOS DISPLACEMENT (mm)

cum

ulat

ed d

ispl

acem

ent

(mm

)

point 1: displacement = 57 mm velocity = 11 mm/day

point 5: displacement = 13 mm velocity = 3 mm/day

point 4: displacement = 22 mm velocity = 4 mm/day

point 3: displacement = 25 mm velocity = 5 mm/day

point 2: displacement = 37 mm velocity = 7 mm/day

point 1

point 2 point 3

point 4

point 5 D

ISP

LAC

EMEN

T (m

m)

m

m

elapsed time (min) elapsed time (min)

elapsed time (min) elapsed time (min) elapsed time (min) cu

mul

ated

dis

plac

emen

t (m

m)

cum

ulat

ed d

ispl

acem

ent

(mm

)

cum

ulat

ed d

ispl

acem

ent

(mm

)

cum

ulat

ed d

ispl

acem

ent

(mm

) Displacement histories

November 2002: early warning system

Traffic light 1

Traffic light 2 Network of wire extensometers, bar extensometers and clinometers

Displacement thresholds which activate two traffic lights

Early December: failure of sensors area 1

-50

0

50

100

150

200

250

300

350

400

30/11/02 0.00 2/12/02 0.00 4/12/02 0.00 6/12/02 0.00 8/12/02 0.00 10/12/02 0.00 12/12/02 0.00 14/12/02 0.00 16/12/02 0.00 18/12/02 0.00 20/12/02 0.00

data

mm

(cm

per

AL)

, °c DR1

DR2EF1FA1FA2AL1 TA1

area2

-10.00

40.00

90.00

140.00

190.00

240.00

290.00

340.00

30/11/020.00

2/12/020.00

4/12/020.00

6/12/020.00

8/12/020.00

10/12/020.00

12/12/020.00

14/12/020.00

16/12/020.00

18/12/020.00

20/12/020.00

data

mm

, cm

per

AL,

°c

DR3DR4 EF2EF3FA3AL3AL2TA2

area3

-20

30

80

130

180

230

280

330

380

430

27/11/0212.00

29/11/0212.00

1/12/0212.00

3/12/0212.00

5/12/0212.00

7/12/0212.00

9/12/0212.00

11/12/0212.00

13/12/0212.00

15/12/0212.00

17/12/0212.00

19/12/0212.00

data

mm

, cm

per

AL,

°c DR5

FA4FA5FA6EF4TA2DR6

area4

-50

-30

-10

10

30

50

70

90

27/11/0212.00

28/11/0212.00

29/11/0212.00

30/11/0212.00

1/12/0212.00

2/12/0212.00

3/12/0212.00

4/12/0212.00

5/12/0212.00

6/12/0212.00

7/12/0212.00

8/12/0212.00

data

mm

, °c

EF5EF6EF7TA 4

Monitoring time series

0

500

1000

1500

2000

2500

3000

4/4 24/4 14/5 3/6 23/6 13/7 2/8 22/8 11/9 1/10 21/10 10/11 30/11 20/12

InSAR monitoring

collapse

Cum

ulat

ed d

ispl

acem

ent

(mm

)

Extensometer monitoring

delta 1-2 delta 3-2 delta 12-8 delta a'-b' delta 34-35' delta 36-37 delta 45-47

Apollonius of Perga (Perga, 262 a.C. – Murtina, 190 a.C.)

The Conics

The hyperbolas

Saito (1965)

•  Method to predict failure based on creep rupture •  Linear relationship between inverse velocity and

time during periods of acceleration to failure (i.e. hyperbolic acceleration)

1/

velo

city

Time

Time of failure

0

Inverse velocity method Fukuzono (1985)

Impossibile visualizzare l'immagine. La memoria del computer potrebbe essere insufficiente per aprire l'immagine oppure l'immagine potrebbe essere danneggiata. Riavviare il computer e aprire di nuovo il file. Se viene visualizzata di nuovo la x rossa, potrebbe essere necessario eliminare l'immagine e inserirla di nuovo.

