acronyme stabingram français anglais

68
PROGRAMME BLANC EDITION 2010 Projet XXX DOCUMENT SCIENTIFIQUE 1/68 Acronyme STABINGRAM Titre du projet en français Déstabilisation de milieux granulaires Titre du projet en anglais STABility loss IN GRAnular Media Comité d’Evaluation référence (CE) 1 SIMI 9 – Sciences de l’ingénierie, matériaux, procédés, énergie Projet multidisciplinaire OUI NON Si oui, indiquer l’intitulé du second CE Coopération internationale (si applicable) Le projet propose une coopération internationale avec les Etats-Unis (accord ANR/NSF) autres pays Aide totale demandée 641 kDurée du projet 36 mois SOMMAIRE 1. CONTEXTE ET POSITIONNEMENT DU PROJET / CONTEXT AND POSITIONNING OF THE PROPOSAL ............................................................................... 3 2. DESCRIPTION SCIENTIFIQUE ET TECHNIQUE / SCIENTIFIC AND TECHNICAL DESCRIPTION ................................................................................. 5 2.1. État de l'art / Background, state of the art .................................................... 5 2.2. Objectifs et caractère ambitieux/novateur du projet / Rationale highlighting the originality and novelty of the proposal ................................................... 7 3. PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DU PROJET / SCIENTIFIC AND TECHNICAL PROGRAMME, PROJECT MANAGEMENT..................... 9 3.1. Programme scientifique et structuration du projet / scientific programme, specific aims of the proposal ...................................................................... 9 3.2. Coordination du projet / project management ............................................... 9 3.3. Description des travaux par tâche / detailed description of the work organised by tasks.................................................................................. 10 3.3.1 Tâche 1 / task 1 10 3.3.2 Tâche 2 / task 2 13 3.3.3 Tâche 3 / task 3 16 3.4. Calendrier des tâches, livrables et jalons / planning of tasks, deliverables and milestones ....................................................................................... 20 1 Indiquer la référence du CE choisi pour l’évaluation du projet (cf. tableaux page 3 et 4 du texte de l’appel à projets)

Upload: others

Post on 25-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

1/68

Acronyme STABINGRAM

Titre du projet en français

Déstabilisation de milieux granulaires

Titre du projet en anglais

STABility loss IN GRAnular Media

Comité d’Evaluation référence (CE)1

SIMI 9 – Sciences de l’ingénierie, matériaux, procédés, énergie

Projet multidisciplinaire

OUI NON Si oui, indiquer l’intitulé du second CE

Coopération internationale (si applicable)

Le projet propose une coopération internationale avec les Etats-Unis (accord ANR/NSF) autres pays

Aide totale demandée

641 k€ Durée du projet 36 mois

SOMMAIRE

1. CONTEXTE ET POSITIONNEMENT DU PROJET / CONTEXT AND POSITIONNING OF

THE PROPOSAL ............................................................................... 3 2. DESCRIPTION SCIENTIFIQUE ET TECHNIQUE / SCIENTIFIC AND TECHNICAL

DESCRIPTION................................................................................. 5 2.1. État de l'art / Background, state of the art .................................................... 5 2.2. Objectifs et caractère ambitieux/novateur du projet / Rationale highlighting

the originality and novelty of the proposal ................................................... 7 3. PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DU PROJET /

SCIENTIFIC AND TECHNICAL PROGRAMME, PROJECT MANAGEMENT..................... 9 3.1. Programme scientifique et structuration du projet / scientific programme,

specific aims of the proposal ...................................................................... 9 3.2. Coordination du projet / project management ............................................... 9 3.3. Description des travaux par tâche / detailed description of the work

organised by tasks.................................................................................. 10 3.3.1 Tâche 1 / task 1 10 3.3.2 Tâche 2 / task 2 13 3.3.3 Tâche 3 / task 3 16

3.4. Calendrier des tâches, livrables et jalons / planning of tasks, deliverables and milestones....................................................................................... 20

1 Indiquer la référence du CE choisi pour l’évaluation du projet (cf. tableaux page 3 et 4 du texte de l’appel à projets)

Page 2: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

2/68

4. STRATEGIE DE VALORISATION DES RESULTATS ET MODE DE PROTECTION ET

D’EXPLOITATION DES RESULTATS / DATA MANAGEMENT, DATA SHARING, INTELLECTUAL PROPERTY AND RESULTS EXPLOITATION................................ 25

5. ORGANISATION DU PARTENARIAT / CONSORTIUM ORGANISATION AND

DESCRIPTION............................................................................... 26 5.1. Description, adéquation et complémentarité des partenaires / relevance

and complementarity of the partners within the consortium ......................... 26 5.2. Qualification du coordinateur du projet / qualification of the project

coordinator ............................................................................................ 28 5.3. Qualification, rôle et implication des participants / contribution and

qualification od each project particpant ..................................................... 29 6. JUSTIFICATION SCIENTIFIQUE DES MOYENS DEMANDES / SCIENTIFIC

JUSTIFICATION OF REQUESTED BUDGET ................................................. 32 6.1. Partenaire 1 / partner 1 : FAST (Orsay) ...................................................... 32 6.2. Partenaire 2 / partner 2 : IPR (Rennes) ...................................................... 34 6.3. Partenaire 3 / partner 3 : LAUM (Le Mans) ................................................. 36 6.4. Partenaire 4 / partner 4 : Géosciences Rennes ............................................ 37

7. ANNEXES ................................................................................... 38 7.1. Références bibliographiques / references .................................................... 38 7.2. Biographies / CV, Resume......................................................................... 48 7.3. Implication des personnes dans d’autres contrats / involvement of project

participants to other grants, contracts, etc … ............................................. 67

Page 3: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

3/68

Avant de soumettre ce document :

- Supprimer toutes les instructions en rouge (par exemple en faisant Format Styles Menu contextuel du style « Instructions » Sélectionner toutes les occurrences suppr.)

- Mettre la table des matières à jour (bouton droit sur la table des matières mettre à jour les champs Mettre à jour toute la table).

- Donner toutes les références bibliographiques en annexe 7.1.

1. CONTEXTE ET POSITIONNEMENT DU PROJET / CONTEXT AND

POSITIONNING OF THE PROPOSAL (2 pages maximum)

Présentation générale du problème qu’il est proposé de traiter dans le projet et du cadre de travail Préciser plus particulièrement le :

- positionnement du projet par rapport au contexte : vis-à-vis des projets et recherches antérieurs, concurrents ou complémentaires, des brevets et standards…

- Indiquer si le projet s’inscrit dans la continuité de projet(s) antérieurs déjà financés par l’ANR. Dans ce cas, présenter brièvement les résultats acquis.

-

- positionnement du projet aux niveaux européen et international,

- éventuels enjeux sociétaux, économiques, environnementaux, …. Granular media are omnipresent in our natural and industrial surroundings. In natural environments, there are questions concerning gravity driven flows (snow and sub-aqueous avalanches) and grain transport (eolian or sediment transport, silting-up, desertification, bank or coast erosion). Industrial sectors working with granular matter include civil engineering (handling of sand and gravels, stability of soils), food processing (handling and stockage of grains), and the pharmaceutical industry (handling and mixing of powders). Granular material can be classified as a “solid”, “liquid”, or “gas”, depending on the amount of energy injected. Different scientific communities have focused on different phases. Soil mechanics is concerned mainly with the solid state, and fluid mechanics with the liquid state [Sperl07]. Important approaches to understand the solid state include the simple hard sphere models [Bernal60], the “statistical mechanics for packings”, where the energy is replaced by the volume and the temperature by the “compactivity” [Edwards89]. This latter theory furnishes an interpretation of the slow compaction experiments [Ribiere07]. Concerning the dilute “gaseous” state, the kinetic theory of molecular gas is adapted to granular media by taking into account the dissipation via the inelastic collisions betweens the grains [Haff83], and provides an interpretation for some behaviors such as the free cooling state [Maas08], the inelastic collapse [Falcon99], the anomalous density/temperature profile [Clément91] or the Maxwell Demon [Brey01]. For the dense “liquid” state, the recent works of the GDR Midi research network have revealed a simple local rheology with a friction coefficient depending on a non dimensional number characteristic of the flow intensity. This rheology provides a quantitative interpretation of numerous behaviors observed experimentally in simple flows [GDRMidi04]. The boundary between the solid and liquid state remains poorly understood. The “jamming transition” occurs when one passes from a liquid to a solid. The study of this transition is the aim of numerous works related to the glass transition and the rheology of complex fluids

Page 4: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

4/68

(colloidal suspensions, foams), and benefits of a great interest from the international scientific community (2 international conferences in Rennes in 2006 and in Napoli in 2007 were organized by partner 2 on that subject). This transition is important to understand since it governs the destabilization of packings or by contrast the sudden flow stop, with evident applications in industrial domains and in geophysics, in particular concerning the safety of installations and persons. One can cite for instance the large debris flows such as the one that occurred in June 2007 in Kamchatka and that destroyed most of the Valley of geysers. In geophysical granular flows, the possible presence of an interstitial fluid, air or water, may be very important for the overall dynamics. The importance of the interstitial fluid was recently emphasized by studies of the destabilization and subsequent flow dynamics of a thin water immersed granular layer on a inclined plane wall [Pailha08] and of the collapse dynamics of a powder column [Roche08]. The key role played by the pore pressure in the dynamics of those granular/suspension flows is clearly revealed by those studies [Cassar05, Pailha08, Roche08]. These dense granular/suspensions flows involving both solid contact and hydrodynamic interactions are now the subject of a growing interest in the international community and in the several current French GDR research interdisciplinary networks [GdrMege08, GdrPhenix08, GdrTransnat09, GdrMephy09]. The aim of our project is to study the events prior to the destabilization of packings and the subsequent flow dynamics. We want in particular to exploit and extend the promising results and investigation techniques developed during previous ANR projects (2005-2008) conducted by some of the partners of the present project: the MICMAC ANR research project, conducted by IPR (partner 2 of the present project), which brought to light some properties of avalanche precursors, and the graNUuLar ANR project, conducted by LAUM (partner 3 of the present project), which concerned the application of nonlinear acoustic process to fundamental problems of unconsolidated granular packings. Acoustics is undoubtedly a powerful tool to investigate granular packings at the instability threshold: It allows investigation of the elasticity of the medium which strongly varies in the vicinity of this threshold. Several recent works have shown the promise of applying acoustics to granular matter [Jia99, Tournat04, Bonneau08]. LAUM has a nationally and internationally recognized expertise and is one of the pioneers in the development of acoustics for the characterization of granular matter. It appears now necessary for the research community on granular matter to take advantage of the numerous advances of the ANR grANuLar project by using acoustics imaging to examine strongly heterogeneous media at the instability threshold. This project therefore associates the LAUM with other laboratories specializing in granular matter : IPR Rennes (partner 2, Granular Matter and Foam Team) and FAST Orsay (partner 1, Grains and Suspensions Research Axis), and Geosciences Rennes (partner 4). We are convinced that the application of the know-how in non linear acoustics will be a key asset for a better understanding and characterization of destabilization. The present project will be conducted by developing and conducting small scale experiments in different situations : (i) gravity driven destabilization of granular packings by rotation and the subsequent avalanche flow, (ii) destabilization by a local compression leading to the appearance of shear bands and followed by the penetration of the indenter, (iii) destabilization by a fluid jet flow leading to local fluidization or erosion of packings. The study of these different configurations may show whether the precursors are characteristic of one solicitation type or are by contrast universal. If universal precursors are identified, they could be then used for more complex systems such as geophysical systems. To complete successfully these studies, the different partners will share the experimental or simulation tools. These tools have been developed recently for granular matter and their use is promising. Besides the acoustics mastered by LAUM (partner 3), multiple light scattering is also a powerful tool to investigate displacements down to the order of one micrometer. This technique which was developed for disordered media (such as colloids and foams) [Pine90] has already shown its promise for granular matter [Menon97]. This technique is now operational in IPR Rennes (partner 2) [Erpelding08] and is complementary with

Page 5: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

5/68

macroscopic measurements by particle tracking for measuring velocity over several orders of magnitude under a surface forced granular flow [Crassous08, Richard08]. The X-ray tomography technique is useful for the characterization of structures, in particular for granular matter, as already demonstrated in compaction experiments [Richard03]. The use of this technique at the IPR Rennes is necessary to characterize in details the structures of packings at the instability threshold. The measurement of pore pressure developed in FAST Orsay (partner 1) in the pioneering experiments of sheared dense suspensions [Deboeuf09a] will undoubtedly be useful in the characterization of the dynamics of unstable immersed granular packings. In parallel to all these experimental tools, the development of numerical simulations appears also as crucial. As a matter of fact, simulation techniques allows the access to some physical parameters that are difficult to investigate experimentally, such as local stresses inside the packings. Simulations can also be compared with experimental results to facilitate their interpretation. The technique of molecular dynamics, already used by the IPR Rennes (partner 2) for granular flows [Taberlet08, Richard08], will be developed to simulate the propagation of acoustical waves in granular packings, in particular to relate acoustical signals to the grain micro-structure and micro-displacements (opening/closing of contacts). In addition, the contact dynamics technique, classically used for dry granular packings [Staron 02, Staron06], has been recently extended in Orsay/Saclay (partner 1) to include lubrication forces [Maury06, Maury07, Lefebvre09]. This method will be developed further to study immersed granular flows where both solid contacts and fluid/grain interactions come into play.

2. DESCRIPTION SCIENTIFIQUE ET TECHNIQUE / SCIENTIFIC AND

TECHNICAL DESCRIPTION

2.1. ÉTAT DE L'ART / BACKGROUND, STATE OF THE ART

(2 pages maximum)

Présenter un état de l’art national et international dressant l’état des connaissances sur le sujet et décrivant le contexte et les enjeux scientifiques dans lequel se situe le projet. Faire apparaître d’éventuels résultats préliminaires. The goal of the ANR project "Stabingram" is to carefully study the destabilization of dry or liquid-immersed granular packings and the following dynamics. The focus is on what could be called the "solid-liquid transition" of granular materials. There has been progress on the characterization of both the "solid" and "liquid" states. On one hand, recent studies have shown that contact disorder leads to a wide distribution of contact forces in "granular solids". It is possible to separate a "strong contact network" that has very different properties from the "weak contact network" [Radjai98]. On the other hand, granular materials can flow like a liquid with a complex rheology arising from the interactions between the grains [GdRMidi04]. The destabilization of granular materials is a problem of both fundamental and practical importance. From the perspective of theoretical physics, there is the tantalizing proposal that the "solid-liquid" transition is connected with the glass transition, or some kind of phase transition. On the practical side, predicting the stability of soils is one of the main tasks of soil mechanics. The theme of the project thus lies at the frontier between physics and engineering. The behavior of granular materials near the "solid-liquid" transition is especially difficult to model [Mills08]. Much recent work concerns the "jamming transition" [O'Hern03], where one starts from the "liquid state" and moves towards the transition point. Such experiments [Marty05, Lechenault08] have been analyzed using a statistical mechanics approach, in analogy with the glass transition.

Page 6: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

6/68

At the same time, the "solid-liquid" transition was approached from the opposite direction, i.e., by examining the onset of motion starting from a stationary "solid". One example is the avalanche, where a granular slope loses stability at a critical angle. Several experimental works [Daerr99, Aguirre01, Nerone03] have shown that avalanches are preceded by re-arrangements of the surface of the slope. These re-arrangements are rare and isolated far from the critical angle, but become larger, organized and more frequent as the slope approaches the critical angle: Large re-arrangements called "precursors" appear quasi-periodically, foreshadowing the imminent loss of stability. Do precursors concern only grains at the surface, or are they associated with re-organizations deep inside the packing? Numerical simulations [Staron02, Staron06] done in two dimensions predict re-arrangements inside the packing. Recent work done by two partners (2 and 3) of this project use nonlinear acoustics to show that precursors extend into the depths of the packing [Zaitsev08]. This work played a crucial part in the motivation of the project "Stabingram". One novelty of this project is to also consider the effects of an interstitial fluid. It is known that the fluid may affect dramatically the granular flows [Courrech03a, Cassar05, Doppler05, Roche08], and it very likely also affects the destabilization of granular packings [Courrech03a, Doppler05, Pailha08, Philippe08] and the acoustics of granular matter. This question will be adressed essentially by partner 1 which has an expertise in liquid immersed granular matter [Courrech03a, Doppler05, Deboeuf09]. All these questions have important geophysical applications, such as the stability of marine sediments, and the use of acoustics for probing the underwater granular deposits as by partner 4. In this project, we thus propose to apply several advanced experimental techniques to characterize destabilization processes in dry and liquid immersed granular packings and the subsequent flow dynamics. In addition to non-linear acoustics, we plan to use the diffusive wave spectroscopy, X-ray tomography, and numerical simulations. We now briefly discuss the state of the art for each of these methods. Non-linear acoustics — The ability of sound waves to probe matter un-intrusively has been known for a long time. Indeed, acoustics are sensitive to the elasticity of the material, and strong fluctuations of elasticity are one of the signs of an approaching destabilization. Recent developments have focused on non-linear acoustics, that open up new possibilities for granular materials [Nagel92-93, Jia99, Makse04, Tournat04a, Corwin08]. Non-linear acoustics are particularly sensitive to weak contacts, and it is precisely these contacts that are most like to open or slide during a precursor. Our work has shown the sensitivity of this method to avalanche precursors [Zaitsev08]. Other work on sound wave propagation in a granular layer under gravity are also very promising [Jacob08, Bonneau08]. Partner 3 (LAUM Le Mans) has a key expertise in all this field. Diffusive wave spectroscopy — Diffusive wave spectroscopy has been applied to many discrete media: colloids [Pine90], foams [Earnshaw94], and granular materials [Menon97]. It enables one to detect tiny deformations in granular materials [Djaoui05, Crassous09]. It has been successfully used by partner 2 of this project (IPR, Rennes) to detect creep deep (up to 100 grain diameters) inside a granular material provoked by a surface flow. The use of this technique to measure tiny deformations in an elastic material [Erpelding08] suggests this method will also be pertinent to the detection of microscopic displacements of grains in a granular packing. X-ray tomography — The methods discussed above can detect tiny displacements, but only averaged over volumes containing several grains. To identify precisely the changes occurring in the packing, X-ray tomography will be used. This method establishes a three-dimensional cartography of the packing, showing the position and shape of each grain. This non-intrusive method has been already successfully used by partner 2 (IPR Rennes) to characterize granular packings in experiments on granular compaction [Richard03] and will be used here for characterizing the granular packings at the instability threshold. Numerical Simulations — Numerical simulations will be used to support and enhance the experimental tools presented above. Numerical simulations of avalanche precursors [Staron02, Staron06] and of the acoustic response in dry granular packings [Mouraille06, Mouraille08] have been carried out, but the two have not been combined. Such a simulation

Page 7: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

7/68

should enlighten the interpretation of the recent experimental results of partner 2 and 3 [Zaitsev08]. In addition, the positions of the grains obtained from X-ray tomography can be used as an initial condition of a simulation. Simulations with exactly the same configuration as the experiments will be done and analyzed by partner 2. On the other hand, numerical simulations has been developed essentially to take into account solid collisional and frictional interactions between grain in dry packings or hydrodynamic interactions in suspension flow, e.g. in the Stokesian dynamics [Brady85]. But no efficient tool exists to treat the difficult problem of liquid immersed dense packings where both solid and fluid interactions have to be considered. This is one of the key issue of the present project proposed by the mathematicians from partner 1 that has already begun recently to implement lubrication forces to solid forces in dense granular packings [Maury06, Maury07, Lefebvre09].

2.2. OBJECTIFS ET CARACTÈRE AMBITIEUX/NOVATEUR DU PROJET / RATIONALE HIGHLIGHTING THE ORIGINALITY AND NOVELTY OF THE PROPOSAL

(2 pages maximum)

Décrire les objectifs scientifiques/techniques du projet.

Présenter les avancées scientifiques attendues. Préciser l’originalité et le caractère ambitieux du projet.

Détailler les verrous scientifiques et techniques à lever par la réalisation du projet.

Décrire éventuellement le ou les produits finaux développés à l’issue du projet montrant le caractère innovant du projet.

Présenter les résultats escomptés en proposant si possible des critères de réussite et d’évaluation adaptés au type de projet, permettant d’évaluer les résultats en fin de projet.

Le cas échéant, démontrer l'articulation entre les disciplines scientifiques et le caractère interdisciplinaire du projet. The aim of the ANR Project Stabingram is a better understanding and description of dense granular media (dry or liquid immersed) in the vicinity of the solid/liquid transition. We are interested in the mechanisms responsible for the destabilization occurring in different configurations of stress. Although many studies improved our understanding of granular media, large difficulties remain due to memory effects and heterogeneities in packings and flows. In order to make progress, one needs a better description of local dynamics (micro rearrangements and micro displacements) close the jamming/unjamming transition. This is now possible experimentally by using recent techniques such as X-ray micro tomography, dynamic light scattering and non linear acoustics. Numerical simulations are also a powerful tool to investigate local dynamics of grains. Besides fundamental studies on simple situations, more complex geophysical systems will be investigated. To achieve this challenging project, a cross-disciplinary team is here gathered with different laboratories of engineering (Partner 1 for mechanics and 3 for acoustics), physics (Partner 2), and geophysics (Partner 4), with both experimentalists, numericians and theoreticians. The studies proposed in the present project focus on three main scientific questions that still remain challenging : The first question concerns the understanding and characterization of micro rearrangements of grains when approaching the solid/liquid transition : localization, spatio-temporal correlations, … These rearrangements can be either micro displacements of grains or only changes in contact forces. Are these precursors universal or do they depend on the stress solicitation (local or global) ? Other questions concern the presence of soft modes, “rattlers”, and modes linked to the rotation of the grains. The second question concerns the role of interstitial fluid on the destabilization and on the subsequent dynamics of granular flows. The measurement of pore pressure will be investigated as a possible way of detect precursors of instability flow. The development of

Page 8: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

8/68

numerical simulations where fluid interactions are taken into account together with solid contact forces is challenging and promising for a better understanding of the complex dynamics of liquid immersed dense granular flows as it allows a fine local analysis of the different forces in play. The application of this knowledge to pratic geophysical situations will be deeply studied in The third question concerns acoustic wave propagation. The acoustic response of even “model” granular assemblies is still an open question. There remain many fundamental difficulties: the laws of attenuation, diffusion, and dispersion are poorly understood, and have been studied only in certain special configurations. These difficulties arise from the intrinsic disorder and nonlinearity of granular materials. Moreover, questions concerning acoustic coupling between a granular packing and an interstitial fluid add an additional challenge. In this project, we will focus especially on nonlinear acoustic effects, for they present a rich variety of behaviors and offer new possibilities for monitoring minute changes in granular media. Therefore, nonlinear acoustic effects are particularly useful for detecting subtle changes preceding destabilization. Acoustics are simply unique for probing the elasticity of granular materials. It is possible to obtain a time resolution down to 10–3 s, and a spatial resolution down to 1 mm. Furthermore, one can detect acoustic displacements as small as 10–11 m. The application of these methods to granular materials has already been demonstrated by some of the partners [Tournat04 ,Zaitsev08]. However, the full promise of acoustics has not yet been realized because the interpretation of the acoustic signal is possible only at a qualitative level. Indeed, the connection between the signal and the microscopic properties of granular materials remains poorly understood. For this reason, acoustics will be combined with two powerful and complementary experimental techniques already developed by the partners: X-ray tomography and diffusive light scattering. X-ray tomography resolves the spatial structure of the granular packing, making it possible to precisely identify grains that move. On the other hand, diffusive light scattering is capable of detecting tiny (non-acoustic) deformations with an excellent time resolution. Numerical simulations will be used to relate and interpret these three techniques. The microscopic granular structure, obtained from X-ray tomography, can be used as an initial condition for a simulation. Then, one can simulate the acoustic solicitation of this structure, and compare the numerical result with the experimental one. Correctly modeling the acoustic response is itself a challenge, for most numerical models have been developed for rapid flow or quasi-static loading. One must therefore verify that various model parameters (particle stiffness, inter-grain friction, etc.) are chosen correctly. The presence of an interstitial fluid adds an other layer of difficulty. In conclusion, we propose in particular to significantly develop the use of acoustic waves to characterize, probe, and follow the destabilization of granular materials in air and water. A precise and quantitative interpretation of the acoustic data requires understanding, modeling, and testing the effect of the various specific behaviors of granular materials near destabilization. To reach this goal, we have gathered a team of researchers with a wide range of theoretical, experimental, and numerical skills. We will therefore be able to link several numerical and experimental methods applied to different configurations. The possibility of applying these techniques to geophysical situations will be studied with a great care.

Page 9: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

9/68

3. PROGRAMME SCIENTIFIQUE ET TECHNIQUE, ORGANISATION DU

PROJET / SCIENTIFIC AND TECHNICAL PROGRAMME, PROJECT

MANAGEMENT

3.1. PROGRAMME SCIENTIFIQUE ET STRUCTURATION DU PROJET / SCIENTIFIC

PROGRAMME, SPECIFIC AIMS OF THE PROPOSAL

(4 pages maximum)

Présentez le programme scientifique, la méthodologie et la structuration du projet.

Justifiez la décomposition en tâches du programme de travail en cohérence avec les objectifs poursuivis.

Les tâches représentent les grandes phases du projet. Elles sont en nombre limité.

Présenter les liens entre les différentes tâches (si possible, utilisez un diagramme ou un organigramme technique). The scientific program consists on the one hand in different small scale experiments leading to the destabilization of dry or liquid immersed granular packings, on the other hand in the development and adaptation of experimental and numerical tools to investigate finely the packing structure or packing dynamics. Task 1 is devoted to the characterization of packing at the instability threshold whereas task 2 is devoted to the flow dynamics that follows the destabilization. Both tasks 1 and 2 are divided in three sub-tasks depending on the type of sollicitation : (i) global gravity driven destabilization by inclination followed by avalanche flow, (ii) local normal solid compression followed by penetration dynamics, and (iii) normal fluid jet action followed by local fluidisation or erosion. Task 3 is a transverse task including differents subtasks devoted to the development and adaptation of experimental tools (acoustics, light scattering, X-ray tomography) and numerical tools (molecular and contact dynamics)

3.2. COORDINATION DU PROJET / PROJECT MANAGEMENT

(2 pages maximum)

Préciser les aspects organisationnels du projet et les modalités de coordination (si possible individualisation d’une tâche coordination : cf. tâche 0 du document de soumission administratif).

Page 10: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

10/68

The project management will be made by a running committee, composed by the coordinator and one representative from each partner. The running committee will be the following :

- Philippe Gondret, project coordinator and representative for partner 1, - Patrick Richard, representative for partner 2, - Vincent Tournat, representative for partner 3, - Yves le Gonidec, representative for partner 4.

The running committee will

- make sure the project goes smoothly; - validate any potential direction changes during the project; - define and implement any potential correction action; - validate the project results; - make sure the project results are well published.

The role of the project coordinator is to

- make sure all the tasks go smoothly, - make sure that the information exchanges go smoothly, - elaborate the successive progress reports on the project and send them to ANR, - put into place the necessary correction (extension of duration, carried forward expenses…) in the case of some deviation from the initial research program.

The responsibles for the different tasks are

- Renaud Delannay (partner 2, IPR Rennes) for task 1, - Philippe Gondret (partner 1, FAST Orsay) for task 2, - Vincent Tournat (partner 3, LAUM Le Mans) for task 3.

3.3. DESCRIPTION DES TRAVAUX PAR TÂCHE / DETAILED DESCRIPTION OF THE WORK ORGANISED BY TASKS

(idéalement 1 ou 2 pages par tâche)

Pour chacune d’entre elle, décrire : - son responsable et les partenaires impliqués (si possible, sous forme graphique), - ses objectifs, - le programme détaillé des travaux2, - la description des méthodes, des choix techniques et des solutions envisagés, - les risques et les solutions de repli envisagées, les indicateurs de succès associés aux objectifs

et les livrables, - les contributions des partenaires (le « qui fait quoi »).

3.3.1 TACHE 1 / TASK 1 CHARACTERIZATION OF GRANULAR PACKINGS AT THE INSTABILITY THRESHOLD LEADER : RENAUD DELANNAY (PARTNER 2, IPR RENNES) The destabilization of granular media consists in the sudden transition from the static to flowing state. It can be induced by different kinds of external solicitations. The aim of this task is to study the precursors for destabilizations induced by various actions: gravity (rotation of the granular medium), compression, action of a fluid stress. It is necessary to use a broad range of different configurations in order to see whether the precursors are

2 Les projets de recherche s’appuyant sur les données réunies, par exemple, dans le cadre de la constitution d’un corpus, d’un suivi de cohorte, d’une approche longitudinale, d’un panel, doivent expliciter précisément la nouveauté du recueil de données envisagé, la nouveauté des traitements ou des analyses proposées par rapport à ceux déjà engagés.

Page 11: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

11/68

characteristic of one solicitation type or if, by contrast, they are universal, which could then be used for other systems such as in geophysics. Task 1.1. . Avalanche precursors, change in the destabilization threshold (IPR – LAUM – GéoSciences) Leader : Patrick Richard (PARTENAIRE 2, IPR) Experiments on precursors have been carried out in collaboration with the IPR, the LAUM and Vladimir Zaitsev (University of Nizhny Novgorod, Russia). They show that non-linear acoustic methods can detect tiny modifications in the contact forces between grains of the packing, even when no surface grain displacements or precursors are visible. It is thus possible, in principle, to detect a critical event before it occurs [Zaitsev08]. These experiments also demonstrate the presence of internal modifications (sometimes without visible relation with surface events). Although these results are innovative and interesting, it is difficult to interpret them in detail. The link between acoustic signal medication and the scale of the grains is not obvious. In other words we cannot distinguish the opening of a contact or grain slidings from other modifications of the force network simply by looking at the acoustic signal. To overcome this difficulty and link the acoustical measurements with microscopic events, we plan to combine the above mentioned method with numerical simulations of acoustic wave propagation in granular packings, dynamic light scattering as well as with x-ray tomography (see 3.3). The influence of the preparation and of the history of the packing will be studied. Waves propagating along the free surface (orthogonally or along the rotation axis) will also be studied. A scanning of the wave modes on the surface can be achieved via a laser vibrometer. The longitudinal and shear acoustic resonances of the granular layer can be probed in the same way by exciting the layer from the bottom with a piezo-transducer and detecting at the free surface with a laser vibrometer. These experiments are expected to provide in a linear and in a nonlinear acoustic regime crucial informations on the elasticity modifications of the layer submitted to a slow tilting. The application of mechanical perturbations (vibrations, mechanical waves…) to a granular system inclined at an angle close to the maximal angle of stability may modify the avalanche threshold. It is intimately related to the “jamming-unjamming” transition in the vicinity of this threshold. We plan to understand the nature of this transition in order to fully understand the destabilisation of a granular pile. The idea is to modify the nature of the contacts and/or to allow small rearrangements. Therefore the mechanical excitations applied will be gentle. The experimental methods developed (X ray tomography, non linear acoustic…) will give us information on the structure of the packing and on the nature of the contacts. Working on these fundamental topics is also motivated through the projects conducted at Géosciences Rennes. Collaborations that already exist between Géosciences Rennes and IPR will be extended to the cases of identification of physical precursors that should induce loss of stability in geological structures. An external sollicitation, such as drillings of tunnels and boreholes or sedimentary overloads, should create damages inside the medium. The knowledge of the damaged zone extension is of major importance in some cases, for instance in submarine landslide prediction. We propose to develop this applied problem through acoustic experiments on complex but controled interfaces: measurements consist in measuring acoustic waves backscattered by granular media saturated with water, over a large range of incidence angles. This experimental configuration is similar to multibeam echo sounders used at sea to define the geophysical imagery of the seafloor: such backscattered data should inform about the physical properties of the sedimentary interface [Jackson92, LeGonidec05]. In a reference step, laboratory experiments will be performed on stabilized and still media (fig. 1b): multifrequency and multiangle backscatter profiles will be measured in order to sound the medium at different depths. This step represents the reference case which will be compared, in a second step, to the case where the incident angle is controlled by the inclination of the medium until the loss of stability is observed (fig. c). In this second step of the experiments, the medium will be slowly inclined in order to follow both in space and

Page 12: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

12/68

time, the instability trigger and special interests will be devoted to the roughness of the slip plane. In a third step, we will confronte the laboratory analysis to in situ multibeam data acquired over geological areas where gravity instabilities should be observed, in the sea or in rivers.

Fig. 1: Experimental setups to study precursors of stability loss because of gravity. a) in transmission : transducers are fixed on the sides of a container filled with the granular medium. It allows for the generation and detection of waves propagating in the bulk (the non-linear part of the received signal is highly sensitive to contact changes inside the granular medium) or along the free surface. The layer can also be excited from the bottom b) in backscattering: waves backscattered by the granular interfaces are measured at different angles over a stable interface and c) over an inclined interface to study the stability loss.

Task 1.2. Precursor to shear banding in a granular material (IPR - LAUM) [A1-A2] Leader: Jérôme Crassous (Partner 2, IPR Rennes) The destabilization of a granular material under the action of a mechanical solicitation occurs usually with the formation of zone of intense localized deformations, called shear bands. The mechanisms responsible for the triggering of localized deformations in heterogeneous material is largely unexplained. The study of the transition between elastic and reversible deformation to plastic and irreversible deformations in granular material is of fundamental importance to describe stability loss and shear banding. Recently, we show at IPR that the optical interferometry in random media may be used as a probe for studying experimentally the elastic deformation and the appearance of plastic deformation in granular material. For this we developed a spatially resolved near-field Diffusing Wave Spectroscopy setup [Erpelding08] (Fig. 2 is an experimental map of deformation of a model granular material under a local applied load). The link between the loose of correlation of the scattered electric field and the deformation of the granular material has been established [Crassous07] and tested very carefully [Crassous07, Erpelding08, Crassous09]. We will look experimentally at the destabilization of a granular material, possibly with a small well controlled cohesion, under the application of a load. For small enough load, we expect an elastic and reversible regime. This regime should be characterized by the reversibility of the deformation at the point where the load is applied, and by reversibility of the deformation in the granular sample. At large enough loads, plastic deformations are expected to occur.

a)transmission

Page 13: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

13/68

Fig. 2: Map of the light intensity correlation of a granular material submitted to a localized compressive load

Two experimental configurations will be studied. A first one is a localized (point-like) compression force. This geometry is important for two reasons. First for practical use in soil mechanics. Second, numerous experimental, numerical and theoretical studies on stress propagation in granular material [Reydellet01, Goldenberg05] have dealt with this geometry. This make the comparison and the link between our experimental studies and available previous studies possible. A second geometry of interest is a planar biaxial or oedometric test under a compressive load. The localization of the deformation in shear band has been reported in this system and is well documented [Desrues04]. The design and the realization of the experimental cell will be done at IPR. The purpose of those experiments is first to compare the deformation field in the elastic regime (if such a regime indeed exists) obtained from interferometric measurements with those issued from elastic theory of granular materials. Secondly spatial fluctuations of deformations will be measured, and the question of reversibility of such fluctuations of deformation will be addressed. Finally, the triggering of localized deformations and its spatial distribution in relation with fluctuations of deformations will be analyzed. Task 1.3. Destabilisation of a granular packing by a local fluid stress (FAST) [A1-A3] Leader: Jérôme Martin (Partner 1, FAST Orsay) Many studies have dealt with the situation of fluid stress parallel to the pile surface corresponding to the key problem of erosion onset in relation with granular transport laws [Charru04, Doppler05, Ouriemi07]. In this task, we propose to investigate the response of a fluid immersed granular packing to a local fluid jet perpendicular to the pile surface. This situation is somewhat similar to task 1.2 but the sollicitation comes here from a fluid stress rather than a solid stress. The propagation of the stress inside the packing is thus expected to be very different. Both situations of an upward fluid jet at the bottom of the pile or a downward fluid jet at the top of the pile will be investigated. The first situation is related to a local fluidisation whereas the second situation reproduces an erosion test used in the fieldworks to characterize the soil erodability. We will investigate in a first time these two situations with video cameras and pressure measurements, and in a secon time with the light scattering and acoustics tools of partner 2 and 3 to characterize more precisely the modification of the contact network and the very first grain motions at onset.

3.3.2 TACHE 2 / TASK 2

Page 14: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

14/68

CHARACTERIZATION OF THE MOTION DYNAMICS OF GRANAULAR PACKINGS BEYOND THE INSTABILITY THRESHOLD LEADER : PHILIPPE GONDRET (PARTNER 1, FAST ORSAY) This task consists in the characterisation of the dynamics of the destabilised granular packings due to the different stresses considered in the previous task 1 : gravity driven avalanches, penetration or/and interface deformation from solid or fluid local normal stress. Task 2.1. Avalanche dynamics (FAST Orsay) Leader: Philippe Gondret (Partner 1, FAST Orsay) We are interested here in the avalanche dynamics consecutive to the destabilisation of a pile by inclination in the gravity field as already examined in task 1.1. for the small events prior to the final large avalanche event. The slope relaxation of a dry granular packing during the avalanche flow from the angle of maximum stability to the angle of repose was shown recently to follow a master curve when rescaled by the time duration of the avalanche and the deviation of the starting angle from a “neutral” angle [Fischer08]. This emphasizes the role of inertia in closed dry granular flows. We here plan to investigate on one hand the slope relaxation dynamics in an open geometry where the slope relaxation is expected to be quite different, with a smaller role of inertia, and on the other hand the effects of an interstitial fluid in the relaxation dynamics following the pioneering experiments of [Courrech03]. As a matter of fact, the dissipation role played by the interstitial fluid in the grain collision processes is expected to be essential in the subsequent dynamics. In particular, one may expect a very different distribution law for the avalanche amplitudes : a power law in the highly dissipative case close to the SOC behaviour observed in the cellular automaton simulations [Prado92], in contrast to the classical bell curve characteristic of a mean avalanche amplitude observed in dry avalanches experiments where inertia is important [Fischer08]. Task 2.2. Penetration dynamics (FAST Orsay – IPR Rennes) Leader: Yann Bertho (Partner 1, FAST Orsay)

Fig 3: Velocity field of the granular material around a moving disk in a 2D experimental set-up (PIV measurements)

We are interested here in the penetration dynamics of a solid sphere in a granular packing when the force is far beyond the onset of motion investigated in task 1.2. We will first investigate the penetration dynamics of the sphere when it is pushed at a controlled velocity or controlled force. In the constant velocity case, we will measure simultaneously the instantaneous force and the velocity profile of the grains close to the moving sphere by PIV

Page 15: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

15/68

means. Preliminary experiments for a moving disk within a quasi two-dimensional set-up with glass plates allowing visualisation show that a stationnary regime is reached quasi instantaneously with a strong localisation of the shear close to the moving sphere, characterised by exponential velocity dependances with the distance away from the sphere. We plan to investigate the characteristic length of this exponential behaviour as a function of the different parameters such as the sphere size or the grain size. We also plan to measure the granular temperature profile away from the sphere. The situation is ineed very similar to the geophysical situation encountered in the ascent of magma diapirs through the earth’s mantle [Ribe83]: the motion of a hot sphere through a fluid whose viscosity varies strongly with temperature, wich leads to a strong localisation of the flow [Ansari85, Daly85]. As we already show that in the close situation of the penetration of a sphere by impact, the dissipative collisional processes are a key ingredient for the penetration dynamics [Seguin09], we expect that a hydrodynamic approach from kinetic theory will be useful in the undestanding of the shear and temperature localisation and on the force scalings. This theoretical developments will benefit from collaborations with J. Crassous (Partner 2, IPR Rennes) and E. Trizac (partner 1, LPTMS Orsay). The collaboration with J. Crassous has already begun and is successful as shown by the publication of a very recent paper [Seguin09], and discussions with E. Trizac have already started. We strongly expect that these collaborations within the Stabingram project will play a key role in the understanding of the scaling laws observed for the penetration depth, time stop and drag forces in impact situations [Stone04a, Stone04b, Katsuragi07,Goldman08]. In a second time, we will investigate the role of an interstitial fluid on the penetration dynamics. The presence of interstitial fluid which is encountered in many natural situations of water saturated soils is expected to induce dramatic changes when compared to the dry case. Some application to sea darts may be also interesting [Sharma07]. We will here develop an experimental setup with pore pressure measurements in addition to video tracking. For a better understanding of the complex phenomena involved here with both solid and fluid interaction, we also plan to perform simulations using solid contact dynamics with the addition of lubrication forces (see § 3.3.3 task 3.4). Task 2.3. Local erosion/fluidisation dynamics (FAST Orsay) Leader: Georges Gauthier (Partner 1, FAST Orsay) We are here interested in the interface dynamics above the onset of grain motion investigated in task 1.2 due to either a local erosion by a downward fluid jet or a local fluidisation by an upward jet. For the liquid jet erosion situation, this is motivated by the understanding of the water jet erosion test used in the engineering community for a handy soil characterisation in the fieldworks [Hanson07, Pham08, Regazzoni09]. This situation for gas jet was also investigated in the aerospace context for the blast effects of spacecrafts launching and landing on planetary regoliths [Rajaratnam85, Metzger09]. We plan to investigate the different erosion regimes with the evolution of the interface shape and a potential asymptotic stationary limit where the erosive effect is balanced by counter avalanche flows. Both three-dimensional and two-dimensional set-up will be built with video means to track the interface evolution and the grain motion by PIV. For the inverse local fluidisation situation, the motivation comes from both industrial and geophysical situations: possible inhomogeneities in fluid injection [Didwania81] and eruptions in submarine volcanoes [Varas09]. Following the pioneering investigation of [Geldart73, Schogorfer04, Zhang87, Zouestiagh07] showing the nucleation of bubbles and channels, we will investigate the different instability regimes for a liquid injection as a function of Reynolds and Stokes number. Video means will be completed by pore pressure measurements.

Page 16: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

16/68

Fig. 4 : Mobile Erosion Test for handy soil characterisation in the fieldworks

3.3.3 TACHE 3 / TASK 3 DEVELOPMENTS OF EXPERIMENTAL AND NUMERICAL TOOLS FOR GRANULAR PACKINGS: CHARACTERIZATION, SIMULATION, DESTABILIZATION LEADER: VINCENT TOURNAT (PARTNER 3, LAUM) There exist numerous techniques and methods recently adapted or specifically developed for studying the physical and mechanical properties of granular media. Concerning the destabilization of granular packings, the characterization methods must be non destructive and extremely sensitive because of the critical character of the phenomenon and of the induced weak variations of forces and displacements. In this context, we propose to develop (modeling, experimental testing and adaptation to tasks 1 and 2) and to use four classes of characterization methods for the destabilization processes. The proposed methods are all able to probe the properties in the volume of the granular packing, and not only at the surface as achieved by most of the existing methods. Among the proposed methods, acoustics, light diffusion and numerical simulations are time resolved, which is of importance for the probing of a destabilization process, by nature non stable and transient. The X-Ray tomography, which does not need particular developments in this project allows to access the packing geometrical state before the destabilization and provides essential informations on the packing useful to the other techniques development. Task 3.1. Acoustic waves in dispersed media (Partner 3 LAUM – Partner 4 GéoSciences) Leader : Vincent Tournat (Partner 3, LAUM) The acoustic methods which consist in generating and detecting elastic waves propagating through the network of grains and their contacts, are essentially sensitive to the elastic parameters of the packing [Liu92, Liu93, Jia99, Tournat04a ,Zaitsev05]. It has been shown that the sensitivity to the elasticity of the granular medium could be even improved by using nonlinear acoustic effects, observed to be preferentially sensitive to the contacts supporting the weakest load in the medium (the weak contacts) [Tournat04a, Tournat04d, Zaitsev05]. The sensitivity of the acoustic response to the geometrical parameters of the packing (compacity, coordination number) exists but is relatively weaker, except for acoustic wavelength comparable to the grain size and for waves propagating through the saturating fluid [Allard93, Allard98, LeGonidec06]. Until now, typical acoustic frequencies used for the acoustic probing of these media range from 200 Hz up to 500 kHz, for various configurations (grain size, static pressures …) [Goddard90, Liu92, Jia99, Somfai05, Bonneau07, Jacob08, Tournat09b]. Associated time resolutions are of the order of 1/100 s or less, depending on the configuration. For the efficient application of these acoustic methods in the experiments and processes described in task 1, several important problems exist:

Page 17: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

17/68

(i) The studied configurations where grains are only submitted to gravity, induce weak or very weak confining pressures (<100 Pa). One consequence is a high acoustic attenuation compared to more conventional experiments at higher pressures (>30 kPa) [Goddard90, Jia99]. This necessitates to improve the sensitivity limits of the methods and sensors traditionally used and to develop new approaches, in particular using recent instrumentation and new effects. (ii) The acoustic methods have demonstrated their potentialities through their extreme sensitivity to weak changes or perturbations of the medium, but remain not well understood and most of the time non quantitative, due to the lack of understanding of the nature of the wave propagation in such complex systems (role of force chains, force distribution, memory, coupling …) [Tournat04a, Zaitsev04]. (iii) Before being able to propose clearer interpretations on the acoustic response of a granular packing, it is necessary to quantify the influence of the packing parameter on the acoustic response (coordination number, compacity, contact force distribution, grain size, static pressure ...) [LeGonidec06,Inserra08,Tournat09]. (iv) In which limits and at which scales, can we consider that acoustic methods are non destructive? In order to solve most of the presented problems, and in the goal of the efficient application of the acoustic methods to the processes presented in task 1, the following research directions are proposed. Development and experimental tests of linear and nonlinear acoustic propagation models : • guided waves and acoustic modes in granular layers with in depth property gradients [Aleshin07, Gusev2006, Jacob08], • guided waves in granular layers with complex geometries (surface profiles, bottom profiles, guided wave reflexion by objects and property gradients) [Pagneux96, Pagneux06], influence of the pore fluid pressure, • modeling in different configurations of the Biot coupling between the saturating fluid (air, water) and the solid frame (grains and their contacts), accounting of the nonlinearity and property gradient [Dazel07,Dazel09], • modeling of the influence of geometrical parameters of the packing on the linear and nonlinear acoustic response (compacity, grain size), in relation with the PhD thesis of J.-B. Legland on the acoustic probing of compaction and segregation processes [Inserra08], • modeling of the influence of geometrical order in the packing on acoustic propagation (propagation modes and dispersion in 1D, 2D, or 3D granular cristals, submitted or not to gravity) [Coste98, Hladky02, Velicky02, Anfosso04, Coste08, Job08, Gusev08, Merkel10], • modeling of the acoustic scattering in the bulk and at the surface of the granular medium for the waves in the saturating fluid [Jackson92] and in the solid frame [Jia99,Tournat09]: development of suitable multi-scale methods (wavelet response [LeGonidec02]), effective medium theories [Waterman61,LeGonidec07] and nonlinear coda wave interferometry methods [Jia04,Snieder02, Tournat09, Payan09], time reversal methods [Fink92, Derode01, Tourin01]. Modeling of the Biot coupling for granular media saturated by air or water (LAUM) in relation with fluidization (task 1.3). Propagation in slowly inhomogeneous media under weak static forces (LAUM - simulations IPR/...), propagation in a granular layer, quasi 2D wave guides, in relation with (I.1). Evaluation of nonlinear acoustic parameters, implementation of characterization and imaging methods in granular media (in particular with the help of the 64 channels equipment), evaluation of the role of force chains, measure of the spatial correlations in the packing (relation with tasks I.1, I.2), development of nonlinear acoustic methods [Johnson05a,Johnson05b,Tournat09].