()[ ] 11

11

1 )(1 −−−−=⇒∞= ααα ttAv fvf i

if α = 2

then: 1/v = A(tf-t)

Inverse velocity method

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1/9 9/9 17/9 25/9 3/10 11/10 19/10 27/10 4/11 12/11 20/11 28/11 6/12 14/12 22/12 30/12 7/1

1/v

(gio

rno/

mm

)

1/v1-2 1/v3-2 1/v12-8 1/va'-b' 1/v34-35' 1/v36-37 1/v45-47

collapse  

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

13/7 23/7 2/8 12/8 22/8 1/9 11/9 21/9 1/10 11/10 21/10 31/10 10/11 20/11 30/11 10/12 20/12 30/12

1/v

(g

iorn

o/m

m)

failure

Benchmarks 1-2

Inverse velocity method

01-set

21-set

11-ott

31-ott

20-nov

10-dic

30-dic

19-gen

01-set 11-set 21-set 01-ott 11-ott 21-ott 31-ott 10-nov 20-nov 30-nov 10-dic 20-dic 30-dic 09-gen

Benchmarks 12-8

Azimi graphical method

Dispatches to civil protection authorities

•  The landslide, until now sensitive to rainfall, is now increasing its rate of displacement independently from precipitation (letter of Prof. Canuti to the Mayor of Firenzuola, November 26th, 2002)

•  The main landslide is on the point of collapsing. It is necessary that the evacuation measures will be strictly respected during Christmas holidays (letter of Prof. Canuti to the Mayor of Firenzuola, December 23rd, 2002)

•  The main landslide will collapse within the first days of January 2003 (report of Prof. Canuti to the Civil Protection Commission, December 27th, 2002)

Regional road

Perimetral crack

Landslide volume: 500 000 m3

Angle of friction:

34°

Graphical elaboration: Conefall

(www.quanterra.org)

Risk scenario

December 14th 2002

Rock fall of 20 000 m3

December 15th 2002

Intitiation of the major collapse

December 28th 2002

Collapse of 500 000 m3 of rock

Today

Stromboli

Early Warning

Department of Earth Sciences CENTRE OF COMPETENCE OF THE CIVIL PROTECTION DEPARTMENT

PRESIDENCY OF THE COUNCIL OF MINISTERS

~400 minor explosion per day

~1 major explosion per year

100-200 m

2-4 km

Stromboli volcano

Lava effusion ~10 years

Slope instability ~20-40 years

Tsunami ~20-40 years

Sector collapse and megatsunami ~2000 years photo INGV

Landslides on 30 December 2002

Photo INGV Catania (2003) Courtesy of Sonia Calvari

Ash cloud and tsunami

Integrated monitoring

network

Broadband seismology

Infrasound acoustics Thermal infrared

Ground deformation (tiltmeters)

Ground deformation (InSAR da terra)

Broadband ondameters

Meteo

Ground deformation (Laser 3D)

Heli-platform

Radar installation

Data collection

centre

Wirless

connection

Heli-platform

Optical cable

Installation of the system

Measurement parameters

•  Frequency range: 17.0 – 17.10 GHz

•  Frequency points : 1601 •  Polarization: VV •  transmitted power:

300 mW (25 dBm)

•  Synthetic Aperture: 3.0 m

•  Step: 5 mm •  Azimuth points : 601 •  Time range: 12 min

•  Image number: ca. 120 per day

•  distance: 650 m •  Spatial Resolution: 1.0 m x ca. 1.5 m •  Accuracy: < 0.5 mm

Target area (2007)

Interferometry Image 1

Image 2

Interferogram (phase difference)

1 2

3

4

5

phas

e w

rapp

ing LO

S displacement (m

m)

1: Flank of Sciara del Fuoco (stable) 2 and 3: Sciara del Fuoco slope 4 and 5: crater

12 min interferogram

1 hrs interferogram

12 hrs interferogram

48 hrs interferogram

2007 eruption

27th February: lava effusion from the crater

27th February: vent opening 400 m a.s.l.