Page 18: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

18/68

Acoustic focusing: displacement of a passive intruder, assistance to silos unblocking, modification of the compaction and avalanche threshold. Application to the acoustic characterization of the topography and of the superficial structure of sea and river bottoms (Géosciences Rennes). A close collaboration in the form of scientific discussions and exchanges will be developed in the frame of the proposed studies of task 3.4 and of this task 3.1. Exchanges will occur first at the stage of the implementation of the physical and mechanical ingredients in the numerical methods [Somfai05,Mouraille06,Mouraille08] and second in the comparisons between experimental results and numerical results. All the proposed research directions, are aimed at providing a wide range of characterization tools based on the application of acoustic waves in granular packings, for the tasks 1 and 2. It is expected that the developed methods, thanks in particular to their considerable sensitivity to the elasticity, will importantly contribute to the studies of destabilization effects and the associated effects (shear stress, avalanches, memory, ageing, …) [Josserand00, O'Hern03, Caroli03, Ribière05a, Richard05, Pailha08, Corwin08, Zaitsev08]. Task 3.2. Light Scattering in granular materials (IPR) Leader: Jérôme Crassous (Partner 2, IPR) The characterization of the deformation of granular material under external perturbations will be studied using optical interferometry in random medium. It has been shown experimentally that the variations of the scattered field allows to measure very small deformations of granular materials [Erpelding08]. The detection of spatial fluctuations of the deformations in a material submitted to an homogeneous applied stress needs the development of low noise measurements. This may be achieved by averaging correlations of the scattered field on numerous different random illuminations [Zakharov06]. Such “ensemble averages” will decrease the statistical fluctuations of the measured deformations. We will use for this a wave front modulator, and we will detect the scattered wave using a near field detection scheme. The modeling of the light propagation in model granular medium composed of sub-millimeter dielectric spheres will be also addressed. In particular systematic measurement of the transport mean free path as a function of sphere diameters and contrast of dielectric constant ( using partially match medium for low contrast and strongly refractive sphere for high contrast) are planned. This will permit to refine existing model of light transport propagation through granular material [Crassous07,Sadjadi08] Task 3.3. X ray tomography for granular matter (Partner 2, IPR Rennes) Leader: Patrick Richard (Partner 2, IPR) X-ray tomography is a non-destructive technique that yields a 3D image of an object (in the present case granular systems). This technique is especially well suited for determining the position and the geometrical characteristics of grains in a packing and for obtain ing information on structure of granular systems, information that is difficult to obtain without this method [Richard03, Aste05]. This technique can be used for most of the experimental situations described above and we plan to combine it with numerical simulations to better understand and interpret the experimental studies of acoustics of granular media. This method will indeed give the positions and the sizes of grains within a packing used for acoustical measurements. These information will then be used to build numerically a virtual

Page 19: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

19/68

packing (actually copies of the real system) and to simulate the propagation of the acoustic signal. Then the experiments and the numerical simulations will be carried out on the same packing, leading to a better understanding of the results. Task 3.4. Discrete Numerical Simulations for granular matter (Partner 1 Maths Orsay – Partner 2 IPR Rennes) Leader : Sean McNamara (Partner 2, IPR) A discrete simulation of granular materials consists in numerically solving the equations of motion for each grain in the packing or flow. Two different types of codes are available to the partners: • Partner 2 possesses several « molecular dynamics » (MD) codes, where the equations of motion are integrated explicitly. The program allows a small overlap between grains, and calculates the forces as a function of these overlaps. The codes of the IPR are both two- and three-dimensional, and model grains as disks or spheres. The codes support frictional forces, and breakable bonds between grains. These codes have been used to model dry granular materials. • Partner 1 possesses a « contacts dynamics » (CD) code, where the equations of motion are solved implicitly. In this method, one searches for a set of interaction forces consistent with the non-inter-penetration of the grains. This method is mathematically more complex than MD, but can be faster because a larger time step is possible. This code that works classically for dry grains will be oriented mainly toward the study of submerged granular materials with the addition of lubrication fluid forces. The use of numerical simulations has already been mentioned above. To recapitulate, the available codes working for dry grains with only solid contact forces will be used for the two following points. • Numerical simulations will support Task 1.1 by improving our ability to interpret acoustic signals. As stated above, these signals are very sensitive to changes in the granular packing, but we do not know how to interpret them in detail. The goal of the numerical simulations is to enable us to look at an acoustic signal, and, for example, estimate the number of grains participating in a re-organization. We will reach this goal by studying simulations of idealized situations, and by simulating experimental configurations extracted by X-ray tomography. MD simulations will be used for this task, since CD does not support acoustic waves. • Numerical simulations will also support Task 2.2 for a comparison of experimental velocity and temperature profile at the vicinity of a penetrating sphere with numerical profiles. This will allow a better understanding of the pertinent parameters embedded in the characteristic length that seems to appear in such profiles : sphere size and grain size, frictional or collisional parameters… In addition to these projects, that use available codes, extensions of existing codes are planned. • The second part of Task 1.1 concerns the propagation of sound through submerged granular packings. We would like to investigate the possibility of simulating this process. The difficulty is that neither the fluid nor the grains can be neglected. One must embed the granular material in a continuous medium in such a way that sound waves can propagate through both media. The starting point for this project will be the method of [McNamara00], where a similar method was used to study the influence of air on granular flows. We note that the success of this project requires the expertise of all three partners: experiments are performed by parner 4 (Geosciences Rennes), parner 1 (FAST Orsay) possesses detailed knowledge of fluid-grain interactions, and partners 2 and 3 (IPR Rennes and LAUM Le Mans) are investigating the acoustics of dry granular materials. • A collision between two submerged grains is strongly affected by the presence of water. An ongoing study of lubrication forces and their incorporation into numerical codes will be

Page 20: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

20/68

continued. This effort has already successfully predicted forces down to separations of order of the particle roughness. It will be extended to include viscous effects. Knowledge of these interactions is essential for modeling the destabilization of granular packings by fluid flow discussed in task 1.3. These effects have been integrated into the CD code. Their integration into the MD code will be investigated. •The Scientific Computing component of the Laboratoire de Mathématiques at Orsay has a long history of activity in the domain of particulate flows. Ref. [2] describes a first 2D direct solver for fluid / rigid grains mixtures. This tool has been used to estimate the apparent viscosity of suspensions of particles in interaction [Maury03, Lefebvre05]. In this approach, based on a moving mesh strategy, contact or quasi contact between grains was handled heuristically by introducing some kind of projection onto the set of feasible configurations (interparticle distances are kept above a prescribed positive threshold). In the purpose of tackling dense suspension (immersed granular flows) we developped finer tools to account for short-range (lubrication) interaction forces [Maury97, Maury03, Maury04, Janela05]. In this process, a granular flow software (SCOPI) has been developped by A. Lefebvre and B. Maury. It is dedicated to dry or immersed suspensions: in particular, it includes a special procedure to account for lubrication forces between grains in quasi-contact as detailed in [Maury06, Maury07, Lefevbre09]. It has been used to study aggregation phenomena [Maury04], and to investigate the local structure of highly packed granular suspensions [Faure09a]. Note that this latter work stems from a collaboration between FAST (B. Semin, PhD student) and the Laboratoire de Mathématiques in Orsay. Middle- and long range hydrodynamical effects are presently beeing added to this tool, in the spirit of Stokesian Dynamics [Faure09b]. Beside, we are currently working on new methods to address the full resolution of the fluid-particle problem. Those methods are based on a fixed mesh. The penalty method [Janela05, Lefebvre07] allows to use standard solvers like freefemm++ to solve this problem in two dimensions with a reasonable number of inclusions (up to a hundred), and a Phd student is presently working on a more efficient approach which should allow to solve the full many-body three-dimensional problem. Our purpose is to enrich this direct solver with robust and accurate contact models (including lubricated contact, as mentioned above), in order to provide an efficient numerical tool to simulate the motion of dense immersed suspensions and help in the understanding of tasks 1.3 and 2.3 where both solid and fluid forces come into play.

3.4. CALENDRIER DES TACHES, LIVRABLES ET JALONS / PLANNING OF TASKS, DELIVERABLES AND MILESTONES

(2 pages maximum)

Présenter sous forme graphique un échéancier des différentes tâches et leurs dépendances (par exemple, utiliser un diagramme de Gantt).

Présenter un tableau synthétique de l'ensemble des livrables du projet (numéro de tâche, date, intitulé, responsable).

Préciser de façon synthétique les jalons scientifiques et/ou techniques, les points bloquants ou aléas qui risquent de remettre en cause l'aboutissement du projet ainsi que les réunions de projet prévues. The planning of the different tasks and sub-tasks is on the following tables.

Page 21: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

21/68

M1-M6 M7-M12 M13-M18 M19-M24 M25-M30 M31-M36 Name Month Nb

Y. Bertho 12

G. Gauthier 9

P. Gondret 12

J. Martin 6

D.Salin 3

ANR Post doc 8

P. Richard 6

A. Amon 9

J. Crassous 6

R. Delannay 7

S. McNamara 6

A. Valance 3.5

ANR PhD 6

ANR Post doc 6

V. Tournat 5

V. Gusev 3

O. Dazel 3

V. Pagneux 2

J.-B. Legland 3

B. Castagnède 4

Y. Le Gonidec 9

F. Nicollin 4

J-L Thirot 27

B. Kergosien 14

Task 1

M1-M6 M7-M12 M13-M18 M19-M24 M25-M30 M31-M36 Name Month Nb

Y. Bertho 15

G. Gauthier 9

P. Gondret 12

J. Martin 6

D.Salin 6

A. Lefebvre 3

B. Maury 3

E. Trizac 9

ANR Post doc 4

J. Crassous 3.5

A. Valance 3.5

V. Tournat 1

V. Gusev 1

M. Bentahar 4

Task 2

Page 22: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

22/68

Report progress of the different tasks :

Task 1 Partner Chronogram *in red : task leader year 1 year 2 year 3

Sub task 1 2 3 4 M6 M12 M18 M24 M30 M36 1.1 1.2 1.3

Task 2 Partner Chronogram *in red : task leader year 1 year 2 year 3

Sub task 1 2 3 4 M6 M12 M18 M24 M30 M36 2.1 2.2 2.3

M1-M6 M7-M12 M13-M18 M19-M24 M25-M30 M31-M36 Name Month Nb

P. Gondret 3

A. Lefebvre 6

B. Maury 6

P. Richard 12

A. Amon 9

J. Crassous 4.5

R. Delannay 7

S. McNamara 12

ANR PhD student 6

ANR Post doc 6

V. Tournat 12

V. Gusev 6

O. Dazel 7

B. Castagnède 4

P. Bequin 8

V. Pagneux 2

M. Bentahar 4

J.-B. Legland 9

J.-P. Groby 6

E. Brasseur 6

ANR PhD student 18

Y. Le Gonidec 9

F. Nicollin 5

Task 3

Page 23: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

23/68

Task 3 Partner Chronogram

*in red : task leader year 1 year 2 year 3 Sub task 1 2 3 4 M6 M12 M18 M24 M30 M36

3.1 3.2 3.3 3.4

Transverse sub-tasks included with tasks 1 and 2

: 6 months progress report : 6 months progress report + financial report. Deliverables and milestones Task Deliverable Date Leader

Development of the experimental setup (shear cell) : first tests M6 Experimental results on the importance of memory effects on the avalanche precursors. M12 Experimental results on the acoustic retrodiffusion of a stable granular medium. M12 Annual report : year 1. M12 Development of the numerical simulation devoted to the study of avalanche precursors and beginning of the comparison simulation – experiments.

M18

Experimental results on acoustic retrodiffusion of a destabilized granular medium. M24 Annual report : year 2 M24 Development of a database on precursors : comparison simulation/experiments. M36 Comparison of the results on retrodiffusion with field measurements. M36

1.1

Annual (year 3) and final report. M36

2 – IPR

Development of the experimental technique of the mechanical and interferometric measurement / first tests.

M12

Annual report (year 1). M12 Experimental results in the “punctual force” geometry. M24 Experimental results in biaxial geometry. M24

1.2

Annual report : year 2 M24

2 – IPR

Development of the fluid-stress experimental setup / first tests. M6 Experimental results on the study of stress distribution versus shear velocity for a dense medium.

M12

Annual report : year 1 M12 Development of the experimental setup (fluidization) / first tests. M18 Experimental results on the stress distribution for a fluidized medium. M24

1.3

Annual and final report (year 2). M24

1 – FAST

2.1 Experimental results on the influence of the geometry M18 1 – FAST

Page 24: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

24/68

on the relaxation dynamics of the slope. Annual report (year 1). M24 Experimental results on the role of the interstitial fluid on the relaxation dynamics of the slope. M30 Experimental results on the study of the continuous and discontinuous avalanche regimes. M36 Annual (year 2) and final report M36 Development of the experimental setup / first tests. M18 Experimental results: force measurements in dense media for different shear velocities and different confinements.

M24

Annual report (year 1). M24 Experimental results on the velocity field (PIV) for a dense medium and for different shear velocities and different confinements.

M30

Comparison between numerical and experimental results (contact dynamics) M30 Experimental results for a fluidized granular medium (force measurements + PIV) for different shear velocity and different confinements.

M36

2.2

Annual (year 2) and final report. M36

1 – FAST

Development of the experimental setup / first tests. M30 Experimental results on the influence of a fluid jet on the crater geometry and on different decompaction instabilities.

M36

2.3

Annual and final report (year 1). M36

1 – FAST

3.1 Transverse task developed in several above

mentioned subtasks. 3 – LAUM

3.2 Transverse task developed in several above mentioned subtasks. 2 – IPR

3.3 Transverse task developed in several above mentioned subtasks. 2 – IPR

Development of the numerical simulations (molecular dynamics and contact dynamics). M12 Annual report : year 1 M12 Numerical results for - granular packing at the instability threshold - packing under compression or submitted to impacts.

M24

Annual report : year 2. M24 Comparison between numerical and experimental results. M36

3.4

Annual (year 3) and final report M36

2 – IPR

Page 25: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

25/68

4. STRATEGIE DE VALORISATION DES RESULTATS ET MODE DE

PROTECTION ET D’EXPLOITATION DES RESULTATS / DATA

MANAGEMENT, DATA SHARING, INTELLECTUAL PROPERTY AND

RESULTS EXPLOITATION (1 à 2 pages)

Présenter les stratégies de valorisation des résultats : - la communication scientifique; - la communication auprès du grand public, le cas échéant; - la valorisation des résultats attendus; - les retombées scientifiques et techniques, éventuellement les retombées industrielles,

économiques … - la place du projet dans la stratégie industrielle des entreprises partenaires du projet - autres retombées (normalisation, information des pouvoirs publics, ...) - pour les bases de données, indiquer les modes de stockage et de maintenance ainsi que les

communautés bénéficiaires Présenter les grandes lignes des modes de protection et d’exploitation des résultats.

Pour les projets partenariaux organismes de recherche/entreprises, les partenaires devront conclure, sous l’égide du coordinateur du projet, un accord de consortium dans un délai de un an si le projet est retenu pour financement.

Pour les projets académiques, l’accord de consortium n’est pas obligatoire mais fortement conseillé. The results will be promoted mainly by scientific communication via oral or poster presentation in meetings and paper publications in journals. The meeetings will be national such as :

- Meetings of GDR national research networks (GDR TransNat, GDR MeGe, GDR MePhy, GDR Phenix),

- Congress of the French Physics Society (SFP), - Congress of the French Mechanics Society (CFM), - Congress of the French Acoustics Society (CFA),…

or international such as : - Powders and Grains, - IUTAM Symposium, - EGU and AGU meetings,…

The publication of short letters or long papers is planed in the following journals : - Nature or Science, - Physical Review Letters or Europhysics Letters, - Physical Review E or European Physical Journal E, - Journal of Fluid Mechanics or Physics of Fluids, - Journal of Statistical Physics or Journal of Statistical Mechanics, - Granular Matter or Powder Technology, - Journal of the Acoustical Society of America or Acoustical Physics or Ultrasonics, - Journal of Geophysical Research or Geophysics, - Journals of Mathematics ?

Some publications and communication of vulgarisation are planed, for instance in the journal of the French Physics Society « Reflets de la Physique » or in scientific magasines such as « La Recherche » and « Pour la Science ». If any research activity related to this proposal may lead to the commercialization of an innovation, the relevancy of a patent deposit will be studied by the centers for technology enterprise and innovation of the Universities.

Page 26: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

26/68

5. ORGANISATION DU PARTENARIAT / CONSORTIUM ORGANISATION

AND DESCRIPTION

5.1. DESCRIPTION, ADÉQUATION ET COMPLÉMENTARITÉ DES PARTENAIRES / RELEVANCE AND COMPLEMENTARITY OF THE PARTNERS WITHIN THE

CONSORTIUM

(maximum une demi page par partenaire)

Décrire brièvement chaque partenaire et fournir ici les éléments permettant d’apprécier la qualification des partenaires dans le projet (le « pourquoi qui fait quoi »). Il peut s’agir de réalisations passées, d’indicateurs (publications, brevets), de l’intérêt du partenaire pour le projet… (il ne s’agit pas de fournir ici le C.V. du responsable scientifique de chaque partenaire).

Fournir en annexe 7.2 une présentation plus détaillée des partenaires, de leur savoir- faire et de leurs apports et attentes dans le projet.

Montrer la complémentarité et la valeur ajoutée des coopérations entre les différents partenaires. L’interdisciplinarité et l’ouverture à diverses collaborations seront à justifier en accord avec les orientations du projet. (une page maximum) Partenaire 1/Partner 1 : FAST Lab (Orsay) Partner 1, localised on the big scientific campus of Orsay/Saclay, is based mainly in the « Laboratoire Fluides, Automatique et Systèmes Thermiques » (FAST), with collaborators in the Laboratoire de Mathematiques d’Orsay (LMO), in the « Centre de Mathématique Appliquée de l’Ecole Polytechnique » (CMAX), and in the Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS). FAST lab is a research unit of CNRS associated with Paris 6 and Paris 11 Universities. About 30 permanent researchers (10 from CNRS, 10 from Paris 6, and 10 from Paris 11) are working in FAST lab together with about 15 non permanents (8 PhD students, 7 postdocs, visitors), and 10 engineers-technicians-administrative staff. The research areas of FAST lab are at the interface between mechanics, physics and geophysics, namely on :

- Granular Media and Suspensions (avalanches, erosion, sedimentation/fluidisation, segregation/mixing)

- Porous and Fractured Media (flows, fractures) - Instabilities and Turbulence (interfaces, rotation) - Heat and Mass transfert (convection, drying)

FAST lab has a well-known expertise in building simple small scale experiments to investigate the key phenomena embedded in complex industrial or natural situations. Numerous international collaborations exist in the lab, e.g. with Argentine (Univ. Buenos-Aires) and USA (City College, NY) for the granular and suspensions flows. FAST lab has organised several scientific schools and congress, such as the international conference on « Traffic and Granular Flow » in 2007 in Orsay (TGF’07). The experimental facilities available in FAST lab that will be useful for the present project are different video cameras (fast, high-resolution), lasers beams (continuous or pulsed) and image processing softwares (PIV) for visualisation purpose, acoustic scanner facility, pressure and force transducers, shape/size analyzer (Malvern Morphologi G3) for a better characterization of granular materials… FAST lab will be reinforced by three collaborators from neighbouring labs in mathematics and theoretical physics (Orsay/Saclay campus). Bertrand Maury (LMO) and Aline Lefebvre (CMAP) have several powerful numerical codes of contact dynamics and fluid dynamics developed for dry but also liquid immersed situations. These mathematicians are known for their abilty to develop powerful tools for granular matter and fluid mechanics problems in collaboration with physicists (ANR MOSICOB) [Ref] or geophysicists [Couder02], and have organised recently a summer school and research session

Page 27: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

27/68

(CEMRACS’08) in Marseille on the « Modelisation and simulation of complex fluids » that gathered mathematicians, physicists, geophysisics, engineers,… The theoretical modeling potential of partner 1 is reinforced by the collaboration with Emmanuel Trizac, specialist of statistical physics, from LPTMS on the same campus. Partenaire 2/Partner 2 : IPR (Rennes) The second partner, the granular media & foams research group of the Institut de Physique de Rennes (IPR) is located in the scientific and technological campus of Beaulieu of the University of Rennes 1. The IPR is a joint lab of the University of Rennes I and of the CNRS. This lab is composed of seven research groups and includes 35 administrative and technical staff, 75 faculty staff as well as around 50 PhD students and postdoctorants. The granular media & foams research group is formed by 16 faculty staff, 3 technical staff as well as 11 PhD student and postdoctorants. The studies of the group deal with granular systems (slow compaction, sediment transport, flows) and liquid foams (structure, ageing, flows). It is one of the world’s leading research group on these subjects. It belongs to many research networks and has organized many conferences and workshops, e.g. the international Dygram conference on the dynamics of granular media in 2006. The activities of the group are at the frontier between physics, mechanics, geology and the environment. The research group is associated to the OSUR (Observatoire des Sciences de l’Univers de Rennes) and has strong correlation with the earth science laboratory “Geosciences Rennes” and the team ‘transfer in complex systems” of the laboratory of thermo kinetics in Nantes in the framework of present or past contracts (PPF, ACI, ANR). The studies carried out by the group are subject of collaborations with many foreign colleagues (USA, Argentina, Italy, Russia, Ireland, Denmark, Mauritania, Maghreb…) generally in the framework of contracts (PAI, PICS, CNRS-NSF). The experimental tools dedicated to visualization are fast cameras (up to 250,000 Hz) and image processing (PIV, particle tracking). The team also plans to buy a X-ray tomography in 2010. For grain characterization, the team owns a laser granulometer, a gamma-ray densitometer as well as acoustic measurement tools specially adapted to non-linear measurements. Finally, a dynamic light scattering setup can measure very slow displacements in materials. The team also has skills in numerical simulations and possesses both mono and multi processor computers as well as a cluster of workstations. Partenaire 3/Partner 3 : LAUM Le Mans The “Laboratoire d'Acoustique de l'Université du Maine” (LAUM, UMR-CNRS 6613), is a physical acoustic Laboratory founded almost 30 years ago in Le Mans (55 minutes by train from Paris). It is located between partner 1 (Orsay) and partners 2-4 (Rennes) of the present project. It has been created as a joint laboratory between “Université du Maine” and CNRS in the early 80's by two researchers. At the present time, more than 100 persons are working in the laboratory (8 researchers at CNRS, 17 Professors, 19 Associate Professors, 3 secretaries, 2 Engineers, 5 Associate Engineers, 4 Technicians, 5 Post-doctoral fellows, 30 Ph.D. students, 10 master students). It is organized in three teams of roughly equal size (“Vibrations - Guided Acoustics - Aero-acoustics”, “Acoustic transducers and machines”, and “Acoustics of complex materials” in which the present project will be developed), each composed of several research groups (typically 3-4). The joint theoretical and experimental approaches have always been encouraged. Most of the equipments is completely shared which makes new projects easy to launch and accessibility to up-to-date equipment easy for each member. Also, this acoustic laboratory is involved in graduate and undergraduate education in acoustics, among the largest in Europe (more than 300 students in acoustics). It is among the largest acoustic laboratories in Europe and has been involved in european projects, national projects and industrial contracts. Among the experimental facilities of LAUM which will be useful for the project, there are a fast camera, several data acquisition systems for ultrasonic waves (functions generators,

Page 28: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

28/68

amplifiers, transducers, microphones, accelerometers, analyzers, oscilloscopes, lock-amplifiers), anechoic room, a scanning laser vibrometer, two laser vibrometers, systems of micro-metric motion in translation or rotation, an ultrasonic tank, a dedicated room for laser ultrasonics, a 64 channels emission – reception system. Partner 3 benefited from a « projet blanc ANR » 2005-2008 « grANuLar » on the application of acoustic methods to unconsolidated granular media. After the realization of this project, the partner has a strong interest in collaborating with other laboratories having a strong background and different approaches in the physics and mechanics of granular media such as partners 1 and 2. Partenaire 4/Partner 4 : Géosciences Rennes Partner 4 is localised on the Beaulieu campus of the University of Rennes 1 and involves the Geophysical Imagery team with collaborations with the Institute of Mathematical Research of Rennes (IRMAR). Geosciences Rennes is a « Unité Mixte de Recherche » which associates both the CNRS and the University of Rennes 1, and is part of the IFR/CAREN (center for the armorican environnemental research). The main research topics, mainly focused on geological processes at various scales of space and time, are relevant to the following fields : - superficial envelopes and environmental systems (geophysics, sub-surface imaging, fluid transferts in heterogeneous systems, hydro-geology etc..), - tectonic coupling (deep earth dynamic, topographic dynamic etc..), - sedimentary dynamic/paleo-geography/paleo-environnement coupling. The Geophysical Imagery team is able to perform acoustic experiments in a water tank (5 m3) through a complete accoustic acquisition system : the team develop multifrequency measurements (100kHz-3MHz) with a multi-channel device and two motorised axes (translation only) in order to study multiscale granular media. The 4 partners embedded in the Stabingram ANR project are highly complementary. On one hand, the scientific communities of the partners are multidisciplinary : engineering science (fluid mechanics and acoustics), theoretical and applied physics (statistical physics and soft matter), applied mathematics, and Earth science (geophysics). We expect this interdisciplinarity to be rich and fertile in the study and characterisation of granular matter. The complementarity of the partners will come from the sharing of knowledge on dry or liquid immersed grains and also on experimental and numerical tools : acoustics, light scattering, X-ray tomography, molecular dynamics and contact dynamics simulations. Several fruitful collaborations have been recently initiated between some of the partners that are a garantee for the future success of the project, such as Partner 2 (IPR Rennes) and 3 (LAUM le Mans) [Zaitsev08], Partner 2 (IPR Rennes) and 4 (Geosciences Rennes), and also partners 1 (FAST Orsay) and 2 (IPR Rennes) [Seguin09]. These collaborations show that the dialog is possible anf fruitful between physicists and fluid mechanics, physicists and geophysicists, physicists and acoustics. The mathematical team (B. Maury and A. Lefebvre) are already collaborating with FAST lab on granular matter problems [Faure09a] and also on fluid mechanics problems.

5.2. QUALIFICATION DU COORDINATEUR DU PROJET / QUALIFICATION OF THE PROJECT COORDINATOR

(une demi page maximum)

Fournir les éléments permettant de juger la capacité du coordinateur à coordonner le projet. The coordinator of the project, Philippe Gondret, is professor at Paris-Sud 11 university and responsible of the research axis « Granular matter and suspensions » of FAST lab since 2000. He has already managed previous national research project on the same area :

Page 29: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

29/68

- A research project « Young researchers » (ACI Jeunes chercheurs » 1999-2002, 100k€) on « Jamming in dense suspensions flows » gathering 5 young researchers of FAST ;

- A research project « Natural Hazards » (ACI Prévention des Catastrophes Naturelles 2000-2003, 200 k€) on « Gravity flows » gathering physicists, mechanical enginneers and geophysicists (LPS ENS Paris, IPG Paris, IUSTI Marseille, Cemagref Grenoble).

Its expertise is well known on the area with 18 international papers on granular matter and suspensions and the recent organisation of the International Conference on « Traffic and Granular Flo w » in 2007 in Orsay (TGF’07).

5.3. QUALIFICATION, ROLE ET IMPLICATION DES PARTICIPANTS / CONTRIBUTION AND QUALIFICATION OD EACH PROJECT PARTICPANT

Pour chaque partenaire, remplir le tableau ci-dessous qui précisera la qualification, les activités principales et les compétences propres de chaque participant : Partenaire Nom Prénom Emploi

actuel Discipline Personne.

mois Rôle/Responsabilité dans le projet

4 lignes max

Exemple LATIFI Fatima Professeur Caractérisation des facteurs de transcription recombinants en système in vitro …

Coordinateur/responsable

Autres membres

Partner 1

FAST, Orsay

Name Firstname Actual position

Personne.mois

Rôle/Responsabilité dans le projet

4 lignes max

Coordinator/responsable GONDRET Philippe Professeur Paris 11 univ. FAST lab

27 Project coordination. Development of experiments and interpretation of results (task 1.3 and task 2)

Other members BERTHO Yann Maître de Conférences Paris 11 univ. FAST lab

27 Development of experiments, measurements and interpretation of results (task 2)

GAUTHIER Georges Maître de Conférences Paris 11 FAST lab

18 Development of experiments, measurements and interpretation of results (task 2)

MARTIN Jérôme Chargé de Recherche CNRS FAST

12 Development of experiments, measurements and interpretation of results (task 2)

SALIN Dominique Professeur Paris 6 univ FAST

9 Development of experiments and interpretation of results (task 2)

TRIZAC Emmanuel Professeur

Paris 11 univ.

LPTMS

9 Theoretical modelling (task 2)

MAURY Bertrand Professeur Paris 11 univ Math lab

9 Dévelopment of contact dynamics simulation technnique (task 3.4)

LEFEBVRE Aline Chargé de Recherche

9 Dévelopment of contact dynamics simulation technnique (task 3.4)

Page 30: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

30/68

CNRS CMAP X

AUFFRAY Lionel Ingénieur de Recherche Paris 11 univ. FAST lab

3 Design of experimental set ups (task 2)

AUBERTIN Alban Ingénieur d’étude CNRS FAST lab

3 Data acquisition (task 2)

PIDOUX Raphaël Technicien mécanicien Paris 6 univ. FAST lab

3 Mechanical engineering of experimental set ups

Partner 2

Rennes

Nom Prénom Emploi actuel

Personne.mois

Rôle/Responsabilité dans le projet

4 lignes max

Coordinator/responsible RICHARD Patrick Maître de Conférence Rennes 1 IPR

18 Coordination of partner 2. Participation to the definition, the preparation the realization and the interpretation of the tasks 1.1. and 3.3. and 3.4.

Other members AMON Axelle Maître de Conférence Rennes 1 IPR

18 Development of the dynamic light scattering tool (task 3.2) and experiments (task 1.1 and 1.2)., and modelization.

CRASSOUS Jérôme Professeur Rennes 1 IPR

14 Responsible for task 3.2. Development of the dynamic light scattering experiments (task 1). and modelization (task 2.2)

DELANNAY Renaud Professeur Rennes 1 IPR

14 Responsible of the task 1. Participation to the definition, preparation and interpretation/modelization of the experiments of the task 1.1. .

McNAMARA Sean Maître de Conférence Rennes 1 IPR

18 Development of the numerical simulations (molecular dynamics) : task 3.4. (task linked to the tasks 1.1. and 2.2.)

VALANCE Alexandre Chargé de Recherche CNRS IPR

7 modelization of tasks 1.3. and 2.3.

FAISANT Alain Assistant ingénieur IPR

12 Technical development of the experiment (tasks 1, 2 and 3).

Partenaire 3

LAUM Le Mans

Nom Prénom Emploi actuel

Personne.mois

Rôle/Responsabilité dans le projet

4 lignes max

Coordinateur/responsable TOURNAT Vincent Chargé de Recherche CNRS LAUM

18 Coordination du partenaire 3 et responsable de la tâche 3. Conception, développement et participation aux expériences acoustiques de la tâche 3.1 et des tâches 1.1, 1.2, 1.3, 1.4 et 2.1. Modélisations et interprétations (3.1, 3.4, 3.5)

Autres membres GUSEV Vitalyi Professeur U. Maine,

10 Modélisations et interprétations des processus acoustiques linéaires et non

Page 31: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

31/68

LPEC, chercheur associé LAUM

linéaires (3.1, 3.4, 3.5)

DAZEL Olivier Maître de Conférences, LAUM

10 Modélisation du couplage de Biot dans les milieux granulaires non consolidés saturés d’eau ou d’air

CASTAGNEDE

Bernard Professeur U. Mans LAUM

8 Évaluation locale des paramètres géométriques des matériaux granulaires par des méthodes ultrasonores (approximation de fluide équivalent)

PAGNEUX Vincent Chargé de Recherche CNRS LAUM

4 Propagation en guides acoustiques complexes (profils variables, propriétés variables, …)

BÉQUIN Philippe Maître de Conférences, LAUM

8 Design de transducteurs acoustiques spécifiques et expériences d’acoustique

BENTAHAR Mourad Maître de Conférences, LAUM

8 Expériences de propagation acoustique non linéaire

GROBY Jean-Philippe

Chargé de Recherche CNRS LAUM

6 Simulations de la propagation d'ondes dans les milieux hétérogènes

BRASSEUR Emmanuel Assistant Ing. LAUM

6 Instrumentation de laboratoire, expériences d'acoustique

LEGLAND Jean-Baptiste

Doctorant LAUM

12 Etude de la compaction et de la ségrégation granulaires à l’aide d’ondes acoustiques

Partner 4

Géosciences Rennes

Name Given name

status Month on the

project

Responsability in this project

Coordinato/head name LE GONIDEC

Yves Researcher CNRS Géosciences

18 Heading partner 4

Experimental developpements (acoustic backscattering by granular interfaces and extension to in situ data (tasks 1.1 et 3.1).

Other members NICOLLIN Florence Teaching assistant Rennes 1 Géosciences

9 Help in developpement, measures and interpretation of experiments of acoustic backscattering (task 1.2)

THIROT Jean-Louis Researcher CNRS Géosciences

25 Experimental developpements (acoustic backscattering by granular interfaces and extension to in situ data (tasks 1.1).

KERGOSIEN Bruno Ingénior 14 Help in developpement, measurements of experiments of acoustic retrodiffusion. (task 1.2)

Pour chacune des personnes dont l’implication dans le projet est supérieure à 25% de son temps sur la totalité du projet, une biographie d’une page maximum sera placée en annexe 7.2 du présent document qui comportera :

- Nom, prénom, âge, cursus, situation actuelle

Page 32: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

32/68

- Autres expériences professionnelles

- Liste des cinq publications (ou brevets) les plus significatives des cinq dernières années, nombre de publications dans les revues internationales ou actes de congrès à comité de lecture.

- Prix, distinctions

Si besoin, pour chacune des personnes, leur implication dans d'autres projets (Contrats publics et privés effectués ou en cours sur les trois dernières années) sera présentée selon le modèle fourni en annexe 7.3. On précisera l'implication dans des projets européens ou dans d’autres types de projets nationaux ou internationaux. Expliciter l’articulation entre les travaux proposés et les travaux antérieurs ou déjà en cours.

6. JUSTIFICATION SCIENTIFIQUE DES MOYENS DEMANDES / SCIENTIFIC JUSTIFICATION OF REQUESTED BUDGET

On présentera ici pour chaque partenaire, la justification scientifique et technique des moyens demandés dans le document de soumission administratif. Ces moyens sont synthétisés à l’échelle du projet dans la fiche «Tableaux récapitulatifs » dans ce document de soumission administratif.

Chaque partenaire justifiera les moyens qu’il demande en distinguant les différents postes de dépenses selon le canevas suivant :.

6.1. PARTENAIRE 1 / PARTNER 1 : FAST (ORSAY)

• Équipement / Equipment

Préciser la nature des équipements* et justifier le choix des équipements

Si nécessaire, préciser la part de financement demandé sur le projet et si les achats envisagés doivent être complétés par d’autres sources de financement. Si tel est le cas, indiquer le montant et l’origine de ces financements complémentaires.

*Un devis sera demandé si le projet est retenu pour financement. If the lab has already video camera facilities and acoustic scanncer, there is the need to update the material (one video camera and one acoustic setup together with a multimeter for data acquisition) to perform accurate measurements. For the numerical simulations, there is a need for a small cluster of four computer nodes with multi-core processors in order to validate the algorithms and to conduct optimization tests on a small architecture High speed, high resolution, high sensitive video camera 30 k€ Acoustic set-up 20 k€ Multichannel multimeter 10 k€ 2x Quad Core AMD Opteron™ 2393SE; 3.1GHz,64Go Memory, DDR2 20 k€

Total équipement : 80 k€

• Personnel / Staff

Le personnel non permanent (thèses, post- doctorants,CDD..) financé sur le projet devra être justifié.

Fournir les profils des postes à pourvoir pour les personnels à recruter (une demi page maximum par type de poste)

Page 33: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

33/68

Pour les thèses (ne concerne ni la biologie-santé, ni les sciences humaines et sociales), préciser si des demandes de bourse de thèse sont prévues ou en cours, en préciser la nature et la part de financement imputable au projet. For the experimental developements and measurements of sub tasks 1.3 and 2.3, we ask for a one year postdoc competent in light scattering or/and non linear acoustics, together with internships for Master students and financial compensation to reduce the teaching load of P. Gondret, Y. Bertho and G. Gauthier by 6 months over the 3 year project. - 1 year postdoc on tasks 1.3 and 2.3 54 k€ - 18 month teaching reduction (6 months per prof. for 3 profs) 15 k€ - 6 internships for graduate master students (2 internships of 4 months per year) 10 k€

Total non permanent staff : 79 k€ The announcements for the post-doc position will be the following. A postdoctoral position on « Dynamics of liquid immersed granular matter » is available at the FAST laboratory. The transition of a granular material from a static to a flowing state is a complex phenomenon. A key point is to understand how minutes deformations in granular material grow up, leading to spatially and temporally located deformations (avalanche, shear band, fluidization...). The aim of this post-doc is to study experimentally the effect of a local liquid jet perturbation either downwards (erosion) or upwards (fluidisation) in a liquid immersed granular material. In particular the initial stage of grain motion will be studied with pressure measurements, and other non invasive and very sensitive probing techniques such as Light Scattering or non linear acoustics. Applicants should have a PhD in experimental physics or a related discipline. A background in granular media, fluid mechanics, light scattering and/or non linear acoustics will be very appreciated. Applicants should send a CV, reference contacts and a statement of research interests and experience to Philippe Gondret ([email protected])

• Prestation de service externe / Subcontracting

Préciser :

- la nature des prestations

- le type de prestataire. none

• Missions / Missions

Préciser :

- les missions liées aux travaux d’acquisition sur le terrain (campagnes de mesures…)

- les missions relevant de colloques, congrès… - Missions for experiments in IPR and LAUM 4 k€ - Missions for congress 12 k€ - Meetings with other contractants, twice a year 8 k€

Total missions : 24 k€

Page 34: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

34/68

• Dépenses justifiées sur une procédure de facturation interne / Internal expenses

Préciser la nature des prestations none

• Autres dépenses de fonctionnement / Other expenses

Toute dépense significative relevant de ce poste devra être justifiée. - Pressure transducers 5 k€ - Force transducers 5 k€ - Pumps 5 k€ - Small materials and furnitures for experiments 10 k€ - Computers 5 k€

Total other expenses: 30 k€

TOTAL PARTNER 1: 231 k€

6.2. PARTENAIRE 2 / PARTNER 2 : IPR (RENNES)

• Équipement / Equipment For the development of the multiple light scattering, one needs the following equipment :

- 1 stabilized laser beam Ne-He: 5 k€ - 2 synchronized détections SR830 : 12 k€

The tomograph will be paid by other research funding. A cluster of workstations is necessary to study large systems and obtained good statistics. This cluster will use the new technology based on GPU programming which allows high performance parallel computing. : 9 k€

Total equipment : 26 k€

• Personnel / Staff - Post-doc (1 year) : 54 k€ - PhD (3/2 years) : 60 k€ (The 3 year PhD will be shared with the LAUM – partner 3) - Compensation to University for reduced teaching load : 20 k€ - 6 internships (graduate students) : 12 k€

Total non permanent staff: 146 k€ The announcements for the post-doc and PhD positions are the following. Postdoc announcement: A postdoctoral position on « Experimental study of nanometric displacements of grains near an avalanche threshold » is available at the Institut de Physique de Rennes. The transition from a static granular material to a flowing one is a complex phenomenon. A key point is to understand how minutes deformations in granular material grow up, leading to spatially and temporally located deformations (avalanche, shear band, ...) Previous experimental study have shown (see [1] for example) that small reorganisation occurs before large collective displacements. The aim of this post-doc is to study experimentally the repartition and the magnitude of such displacements. We will use for this

Page 35: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

35/68

Light Scattering techniques developed at the Institut de Physique de Rennes [2] which allow a quantitative determination of the deformation of granular material. Quantitative comparisons of the magnitude of the grains displacements with experiments of acoustic scattering [3] and numerical simulations may be carried out. Applicants should have a PhD in experimental physics or a related discipline. Applicants should send a CV, reference contacts and a statement of research interests and experience to Jérôme Crassous ([email protected]) and to Axelle Amon ([email protected]). [1] A. Kabla, G. Debrégeas, J.-M. di Meglio, and T. J. Senden, Europhys. Lett., 71 932 (2005) [2] M. Erpelding, A. Amon, and J. Crassous, Phys. Rev. E 78, 046104 (2008) [3] V.Yu. Zaitsev, P. Richard, R. Delannay, V. Tournat and V.E. Gusev, Europhysics Letters, 83, 64003, (2008) PhD announcement: A PhD position on « preavalanche dynamics of granular systems » is available at the Institut de Physique de Rennes and at the Laboratoire d’Acoustique de l’Université du Maine. When a granular system is slowly and continuously tilted from the horizontal, an avalanche occurs at a critical angle. Before this large event, precursors (grain rearrangements, contact modifications…) can be observed. In a pioneering paper, Nerone et al [1] studied the preavalanche precursors by tracking the small rearrangements at the free surface. Latter Zaitsev et al. [2] studied the same configuration using acoustical methods that allow to scan the bulk of the granular medium but gives only average information. Existence of granular precursors is also found but a clear link between grain motion and the modification of the acoustical signal is still lacking. The aim of this PhD is to study this system by combining numerical simulations (contact dynamics and molecular dynamics) and experiments (direct visualization and non-linear acoustic method) to study grain motions and contact modifications during the preavalanche dynamics. A careful comparison between numerical simulations and experiments will be done. The influence of the initial packing (preparation, history, packing fraction…) will also be studied. Applicants should have a Master in physics. Applicants should send a CV, reference contacts and a statement of research interests and experience to Renaud Delannay ([email protected]), Patrick Richard ([email protected]) and Vincent Tournat ([email protected]). [1] N. Nerone, M. A. Aguirre, A. Calvo, D. Bideau, and I. Ippolito, Phys. Rev. E 67, 011302 (2003) [2] V.Yu. Zaitsev, P. Richard, R. Delannay, V. Tournat and V.E. Gusev, Europhysics Letters, 83, 64003, (2008)

• Prestation de service externe / Subcontracting none

• Missions / Missions - Missions for congress : 12 k€ - Meetings with other contractants, twice a year : 6 k€ - Missions : short and long term visits to other partners : 3 k€

Total missions : 21 k€

• Dépenses justifiées sur une procédure de facturation interne / Internal expenses

none

Page 36: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

36/68

• Autres dépenses de fonctionnement / Other expenses - 1 function generator: 3 k€ - 1 keithley 2000 multimeter and 1 GPIB datacard: 3 k€ - 1 computer: 2 k€ - Optical devices: 6 k€ - Beads (glass, steel, aluminium…): 5 k€ - Small material (mechanics, electronics): 4 k€ - Publication expenses: 1 k€

Total other expenses: 24 k€

TOTAL PARNER2: 217 K€

6.3. PARTENAIRE 3 / PARTNER 3 : LAUM (LE MANS)

• Équipement / Equipment The LAUM has recently purchased a system for the powerful excitation and reception of acoustic signals on 64 independent programmable channels (100 Hz – 10 MHz). This system allows to perform electronic focusing at the emission or at the reception, and time reversal. It will be used in several sub-tasks of the present project, and particularly in task 3.1 where the acoustic tools will be developed. Depending on the proposed experimental configuration, different transducers should be used covering a wide frequency range from low frequencies for surface waves at the free surface of a granular medium (500 Hz – 10 kHz) up to higher frequencies for bulk scattered waves in saturated bead packings (100 kHz – 1 MHz). A linear array of 64 piezo-transducers with a 1 MHz central frequency and typical 1 mm pitch for multiple scattering experiments in sub-millimetric granular media. 6 k€ 32 emitters (low frequency small size electro-dynamical shakers) and 32 receivers (small accelerometers and their power supply) at low frequencies (100 Hz – 10 kHz) for the generation and detection of coherent waves in weakly compressed granular packings. 34 k€

Total equipment : 40 k€

• Personnel / Staff - 12 months for master student internships (1 internship of 4 months per year): 8.4 k€ - PhD (3/2 year) (The 3 year PhD will be shared with the IPR – partner 2): 60 k€

Total non permanent staff: 68.4 k€ As the PhD thesis is shared with partner 2, the topic and the profile is already described above (see §6.2)

• Prestation de service externe / Subcontracting Precision mechanical work, peculiar machining works which are not possible at LAUM: 2 k€

Total subcontracting: 2 k€

Page 37: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

37/68

• Missions / Missions - Participations to specialized conferences in acoustics and nonlinear acoustics (ICU, ISNA, CFA, IEEE, ICA) and in physics and mechanics of granular media (Powder and Grains, CFM, GDR) : 12 k€ - Travels for the realization of acoustic experiments with partners 1, 2 and 4 in the tasks 1 and 2, 15 days at Orsay, 15 days at Rennes: 2 k€ - Travels twice a year for project meetings: 3 k€

Total missions : 17 k€

• Dépenses justifiées sur une procédure de facturation interne / Internal expenses

none

• Autres dépenses de fonctionnement / Other expenses Materials for the realization of experiments, samples and experimental setups (calibrated beads, teflon, macrolon, PVC, aluminum, holders), labtop + acquisition card 24 bits: 11 k€

Total other expenses: 11 k€

TOTAL PARNER 3: 138.4 K€

6.4. PARTENAIRE 4 / PARTNER 4 : GEOSCIENCES RENNES

To develop its project, Géosciences Rennes mainly requires specific experimental equipments both for laboratory and in situ measurements: a power amplifier with broadband specifities (to increase the source level), a full water-proof rotating motor (to control the incidence angle), a single emission/reception device (to measure backscatter strength with one transducer only), piezo-electric transducers (source/receiver at different frequencies). A dual-channel antenna is going to be developped at the laboratory, which has already experimented such instrumental improvements: most of the developpements are to be made (with piezo-electric plates, resins, etc.) in order to control the acquisition system and limit the total cost of the experiments. The method developed in the laboratory on glass beads and natural sediments will be extended to in situ geophysical data. Among these data, some should be provided by Geosciences Azur (multibeam data, ground truth and sediment cores) and correspond to submarine landslides and slope instabilities of the underwater relief. Working through this collaboration induces costs for missions at Villefranche-sur-Mer (Mediterranean sea) to work on the data. Other data, in particular those corresponding to river or estuary border instabilities, will have to be acquired by Géossiences Rennes in the Rennes basin (Vilaine for instance) and will not induce any cost for mission but for the conception/realisation of in situ instruments. Laboratory measurements will constitute an important database: for an optimised exploitation, the project of Partner4 should require a tempory staff per year (a Master of Science student, second grade) which cost has to be supported by the ANR. Additional costs will concern publications and attending national and international meetings in the geophysical research domain (American Geophysical Union, for instance).