Main debris avalanche on the SdF

8-9 March: lava effusion from new vent

SdF 2007

27 F

eb. e

ffusi

on a

nd la

ndsl

ides

9 M

arch

effu

sion

Crater 2007

27 F

eb. e

ffusi

on a

nd la

ndsl

ides

15 M

arch

exp

losi

on

27 Feb. 2007

Eruption

Sequence of

11’ ITF

Interval: 14h 41’

Start:

00.11 GMT 2007/02/27

End:

14.52 GMT 2007/02/27

Inverse velocity plot – 27 February

ER

UP

TIO

N A

ND

LA

ND

SLI

DE

S

05.53 GMT

21.05 GMT

27 Feb. 2007

Power images Morphological modifications

of the crater and of the upper Sciara del Fuoco

Interval: 15h 12’

Upper:

05.53 GMT 2007/02/27

Lower:

21.05 GMT 2007/02/27

8-9 March 2007: Opening of new vent Time interval of 11 minutes (11.17-11.28 UT 9 March

2007)

velocity greater than 300 mm/h

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,01

09/03/2007

07.12

09/03/2007

07.55

09/03/2007

08.38

09/03/2007

09.21

09/03/2007

10.04

09/03/2007

10.48

09/03/2007

11.31

09/03/2007

12.14

09/03/2007

12.57

09/03/2007

13.40

09/03/2007

14.24

09/03/2007

15.07

inve

rse

of v

eloc

ity 1

/(mm

/h)

vent opening and landslides

Inverse velocity plot 9 March

Crater

Velocity in log scale (mm/h)

CONCLUSIONI Sciara del Fuoco

Velocity in log scale (mm/h)

Explosion of 7 september 2008 TERRA SAR-X satellite

04/09/2008 - 15/09/2008 sin-event

15/09/2008 - 26/09/2008 post-event

09/09/2008 - 20/09/2008 post-event

Descending Inc. angle= 43

Descending Inc. angle= 43

Descending Inc. angle= 28

1 fringe reprents a displacement of λ/2 = 15,5 mm

Santa Trada

Emergency Management

Department of Earth Sciences CENTRE OF COMPETENCE OF THE CIVIL PROTECTION DEPARTMENT

PRESIDENCY OF THE COUNCIL OF MINISTERS

Scilla

Example #4: A3 Motorway: Scilla

Location

Landslide on the Motorway

Regional Landslide Map (PAI)

National Landslide Map (IFFI)

PS ERS (1992-2001)

PS ENVISAT (2002-2007)

02 February 2009

GB-InSAR

Risoluzione teorica:

range 0.05 m

azimut (100 m) 0.45 m

azimut (400 m) 1.74 m

GB-InSAR monitoring

Chronology

•  30 January 2009: Landslide triggering. 8.00 p.m. request from Civil Protection

•  31 January 2009: Installation. 3:00 p.m. testing

•  01 January 2009: Start of monitoring

•  05 February 2009: Shallow landslide

•  07 February 2009: Start of remote monitoring

•  12 February 2009: web application for real time monitoring (15’)

Cumulated displacements

Cumulated displacement – saturated scale

1-Week comparison

Cumulated displacement tra le ore 00.02 del 03/02/2003 e le 00.02 del 08/02/2009

Intervallo temporale: 5g 0h 0min

Cumulated displacement tra le ore 00.02 del 08/02/2003 e le 00.05 del 13/02/2009

Intervallo temporale: 5g 0h 3min

Landslide deformation

Landslide of 4 February 2009

Landslide of 4 February 2009

Cumulated displacement

Serie storiche spostamenti punti P1 - P6

-2500

-2000

-1500

-1000

-500

0

500

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Spos

tam

entiu

lung

o il

LOS

[mm

]

P1 P2 P3 P4 P5 P6

Velocity

Serie storiche velocità punto P1

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Serie storiche velocità punto P2

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Serie storiche velocità punto P3

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Serie storiche velocità punto P4

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Serie storiche velocità punto P5

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Serie storiche velocità punto P6

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

02/02/2009 04/02/2009 06/02/2009 08/02/2009 10/02/2009 12/02/2009 14/02/2009

Velo

cità

[mm

/h]

Conclusions

Integrated use of different remote sensing techniques (active/passive, satellite/ground-based sensors) Applicability of remote sensing techniques to mass movement hazard prevention:

–  Inventory and motion survey –  Monitoring and interpretation –  Rapid mapping –  Instant mapping –  Failure forecasting –  Early-warning –  Emergency management

Current limitations associated to SAR satellites prevent further developments for application at regional scale

top related