Page 38: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

38/68

• Équipement / Equipment - broadband power amplifier 12 k€

Total equipment : 12 k€

• Personnel / Staff - 12 months for a Master student (4 months/year) : 8,4 k€

• Prestation de service externe / Subcontracting none

• Missions / Missions - attending meetings : 6.6 k€ - 1 Mission (2 pers., 1 week) to Villefranche-sur-Mer : 2 k€ - Meetings with other contractants, twice a year : 3 k€

Total missions : 11.6 k€

• Dépenses justifiées sur une procédure de facturation interne / Internal expenses

none

• Autres dépenses de fonctionnement / Other expenses − angular motorised setup 5 k€ − experimental setup and inclinometers 5 k€ − piezo-électric transducers 7 k€ − dual channel antenna 1.5 k€ − Emission/Reception device on a single transducer 1.5 k€ - glass beads (various diameters) and natural sediments 1 k€ - computer and data storage 1.5 k€

Total other expenses : 22.5 k€

TOTAL PARTNER 4 : 54,5 k€

7. ANNEXES

7.1. REFERENCES BIBLIOGRAPHIQUES / REFERENCES

Inclure la liste des références bibliographiques utilisées dans ce document et les références bibliographiques des partenaires ayant trait au projet. [Aguirre01] Aguirre M. A., Nerone N., Ippolito I., Calvo A. & Bideau D., Granular Matter 3,

75 (2001) [Allard93] J.F Allard. Propagation of sound in porous media, Modelling sound absorbing

materials. New York and London (1993). [Allard98] J.-F. Allard, M. Henry, J. Tizianel, L. Kelders, & W. Lauriks. Sound propagation

in air-saturated random packings of beads, J. Acoust. Soc. Am. 104 , 1–4, 1998. [Anfosso04] J. Anfosso & V. Gibiat. Elastic wave propagation in a three-dimensional

periodic granular medium. Europhys. Lett. 67, 376–382 (2004).

Page 39: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

39/68

[Ansari85] A. Ansari & S. Morris, The effects of a strongly temperature-dependent viscosity on Stokes’s drag law: experiments and theory, J. Fluid Mech. 159, 459-476 (1985)

[Bernal60] Bernal J.D., Co-ordination of randomly packed spheres, Nature 188, 910-911 (1960)

[Aste05] Aste T., Saadatfar M. & Senden T.J., Geometrical structure of disordered sphere packings, Physical Review E 71, 061302 (2005)

[Bonneau07] L. Bonneau, B. Andreotti & E. Clément, Surface elastic waves in granular media under gravity and their relation to booming avalanches, Phys. Rev. E 75(1), 016602 (2007).

[Bonneau08] Bonneau L., Andreotti B. & Clément E., Evidence of Rayleigh-Hertz Surface Waves and Shear Stiffness Anomaly in Granular Media, Phys. Rev. Lett. 101, 118001 (2008)

[Brady85] J.F. Brady & G. Bossis, The rheology of concentrated suspensions in simple shear by numerical simulations, J. Fluid Mech. 155, 105-129 (1985)

[Brey01] J.J. Brey, F. Moreno, R. Garcia-Rojo, M.J. Ruiz-Montero, Hydrodynamic Maxwell demon in granular systems, Phys. Rev. E 65, 011305 (2001)

[Caroli03] Caroli, C & Velicky, B., Anomalous acoustic reflection on a sliding interface or a shear band, Phys. Rev. E 67, 061301 (2003)

[Cassar05] C. Cassar, M. Nicolas & O. Pouliquen, Submarine granular flows down inclined plane, Phys. Fluid 11, 1956-1958 (2005)

[Charru04] F. Charru, H. Mouilleron & O. Eiff, Erosion and deposition of particles on a bed sheared by a viscous flow, J. Fluid. Mech. 519, 55-80 (2004)

[Clément91] E. Clement & J. Rajchenbach, Fluidization of a bidimensional powder, Europhys. Lett. 16, 133 (1991)

[Corwin08] Corwin E.I., Hoke E.T., Jaeger H.M. & Nagel S.R., Temporal force fluctuations measured by tracking individual particles in granular materials under shear, Phys. Rev. E 77, 061308 (2008)

[Coste08] C. Coste & B. Gilles. Sound propagation in a constrained lattice of beads : High-frequency behavior and dispersion relation. Phys. Rev. E, 77 :021302, 2008.

[Daerr99] Daerr A. & Douady S., Nature 399, 241 (1999) [Daly85] S. F. Daly & A. Raefsky, On the penetration of a hot diapir through a strongly

temperature-dependent viscosity medium, Geophys. J. R. astr. Soc. 83, 657-681 (1985) [Derode01] A. Derode, A. Tourin & M. Fink, Random multiple scattering of ultrasound. i.

coherent and ballistic waves. Phys. Rev. E 64, 036605 (2001) [Desrues04] Desrues J. & Viggiani G., Strain localization in sand: an overview of the

experimental results obtained in Grenoble using stereophotogrammetry, International Journal for Numerical and Analytical Methods in Geomechanics, 28, 279-321 (2004)

[Didwania81] A.K. Didwania & G.M. Homsy, Rayleigh-Taylor instabilities in fluidized beds, Ind. Eng. Chem. Fundam. 20, 318-323 (1981)

[Earnshaw94] J. C. Earnshaw & A. H. Jafaar, Phys. Rev. E 49, 5408 (1994) [Edwards89] Edwards S.F. & Oakeshott R.B.S., Physica A 157, 1080 (1989) [Falcon99] Falcon E., Wunenburger R., Evesque P., Fauve S., Chabot C., Garrabos Y. &

Beysens D., Cluster formation in a granular medium fluidized by vibrations in low gravity, Physical Review Letters 83, 440-444(1999)

[Fink92] M. Fink. Time reversal of ultrasonic fields - part i : basic principles. IEEE Trans. Ultrason., Ferroelec., Freq. Contr. 39, 555–566 (1992)

[GdrMidi04] G.D.R. Midi, On dense granular flows, European Physical Journal E 14, 341-365 (2004)

[GdrMege08] 1st Meeting of the GDR MeGe (Multiscale and multiphysical coupling in GeoEnvironmental Mechanics), La Rochelle, 9-11 june 2008

[GdrMephy09] Meeting of the GDR MéPhy (Physics and Mechanics of multiscale systems) on “Rheology of dense suspensions and immersed granular media”, Paris, 27 november 2009

[GdrPhenix08] Meeting of the GDR Phenix (Out-of-equuilibrium and non-linear phenomena) on “Granular Matter: statics, dynamics and statistics”, Lyon, 13-14 october 2008.

Page 40: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

40/68

[GdrTransnat09] 1st Meeting of the GDR TranSNat (Natural Solid Transport), Roscoff, 2-4 november 2009

[Geldart73] Geldart D., Types of gas fluidization, Powder technol. 7, 285 (1973) [Goddard90] J.D. Goddard. Nonlinear elasticity and pressure-dependent wave speeds in

granular media. Proceedings : Mathematical and Physical Sciences, 430 :105–131, 1990. [Goldenberg05] Goldenberg G. & Goldhirsch I., Friction enhances elasticity in granular solids,

Nature 435, 188-191 (2005) [Goldman08] Goldman D.I. & Umbanhowar P., Scaling and dynamics of sphere and disk

impact into granular media, Phys. Rev. E 77, 021308 (2008) [Haff83] P. K. Haff, Grain flow as a fluid-mechanical phenomenon, J. Fluid Mech. 134, 401-

430 (1983) [Hanson07] Hanson, G.J. & Hunt, S., Lessons learned using laboratory jet test method to

measure soil erodibility of compacted soils, Applied Engineering in Agriculture 23, 305-312 (2007)

[Hladky02] A-C Hladky-Hennion, F. Cohen-Tenoudji, A. Devos, and M. de Billy. On the existence of subresonance generated in a one-dimensional chain of identical spheres. J. Acoust. Soc. Am., 112(3) :850–855, 2002.

[Jackson92] Jackson D.R. & Briggs K.B., High frequency bottom backscattering: roughness versus sediment volume scattering, J. Acoust. Soc. Am. 92, 962-977 (1992)

[Jia99] Jia X., Caroli C. & Velicky B., Ultrasound Propagation in Externally Stressed Granular Media, Phys. Rev. Lett. 82, 1863-1866 (1999)

[Jia04] X. Jia. Codalike multiple scattering of elastic waves in dense granular media. Phys. Rev. Lett. 93, 154303 (2004)

[Job08] S. Job, F. Santibanez, F. Tapia, and F. Melo. Nonlinear waves in dry and wet hertzian granular chains. Ultrasonics, 48(6-7) :506–514, 2008.

[Johnson05a] P.A. Johnson and X. Jia. Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature, 437 :871–874, 2005.

[Johnson05b] P.A. Johnson and A.M. Sutin. Slow dynamics and anomalous fast dynamics in diverse solids. J. Acoust. Soc. Am., 117 :124–130, 2005.

[Josserand00] C. Josserand, A.V. Tkachenko, D.M. Mueth & H.M. Jaeger, Memory effects in granular materials, Phys. Rev. Lett. 85, 3632 (2000)

[Katsuragi07] Katsuragi H. & Durian D.J., Unified force law for granular impact cratering, Nat. Phys. 3, 420 (2007)

[Lechenault08] Lechenault F., Dauchot O., Biroli G. & Bouchaud J.-P., Critical scaling and heterogeneous superdiffusion across the jamming/rigidity transition of a granular glass, Europhys. Lett. 83 (2008)

[Liu92] Liu C.H. & Nagel S.R., Sound in sand, Phys. Rev. Lett. 68, 2301 (1992) [Liu93] Liu C.H. & Nagel S.R., Sound in a granular material: Disorder and nonlinearity,

Phys. Rev. B 48, 15646 (1993) [Maas08] C. C. Maas, N. Isert, G. Maret & C. M. Aegerter, Experimental Investigation of the

Freely Cooling Granular Gas, Phys. Rev. Lett. 100, 248001 (2008) [Makse04] Makse H.A., Gland N., Johnson D.L. & Schwartz L., Granular packings:

Nonlinear elasticity, sound propagation, and collective relaxation dynamics, Phys. Rev. E 70, 061302 (2004)

[Marty05] Marty G. & Dauchot O., Subdiffusion and Cage Effect in a Sheared Granular Material, Phys. Rev. Lett. 94, 015701 (2005)

[Menon97] Menon N. & Durian D.J., Science 275, 1920 (1997) [Metzger09] P. T. Metzger et al., Jet-Induced Cratering of a Granular Surface with

Application to Lunar Spaceports, J. Aerospace Eng. 22, 24-32 (2009) [Mills08] Mills P., Rognon P.G. & Chevoir F., Rheology and structure of granular materials

near the jamming transition, Europhys. Lett. 81, 64005 (2008) [Mouraille06] O. Mouraille, W.A. Mulder & S. Luding, Sound wave acceleration in granular

materials, J. Stat. Phys. P07023 (2006) [Mouraille08] O. Mouraille & S. Luding, Sound wave propagation in weakly polydisperse

granular materials, Ultrasonics, 48(6-7) 498–505 (2008)

Page 41: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

41/68

[Nerone03] Nerone N., Aguirre M. A., Calvo A., Bideau D. & Ippolito I., Phys. Rev. E 67, 011302 (2003)

[O'Hern03] C.S. O'Hern, L.E. Silbert, A.J. Liu & S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder, Phys .Rev. E 68, 011306 (2003)

[Ouriemi07] M. Ouriemi, P. Aussillous, M. Medale, Y. Peysson & E. Guazelli, Determination of the critical Shields number for particle erosion in laminar flow, Phys. Fluids 19, 061706 (2007)

[Pailha08] M. Pailha, M. Nicolas & O. Pouliquen, Initiation of underwater granular avalanches: Influence of the initial volume fraction, Phys. Fluids 20, 111701 (2008)

[Payan09] C. Payan, V. Garnier, J. Moysan & P.A. Johnson, Determination of third order elastic constants in a complex solid applying coda wave interferometry, Appl. Phys. Lett, 94, 011904 (2009)

[Pham08] T. L. Pham, Erosion and dispersion of clayed soils by a fluid, PhD thesis (in french), ENPC Paris (2008)

[Philippe08] Philippe P. & Richard T., Start and stop of an avalanche in a granular medium subjected to an inner water flow, Phys. Rev. E 77, 041306 (2008)

[Pine90] Pine D.J., Weitz D.A., Wolf P.E., Maret G., Herbolzheimer E., Chaikin P.M., in Scattering and Localization of Classical Waves in Random Media, edited by P. Sheng (World Scientific, 1990)

[Prado92] C.P.C. Prado & Z. Olami, Inertia and break of self-organized criticality in sandpile cellular-automata models, Phys. Rev. Lett. 45, 665 (1992)

[Radjai98] F. Radjai, D.E. Wolf, M. Jean & J.-J. Moreau, Bimodal character of stress transmission in granular packings, Phys. Rev. Lett. 80, 61 (1998)

[Rajaratnam85] N. Rajaratnam, Erosion by Submerged Circular Jets, J. Hyd. Div. 108, 262-267 (1985)

[Regazzoni09] Regazzoni P.-L., Confrontation et analyse d’érodimètres et caractérisation de la sensibilité à l’érosion d’interface, PhD thesis (in French) université de Nantes (2009)

[Reydellet01] Reydellet G. & Clément E., Green's Function Probe of a Static Granular Piling, Phys. Rev. Lett. 86, 3308 (2001)

[Ribe83] N. M. Ribe, Diapirism in the earth’s mantle: experiments on the motion of a hot sphere in a fluid with temperature-dependent viscosity, J. Volcanol. Geotherm. Res. 16, 221-245 (1983)

[Roche08] Roche O., S. Montserrat, Y. Niño & A. Tamburrino, Experimental observations of water-like behavior of initially fluidized, unsteady dense granular flows and their relevance for the propagation of pyroclastic flows, J. Geophys. Res. 113, B12203 (2008)

[Sadjadi08] Z, Sadjadi, M,Miri, M R, Shaebani & S.Nakhaee, Diffusive transport of light in a two-dimensional disordered packing of disks: Analytical approach to transport mean free path, Phys. Rev. E 78, 031121 (2008)

[Schogorfer04] Schorghofer N., Jensen B., Kudrolli A. & Rothman D.H., Spontaneous channelization in permeable ground: theory, experiment, and observation, J. Fluid Mech. 503, 357 (2004)

[Sharma07] I. Sharma & H. E. Huppert, A simple model of deep penetrating anchors, unpublished paper (2007)

[Snieder02] R. Snieder, A. Grêt, H. Douma & J. Scales. Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295 :2253–2255, 2002.

[Somfai05] E. Somfai, J.-N. Roux, J. H. Snoeijer, M. van Hecke, and W. van Saarloos. Wave propagation in confined granular systems. Phys. Rev. E, 72, 021301, (2005)

[Sperl07] Sperl M., Pressure and motion of dry sand: translation of Hagen’s paper from 1852, Granular Matter 9, 141-144 (2007)

[Staron02] Staron L., Vilotte J.-P. & Radjai F., Phys. Rev. Lett. 89, 204302 (2002) [Staron06] Staron L., Radjai F. & Vilotte J.-P., J. Stat. Mech. 89, 07014 (2006) [Stone04a] Stone M.B., Bernstein D.P., Barry R., Pelc M.D., Tsui Y.K. & Schiffer P., Getting

to the bottom of a granular medium, Nature 427, 503 (2004) [Stone04b] Stone M.B., Barry R., Bernstein D.P., Pelc M.D., Tsui Y.K. & Schiffer P., Local jamming via penetration of a granular medium, Phys. Rev. E 70, 041301 (2004)

Page 42: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

42/68

[Tourin01] A. Tourin, A. Derode, & M. Fink. Sensitivity to perturbations of a time reversed acoustic wave in a multiple scattering medium. Phys. Rev. Lett., 87, 274301 (2001) [Varas09] G. Varas, V. Vidal & J.-C. Geminard, Dynamics of crater formations in inmersed

granular materials”, , Phys. Rev. E 79, 021301 (2009) [Velicky02] Velicky, B & Caroli, C. Pressure dependence of the sound velocity in a two-

dimensional lattice of Hertz-Mindlin balls: Mean-field description, Phys. Rev. E 65 (2), no.-021307 (2002)

[Waterman61] Waterman P.C. & Truell R., Multiple scattering of waves, J. Math. Phys. 2, 512-537 (1961)

[Zakharov06] Zakharov P., Cardinaux F.& Scheffold F., Multispeckle diffusing-wave spectroscopy with a single-mode detection scheme, Phys. Rev. E 73, 011413 (2006)

[Zhang87] Zhang X.-R., Homsy G.M. & Ropchan W.T., Bubble formation in a single-jet gas-solid fluidized bed, Int. J. Multiphase Flow 13, 649-660 (1987)

[Zouestiagh07] Zoueshtiagh F. & Merlen A., Effect of a vertically flowing water jet underneath a granular bed, Phys. Rev. E 75, 056313 (2007)

PARTENAIRE 1 / PARTNER 1 [Barrat01] A. Barrat, E. Trizac & J.-N. Fuchs, Heated granular fluids: the random restitution

coefficient approach, European Physical Journal E 5, 161 (2001) [Barrat02] A.Barrat & E.Trizac, Molecular dynamics simulations of vibrated granular gases ,

Physical Review E 66, 051303 (2002) [Barrat03] A.Barrat & E.Trizac, Random inelasticity and velocity fluctuations in a driven

granular gas, European Physical Journal E 11, 99 (2003) [Barrat03b] A.Barrat & E.Trizac, A molecular dynamics "Maxwell Demon" experiment for

granular mixtures, Molecular Physics 101, 1713 (2003) [Barrat05] A. Barrat, E. Trizac & M.H. Ernst, Granular gases: dynamics and collective

effects, Journal of Physics: Condensed Matter 17 S2429 (2005) [Bena06] I. Bena, F. Coppex, M. Droz, P. Visco, E. Trizac & F. van Wijland, Stationary state

of a heated granular gas: fate of the usual H-functional, Physica A 370, 179 (2006) [Bertho06] Bertho Y., Becco Ch. & Vandewalle N., Dense bubble flow in a silo: an unusual

flow of a dispersed medium, Phys. Rev. E 73, 056309 (2006) [Bertho04] Bertho Y., Brunet T., Giorgiutti F. & Hulin J.P., Influence of humidity on granular

packings with moving walls, Europhysics Letters 67, 955-961 (2004) [Bertho03a] Bertho Y., Giorgiutti F. & Hulin J.P., Dynamical Janssen effect on granular

packing with moving walls, Physical Review Letters 90, 144301 (2003) [Bertho03b] Bertho Y., Giorgiutti F. & Hulin J.P., Intermittent granular flow in a vertical pipe,

Physics of Fluids 15, 3358-3369 (2003) [Bertho02] Bertho Y., Giorgiutti F., Raafat T., Hinch E.J., Herrmann H.J. & Hulin J.P., Powder

flow down a vertical pipe: the effect of air flow, Journal of Fluid Mechanics 459, 317-345 (2002)

[Coppex03] F. Coppex, M. Droz, J. Piasecki & E. Trizac, On the first Sonine correction for granular gases, Physica A 329, 114 (2003)

[Couder02] Couder J., Lajeunesse E., Vilotte J., Maury B., Vincent A., Direct Simulation of 2D Fluid-Particle Sedimentation : Velocity Fluctuations and Diffusion, American Geophysical Union (AGU) Fall Meeting, abstract #NG21A-0934 (2002)

[Courrech05] Courrech du Pont S., Fischer R., Gondret P., Perrin B. & Rabaud M., Instantaneous velocity profiles during granular avalanches, Physical Review Letters 94, 048003 (2005)

[Courrech03a] Courrech du Pont S., Gondret P., Perrin B. & Rabaud M., Granular avalanches in fluids, Physical Review Letters 90, 044301 (2003)

[Courrech03b] Courrech du Pont S., Gondret P., Perrin B. & Rabaud M., Wall effect on granular heap stability, Europhysics Letters 61, 492-498 (2003)

Page 43: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

43/68

[DeboeufA09] Deboeuf A., Gauthier G., Martin J., Yurkovetsky Y. & Morris J.F., Particle Pressure in a Sheared Suspension: A Bridge from Osmosis to Granular Dilatancy, Phys. Rev. Lett. 102, 108301 (2009)

[DeboeufS09] Deboeuf S., Gondret P. & Rabaud M., Dynamics of grain ejection by sphere impact on a granular bed, Phys. Rev. E 79, 041306 (2009)

[Doppler07] Doppler D., Gondret P., Loiseleux T., Meyer S. & Rabaud M., Relaxation dynamics of water-immersed granular avalanches, Journal of Fluid Mechanics 577, 161-181 (2007)

[Ernst06] M.H. Ernst, E. Trizac & A. Barrat, The rich behaviour of the Boltzmann equation for dissipative gases, Europhysics Letters 76, 56 (2006)

[Ernst06b] M.H. Ernst, E. Trizac & A. Barrat, The Boltzmann equation for driven systems of inelastic soft spheres, Journal of Statistical Physics 124, 549 (2006)

[Faure07] S. Faure, S. Martin, B. Maury and T. Takahashi, Towards the simulation of dense suspensions: a numerical tool, ESAIM: Proc. 28, 55-79 (2009)

[Faure09] S. Faure, A. Lefebvre-Lepot and B. Semin, Dynamic numerical investigation of random packing for spherical and nonconvex particles, ESAIM Proceedings 28, 13-32 (2009).

[Fischer08] Fischer R., Gondret P., Perrin B. & Rabaud M., Dynamics of dry granular avalanches, Physical Review E 78, 021302 (2008)

[Fischer09] Fischer R., Gondret P. & Rabaud M., Transition by Intermittency in Granular Matter: From Discontinuous Avalanches to Continuous Flow, Physical Review Letters 103, 128002 (2009)

[GarciadeSoria09] M.I. Garcia de Soria, P. Maynar & E. Trizac, Energy fluctuations in a randomly driven granular fluid, Molecular Physics 107, 383 (2009)

[Gauthier05] Gauthier G., Martin J. & Salin D., Gravity waves at the interface between miscible fluids and at the top of a settling suspension, Physical Review Letters 94, 204501 (2005)

[Gondret02] Gondret P., Lance M. & Petit L., Bouncing motion of spherical particles in fluids, Physics of Fluids 14, 643-652 (2002)

[Janela05] J. Janela, A. Lefebvre, B. Maury, A penalty method for the simulation of fluid-rigid body interaction, ESAIM Proceedings 14, 201-212 (2005) Eric Cancès & Jean-Frédéric Gerbeau, Editors

[Lefebvre05] A. Lefebvre & B. Maury, Apparent viscosity of a mixture of a Newtonian fluid and interacting particles, Fluid-solid interactions: modeling, simulation, bio-mechanical applications, Comptes Rendus Mécanique 333, 923-933 (2005)

[Lefebvre07] A. Lefebvre, Fluid-particle simulations with FreeFem++, ESAI Proc. 18, 120-132 (2007)

[Lefebvre09] A. Lefebvre, Numerical simulation of gluey particles,M2AN 43, 53-80 (2009) [Loiseleux05] Loiseleux T., Gondret P., Rabaud M. & Doppler D., Onset of erosion and

avalanche for an inclined granular bed sheared by a continuous laminar flow, Physics of Fluids 17, 103304 (2005)

[Maury97] B. Maury, A Many-Body Lubrication Model, C. R. Acad. Sci. Paris Série I 325, 1053-1058 (1997)

[Maury99] B. Maury, Direct Simulations of 2D Fluid-Particle Flows in Biperiodic Domains, J. Computational Physics 156, 325-351 (1999)

[Maury03] B. Maury, Fluid-particle shear flows, ESAIM M2AN 37, 699-708 (2003) [Maury04] B. Maury, Direct Simulation of Aggregation Phenomena, Comm. Math. Sci.

supplemental issue 1, 1-11 (2004) [Maury06] B. Maury, A time-stepping scheme for inelastic collisions, Numerische

Mathematik 102, 649 – 679 (2006) [Maury07] B. Maury, A gluey particle model, ESAIM Proceedings 18, 133-142 (2007), Jean-

Frédéric Gerbeau & Stéphane Labbé, Editors. [Puglisi05] A. Puglisi, P. Visco, A. Barrat, E. Trizac & F. van Wijland, Fluctuations of

internal energy flow in a vibrated granular gas, Physical Review Letters 95, 110202 (2005) [Puglisi06] A. Puglisi, P. Visco, E. Trizac & F. van Wijland, Dynamics of a tracer granular

particle as a non-equilibrium Markov process, Physical Review E 73, 021301 (2006)

Page 44: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

44/68

[Seguin08] Seguin A., Bertho Y. & Gondret P., Influence of confinement on granular penetration by impact, Physical Review E 78, 010301 (2008)

[Seguin09] Seguin A., Bertho Y., Gondret P. & Crassous J., Sphere penetration by impact in a granular medium: A collisional process, Europhysics Letters 88, 44002 (2009)

[Trizac00] E. Trizac , A. Barrat, Free cooling and inelastic collapse of granular gases in high dimensions, European Physical Journal E 3, 291 (2000)

[Trizac07a] E. Trizac, M.H. Ernst, A. Barrat, Quasi elastic solutions to the non-linear Boltzmann equation for dissipative gases, Journal of Physics A : Mathematical and General 40, 4057 (2007)

[Trizac07b] E. Trizac, A. Barrat & M.H. Ernst, Boltzmann equation for dissipative gases in homogeneous states with non-linear friction, Physical Review E 76, 031305 (2007)

[VanNoije99] T.P.C. van Noije, M. Ernst, E. Trizac & I. Pagonabarraga, Randomly driven granular fluids : large scale structure, Physical Review E 59, 4326 (1999)

[Visco05] P. Visco, A. Puglisi, A. Barrat, E. Trizac & F. van Wijland, Injected power and entropy flow in a heated granular gas, Europhysics Letters 72, 55 (2005)

[Visco06a] P. Visco, A. Puglisi, A. Barrat, F. van Wijland & E. Trizac, Energy fluctuations in vibrated and driven granular gases, European Physical Journal B 51, 377 (2006)

[Visco06b] P. Visco, A. Puglisi, A. Barrat, E. Trizac & F. van Wijland, Fluctuations of power injection in randomly driven granular gases, Journal of Statistical Physics 125, 533 (2006)

[Zhang99] J. Zhang, R. Blaak, E. Trizac, J. Cuesta & D. Frenkel, Optimal packing of polydisperse hard-sphere fluids, Journal of Chemical Physics 110, 5318 (1999)

PARTENAIRE 2 / PARTNER 2 [Ammi06] Ammi M., Valance A., Beladjine D. & Oger L., Discrete Element Method studies

of the collision of one rapid sphere on 2D and 3D packing, European Physical Journal E 17, 467-476 (2006)

[Ammi09] Ammi M., Oger L., Beladjine D., Valance A., "Three-dimensional analysis of the collision process of a bead on a granular packing.", Physical Review E, 79, 021305 (2009) .

[Beladjine07a] Beladjine D., Ammi M., Oger L. & Valance A., Experimental characterization of the collision process between a sphere and a 3D granular packing, Physical Review E 75, 061305 (2007)

[Beladjine07b] Beladjine D., Ammi M., Valance A. & Oger, Collision process between an incident bead and a three-dimensional granular packing, Physical Review E 75, 061305 (2007)

[Berton03] Berton G., Delannay R., Richard P., Taberlet N. & Valance A., 2D inclined chute flows : transverse motion and segregation, Physical Review E 68, 051303 (2003)

[Bi05] Bi W., Delannay R., Richard P., Taberlet N. & Valance A., Two- and three-dimensional confined granular chute flows: experimental and numerical results, Journal of Physics Condensed Matter 17, S2457-S2480 (2005)

[Bi06] Bi W., Delannay R., Richard P. & Valance A., Experimental study of two-dimensional, monodisperse, frictional-collisional granular flows down an inclined chute, Physics of Fluids 18, 123302 (2006)

[Crassous07] Crassous J., Diffusive Wave Spectroscopy of a random close packing of spheres, European Physical Journal E 23, 145 (2007)

[Crassous08] Crassous J., Metayer J.F., Richard P. & Laroche C., Experimental study of a creeping granular flow at very low velocity, Journal of Statistical Mechanics, 03009 (2008)

[Crassous09] Crassous J., Erpelding M., Amon A., Diffusive Waves in a Dilating Scattering Medium." Physical Review Letters, 103, 013903 (2009)

[Creyssels09] Creyssels M., Dupont R., Ould el Moctar A., Valance A, Cantat I., Jenkins J.T., Pasini J.M., Rasmussen K.R. "Saltating particles in a turbulent boundary layer: Experiment and Theory." Journal of Fluid Mechannics, 625, 47-74 (2009).

Page 45: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

45/68

[Delannay07] Delannay R., Louge M., Richard P., Taberlet N. & Valance A., Towards a theoretical picture of dense granular flows down inclines, Nature Materials 6, 99–108 (2007)

[Djaoui05] Djaoui L. & Crassous J., Probing Creep Motion into Granular Materials with Light Scattering, Granular Matter 7, 185 (2005)

[Erpelding08] Erpelding M., AmonA. & Crassous J., Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid, Phys. Rev. E 78, 046104 (2008)

[Khidas00] Khidas Y., Schliecker G., Ammi M., Messager J.C., Delannay R., Rotational modes in a 1D array of cylinders under shear stres, Europhysics Letters 5, 587-593 (2000)

[Khidas03] Khidas Y., Ammi M., Delannay R. & Oger L., Friction and rotation modes in a packing of cylinders under shear stress, Eur. Phys. J. E 10, 387-391(2003)

[Kiesgen09] Kiesgen de Richter S., Le Caër G., Delannay R., "Heterogeneous dynamics of a granular pack under vertical tapping." Europhysics Letters, 85, (3), 58004(6 pages) (2009).

[Langlois05a] Langlois V. & Valance A., Three-dimensionality of sand ripples under steady laminar flow, Journal of Geophysical Research 110, F04S09 (2005)

[Langlois05b] Langlois V. & Valance A., Formation of 2D Sand Ripples under Laminar Shear Flow, Phys. Rev. Lett. 94, 248001 (2005)

[Louge09a] Louge M., Valance A., Mint Babah H., Moureau-Trouvé J.C., Ould el Moctar A. , Dupont P., Ould Ahmedou D. "Penetration of humidity and dust beneath ripples and dunes.", Journal of Geophysical Research (2009)

[Louge09b] Louge M., Valance A., Ould el Moctar A., Dupont P. "Packing variations on a ripple of nearly monodisperse dry sand." Journal of Geophysical Research (2009)

[McNamara00] McNamara S., Flekkøy E. & Måløy K.J., Grains and gas flow: Molecular dynamics with hydrodynamic interactions, Phys. Rev. E 61, 4054 (2000)

[McNamara09] McNamara S., Richard P., Kiesgen de Richter S., Le Caër G., Delannay R., "Measurement of granular entropy." Physical Review E, 80, 031301 (2009).

[OuldAhmedou07] Ould Ahmedou D., Dupont P., Ould Mahfoudh A., Ould El Moctar A., Valance A. & Rasmussen K., Barchan dune mobility in Mauritania related to dune and inter-dune fluxes, J. Geophys. Res. 112, F2016 (2007)

[Ribière05a] Ribière P., Richard P., Delannay R., Bideau D., Toiya M. & Losert W., Effect of Rare Events on Out-of-Equilibrium Relaxation, Physical Review Letters 95, 268001 (2005)

[Ribière05b] Ribière P., Philippe P., Richard P., Delannay R. & D. Bideau D., Slow compaction of granular systems, Journal of Physics Condensed Matter 17, S2743-S2754 (2005)

[Ribière05c] Ribière P., Richard P., Bideau D. & Delannay R., Experimental compaction of anisotropic granular media, The European Physical Journal E 16, 415-420 (2005)

[Ribière05d] Ribière P., Richard P., Delannay R. & Bideau D., Importance of convection in the compaction mechanisms of anisotropic granular media, Physical Review E 71, 011304 (2005)

[Ribiere07] Ribière P., Richard P., Bideau D., Delannay R., On the existence of stationary states during granular compaction, European Physical Journal E 22, 249253 (2007)

[Richard03] Richard P., Philippe P., Barbe F., Bourlès S., Thibault X. & Bideau D., Analysis by x-ray microtomography of a granular packing undergoing compaction, Physical Review E 68, 020301 (2003) [Richard05] Richard P., Nicodemi M., Delannay R., Ribière P. et Bideau D., Slow relaxation

and compaction of granular systems, Nature Materials 4, 121-128 (2005) [Richard08] Richard P., Valance A., Métayer J.F., Sanchez P., Crassous J., Louge M. &

Delannay R., Rheology of confined granular flows: Scale invariance, glass transition and friction weakening, accepté à Phys. Rev. Lett. (2008)

[Snabre09] Snabre P. & Crassous J., "Multispeckle diffusing wave spectroscopy of colloidal particles suspended in a random packing of glass spheres." European Physical Journal E (2009)

[Seguin09] Seguin A., Bertho Y., Gondret P .& Crassous J. "Projectile penetration by impact in a granular medium : a collisional process." Europhys. Lett. 88, 44002 (2009)

Page 46: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

46/68

[Taberlet03] Taberlet N., Richard P., Valance A., Losert W., Pasini J.M., Jenkins J.T. & Delannay R., Superstable Granular Heap in a Thin Channel, Phys. Rev. Lett. 91, 264301 (2003)

[Taberlet04] Taberlet N., Richard P., Henry E. & Delannay R., The growth of a Super Stable Heap: An experimental and numerical study, Europhysics Letters 68, 515-521 (2004)

[Taberlet06] Taberlet N., Richard P. & Hinch E.J., The S-shape of a granular pile in a rotating drum, Phys. Rev. E 73, 050301 (2006)

[Taberlet07] Taberlet N., Richard P., Jenkins J.T. & Delannay R., Density inversion in rapid granular flows: the supported regime, The European Physical Journal E 22, 17-24 (2007)

[Taberlet08] Taberlet N., Richard P. & Delannay R., Computers & Mathematics with Applications 55, 230-234 (2008)

[Valance05a] Valance A. & Langlois V., Formation of ripples over a sand bed submitted to a Laminar Shear Flow, EPJ B 43, 283-294 (2005)

[Valance05b] Valance A., Formation of ripples over a sand bed submitted to a Turbulent Shear Flow, EPJ B 45, 433-442 (2005)

[Valance09] Valance A. & Crassous J., Granular Medium impacted by a projectile: Experiment and Model, European Physical Journal E, 30, 43-54 (2009)

[Welker09] Welker P. & McNamara S., "What triggers failure in frictional granular assemblies?." Physical Review E, 79, 061305 (2009)

[Zaitsev08] Zaitsev V. Yu, Richard P., Delannay R., Tournat V. & Gusev V.E., Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence, Europhysics Letters 83, 64003 (2008)

PARTENAIRE 3 / PARTNER 3 [Aleshin07] Aleshin V., Gusev V.E. & Tournat V., Acoustic modes propagating along the

free surface of granular media, J. Acoust. Soc. Am. 121, 2600-2611 (2007) [Castagnède06] B. Castagnède, M. Saeid, A. Moussatov, V.E. Gusev & V. Tournat ,

Reflexion and transmission at normal incidence onto air-saturated porous materials and direct measurements based on parametric demodulated ultrasonic waves, Ultrasonics 44, 221-229 (2006)

[Dazel07] O. Dazel, B. Brouard, C. Depollier & S. Griffiths, An alternative Biot's displacement formulation for porous materials, J. Acoust. Soc. Am. 121, 3509 (2007)

[Dazel09] O. Dazel and V. Tournat, Nonlinear Biot waves in porous media with application to unconsolidated granular media, J. Acoust. Soc. Am. accepted 2009

[Gusev02] Gusev V.E. & Aleshin V., Strain wave evolution equation for nonlinear propagation in materials with mesoscopic mechanical elements, J. Acoust. Soc. Am. 112, 2666-2679 (2002)

[Gusev05] V.E. Gusev & V. Tournat, Amplitude- and frequency- dependent nonlinearities in the presence of thermally-induced transitions in the Preisach model of acoustic hysteresis, Phys. Rev. B 72, 054104 (2005)

[Gusev06] Gusev V.E., Aleshin V. & Tournat V., Acoustic waves in an elastic channel near the free surface of granular media, Physical Review Letters 96, 214301 (2006)

[Gusev08a] V.E. Gusev & V. Tournat, How acoustic waves are guided in buried subsurface channels in unconsolidated granular media, Phys. Rev. E 78, 036602 (2008)

[Gusev08b] V.E. Gusev, V. Aleshin & V. Tournat, Reflection of nonlinear acoustic waves at the mechanically free surface of an unconsolidated granular medium, Acustica-Acta-Acustica 94, 215-228 (2008)

[Inserra07] C. Inserra, V. Tournat & V. Gusev, A method of controling wave propagation in initially spatially periodic media, EPL 78, 44001 (2007)

[Inserra08] C. Inserra, V. Tournat & V. Gusev, Characterization of granular compaction by nonlinear acoustic resonance method, Appl. Phys. Lett. 92, 191916 (2008)

Page 47: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

47/68

[Jacob08] X. Jacob, V. Aleshin, V. Tournat, P. Leclaire, W. Lauriks, & V.E. Gusev, Acoustic probing of the jamming transition in an unconsolidated granular medium, Phys. Rev. Lett. 100, 158003 (2008)

[Merkel09] A. Merkel, V. Tournat and V.E. Gusev, Elastic waves in non cohesive frictionless granular crystals, Ultrasonics, in press 2009

[Moussatov01] A. Moussatov, B. Castagnède & V.E. Gusev, Observation of nonlinear interaction of acoustic waves in granular materials : demodulation process, Phys. Lett. A 283, 216-223 (2001)

[Pagneux96] Pagneux V., Amir N. & Kergomard J., A study of wave propagation in varying cross-section waveguides by modal decomposition - Part I: theory and validation, J. Acoust. Soc. Am. 100, 2034-2048 (1996)

[Pagneux06] V. Pagneux & A. Maurel, Lamb wave propagation in elastic waveguides with variable thickness, Proc. R. Soc. A, 462: 1315-1339 (2006)

[Saeid04] M. Saeid, B. Castagnède, A. Moussatov, V. Tournat, & V. Gusev, Application of nonlinearly demodulated acoustic signals for the measurements of the acoustical coefficient of reflection for air saturated porous materials, C. R. Mecanique 332 (10), 849-858 (2004)

[Tournat02] V. Tournat, V.E. Gusev, and B. Castagnède, Influence of ballistic to diffusion transition in the primary wave propagation on parametric antenna operation in granular media, Phys. Rev. E 66, 041303 (2002).

[Tournat03] Tournat V., Castagnède B., Gusev B.E. & Béquin P., Self-demodulation acoustic signatures for non-linear propagation in glass beads, C. R. Mécanique 331, 119-125 (2003)

[Tournat04a] Tournat V., Zaitsev V. Yu., Gusev V.E., Nazarov V.E., Béquin P. & Castagnède B., Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy, Physical Review Letters 92, 085502 (2004)

[Tournat04b] Tournat V., Gusev V.E. & Castagnède B., Self-demodulation of elastic waves in a 1D granular chain, Physical Review E 70, 056603 (2004)

[Tournat04c] Tournat V., Gusev V.E. & Castagnède B., Subharmonics and noise excitation in transmission of acoustic wave through unconsolidated granular medium, Physics Letters A 326, 340-348 (2004)

[Tournat04d] Tournat V., Gusev V.E., Zaitsev V. Yu & Castagnède B., Acoustic second harmonic generation with shear to longitudinal mode conversion in granular media, Europhysics Letters 66, 798-804 (2004)

[Tournat04e] V. Tournat, V. Pagneux, D. Lafarge & L. Jaouen, Multiple scattering of acoustic waves and porous absorbing media, Phys. Rev. E 70, 026609 (2004)

[Tournat05a] Tournat V., Zaitsev V. Yu., Nazarov V.E., Gusev V.E. & Castagnède B., Experimental study of nonlinear acoustic effects in a granular medium, Acoust. Physics 51, 543-553 (2005)

[Tournat05b] V. Tournat, V. Zaitsev, V. Nazarov, V. Gusev & B. Castagnède, Probing granular media via nonlinear acoustic effects, Review Progress QNDE (24), ed. by D. O. Thompson and D. E. Chimenti (AIP, New York), 369-376 (2005)

[Tournat08] V. Tournat, C. Inserra & V.E. Gusev, Non-cascade frequency-mixing processes for elastic waves in unconsolidated granular materials, Ultrasonics 48 (6-7), 492-497 (2008)

[Tournat09a] V. Tournat & V. Gusev, Nonlinear coda-type elastic waves in stressed granular media, Phys. Rev. E 80, 011306 (2009)

[Tournat09b] V. Tournat & V.E. Gusev, Acoustics of unconsolidated “model” granular media : an overview of recent results and several open problems, Acustica-Acta- Acustica, in press 2009.

[Yu02] V.Yu. Zaitsev, V.E. Gusev, & B. Castagnède, The Luxembourg-Gorky effect retooled for elastic waves: a mechanism and experimental evidence, Phys. Rev. Lett. 89, 105502 (2002)

Page 48: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

48/68

[Zaitsev05] Zaitsev V. Yu., Nazarov V.E., Tournat V., Gusev V.E. and Castagnède B., Luxembourg-Gorky effect in a granular medium: probing perturbations of the material state via cross-modulation of elastic waves, Europhysics Letters 70, 607-613 (2005)

[Zaitsev08] Zaitsev V. Yu, Richard P., Delannay R., Tournat V. & Gusev V.E., Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence, Europhysics Letters 83, 64003 (2008)

PARTENAIRE 4 / PARTNER 4 [Conil04] F. Conil, D. Gibert and F. Nicollin, Non-linear synthesis of input signals in

ultrasonic experimental setups, Journal of the Acoustical Society of America, 115(1),246-252(2004)

[Gibert06] D. Gibert, F. Nicollin, B. Kergosien, P. Bossart, C. Nussbaum, A. Grislin-Mouëzy, F. Conil & N. Hoteit, Electrical tomography monitoring of the Excavation Damaged Zone of the gallery 04 in the Mont Terri rock laboratory: field experiments, modelling, and relationship with structural geology, Applied Clay Science 33, 21-34 (2006)

[LeGonidec07] Y. Le Gonidec and D. Gibert, Multiscale analysis of waves reflected by granular media: acoustic experiments on glass beads and effective medium theories, J. Geophys. Res. 112 (2007)

[LeGonidec06] Y. Le Gonidec and D. Gibert, The wavelet response as a multiscale characterization of scattering processes at granular interfaces, Ultrasonics 44, 381-390, (2006)

[LeGonidec05] Y. Le Gonidec, G. Lamarche and I. C. Wright, Inhomogeneous substrate analysis using EM300 backscatter imagery, Marine Geophysical Researches. 24, 305-321 (2005)

[LeGonidec03a] Y. Le Gonidec, F. Conil & D. Gibert, The Wavelet Response as a multiscale NDT method, Ultrasonics 41, 487-497 (2003)

[LeGonidec03b] Y. Le Gonidec, G. Lamarche & I.C. Wright, Using sound waves to sort out seafloor sediment types, Water and Atmosphere 11 (2003)

[LeGonidec02] Y. Le Gonidec, D. Gibert and J.N. Proust, Multiscale analysis of waves reflected by complex interfaces : basic principles and experiments, J. Geophys. Res., 107, 1-16 (2002)

[Nicollin08] F. Nicollin, D. Gibert, P. Bossart, C. Nussbaum & C. Guervilly, Seismic tomography of the Excavation Damaged Zone of the gallery 04 in the Mont Terri rock laboratory, Geophysical Journal International 172, 226-239 (2008)

[Nicollin07] F. Nicollin, D. Gibert, F. Beauducel, G. Boudon & J.C. Komorowski, Reply to comment on « Electrical tomography of La Soufrière of Guadeloupe volcano: field experiments, 1D inversion and qualitative interpretation » by N. Linde and A. Revil, Earth and Planetary Science Letters 258, 623-626 (2007)

[Nicollin06] F. Nicollin, D. Gibert, F. Beauducel, G. Boudon & J.C. Komorowski, Electrical tomography of La Soufrière of Guadeloupe volcano: field experiments, 1D inversion and qualitative interpretation, Earth and Planetary Science Letters 244, 709-724 (2006)

[Nicollin02] F. Nicollin, F. Conil and D. Gibert, Seismic endoscopy: multi-offset multi-azimuth imaging around boreholes, data processing and experimental results, Geophysical Prospecting, 50, 475-485 (2002)

7.2. BIOGRAPHIES / CV, RESUME

(une page maximum par personne)

Cf. § 5.3.

Page 49: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

49/68

Philippe GONDRET 43 ans

Cursus

Habilitation à Diriger des Recherches de l’Université Paris-Sud 11 (2001) Maître de Conférences à l’Université Paris-Sud 11, Orsay (1994-2005) Doctorat de Physique ENS Lyon – UCB Lyon 1 (1994) Professeur agrégé de Physique à l’ENS Lyon, thèse au Laboratoire de Physique (1990-1994) Agrégation de Physique (1990) [Service National 1988-1989] DEA Dispositifs de l’Electronique Intégrée INSA – EC – UCB Lyon 1(1988) Ingénieur INSA Lyon, Génie Physique & Matériaux (1988)

Situation actuelle

Professeur à l’Université Paris-Sud 11, Orsay (depuis 2005) Recherche au laboratoire FAST, Orsay (depuis 1994)

Autres expériences professionnelles

Organisateur du Congrès International “Traffic & Granular Flow’’, Orsay (2007) Coordinateur d’un projet ACI Prévention des Catastrophes Naturelles (2000-2003) Coordinateur d’un projet ACI Jeune Chercheur (1999-2002) Délégation au CNRS (1999-2001) Responsable du thème “Granulaires & Suspensions’’ au laboratoire FAST (depuis 2000) Membre du Comité d’Evaluation de 3 laboratoires (2001, 2002, 2003) Membre du Jury de 13 thèses (8 en rapporteur) et 2 HDR (1 en rapporteur) (depuis 2001) Referee de 30 articles soumis à des revues internationales (depuis 1997) Encadrement de 6 doctorants (depuis 1995) Membre de Commissions de Spécialistes à l’ENS Lyon (1998-2001), Paris 7 (2004-2008), et Paris-Sud 11 (1998-2009) en Vice-Président B (1998-2001) puis Vice-Président A (2007-2009) Responsable du L3 Mécanique de l’Université Paris-Sud 11 (depuis 2000) Responsable pour l’Université Paris-Sud 11 du M2R Physique des Liquides (depuis 2005)

Publications

Cinq publications significatives des cinq dernières années • R. Fischer, P. Gondret, & M. Rabaud, Transition by intermittency in granular matter: from

discontinuous avalanches to continuous flow, Physical Review Letters 103, 128002 (2009) • R. Fischer, P. Gondret, B. Perrin & M. Rabaud, Dynamics of dry granular avalanches, Physical

Review E 78, 021302 (2008) • D. Doppler, P. Gondret, T. Loiseleux, S. Meyer & M. Rabaud, Relaxation dynamics of water-

immersed granular avalanches, Journal of Fluid Mechanics 577, 161-181 (2007) • T. Loiseleux, P. Gondret, M. Rabaud & D. Doppler, Onset of erosion and avalanche for an inclined

granular bed sheared by a continuous laminar flow, Physics of Fluids 17, 103304 (2005) • S. Courrech du Pont, R. Fischer, P. Gondret, B. Perrin & M. Rabaud, Instantaneous velocity

profiles during granular avalanches, Physical Review Letters 94, 048003 (2005) 29 publications dans des revues internationales 5 PRL, 3 EPL, 3 JFM, 9 Phys. Fluids, 4 PRE, 1 EPJE, 2 J. Phys, 1 J. Rheol., 1 CRAS

Prix, distinctions

Prix Gallery of Fluid Motion, Division Fluid Dynamics American Physical Society (2002) Titulaire de la PEDR (depuis 1997) Prix de thèse du Groupe Français de Rhéologie (1994)

Page 50: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

50/68

Yann BERTHO 33 ans

Cursus

Doctorat de Physique de l’Ecole Polytechnique, laboratoire FAST (2003) DEA Dynamique des Fluides et des Transferts – Université Paris-Sud 11 (2000)

Situation actuelle

Maître de Conférences à l’Université Paris-Sud 11, Orsay (depuis 2006) Recherche au laboratoire FAST, Orsay (depuis 2006)

Autres expériences professionnelles

Postdoc au ‘‘Group for Research and Applications in Statistical Physics’’ (GRASP) – Université de Liège (2004-2006) Postdoc au ‘‘Center for NonLinear Phenomena and Complex Systems’’ et au ‘‘Microgravity Research Center’’ (MRC) – Université Libre de Bruxelles (2003-2004) Referee de 4 articles soumis à des revues internationales Co-encadrement de 1 doctorant (depuis 2007)

Publications

Cinq publications significatives des cinq dernières années A. Seguin, Y. Bertho, P. Gondret & J. Crassous, Sphere penetration by impact in a granular medium: a collisional process, Europhysics Letters 88, 44002 (2009) A. Seguin, Y. Bertho & P. Gondret, Influence of confinement on granular penetration by impact, Physical Review E 78, 010301 (2008) Y. Bertho, C. Becco & N. Vandewalle, Dense bubble flow in a silo: an unusual flow of a dispersed medium, Physical Review E 73, 056309 (2006) A. De Wit, Y. Bertho & M. Martin, Viscous fingering of miscible slices, Physics of Fluids 17, 054114 (2005) Y. Bertho, T. Brunet, F. Giorgiutti & J.P. Hulin, Influence of humidity on granular packings with moving walls, Europhysics Letters 67, 955-961 (2004) 8 publications dans des revues internationales

1 PRL, 2 EPL, 1 JFM, 2 Phys. Fluids, 2 PRE 2 publications de diffusion scientifique / 4 actes de congrès

Prix, distinctions

Prix de Thèse de l’Ecole Polytechnique (2004) Prix ‘‘Jeunes Chercheur’’ Alain Bouyssy (2002)

Page 51: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

51/68

Georges GAUTHIER 41 ans

Cursus

Doctorat de Physique des Liquides à l’université Paris-Sud 11, Orsay (1995-1998) DEA Physique Statistique et Phénomènes non linéaire – UCB Lyon 1(1994) Magistère de Physique – UCB-Lyon ENS Lyon (1994)

Situation actuelle

Maître de Conférences à l’Université Paris-Sud 11, Orsay (depuis 2002) Recherche au Laboratoire FAST, Orsay (depuis 2002)

Autres expériences professionnelles

Membre du directoire de l’Ecole doctorale MIPEGE de Paris-Sud 11 Coordinateur d’une étude sur la rhéologie des suspensions soutenue par le RTRA Triangle de la Physique (Orsay) 2007. Membre de Commissions de Spécialistes à Paris 11 en 60e section (2004-2009) Membre de la commission de Spécialiste de Lille I en 60e section (2000-2002) Encadrement de 2 doctorants (depuis 2000) Recherche au Laboratoire de Mécanique de Lille (1999-2002) Maître de Conférences à l’université Lille I (1999-2002) ATER à l’Université Paris-Sud 11, Orsay (1998-1999)

Publications

Cinq publications significatives des cinq dernières années • A. Deboeuf, G. Gauthier, J. Martin, Y. Yurkovetsky & J. Morris, Particle pressure : A bridge from

osmosis to granular dilatancy, Physical Review Letters 102, 108301 (2009). • A. Aubertin, G. Gautier, J. Martin, D. Salin and L. Talon, Miscible viscous fingering in microgravity,

Physics of Fluids 21, 054107 (2009). • G. Gauthier, V. Lazarus & L. Pauchard, Alternating crack propagation during directional drying,

Langmuir 23 (9), 4715 (2007) • G. Gauthier, J. Martin & D. Salin Gravity waves at the interface between miscible fluids and at the

top of a settling suspension, Physical Review Letters 94, 204501 (2005) • D. Rémy, G. Gauthier & D. Buisine, Instabilities between rotating and stationary parallel disks

with suction, Physics of Fluids 17, 018102 (2005) 10 publications dans des revues internationales 2 PRL, 2 JFM, 4 Phys. Fluids, 1 Langmuir, 1 CRAS

Prix, distinctions

• Prix Gallery of Fluid Motion, Division Fluid Dynamics American Physical Society (2002)

Page 52: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

52/68

Jérôme MARTIN 43 ans

Cursus

Chargé de Recherche CR2 au CNRS, section 10 – ST2I (1996-2000) Doctorat de Physique, laboratoires AOMC et FAST (1994) [Service National 1991-1992] DEA Physique des Liquides – Université Paris 6 (1991) Ingénieur ESPCI, Paris (1991)

Situation actuelle

Chargé de Recherche CR1 au CNRS, section 10 – ST2I (depuis 2000) Recherche au laboratoire FAST, Orsay (depuis 1996) •

Autres expériences professionnelles

Enseignements (ENSTA en 2002-2005, Université Paris 6 depuis 2006) Attaché Temporaire d’Enseignement et de Recherche à l’Université Paris-Sud 11 (1995-1996) Contrats d'expertise scientifique (Schlumberger, Biorad, CEA Le Ripault) Membre Topical team ESA Chemical reactions & hydrodynamics Referee pour des revues internationales Membre de Commission de Spécialistes à l’Université Paris-Sud 11 (2004-2006) Membre du conseil du laboratoire (depuis 2004-2008) Encadrement de 6 doctorants et 2 post-doctorants

Publications

Cinq publications significatives des cinq dernières années • J. Martin, N. Rakotomalala, L. Talon & D. Salin, Measurement of the temperature profile of an exothermic autocatalytic reaction front, Physical Review E 80, 055101 (2009). • A. Deboeuf, G. Gauthier, J. Martin, Y. Yurkovetsky & J. Morris, Particle pressure: A bridge from osmosis to granular dilatancy, Physical Review Letters 102, 108301 (2009). • M. d’Olce, J. Martin, N. Rakotomalala, D. Salin & L. Talon, Convective/absolute instability in miscible core-annular flow. Part 1 : Experiments, Journal of Fluid Mechanics 618, 305 (2008) • A. Aubertin, G. Gautier, J. Martin, D. Salin & L. Talon, Miscible viscous fingering in microgravity, Physics of Fluids 21, 054107 (2009). • G. Gauthier, J. Martin & D. Salin, Gravity waves at the interface between miscible fluids and at the top of a settling suspension, Physical Review Letters 94, 204501 (2005) 25 publications dans des revues internationales / 1 livre 6 PRL, 3 PRE, 3 JFM, 10 Phys. Fluids, 1 WRR, 1 J. Chem. Phys., 1 J. Phys. IV

Page 53: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

53/68

Dominique SALIN 59 ans

Cursus

Professeur à l'Université Pierre et Marie Curie 1988 Maître de conférences à l'Université Pierre et Marie Curie 1984 Doctorat ès Sciences 1979 (Hélium superfluide en géométries confinées) Assistant à l'Université Pierre et Marie Curie 1974 Doctorat 3ème cycle en Physique des Solides (Transition phase dans les cristaux liquides, 1974) Agrégation de Physique 1973 DEA d'Optique Quantique 1972 Ecole Normale Supérieure Saint-Cloud

Situation actuelle

Membre de l’Institut Universitaire de France (2008-) Professeur à l'Université Pierre et Marie Curie Membre de la Conseil de la Vie Scientifique du RTRA Triangle de la Physique Membre du Comité National des Universités CNU section 28 (2007-).

Autres expériences professionnelles

Directeur du laboratoire FAST (1995-2008) Chargé de Mission à la Mission Scientifique Technique et Pédagogique (MSTP), Direction Scientifique (DS2, Physique) au Ministère de la recherche (2004-2007). Topical team ESA Chemical reactions & hydrodynamics Responsable parcours de M2 Mécanique et Physique. Encadrement de 22 doctorants.

Publications

Cinq publications significatives des cinq dernières années • J. Martin, N. Rakotomalala, D. Salin & L. Talon, Measurement of the temperature profile of an autocatalytic reaction front, Physical Review E Rapid Comm, 80, 055101(R) (2009) • M. D’Olce, J. Martin, N. Rakotomalala, D. Salin & L. Talon, Convective/absolute instability in miscible core-annular flow. Part 1 Experiments. , Journal of Fluid Mechanics 618, 305 (2009) • T. Séon, J. Znaien, B. Perrin, E.J. Hinch, D. Salin & J.P. Hulin, Front dynamic and macroscopic diffusion in buoyant mixing in tilted tubes, Physics of Fluids 19, 125105 (2007) • Y.C. Yortsos & D. Salin, On the selection principle for viscous fingering in porous media, Journal of Fluid Mechanics, 557,225 (2006). • G. Gauthier, J. Martin & D. Salin, Gravity waves at the interface between miscible fluids and at the top of a settling suspension, Physical Review Letters 94, 204501 (2005) 113 publications dans des revues internationales & 10 livres et chapitres de livres 11 PRL, 8 EuroPhys. Lett , 1 PRE RC, 26 Phys. Fluids, 6 JFM….

Distinctions

Fellow of the American Physical society

Page 54: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

54/68

Emmanuel TRIZAC 39 ans

Cursus

Habilitation à Diriger des Recherches de l’Université Paris-Sud 11 (2003) Maître de Conférences à l’Université Paris-Sud 11, Orsay (1998-2004) Post-doctorat FOM Institute Amsterdam 1997-1998 Doctorat de Physique ENS Lyon (1997) DEA de Physique Statistique & Phénomènes non Linéaires, Ens Lyon, mention TB (1994) Élève de l'ENS Lyon (1991-1995)

Situation actuelle

Professeur à l’Université Paris-Sud 11, Orsay (depuis 2004) Recherche au laboratoire LPTMS, Orsay (depuis 2004)

Autres expériences professionnelles

Membre élu du Comité National de la Recherche Scientifique, section 02 (2008-2012). Membre élu du Département de Physique de l'UFR d'Orsay (2002-2006). Co-organisateur du Workshop International “Dynamics at Interfaces’, Lyon (2004) et de la Conference on Computational Physics (CCP 2010, Tronheim) Coordinateur d'un projet ANR Jeunes Chercheurs (2005-2008) et de plusieurs projets ECOS Nord (Colombie), Capes-Cofecub (Brésil), Picasso (Espagne), Proteus (Slovénie), Polonium (Pologne). Membre du Computational Physics Group de l'European Physical Society (depuis 2007). Membre du Comité d’Evaluation de 4 laboratoires (2007, 2009, 2010) Membre du Jury de 14 thèses (5 en rapporteur) et 4 HDR (3 en rapporteur) (depuis 2004) Encadrement de 6 doctorants (depuis 2004) et 5 post-doctorants Membre de Commissions de Spécialistes à Paris 6 (2004-2009), Paris 7 (2004), Cergy-Pontoise (2001-2004) et Paris-Sud 11 (2000-2004 et 2007-2009) Responsable du L3 et du M1 FIP au niveau de Paris-Sud 11 (depuis 2007) Responsable pour l’Université Paris-Sud 11 du M2 Physique des Systèmes Complexes (depuis 2006) Professeur invité à l'University of California at San Diego (1 an en 2005-2006) et au Departament de Fisica Fonamental de l'Université de Barcelone (3 mois en 2007). Enseignement de cours niveau M2 au Mexique (Guanajuato 2005) et en Espagne (Barcelone 2007). Referee » pour la plupart des revues de mon domaine (environ 40 articles par an), pour Ecos, l'ANR, la NSF et pour des jurys de « tenure track and promotion » aux USA.

Publications

Cinq publications significatives des cinq dernières années • Energy fluctuations in a randomly driven granular fluids, M.I. Garcia de Soria, P. Maynar & E. Trizac, Molecular Physics 107, 383 (2009). • Boltzmann equation for dissipative gases in homogeneous states with non-linear friction, E. Trizac, A. Barrat & M.H. Ernst, Physical Review E 76, 031305 (2007) • Dynamics of a tracer granular particle as a non-equilibrium Markov process, A. Puglisi, P. Visco, E. Trizac, F. van Wijland , Physical Review E 73, 021301 (2006) • Fluctuations of internal energy flow in a vibrated granular gas, A. Puglisi, P. Visco, A. Barrat, E. Trizac & F. van Wijland, Physical Review Letters 95, 110202 (2005) • Granular gases: dynamics and collective effects, A. Barrat, E. Trizac & M.H. Ernst, Journal of Physics: Condensed Matter 17 S2429 (2005) 80 publications dans les revues internationales à comité de lecture

Prix, distinctions

Membre de l'Institut Universitaire de France (promotion 2008).

Page 55: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

55/68

Bertrand MAURY 41 ans

Cursus

HDR à l’Université P. & M. Curie (2002) Maître de Conférences à l’UPMC (1997-2003) Post-Doc à Houston (Texas) sur la simulation d’écoulements fluide-particules (1995-1997) Thèse CIFRE à l’UPMC (avec Saint-Gobain Recherche) sur la modélisation du formage du verre plat. DEA du Laboratoire d’Analyse Numérique, UMPC (1991-1992) Années d’études à l’école Polytechnique (1989-1990)

Situation actuelle

Professeur de première classe à l’Université Paris-Sud 11, Orsay (depuis 2002) Professeur chargé de Cours à l’Ecole Polytechnique (depuis 2004) Docent Professor à l'université de Jyväskylä (Finlande) depuis 2001 Directeur de l’équipe EDP Analyse Numérique du Labo. de Mathématiques d’Orsay (début 2010)

Autres expériences professionnelles

Organisateur du Cemracs (école d’été avec session de recherche sur 6 semaines) en 2008, sur la modélisation et simulation numérique de fluides complexes Vice président de la CCSU (anciennement CS) du Laboratoire de Mathématiques d’Orsay depuis 2006 (section 25-26) Encadrement de 7 thèses (depuis 2002), dont 5 soutenues Directeur du M1 pro (Ingénierie Mathématique) d’Orsay depuis 2005 Membre du jury de l’Agrégation de Mathématiques de 1999 à 2004 Porteur du projet ANR MOSICOB, sur la modélisation de fluides complexes (2007-2010)

Publications

Cinq publications significatives des cinq dernières années • S. Faure, S. Martin, B. Maury and T. Takahashi, Towards the simulation of dense suspensions: a

numerical tool, ESAIM: Proc., 2009, Vol. 28, pp. 55-79 • B. Maury, A gluey particle model, ESAIM Proceedings, July 2007, Vol.18, 133-142, Jean-Frédéric

Gerbeau & Stéphane Labbé, Editors. • B. Maury, A time-stepping scheme for inelastic collisions, Numerische Mathematik, Volume 102,

Number 4, pp. 649 - 679, 2006. • A. Lefebvre, B. Maury, Apparent viscosity of a mixture of a Newtonian fluid and interacting

particles, Fluid-solid interactions: modeling, simulation, bio-mechanical applications, Comptes Rendus Mécanique, Volume 333, issue 12, december 2005, p.p. 923-933.

• V. Girault, H. Lopez, B. Maury, Energy balance of a 2-D model for lubricated oil transportation in a pipe, Divulgaciones Matematicas Vol. 16 No. 1(2008), pp. 87–105.

22 publications dans des revues internationales

Prix, distinctions

Prix Blaise Pascal de l’Académie des Sciences (SMAI-GAMNI) en 2008 Lauréat IUF Junior 2009 (jusqu’en 2014)

Page 56: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

56/68

Aline LEFEBVRE-LEPOT 30 ans

Cursus

Thèse à l'université Paris-Sud 11 sur la modélisation numérique d'écoulements fluide/particules (2004-2007) Magistère de mathématiques à l'université Paris-Sud 11 (2000-2004) DEA Analyse Numérique et calcul scientifique à l'université Paris-Sud 11 (2003-2004) Admission à l'ENS Cachan (2002) Licence et maîtrise de mathématiques fondamentales à l'université Paris-Sud 11 (2000-2002) Classes préparatoires au Lycée Faidherbe de Lille (1997-2000)

Situation actuelle

Chargée de recherche au CNRS depuis octobre 2008 Recherche CMAP, Ecole Polytechnique, Palaiseau Maître de Conférences à temps partiel au Département de Mathématiques appliquées de l’Ecole Polytechnique depuis septembre 2009

Autres expériences professionnelles

Chargée de TP à l'ENSAE (2008-2009) ATER à l'université Paris-Sud 11 (2007-2008) Allocataire Monitrice Normalienne à l'université Paris-Sud 11 (2004-2007)

Publications

Cinq publications significatives des cinq dernières années

- F. Bernicot & A. Lefebvre-Lepot, Existence results for non-smooth second order differential inclusions, Convergence result for a numerical scheme and applications for modelling inelastic collisions, Soumis. http://arxiv.org/abs/1001.0701.

- S. Faure, A. Lefebvre-Lepot & B. Semin, Dynamic numerical investigation of random packing for spherical and nonconvex particles, ESAIM Proceedings 28, 13-32 (2009).

- A. Lefebvre, Numerical simulation of gluey particles, M2AN, M2AN 43, 53-80 (2009)

- F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number swimers : an example, Journal of Nonlinear Science, 18(3):277-302 (2008)

- A. Lefebvre, Fluid/particle simulations with Freefem++, ESAIM: Proc., July 2007, Vol. 18, pp. 120-132

Prix, distinctions

Prix de thèse GAMNI 2008

Page 57: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

57/68

Patrick RICHARD 35 ans

Cursus

Habilitation à Diriger des Recherches, Université de Rennes I (2006) ATER en Physique INSA de Lyon rattaché au Groupe d'Etudes et de Métallurgie Physique et Physique des Matériaux (UMR CNRS 5510) (2000-2001) Doctorat de Physique, Université de Rennes I (2000)

Situation actuelle

Maître de Conférences, Université de Rennes I Recherche au Groupe Matière Condensée et Matériaux (UMR CNRS 6626) puis à l’Institut de Physique de Rennes (UMR CNRS 6251)

Autres expériences professionnelles

Délégation au CNRS (2004-2005) Séjours étranger: 1 mois Université du Maryland (USA), 1 mois Université de Liège (Belgique), 2 mois à l’Université de Cornell (USA) Co-organisateur de 3 congrès: Dygram Rennes 2006 – statics and dynamics of granular media and colloidal suspensions, Naples 2007 – Statistical mechanics of static granular media, Leiden 2009 Editeur invité de la revue scientifique The European Physical Journal E, pour un numéro spécial sur la physique des milieux granulaires (2007) Membre du comité scientifique du congrès ”Granular Matter 20th Canberra International Physics Summer School and Workshop on Granular Materials”, Canberra (Australie) (2006) Rapporteur d’articles (referee) pour Review of Modern Physics, Physical Review Letters, Physical Review E, Europhysics Letters, The European Physical Journal E, Journal of Physics Condensed Matter, New Journal of Physics, Powder Technology et Physica A et rapporteur de projets scientifiques pour le Netherlands Organisation fo Scientific research et pour The American Chemical Society Participation à la mise en commun des données et à la rédaction d’un article commun au GDR MIDI Membre du Jury de 3 thèses (depuis 2005) 5 conférences invités dans des congrès Encadrement de 4 doctorants (depuis 2002) Membre de Commissions de Spécialistes section 28 à l’Université de Rennes I (2001-2008) Responsable d’un parcours du Master « Systèmes Complexes Naturels et Industriels »

Publications

Cinq publications significatives des cinq dernières années • P. Richard, A. Valance, J.-F. Metayer, P. Sanchez, J. Crassous, M.Y. Louge and R. Delannay,

Rheology of confined granular flows: Scale invariance, glass transition and friction weakening, Physical Review Letters, 101, 248002 (2008).

• V.Yu. Zaitsev, P. Richard, R. Delannay, V. Tournat & V.E. Gusev, Pre-avalanche structural rearrangements in the bulk of granular medium: experimental evidence, Europhysics Letters 83, 64003, (2008)

• P. Richard & N. Taberlet, Recent advances in D.E.M. simulations of grains in a rotating drum, Soft Matter 4, 1345-1348 (2008)

• Ph. Ribière, P. Richard, P. Philippe, D. Bideau & R. Delannay, On the existence of stationary states during granular compaction, The European Physical Journal E, 22, 249-253 (2007)

• P. Richard, M. Nicodemi, R. Delannay, P. Ribière & D. Bideau, Slow relaxation and compaction of granular systems, Nature Materials 4, 121-128 (2005)

35 publications dans des revues internationales 2 Nature Mat., 3 PRL, 1 Soft Matter, 4 EPL, 5 EPJE, 1 EPJB, 1 Phys. Fluids., 8 PRE, 1 Optics express…

Prix, distinctions

Titulaire de la PEDR (2004-2008 et 2008-2012)

Page 58: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

58/68

Axelle AMON 33 ans

Cursus

ATER IUT d'Aix-Marseille III, recherche à l'Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE UMR 6594) (2003-2004) Doctorat de Physique, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM UMR 8523), Université des Sciences et Technologies de Lille (2003)

Situation actuelle

Maître de Conférences, Université de Rennes I (depuis septembre 2004) Recherche à l’Institut de Physique de Rennes (UMR CNRS 6251) (précédemment PALMS UMR 6627)

Autres expériences professionnelles

CRCT pour changement thématique (2007-2009) : passage de l'équipe « physique des lasers » à l'équipe « granulaire-mousse » début 2007 Co-encadrement de 1 doctorant

Publications

Cinq publications significatives des cinq dernières années

• J. Crassous, M. Erpelding, and A. Amon, “Diffusive Waves in a Scattering Medium”, Physical Review Letters 103, 013903 (2009)

• A. Amon, P. Suret, S. Bielawski, D. Derozier, and M. Lefranc, “Cooperative Oscillation of Nondegenerate Transverse Modes in an Optical System: Multimode Operation in Parametric Oscillators”, Physical Review Letters 102, 183901 (2009)

• M. Erpelding, A. Amon, and J. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid”, Physical Review E 78, 046104 (2008)

• A. Amon and M. Lefranc, “Mode hopping strongly affects observability of dynamical instability in optical parametric oscillators”, European Physical Journal D 44, 547-556 (2007)

• M. Brunel, A. Amon, and M. Vallet, “Dual-polarization microchip laser at 1.53 µm”, Optics Letters 30, 2418 (2005)

7 publications dans des revues internationales 3 PRL, 1 EPJD, 1 PRA, 1 PRE, 1 Optics Letters

Page 59: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

59/68

Jérôme CRASSOUS 42 ans

Cursus

Habilitation à diriger des recherches (Université Lyon I) (2004) Doctorat de Physique. ENS Lyon (Dir. E. Charlaix) (1995) DEA de Physique Statistique & Phénomènes non Linéaires, Université Lyon I, mention B (1991) Agrégation de Sciences Physiques, option Physique, 5ème (1990) Élève de l'ENS Lyon (1987)

Situation actuelle

Professeur à l’Université de Rennes1, section 28 (depuis 2005) Recherche à l’Institut de Physique de Rennes (IPR)

Autres expériences professionnelles

Délégué au CNRS (2003-2004) Post-doc, ETH Zürich, (Pr. P. Schurtenberger) (1997-1998) Maître de Conférences ENS Lyon, laboratoire de Physique (1995-2005) Allocataire de recherche puis Agrégé préparateur à l'ENS Lyon (1992-1995) Enseignement universitaire en Licence, Master, préparation agrégation de physique; Responsable de la physique à la préparation agrégation de Rennes Membre de commissions de spécialistes ENS Lyon (96-98), Ecole Centrale Lyon (98-03), Univ. Orsay (04-05), Univ. Rennes (05-08). Membre du conseil d'administration de l'ENS Lyon (2000-2003) Consultant pour les sociétés varioptic (varioptic.com) et LS instruments (lsinstruments.ch) Encadrement d’une thèse en cours (mesure de micro déplacements dans les matériaux granulaires); co-encadrement de deux thèses (construction d'un appareil à force de surface, et étude de films lamellaires en situation de confinement nanométrique)

Publications

Cinq publications significatives des cinq dernières années • M. Erpelding, A. Amon & J. Crassous, Diffusive Wave Spectroscopy applied to the spatially

resolved deformation of solid, Phys. Rev. E 103, 013903 (2009) • P. Richard, A.Valance, J.-F.Métayer, P.Sanchez, J. Crassous, M. Louge & R. Delannay, Rheology of

Confined Granular Flows: Scale Invariance, Glass Transition, and Friction Weakening, Phys. Rev. Lett., 101, 248002 (2008)

• J. Crassous, D. Beladjine & A. Valance, Impact of a Projectile on a Granular Medium Described by a Collision Model, Phys. Rev. Lett. 99, 248001 (2007)

• J. Crassous, Diffusive Wave Spectroscopy of a random close packing of spheres, Eur. Phys. J. E 23, 145 (2007)

• E. Charlaix & J. Crassous, Adhesion forces between wetted solid surfaces, J. Chem. Phys. 122, 184701 (2005)

25 publications dans des revues internationales dont : 1 Nature, 4 PRL, 4 Europhys., 5 EPJE, 1 J.Chem.Phys., 1 Langmuir, ...

Page 60: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

60/68

Renaud DELANNAY 48 ans

Cursus

Habilitation à Diriger des Recherches (1996, INPL) Maître de conférences 60ème section (Ecole des Mines de Nancy, INPL) (1990-1997) Doctorat de l'Université Paris VI en Mécanique (Dir. P.M. Adler) (1990) Ancien Normalien Doctorant affecté à l’Université Paris VI (1986-1988), puis boursier de recherche à l’École des Mines de Douai (1988-1990) DEA de Mécanique à Paris VI (mention bien) (1986) Agrégation de mathématiques (rang 84ème) (1984) Professeur de mathématiques en Math. Spé. Techno. (Service National) (1984-1985) Élève-professeur, fonctionnaire stagiaire (ENS Cachan) (1981-1984 et 1985-1986)

Situation actuelle

Professeur 28ème section à l’Université de Rennes I depuis 1997, en 1ère classe depuis 04, prime d’encadrement doctoral depuis octobre 1994 Recherche à l’Institut de Physique de Rennes

Autres expériences professionnelles

Délégation au CNRS (1 semestre 2008, 1 semestre 2010) Responsable d’un projet ACI « Energie et conception durable » (2004–2008) Coordinateur d’un Projet GIP ANR, Programme blanc (2005-2009) Responsable d’un Projet CREATE, Région Bretagne (2008-2010) Responsable d’un Projet Pluri-Formation (2008-2011) Coordinateur PICS CNRS (Italie: 2005-2007, USA: 2007–2009), et de plusieurs PAI Responsable scientifique de l’équipe « Milieux Granulaires et Mousses » de l’IPR (depuis 1999) Membre du conseil et du bureau de l’Ecole Doctorale Sciences de la Matière de l’UR1 Membre élu au conseil de l’UFR Structure et Propriétés de la Matière de l’UR1 (2005-2009) Membre des commissions de spécialistes de 28ème et 60ème section de l’Université de Rennes I et de la 28ème section de l’INSA de Rennes Responsable de la deuxième année du M2R Physique et Interfaces de l’Université Rennes 1 de 2004 à 2008, puis responsable de la spécialité de Master « Systèmes Complexes Naturels et Industriels » (M1+M2), Mention Physique et Mention Sciences de la Terre et Environnement Encadrement de 9 doctorants Coordinateur scientifique du Séminaire international : Geometry and Mechanics of Structured Materials, Max Planck Institut für Physik Komplexer Systeme, Dresde (Allemagne) (2002) Organisateur Ecole Thématique Annuelle sur les Systèmes Complexes de l’Université Rennes1

Publications

Cinq publications significatives des cinq dernières années • V. Zaitsev, P. Richard, R. Delannay, V. Tournat & V.E. Gusev, Pre-avalanche structural

rearrangements in the bulk of granular medium: experimental evidence, Europhys. Lett. 83, 64003 (2008)

• P. Richard, A. Valance, J.-F. Métayer, P. Sanchez, J. Crassous, M. Louge and R. Delannay, Rheology of confined granular flows: Scale invariance, glass transition and friction weakening, Phys. Rev. Lett., 101, 248002 (2008).

• R. Delannay, M. Louge, P. Richard, N. Taberlet & A. Valance, Dense granular flows down inclines: toward ab initio theories, Nature Materials 6, 99–108 (2007)

• J. Lambert, I. Cantat, R. Delannay, R. Mokso, P. Cloetens, J. Glazier & F. Graner, Experimental growth law for bubbles in a “wet” 3D liquid foam, Phys. Rev. Lett. 99, 058304 (2007)

• P. Richard, M. Nicodemi, R. Delannay, P. Ribière & D. Bideau, Slow relaxation and compaction of granular systems, Nature Materials 4, 121–128 (2005)

49 publications dans des revues internationales + 11 actes à comité de lecture 2 Nature Mat., 5 PRL, 5 EPL, 2 Phys. Fluids, 8 PRE, 7 EPJE, 6 J. Phys. A, 2 J. Phys, 4 Physica A,...

Page 61: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

61/68

Vincent TOURNAT 33 ans

Cursus

Habilitation à Diriger des Recherche, Université du Maine, Le Mans (2009) Doctorat Acoustique, Université du Maine, Le Mans (2003) DEA Acoustique, Université du Maine, Le Mans (2000)

Situation actuelle

Chargé de Recherche au CNRS (depuis 2004) Recherche au LAUM, Le Mans

Autres expériences professionnelles

Responsable de l'équipe de recherche « Acoustique et Mécanique des Matériaux », l'une des trois équipes du LAUM Responsable de l’opération de recherche “Acoustique des milieux granulaires” au LAUM Coordinateur français d’un PAI (2004-2006) avec la Russie, puis PECO-NEI (2006-2008) Membre des comités d’organisation et scientifique d’une école d’été CNRS (2007) Participation à 5 jurys de thèses (2006-2008) Membre nommé au CNU, section 60 (depuis 2007), membre de la CSE 60, Université du Maine Encadrement de 6 doctorants (4 en cours, 1 soutenance en 2007, 1 soutenance en 2008), Encadrement de 5 post-doctorants Rapporteur de plus de 25 articles (depuis 2004) Animation scientifique (rôle de coordination) du projet ANR blanc “grANuLar” 2005-2008 Post-doctorat, Applied Solid State Physics Laboratory, Hokkaido University, Japon (2004)

Publications

Cinq publications significatives des cinq dernières années C. Inserra, V. Tournat & V. Gusev, Characterization of granular compaction by nonlinear acoustic resonance method, Appl. Phys. Lett. 92, 191916 (2008)X. Jacob, V. Aleshin, V. Tournat, P. Leclaire, W. Lauriks & V.E. Gusev, Acoustic probing of the jamming transition in an unconsolidated granular medium, Phys. Rev. Lett. 100, 158003 (2008)V.E. Gusev, V. Aleshin & V. Tournat, Acoustic waves in an elastic channel near the free surface of granular media, Phys. Rev. Lett. 96, 214301 (2006) V. Tournat, V. Pagneux, D. Lafarge & L. Jaouen, Multiple scattering of acoustic waves and porous absorbing media, Phys. Rev. E 70, 026609 (2004)V. Tournat, V.Yu. Zaitsev, V.E. Gusev, V.E. Nazarov, P. Béquin and B. Castagnède, Probing weak forces in granular media through nonlinear dynamic dilatancy: clapping contacts and polarization anisotropy, Phys. Rev. Lett. 92, 085502 (2004) 32 publications dans des revues internationales / 2 brevets 3 PRL, 4 EPL, 6 PRE, 1PRB, 3 CR Mec., 3 Ultrasonics, 2 JASA, 1 APL,…

Prix, distinctions

Mention honorable du prix RWB Stephen délivré par Elsevier, Ultrasonics (2005) Prix Yves Rocard de la Société Française d’Acoustique (2004) Prix de thèse de l’Université du Maine (2003)

Page 62: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

62/68

Vitali GOUSSEV (Vitalyi GUSEV) 53 ans

Cursus

Habilitation à Diriger des Recherches, Université du Maine (1997) Assistant, Professeur associé puis Professeur, Université d’état de Moscou (1979-1998) Doctorat d’Etat (Physique & Mathématique, Physique du Laser), Université d’état de Moscou (1992) Doctorat de 3ème Cycle (Physique & Mathématiques, Acoustique), Université d’état de Moscou (1982)

Situation actuelle

Professeur IUF, Ecole Nationale Supérieure d’Ingénieurs du Mans (ENSIM), Le Mans (depuis 1998) Recherche au LPEC (UMR-CNRS 6087), chercheur associé au LAUM (UMR-CNRS 6613)

Autres expériences professionnelles

Professeur Invité, Département de Chimie, Brown Université, Etats-Unis (2003-2004) Professeur Invité, Faculté de Physique, Université Catholique de Louvain, Belgique (1995-1997) Professeur Invité, ESPCI de Paris et Université Paris 6, France (1991, 1994) Fellowship of the Japan Society for the Promotion of Science, Université de Sapporo (2000, 2002,2007) Alexander von Humboldt Fellowship, Université de Heidelberg, Allemagne (1997, 1998, 2001) 1992 – 1993 International Scientific Exchange Award from Natural Sciences and Engineering Research Council of Canada, Department of Mechanical Engineering, Université de Toronto, Canada Comités scientifiques internationaux: Membre du “Technical Committee on Ultrasound of the European Acoustical Association”, Membre du “Advisory Committee of the International Conferences on Photoacoustic and Photothermal Phenomena”, Membre de l'”International Advisory Board of the International Congress on Ultrasonics”

Publications

Plus de 200 publications dans des revues internationales / 1 livre / 3 brevets Cinq publications significatives des cinq dernières années O. Matsuda, O. Wright, D. Hurley, V.E. Gusev & K. Shimizu, Coherent shear phonon generation and detection with ultrashort optical pulses, Phys. Rev. Lett. 93, 095501 (2004) V.E. Gusev, V. Aleshin & V. Tournat, Acoustic waves in an elastic channel near the free surface of granular media, Phys. Rev. Lett. 96, 214301 (2006) X. Jacob, V. Aleshin, V. Tournat, P. Leclaire, W. Lauriks & V.E. Gusev, Acoustic Probing of the Jamming Transition in an Unconsolidated Granular Medium, Phys. Rev. Lett. 100, 158003 (2008) V.E. Gusev & V. Tournat, How acoustic waves are guided in buried subsurface channels in unconsolidated granular media, Phys. Rev. E 78, 036602 (2008) V. Gusev, On generation of picosecond inhomogeneous shear strain fronts by laser-induced gratings, Appl. Phys. Lett. 94, 164105 (2009).

Prix, distinctions

Médaille française 2007 de la Société Française d’Acoustique (2008) Membre senior de l’Institut Universitaire de France (2007) Prix “Senior” de l’ “International Photoacoustic and Photothermal Association” (2004) Récompense (rémunérée) pour le niveau « supérieur » de publications dans des journaux, délivrée par l’International Science Fondation (Soros Fondation) (1994) Médaille Lénine Comsomol en Science et Technologie, Russie (la plus haute distinction Soviétique pour un jeune scientifique) (1987)

Page 63: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

63/68

Olivier DAZEL 34 ans

Cursus

Doctorat Acoustique, INSA de Lyon (2003) DEA Acoustique, Ecole Centrale de Lyon (1999) Diplôme d'ingénieur des TPE (Lyon) (1999)

Situation actuelle

Maître de Conférences à l'Université du Maine, UFR Sciences (depuis 2004) Recherche au LAUM, Le Mans

Autres expériences professionnelles

Responsable de la première année du Master Acoustique et Mécanique de l'Université du Maine (depuis 2007) Membre de la commission Master de l’UFR Sciences et Techniques du Mans Membre du bureau du Département de physique Membre des comités d’organisation et scientifique de journées scientifiques (SAPEM Bradford, UK 2008, PUTMMP Le Havre 2009) Organisateur de la session méthodes numériques du Symposium on Acoustics of Poroelastic Materials (SAPEM 2008, Bradford UK), Chairman de session au congrès Acoustics08 Participation à 4 jurys de thèses (2006-2009) dont deux à l'étranger (KTH Stockholm, Suède et KU Leuven, Belgique) Encadrement de 2 doctorants (en cours), encadrement de 1 post-doctorant (en cours) Rapporteur de 13 articles (depuis 2004)

Publications

Cinq publications significatives des cinq dernières années O. Dazel, F. Sgard, F.-X. Becot, and N. Atalla, Expressions of dissipated powers and stored energies in poroelastic media modeled by {u,U} and {u,P} formulations, J. Acoust. Soc. Am. 123, 2054 (2008) J.F. Allard, O. Dazel, J. Descheemaker, N. Geebelen, L. Boeckx and W. Lauriks. Rayleigh waves in air saturated axisymmetrical soft poro-elastic media, J. App. Phys. 106, 014905 (2009) O. Dazel, B. Brouard, N. Dauchez and A. Geslain. Enhanced Biot’s finite element displacement for- mulation for porous materials and original resolution methods based on normal modes. Acta Acustica United with Acustica. 95 (3), 527–538 (2009) Olivier Dazel, Bruno Brouard, Claude Depollier, and Stéphane Griffiths, An alternative Biot's displacement formulation for porous materials, J. Acoust. Soc. Am. 121, 3509 (2007) P. Khurana, L. Boeckx, W. Lauriks, P. Leclaire, O. Dazel, and J. F. Allard A description of transversely isotropic sound absorbing porous materials by transfer matrices, J. Acoust. Soc. Am. 125 (2) 915-921 (2009) 13 publications (parues ou acceptées) dans des revues internationales 6 JASA, 2 JSV, 4 AAA, 1 JAP 19 communications dans congrès internationaux dont 3 invitées 3 communications dans des congrès nationaux

Prix, distinctions

Prix Yves Rocard de la Société Française d’Acoustique (2005)

Page 64: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

64/68

Yves LE GONIDEC 35 ans

Cursus

Chargé de recherche au CNRS - Géosciences Azur, Villefranche-sur-Mer, France (2003-2007) Doctorat en Sciences de la Terre - Université de Rennes 1, France (2001) DEA Dynamique de la Croûte Continentale - Université de Rennes 1, France (1998)

Situation actuelle

Chargé de recherche au CNRS - Géosciences Rennes, France (depuis 2007)

Autres expériences professionnelles

Encadrement d'un doctorant (depuis 2008) Responsable du laboratoire d'acoustique à Géosciences Rennes (depuis 2007) Responsable des séminaires à Géosciences Azur et coordinateur informatique (2003-2007) Post-doctorat au NIWA - Wellington, Nouvelle-Zélande (2002-2003) Enseignements et encadrements de stages (M2, M1, L3) Referee d'articles soumis à des revues internationales (depuis 2003)

Publications

Cinq publications significatives des cinq dernières années • Y. Le Gonidec & D. Gibert, Multiscale analysis of waves reflected by granular media: Acoustic

experiments on glass beads and effective medium theories, Journal of Geophysical Research 112, B05103 (2007)

• Y. Le Gonidec & D. Gibert, The Wavelet Response as a Multiscale Characterization of Scattering Processes at Granular Interfaces, Ultrasonics 44, 381-390 (2006)

• Y. Le Gonidec, G. Lamarche & I.C. Wright, Inhomogeneous Substrate Analysis using EM300 Backscatter imagery, Marine Geophysical Researches 24, 305-321 (2005)

• Y. Le Gonidec et D. Gibert, Multifrequency analysis of underwater acoustic waves reflected by complex media: principles and water tank experiments, Electronic Proceedings of IEEE Oceans’05, Brest, 2005.

• J.-Y. Collot, S. Migeon, G. Spence, Y. Le Gonidec, B. Marcaillou, J.-L. Schneider, F. Michaud, A. Alvarado, J.-F. Lebrun, M. Sosson and A. Pazmino, Seafloor margin map helps in understanding subduction earthquakes, EOS Transaction American Geophysical Union, Vol. 86 No 46, 463-465, 2005.

7 publications dans des revues internationales 8 actes de congrès

Page 65: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

65/68

Florence NICOLLIN 46 ans

Situation actuelle

Maître de Conférence à l’Université de Rennes 1 (depuis 1992)

Activités de recherche à Géosciences Rennes: Imagerie géophysique multi-méthodes de milieux complexes : développements méthodologiques, développements instrumentaux, expérimentation en laboratoire et sur le terrain, traitement et modélisation des données. Projets actuels : endoscopie sismique et tomographie électrique appliquées à des problèmes de géomécanique (suivi de l'endommagement de parois de galeries dans le Laboratoire souterrain du Mont Terri) et à la volcanologie (imagerie du système hydrothermal de la Soufrière de Guadeloupe).

Publications

Cinq publications significatives des cinq dernières années • F. Nicollin, D. Gibert, N. Lesparre & C. Nussbaum, Anisotropy of electrical conductivity of the

Excavation Damaged Zone in the Mont Terri Underground Rock Laboratory, Geophysical Journal International, in press, 2009.

• D. Gibert, F. Beauducel, Y. Déclais, N. Lesparre, J. Marteau, F. Nicollin & A. Tarantola, Muon tomography: plans for observations in the Lesser Antilles, Earth Planets Space, 61, in press, 2009.

• F. Nicollin, D. Gibert, P. Bossart, C. Nussbaum & C. Guervilly, Seismic tomography of the Excavation Damaged Zone of the gallery 04 in the Mont Terri rock laboratory, Geophysical Journal International 172, 226-239 (2008)

• F. Nicollin, D. Gibert, F. Beauducel, G. Boudon & J.C. Komorowski, Reply to comment on « Electrical tomography of La Soufrière of Guadeloupe volcano: field experiments, 1D inversion and qualitative interpretation » by N. Linde and A. Revil, Earth and Planetary Science Letters 258, 623-626 (2007)

• D. Gibert, J.L. Le Mouël, L. Lambs, F. Nicollin & F. Perrier, Sap flow and daily electrical potential variations in a tree trunk, Plant Science 171, 572-584 (2006)

17 publications dans des revues internationales (Applied Clay Science, Earth and Planetary Science Letters, Earthquake Spectra, Geophysical Journal, Geophysical Journal International, Geophysical Prospecting, IEEE Trans. on Geoscience and Remote Sensing, Journal of the Acoustical Society of America, Journal of Applied Geophysics, Plant Science, Tectonophysics)

Page 66: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

66/68

Jean-Louis THIROT 44 ans

Cursus

Chargé de recherche au CNRS - UMR 6532 Domaines Océaniques, Brest (1995-2006) Doctorat de Sciences de la Terre – IPG de Paris (dir. J.P. Montagner) (1995) DEA de Géophysique Interne – IPG de Paris (1991)

Situation actuelle

Chargé de recherche au CNRS - Géosciences Rennes, France (depuis 2006)

Autres expériences professionnelles

3 années d’enseignement au GRETA 4 ans de monitorat, 2 années en ATER Enseignements à l'UBO (Brest) (15h/an de 1996-2005) Referee projet mi-lourd (1997) Membre de la commission de valorisation de la recherche (depuis 2006)

Publications

8 publications dans des revues internationales 3 actes de congrès

Page 67: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

67/68

7.3. IMPLICATION DES PERSONNES DANS D’AUTRES CONTRATS / INVOLVEMENT OF PROJECT PARTICIPANTS TO OTHER GRANTS, CONTRACTS, ETC …

(un tableau par partenaire)

Cf. § 5.3.

Mentionner ici les projets en cours d’évaluation soit au sein de programmes de l’ANR, soit auprès d’organismes, de fondations, à l’Union Européenne, etc. que ce soit comme coordinateur ou comme partenaire. Pour chacun, donner le nom de l’appel à projets, le titre du projet et le nom du coordinateur.

Part. Nom de la personne

participant au projet

Personne. mois

Intitulé de l’appel à projets

Source de financement

Montant attribué

Titre du projet Nom du coordinateur

Date début &

Date fin

N°1 G. Gauthier

J. Martin

D. Salin

9

12,9

5

ANR Captage et Stockage du CO2

823k€ au total dont 227k€ pour le FAST

Co-Liner :

“Degradation and enhancement of the sealing properties of claystone caprocks”

P. Gouze 01/2009 to

12/2010 or

12/2011

or

12/2012

N°1 D. Salin 12,9 ANR Blanc

290k€ au total, dont 145k€ pour le FAST

Gimic

“Gravity Induced Mixing in Confined

geometries”

J.-P. Hulin 01/2008

to

12/2010

N°1 B. Maury

A. Lefebvre

24

(50%)

24

(50%)

ANR Blanc

Maths

MOSICOB Modélisation et Simulation de

Fluides Complexes

Biomimétiques

B. Maury 01/2008

to

12/20111

N°2 R. Delannay

P. Richard

8

10

CREATE - region Bretagne

180 k€

SAMPLEO R. Delannay 01/2008 to

07/2011

N°2 R. Delannay

J. Crassous

4

9

ANR Blanc

300 k€

Mouspore I. Cantat Demande depose en 2010

N°2 J. Crassous 5 ANR BiotecS

300k€

SMART-PEP 01/2010 to

12/2013

N°3 V. Pagneux 14 ANR Blanc

Tourbillonde A. Maurel 2008

to

2010

N°3 B. Castagnède

O. Dazel

32 ANR Thématique Silent Wall F. Bos 2007

to

2010

Page 68: Acronyme STABINGRAM français anglais

PROGRAMME BLANC

EDITION 2010

Projet XXX

DOCUMENT SCIENTIFIQUE

68/68

N°3 V. Gusev

N. Chigarev

V. Tournat

18

10

8

ANR Blanc / NSF

(submission 2010)

MatNet V. Gusev 2011

N°3 N. Chigarev

V. Gusev

V. Tournat

18

8

8

ANR Blanc

(Submission 2010)

ANL-MEMS O. Bou Matar 2011

N°4 B. Kergosien

Y. Le Gonidec

F. Nicollin

6

6

9

RISKNAT

ANR

550k€ au total dont

80k€ pour Géosciences

DomoScan: Quantification de la dynamique et

suivi spatio-temporel du

système hydrothermal de la Soufrière de

Guadeloupe

O. Coutand 01/2009

to

12/20011

N°4 B. Kergosien

Y. Le Gonidec

F. Nicollin

6

4

4

FORPRO2

CNRS/ANDRA

40k€ au total

Extension of the multi-scale and

multi-method EZ-G08 project:

characterisation, modelisation and monitoring of the EDZ in the Mont

Terri Underground

Rock Laboratory, Switzerland

Y. Le Gonidec 2009

2010